Nu: Achieving Microsecond-Scale Resource Fungibility with Logical Processes

Seo Jin Park
MIT CSAIL

Zhenyuan Ruan

Abstract. Datacenters waste significant compute and mem-
ory resources today because they lack resource fungibility: the
ability to reassign resources quickly and without disruption.
We propose logical processes, a new abstraction that splits
the classic UNIX process into units of state called proclets.
Proclets can be migrated quickly within datacenter racks, to
provide fungibility and adapt to the memory and compute re-
source needs of the moment. We prototype logical processes
in Nu, and use it to build three different applications: a social
network application, a MapReduce system, and a scalable
key-value store. We evaluate Nu with 32 servers. Our evalua-
tion shows that Nu achieves high efficiency and fungibility: it
migrates proclets in ~100us; under intense resource pressure,
migration causes small disruptions to tail latency—the 99.9™
percentile remains below or around 1ms—for a duration of
0.54-2.1s, or a modest disruption to throughput (<6%) for a
duration of 24-37ms, depending on the application.

1 Introduction

Compute and memory are valuable and expensive resources
in datacenters today, but they are inefficiently utilized [46, 76].
A key reason for this inefficiency is a lack of fungibility—the
ability to reassign resources quickly and without disruption
between different users and across different machines. With-
out fungibility, resources are stranded and over-provisioned
for fear of running short, even as resource consumption natu-
rally fluctuates in datacenter applications [2, 7, 18, 34, 39].

Existing systems fail to provide fungibility because cur-
rent abstractions for compute work and memory state (VMs,
containers, processes) are too coarse-grained (§2). To address
this problem, we introduce the abstraction of a logical pro-
cess. Logical processes provide fungibility, while retaining a
familiar programming model similar to traditional processes.
A logical process consists of many smaller proclets, atomic
units of state and compute that can be independently migrated
under resource pressure to achieve fungibility. Like a tradi-
tional process, a logical process has its own address space,
isolated from other processes. But unlike a traditional process,
a logical process can spread across many machines in datacen-
ter racks as a result of the migration of its proclets. Intuitively,
logical processes break down the monolithic nature of tradi-
tional processes into many proclets. A proclet consists of a
heap (state) and a set of user-level threads and their execution
contexts (stacks and register values). A runtime system that
manages the logical process responds to spikes in load by
migrating proclets quickly to a machine with spare resources.

Marcos K. Aguilera *
#*VMware Research

Adam Belay Malte Schwarzkopf '

"Brown University

To realize logical processes and proclets, we had to ad-
dress three challenges. First, proclet migration must be fast
and react to resource pressure before resources are exhausted.
Second, communication between proclets and migration of
proclets must impose little overhead or disruption on the ap-
plication, especially if migration itself consumes resources
when they are short. Third, the programming model of logi-
cal processes and proclets must support practical datacenter
applications.

We respond to these challenges as follows. First, we divide
process state into proclets, which are small relative to an entire
process, so they can be migrated orders of magnitude faster
than VMs or processes. Second, we optimize our software
stack to take full advantage of modern datacenter networks
(at 100—400 Gbit/s). This pushes performance far enough for
proclets to migrate in ~100us. We also scale proclets across
machines with minimal communication overheads by using a
single program image across machines and an optimized RPC
stack. Third, we use a global address space to provide a pro-
gramming model that is process-like and intuitive. This makes
it possible to statically check types, and enables computation
shipping by passing function pointers between proclets.

We prototyped logical processes and proclets in Nu, a sys-
tem that provides a C++ class API and a Caladan-based user-
level threading and kernel-bypass networking runtime [28].
Nu targets environments with tens of racks: hundreds of ma-
chines connected with an overprovisioned network that pro-
vides high full-bisection bandwidth (100-400 Gbit/s) and low
latency (10-20 us). We implemented three applications us-
ing Nu. The first is a version of the DeathStarBench social
network application[29], originally implemented using mi-
croservices. The Nu version of this application is simpler,
shorter, and has an order of magnitude better performance
than the microservice version, while preserving scalability.
The second application is k-means clustering on Phoenix
MapReduce [63], which represents a compute-intensive work-
load with high parallelism. Phoenix MR originally supported
thread parallelism in a single NUMA machine, but the Nu
version scales across multiple machines while also delivering
comparable single-machine performance. The third applica-
tion is a scalable key-value store implemented in Nu as a hash
table whose buckets are distributed across multiple proclets.

We evaluate Nu in a setup of 32 servers with 100 GbE
NICs that are connected through a top-of-rack switch. Our
evaluation shows that Nu achieves high efficiency and fun-
gibility: it reacts quickly to resource pressure and migrates

Overprovisioned Stranded Proclet: granular,
resources resources rapidly migratable

(a) Cloud Today

(b) Logical Processes

Figure 1: (a) Resources are wasted as they are overcommitted for
peak use (gradient) or stranded as additional tasks do not fit (gray).
(b) Proclets permit tighter packing, which fits more tasks (orange,
purple) that can be migrated away quickly under resource pressure.

proclets without disruption to the application workload. Nu
migrates proclets in ~100us and its migration exceeds the rate
at which the Linux kernel can allocate memory (= 7GB/s), so
Nu handles even intense resource pressure. Under this mem-
ory pressure, the social network app adds 122us to the 99.9'"-
percentile client latency for a period of 0.86s; the key-value
store app adds 52us for 2.1s; and k-means loses 2.9% through-
put for 37ms. Under intense compute pressure, disruption is
higher, but still short-lived: the key-value store adds 1,053us
for 0.54s; and k-means loses 5.8% throughput for 24ms. Fi-
nally, Nu’s logical processes are efficient in the absence of
resource pressure, and match or exceed the performance of
strong baselines on one or more servers.

Nu has some limitations. First, logical processes require
developers to structure applications as proclets. This may not
be feasible for every application (§3.3), but we have shown
that it is feasible for three very different applications. Second,
Nu currently considers only two resources, memory capacity
and compute load. We expect other resources can be added
(network, caches, memory bandwidth, etc.), but that remains
future work. Third, Nu targets deployments where network
bandwidth is plentiful and latencies low.

Nu is available as open-source software [66].

2 Motivation: Resource Fungibility

Cloud computing originally promised to deliver utility com-
puting, with fine-grained, pay-per-use sharing of compute re-
sources, rather than fixed-size machines that customers must
purchase and own [4, 31]. But, almost two decades later, the
operational reality is different: although end-users can readily
rent resources, cloud providers still provision and offer these
resources in fixed-size units and over long time horizons.
We argue that a key problem in this setting is the lack of
fungibility—the ability to reassign resources quickly and with-
out disruption between different users and across different
machines. Users today submit requests for fixed allocations
(number of cores, memory, etc.) as determined by so-called
“instances” (or “slots”, “tasks”). These allocations tend to over-

estimate actual resource use, which fluctuates at sub-second
time scales. Providers bin-pack instances onto the available
servers [33, 35, 71, 76, 77]. This is inefficient because users
must size instances for peak rather than typical usage, leav-
ing substantial resources idle most of the time. Providers can
reclaim some of these wasted resources by overbooking and
scheduling best-effort instances in them [2, 44, 76, 84]. But
this practice is disruptive, as machines can get intermittently
overloaded, leading to performance degradation (e.g., high
tail latencies), which is particularly problematic for latency-
sensitive workloads [28, 44]. In response, the cluster manager
must kill some best-effort instances to free up resources. But
doing so is also disruptive because the work done by a killed
instance can be wasted and may need to be redone. Moving
the instance usually is not an option as it requires an expensive
VM or process migration that can take seconds or minutes
because the state to be moved is large, and it requires the clus-
ter manager to find a destination machine that has sufficient
resources to take over the entire (indivisible) instance.

In other words, today’s cloud is not fungible (Figure 1(a)).
Resources can only be reassigned on fairly long timescales,
larger than the timescales over which resource consumption
fluctuates. The underlying reason for this problem is that
current abstractions for compute work and memory state—
VMs, containers, and processes—are too coarse-grained.

A more efficient design would avoid disruption and reas-
sign resources quickly and at fine granularity. This would
make it easy for providers to increase utilization by densely
packing instances across machines while rebalancing and
migrating work as necessary, instead of killing instances un-
der resource pressure. In addition, this would eliminate the
burden on users to predict and specify peak per-machine re-
source usage for each instance, allowing them to instead pay
for resources as they are used.

Our approach to fungibility. To provide fungibility, we re-
visit the process, a core OS abstraction that dates back to the
1960s. Traditionally, a process is an instance of a computer
program that runs on one machine, consisting of memory and
a set of threads. Our work extends this idea across machines
to provide a similar abstraction called a logical process.

Logical processes are inspired by logical disks [59, 74].
Much like a logical disk, a logical process combines together
disparate physical resources—in this case, machines rather
than disks. A logical process automatically scales to use ad-
ditional machines when more capacity is needed, and can
recover from machine failures.

A logical process achieves fungibility through two key
ideas (Figure 1(b)). First, a logical process divides program
state into fine-grained partitions called proclets. Second, pro-
clets are migrated quickly between machines in response to
memory or compute resource pressure. Each proclet runs on
one machine at a time, and proclets communicate with each
other through efficient message passing.

Because proclets are fine-grained, migrations complete

| Machine 0 X Machlne 1

SUNS %%
OO.. O

O(

1
1

1 '

Runtime Runtime 1 Runtlme :

Logical Process A | Logical Process B : : Logical Process B [

1

___________________ L e e e e o =

Mlgratlon

:|> — Proclets

|
1 + heaps)

Flgure 2: Logical processes spread across machines. Each logical
process is comprised of proclets that include a heap (shown as a
circle) and threads (shown as squiggles). Proclets rapidly migrate to
other machines in response to resource pressure.

quickly, causing minimal performance disruption. Inspired
by prior work that shows that decomposition into small units
simplifies placement [51, 57], proclets’ fine granularity makes
packing them onto machines simple and avoids complex and
time-consuming bin-packing on allocation or migration.

Alternative approaches. There are a few other approaches to
improving fungibility, but they have drawbacks. One can mi-
grate VMs [20, 78], containers [22], or processes [49], but mi-
gration is slow due to their state size. An alternative that main-
tains the process abstraction is to use distributed shared mem-
ory (DSM) to spread a normal process across machines [83].
But DSM systems experience high coherence overheads with
shared memory, leading to poor performance. PGAS [5, 17,
54] is a type of DSM that can avoid such overheads, but its
applicability is limited to parallel applications.

Another approach to fungibility is to adopt new program-
ming models to distribute the application into smaller units, as
with distributed objects [6, 13, 21, 30, 70, 82], microservices,
and serverless functions. These models depart significantly
from the familiar process abstraction, and they are built on
top of traditional, coarse-grained instances that limit their fun-
gibility. They also have high RPC messaging overheads (and
cold start delays for serverless functions [72]) that grow in
cost as their units become smaller. Alternatively, parallel pro-
gramming frameworks [8, 15, 23, 26, 50, 81] partition work
via rigid compute patterns (e.g., partition-aggregate, actors).
This constrains the programming model and requires data to
be statically placed on machines.

Finally, some techniques provide fungibility, but in limited
form. Far memory systems [32, 67, 79] can incrementally
extend the memory of a process, but they perform well only
when the remote memory is cold. Request load balancing can
make compute fungible, but it is mostly suited for stateless or
read-only services. These two techniques are complementary
to logical processes and can be combined with them.

3 The Logical Process Abstraction

A logical process exists across one or several machines and
contains a collection of proclets. Proclets are fine-grained par-
titions of program state that form units of migration. Proclets
can be individually migrated between machines to relieve
resource pressure (Figure 2).

Virtual Address

Figure 3: The address space layout of a logical process running
on two machines. Read-only code and data is mapped everywhere,
while proclets are mapped in exactly one machine at a time.

A proclet consists of a heap and a set of threads that can
access the heap concurrently via shared memory. A proclet
never shares its heap memory directly with other proclets.
Instead, each proclet has an associated root object, which
defines a remote method interface that other proclets use to
access its state. This approach allows developers to build full
programs from proclets in a natural, object-oriented way. The
root object may store references (pointers) to ordinary local
objects stored on the proclet’s heap.

The number of machines allocated to a logical process can
change over time in response to shifts in the resources avail-
able on each machine. Each machine handling logical pro-
cesses runs a separate runtime instance. The runtime provides
location-transparent communication between proclets, detects
resource pressure, migrates proclets between machines, and
cleanly handles failures.

Developing software for logical processes is similar to nor-
mal UNIX processes. Code can spawn threads, use synchro-
nization primitives to coordinate access to shared memory,
and allocate memory using standard APIs like malloc or
new. But there are two major differences. First, developers
must partition their program state into proclets. Second, in
most cases, developers must use runtime APIs instead of mak-
ing system calls or performing I/O directly. We describe the
logical process abstraction in more detail in the following.

3.1 Address Spaces and Cache Coherence

A logical process uses an identical address space layout on
each machine. This simplifies migration, as pointers remain
valid across machines without swizzling. Runtime instances
coordinate to keep their layout synchronized during initializa-
tion and whenever new proclets are created.

Figure 3 shows an example address space layout for a
logical process running on two machines. Code and shared
data segments are mapped read-only on all machines. Con-
sequently, the machines must be binary-compatible, but not
necessarily identical architectures (e.g., AMD and Intel x86
CPUs). Read-only data can store large static arrays, tables,
and other inputs that all proclets might need. Proclets’ heaps,
on the other hand, are readable and writable, only mapped on
one machine at a time, and only ever accessible by the owning
proclet. (This contrasts with distributed shared memory [3,
10, 25, 40, 52, 68, 69], which typically provides cache coher-
ence across machines.) In other words, no proclet can share

1
2
3
4
5
6
P
8
9
10
11
12
13

14
15

16
17
18
19
20
21
22
23
24
25
26

struct Accumulator {
Accumulator(int val) : val_(val) {}
void Add(int n) { std::scoped_lock l(mu_); val_ += n; }
int Get() { std::scoped_lock 1(mu_); return val_; }
std::mutex mu_; int val_;

};

void mainfunc() {

// Creates two proclets with root class Accumulator.

auto pl = make_proclet<Accumulator>(10);

auto p2 = make_proclet<Accumulator>(10);

// Invokes Get() on pl; prints 10.

std::cout << pl.Run(&Accumulator::Get);

// Invokes a closure on pl; prints 15.

std::cout << pl.Run(+[](Accumulator &a) { a.Add(5);

return a.Get(Q; 1);

// Invokes Get() asynchronously; prints 25.

auto fl1 = pl.RunAsync(&Accumulator::Get);

auto f2 = p2.RunAsync(&Accumulator::Get);

std::cout << fl.get() + f2.get(Q);

// Adds p2’s value to pl by invoking a closure on pl.

pl.Run(+[] (Accumulator &a, proclet<Accumulator> p) {
auto v = p.Run(&Accumulator::Get); a.Add(v); }, p2);

// Arguments statically type checked; DOESN’'T COMPILE!

// pl.Run(&Accumulator::Add, 10, 20);

// Proclets are freed when mainfunc() gets out of scope

}

Figure 4: Code sample for logical processes. Proclets have a root
class with methods containing the app logic. Proclets can create other
proclets, run methods synchronously or asynchronously, and run
closures. Closures can take proclets as arguments to chain execution.

memory with another proclet. Instead, proclets communicate
via remote method invocation, which passes arguments by
copying if the proclets are co-located on a machine or by
network transfer if they are on different machines.

This design avoids writable shared memory across ma-
chines and aligns well with current datacenter networks,
which provide high throughput and low latency, but lack hard-
ware support for cache-coherent memory across machines.
Additionally, this design enables fault isolation, as it allows
one proclet to fail independently from others on different ma-
chines. A failure can cause a proclet’s memory to disappear at
any time, and these errors can be cleanly reported via return
codes of remote methods. This allows us to use standard dis-
tributed systems techniques (e.g., replication) to make critical
proclets fault-tolerant.

Proclet migrations occur atomically and each proclet runs
on exactly one machine at a time. Consequently, cache co-
herence is available within proclets, but not across proclets.
This design allows for a normal programming environment
inside proclets, including synchronization across threads (via
spinlocks, mutexes, etc.) when they access shared memory
within a single proclet’s heap.

3.2 Programming Model

Developers write an application as a set of proclet root
classes. As in traditional object-oriented programming, each
class defines methods and fields. Methods implement the pro-
clet’s application logic and expose the API for the proclet
to be invoked by other proclets. Fields specify state internal
to the proclet, although additional state can be allocated dy-
namically in the heap at runtime. Figure 4 shows a running

example in C++.' Lines 1-6 define Accumulator as the root
class for a simple proclet that keeps a value val_ and exposes
two methods Add and Get to increment and retrieve the value.
Here, the methods are one-liners, but in real applications they
constitute most of the code.

When a logical process starts up, the runtime launches a
main proclet. This proclet typically creates other proclets
by calling function make_proclet with their root classes
and constructor parameters. In the example, the main proclet
invokes function mainfunc (for brevity we do not show the
main proclet, only mainfunc), which in lines 10-11 creates
two proclets with root class Accumulator.

Proclets communicate only via remote method invoca-
tions and closures. With remote method invocations, a proclet
calls the methods of the root object of another proclet, either
synchronously using function Run (), or asynchronously us-
ing function RunAsync (), which returns a future. Lines 13
and 17-18 show a synchronous and two asynchronous invoca-
tions of Get on proclets. The two asynchronous invocations
run concurrently to hide latency.

With closures, a proclet can implement function ship-
ping [36, 38, 65, 67, 79, 80], and ship a function that invokes
methods—interspersed with its own processing logic—on the
root object of another proclet. Line 15 shows a closure that
invokes Add and Get on the same proclet. This execution in-
curs a single roundtrip to the server hosting the proclet, even
though it invokes two methods. Shipping code to data in this
manner can greatly improve efficiency.

The remote runtime may execute methods and closures on
the same proclet concurrently on different threads. Hence, the
example uses a mutex mu_ to protect val_ against concurrent
execution of Add and Get.

Naming and reference counting. Proclets need to know
about each other before they can communicate. We adopt a
proclet naming scheme based on smart proclet pointers. These
pointers provide safety, convenience, and reference counting
through a interface similar to C++’s shared_ptr.

Unlike standard RPC frameworks, remote methods or clo-
sures can take proclet pointers as arguments. Thus, code can
pass handles to proclets to other proclets by passing them
as parameters, similar to delegating capabilities. This feature
permits a remote method or closure to chain together the ex-
ecution of multiple proclets while performing computation
in between. For example, line 22 shows a closure on proclet
pl that takes proclet p2 as a parameter; the closure first calls
p2’s Get method, followed by p1’s Add method.

Proclet pointers are valid within the entire logical process,
even across machines, and the runtime frees a proclet when it
loses its last reference. In the example, proclets pl and p2 are
freed automatically when mainfunc () goes out of scope.

We considered using global strings as proclet names, but
never needed them in building applications. A logical process

1A logical process can be implemented in other languages too.

is tightly coupled, and we found that passing smart pointers is
more convenient than hard-coding strings. Typically, initial-
ization code creates several proclets, and passes around their
smart pointers, so the code hands over access directly.

Type checking. Because a logical process uses an identical
program image across machines, static type checking of argu-
ment types is sufficient for remote invocations. This contrasts
with standard RPC frameworks (e.g., Thrift or gRPC), which
additionally have to perform dynamic type checking, incur-
ring runtime overheads and requiring extra error handling.
Line 24 thus fails to compile because of too many arguments.

Raw pointers into a proclet’s heap are never allowed as
arguments; we made this choice to discourage incorrect code
that attempts to share memory between proclets. On the other
hand, smart pointers are supported, and passing them as argu-
ments causes the objects they own to be copied.

Unlike standard RPC frameworks, proclet invocations al-
lows remote methods and closures to take function pointers
and closures as arguments. This is possible as all machines in
the logical process map the code segment at the same address.

Network I/0 outside a logical process. Logical processes
perform their I/O through abstractions provided by the run-
time, rather than POSIX syscalls and I/O abstractions. This
allows proclets to be machine-independent and migrate be-
tween machines without having to move hard-to-migrate local
kernel state (e.g., the TCP state machine). In particular, the
runtime maintains TCP network connections to clients, which
can be either other logical processes or normal processes.
These connections allow clients to communicate with specific
proclets inside a logical process—or to spread load across
groups of stateless proclets—and will forward client requests
if the destination proclet has migrated. Similar to existing
libraries for distributed request routing [1, 53], the runtime
informs client libraries about the proclet’s new location, so
that the client knows to expect the response on another net-
work connection and to send future requests there. In our
datacenter setting, client and server code are under the control
of the same entity, and custom I/O libraries (e.g., for request
routing and load balancing) are commonplace [1, 11, 73].

In rare cases, developers can pin proclets that need to use
local resources directly to a machine. Such proclets lose their
ability to migrate and reduce resource fungibility, so develop-
ers should pin proclets only if absolutely necessary.

3.3 Porting Applications to Logical Processes

In principle, any application that can partition its state into
fine-grained units can be ported to a logical process (each
unit becomes a proclet). This aligns well with existing cloud
applications that already partition their state (e.g., microser-
vices, FaaS, distributed frameworks, etc.), though sometimes
at a coarser granularity than proclets. There are two main
considerations when dividing a logical process into proclets:
the proclet granularity and its scope.

Proclet granularity. Choosing the right size for proclets is
important. If proclets are too large, resource fungibility suf-
fers. If they are too small, communication overheads increase
as remote invocations become more frequent. Developers
must choose a sweet spot that provides sufficient fungibility
without significant overheads. §6.4.2 shows empirical mea-
surements of proclet performance at different state sizes and
invocation compute intensities; in practice, proclets of a few
MiB state size work well.

Proclet scope. The next consideration is how to decide what
functionality goes into a proclet. One approach is functional
splitting, which equates a proclet to a logical functional unit
in the application (a module, a microservice, a package, etc).
Well-known software engineering practices suggest how to
choose appropriate units [47, 56]: the unit should include
functionality that is intuitively related, that can be described
simply, and that can be encapsulated through a compact and
easy-to-understand API. The latter property ensures that the
interface between proclets is also compact. Another approach
is to use sharding. Since a functional unit may be much larger
than the ideal proclet size, it may help to shard (partition) the
unit. For example, consider a large chaining hash table. Each
hash bucket of this data structure becomes a separate proclet
and stores the proclet pointer in the hash array. To operate
on a key in the hash table, the code makes the appropriate
method invocation to the corresponding proclet. This results
in a distributed key-value store, as proclets are spread across
machines, but maintains the hashtable API.

Limitations. Some applications are hard to decompose into
proclets, such as applications that manipulate large amounts
of state that is not easily divisible (e.g., video encoders, ar-
chitecture simulation, sorting, or graph processing). For these
examples, decomposition may still be possible, but it requires
new algorithmic approaches [27, 41, 45, 48, 64].

Other applications may require functionality that is tied to
physical hardware resources, such as a GPU or an FPGA. In
these cases, proclets that interact with the hardware may need
to be pinned, thus reducing the logical process’s fungibility.

3.4 Security and Threat Model

A logical process has the same isolation properties as a UNIX
process—vViz., its memory is isolated from other processes,
but its threads share an address space—but applies this model
across multiple machines. Even though proclets lack shared
memory, there is no hardware memory isolation (e.g., via
the MMU) between the proclets within a logical process to
enforce this. We made this choice for performance reasons
and because it matches the isolation model of UNIX processes.
On the other hand, memory isolation is guaranteed across
different logical processes: each local logical process instance
runs in a different UNIX process and is isolated from other
logical process instances on the machine.

Address space layout randomization (ASLR) and stack ca-

naries are important defenses against buffer overflow attacks.
Although ASLR might at first glance seems incompatible with
logical processes’ global address space, it works as long as the
loader maintains the same randomized address space layout
on each machine. Stack canaries also work, as proclets cannot
share stack memory and the implementation can maintain a
different secret canary value for each proclet.

Finally, logical processes trust the network to provide con-
fidentiality and integrity. This is necessary to make remote
method invocation and migration efficient by sending raw
data and pointers. Modern datacenter NICs have hardware
encryption engines that ensure these properties.

3.5 Fault Tolerance

A proclet may be replicated to tolerate failures. Replication
creates backup copies of the proclet’s heap, which the runtime
places at the same virtual address in different machines. To
keep the backup heaps in sync, the primary replica serializes
the invocation requests and forwards them to the backup repli-
cas. (This requires proclet operations to be deterministic.)
Operations on a replica are totally ordered without overlap
within each proclet—a choice that trades off some perfor-
mance for strong consistency. To reduce replication latency,
the primary overlaps execution with the backups, but the pri-
mary only returns from an invocation once the backups finish.

When the system detects the failure of the primary (e.g.,
due to an RPC time out), it atomically promotes a backup to
the primary. To keep the same replication factor, it also adds
a new backup by pausing the proclet and copies its heap from
the new primary to the new backup replica.

4 The Nu Runtime System

We built Nu, a prototype runtime that provides the logical pro-
cess abstraction and runs inside a normal Linux environment.
Nu shares some architectural and implementation building
blocks with Caladan [28]. Caladan was a good fit for Nu
because it provides a user-level threading package with over-
heads low enough to hide microsecond-scale latency. For
example, if a thread blocks waiting for a remote proclet in-
vocation to return, the runtime can quickly context switch to
another runnable thread with little overhead. Caladan uses
work-stealing to balance these threads across cores, which
reduces tail latency [62]. Caladan also provides an optimized
kernel-bypass, user-level TCP/IP networking stack to further
reduce proclet communication and migration costs.

Nu adds /10,000 lines of C++ code to Caladan. This in-
cludes efficient communication infrastructure, a new memory
management layer to handle multiple heaps, a well-optimized
proclet migration system, and a controller to track the location
of proclets. In the following, we describe these components.

4.1 Serialization and Communication

Nu serializes arguments to remote invocations using cereal,
an efficient, header-only library for serialization [16]. Ce-
real has a compact binary serialization format that supports

most STL types, but prohibits raw pointers and references
(shared_ptr and unique_ptr are still supported). We modi-
fied cereal so that it can serialize function and proclet point-
ers. To optimize use of cereal, Nu maintains a buffer pool
for serialized outputs and eliminates extra data copies.

Nu uses C++ templates to internally produce code at
compile time for serialization and deserialization of remote
method arguments. This contrasts with RPC frameworks like
Thrift, which require code generation and an interface descrip-
tion language. As a result, developers call remote methods
without boilerplate, and they benefit from static type checking.

We took several steps to optimize remote method invoca-
tions. First, Nu opens one TCP connection on each core for
each outgoing machine. These connections use specific 5-
tuples, so they have flow-level affinity matched with the core
they are associated with, enabling cache-aware steering [42,
60]. This design increases the number of open connections,
but Caladan easily scales to 10,000 connections, much more
than needed for our target environment. Second, Nu applies
adaptive batching to combine remote method invocation pay-
loads (requests and responses) into larger TCP transfers with-
out impacting latency [9]. We modified Caladan to use jumbo
frames to increase the benefit of this batching. Third, each
connection operates as a closed queuing system, limiting the
maximum number of requests in flight. This provides flow
control and prevents unbounded memory consumption under
overload. Finally, when the caller and callee proclets are in
the same machine, Nu substitutes the RPC with a fastpath: a
local call without any RPC overheads.

4.2 Memory Management

Nu uses a custom slab allocator to manage each proclet’s
heap. It includes a per-core object cache to increase scalability,
similar to most modern multicore memory allocators [12, 14].
C++ allows a custom definition of operator new () that Nu
uses to override memory allocations. Nu keeps track of which
proclet each thread is associated with and directs allocations to
the correct heap. In the future, we plan to explore specialized
proclet allocators too. For example, an arena allocator could
benefit short-lived proclets because it need not free objects
until the proclet terminates, reducing overheads.

4.3 Migration

Nu migrates proclets across binary-compatible machines un-
der resource pressure. Nu separates migration mechanism
from policy.

Mechanism. To migrate a proclet, the runtime first sets a
migration flag, causing method invocations to the migrating
proclet to be rejected and retried. Next, it preemptively pauses
and saves register state for all the proclet’s running threads to
ensure that the data is not mutated during migration. Then, it
moves proclet data, including heap, stack, and register state, to
the new destination. Finally, the runtime clears the migration
flag and contacts the controller to update the location of the

proclet, ensuring pending and future method invocations are
routed to the new destination (§4.4). We co-designed Nu’s
RPC layer with migration, and it routes the results of method
invocations on migrated proclets back to the caller.

We optimized Nu’s migration datapath. To improve TCP
throughput, we use parallel connections and jumbo frames.
We found that Linux’s mmap (used for creating the proclet
space at the destination machine) was a bottleneck, so we
modified the Linux kernel to pre-zero freed pages. After this
optimization, Nu can migrate at line rate on 100GbE. When
we tried 200GbE, mmap again became a bottleneck—in this
case due to the Linux kernel’s physical frame allocation speed.
As a workaround, Nu instead uses mmap to pre-fault a small
pool of memory at the destination server. Then, on migration,
Nu performs mremap on that memory to reuse prior frame
allocations. Future Linux kernel optimizations might avoid
the need for this remapping.

The CPU overhead of migration is moderate in our current
prototype: it takes three hyperthreads to saturate 100GbE and
five hyperthreads to saturate 200GbE.

Policy. Nu provides an extensible migration policy interface
that dictates which proclets to move and where to move them
under resource pressure. Many sophisticated policies are pos-
sible, including policies that react to several types of resource
pressure (e.g., CPU load, cache pressure, memory capacity,
memory bandwidth, network bandwidth, etc.), and policies
that co-locate frequently communicating proclets to improve
locality. Currently, our prototype ignores locality and focuses
only on CPU load and memory capacity, two resources often
subject to pressure, but we plan to extend it in the future.

Because Nu’s migration is fast, we found that even the
simplest policies work well (§6). In particular, Nu needs no
sophisticated algorithms to predict future resource use, but
rather simply migrates proclets at the last moment, when re-
sources are nearly exhausted. To determine when migrations
are needed, a monitoring thread in the runtime polls resource
use. For memory, it monitors the amount of free memory and
begins migrating once it falls below a threshold (e.g., 1 GiB).
For CPU, it monitors system core utilization and begins mi-
grating when a threshold of cores are busy. A better alternative
might track the queueing delay of runnable threads, allowing
Nu to distinguish actual overload from cases where all cores
are busy but not overloaded [19]. We plan to investigate this
in the future.

Nu migrates one proclet at a time until resource pressure is
eliminated. To determine which proclet to migrate, Nu uses
this formula (where P is the set of proclets on the machine):

arg max

RESOURCE_USE(p)
pEP

MIGRATION _TIME p)

RESOURCE_USE() measures a proclet’s use of the resource
under pressure, and MIGRATION _TIME() models the migra-
tion time of a proclet by considering the size of its heap, as

well as the number of threads it must pause and transfer, and
the size of thread stacks. This maximizes the pressure alle-
viation rate and helps Nu optimize for response speed. Nu’s
runtime collects metrics in real time to estimate this rate.

To determine the migration destination, Nu queries a global
cluster controller, which monitors resource use across servers
and returns possible destinations (described next).

4.4 Controller

Nu has a controller that makes cluster-wide decisions, such as
proclet placement and virtual address allocation, and tracks
information, such as proclet location and resource use. Nu
assumes that the controller is highly available. Although our
prototype controller is centralized, high availability can be
achieved through primary-backup replication or simple re-
covery: the controller keeps only soft state, so it can always
restore its state by querying the servers.

Placing proclets. The controller periodically probes servers’
available resources. It uses this information to decide where
to place a proclet on creation or migration. Currently, it uses
a simple policy that spreads proclets evenly across machines.

Allocating virtual address segments. Proclets must use non-
overlapping virtual addresses. Therefore, Nu divides the vir-
tual address space into an array of segments. These segments
are large enough (4 GiB by default) to leave room for a pro-
clet’s heap to grow. The controller keeps lists of allocated and
unallocated segments. On proclet allocation, the local runtime
contacts the controller to obtain an unallocated segment.

Resolving proclet location. The controller keeps a location
map from the starting logical address of each proclet to the
IP of the machine hosting the proclet. Each local runtime
maintains a cache of the location map that contains the pro-
clets it has recently accessed. This eliminates the need for
method invocations to communicate with the controller in the
common case, moving the controller off the critical path for
the steady-state application traffic. When a proclet migrates,
the controller updates the map. This causes caches to become
stale, so a local runtime may send a method invocation to
the wrong machine. When this happens, the remote machine
returns an error. The local machine then handles the error by
invalidating its cache entry and contacting the controller to
find the new machine location.

4.5 Replication

Nu optionally provides traditional primary-backup replica-
tion for proclets. This works by forwarding proclet opera-
tions from a primary to backup replicas, akin to traditional
state machine replication (SMR). One challenge specific to
Nu is that a proclet operation can invoke sub-operations on
other proclets. The backup replicas will invoke the same sub-
operations as the primary, but side-effect causing invocations
must occur only once, and replicas must see the same results
as the primary’s operations. Nu supports a variant [58] of
RIFL [37]’s duplicate detection. Proclets assign a unique

Workload ‘ # proclets ‘ Memory ‘ Compute Intensity [time/invoc.] ‘ Proclet size
SocialNetwork | 12 (microservices) + 65,536 (hashtable) | 113 GiB 1-100 us (variable) 31 KiB-8 MiB
In-memory KVS 65,536 138 GiB 1 us (low) 2 MiB
Phoenix k-means 720 (workers) + 1,024 (hashtable) 8.4 GiB map: 4.6 ms, reduce: 677 us 31 KiB-19 MiB

Figure 5: Characteristics of the three case study applications (KVS is an in-memory key-value store, and Phoenix is a MapReduce framework).

ID of the form (proclet id)+{epoch)+(sequence number) to
each proclet-to-proclet invocation. Primaries forward their
sub-operation invocation results to the replicas, and replicas
reuse the results (identified by the unique ID). Returning the
saved results instead of re-executing sub-operations ensures
all replicas have the same heap state. As with an unreplicated
system, if a primary crashes in the middle of an operation, its
sub-operations are re-executed if the unfinished operation is
retried.

When Nu’s controller detects a failed primary, it promotes
a backup to be the new primary and updates its location map
with the new primary. However, runtimes may have the old
primary in their caches, which could cause a “split brain” situ-
ation if the old primary continues to serve requests. A standard
epoch-based approach [43, 55] can help Nu avoid this prob-
lem: each reconfiguration increments an epoch counter and
backup proclets reject operations with outdated epochs.

4.6 Limitations

Our Nu prototype has some limitations. It requires the use
of C++, and though the runtime provides many OS services
(timers, external and internal network I/O, synchronization,
threads, memory allocation, etc.), it does not yet support all
services. Despite these limitations, we ported three very dif-
ferent applications to run on Nu.

5 Application Case Studies

We implemented three applications on Nu, which cover a
range of proclet sizes, communication patterns, and com-
pute intensities (Figure 5). All applications use a Nu-enabled
hashtable library. The hashtable partitions the key space with
a hash function and uses proclets as data shards. A root pro-
clet has a vector of proclet pointers to these shards and shares
them with client proclets to allow direct communication.

SocialNetwork (from the DeathStarBench suite [29]) is a
multi-tier, interactive web service, originally built as 12 mi-
croservices. Its overall complexity is high, with a fan-out
communication pattern and many microservices that have low
compute intensity, making it sensitive to both tail latency and
RPC overheads. We ported SocialNetwork to a logical pro-
cess, turning each microservice into a proclet. However, we
found that its compute intensity was sometimes too low and
that it lacked autoscaling support; both limit its overall scala-
bility. Therefore, we also built a version of SocialNetwork that
is better structured for a logical process: this version merges
SocialNetwork’s small, stateless microservices into a single
root class, and scales by spawning it as proclets across ma-
chines. Both versions have ~1,000 LOC, compared to 6,843

LOC in the original, which highlights the simplifications af-
forded by logical processes. Our implementation replaces the
external stores used by microservices (Memcached and Redis)
with a backend based on our hashtable, and leverages proclet
closures to support Redis-like local operations. We also mod-
ified our external I/O subsystem to interact with unmodified
Thrift-based clients. This is possible because any root proclet
can handle any request, as root proclets are stateless.

KV Store is a key-value store composed of the Nu-enabled
hashtable library and an additional 200 LOC. It is a state-
ful application that is latency-sensitive and uses significant
memory, making it hard to migrate. On each machine, the
Nu runtime’s external I/O subsystem receives requests from
external clients and steers them to the right proclets. The key-
value store has low compute intensity (1us/invocation), but
large proclet state (2 MiB/proclet).

K-means is a workload from Phoenix MapReduce [63].
Phoenix MR is a NUMA-oriented, shared-memory MapRe-
duce framework designed for single-machine operation. We
run k-means—an algorithm that requires multiple iterations—
in a Nu-based Phoenix MR port, using proclets to scale across
machines. We modified Phoenix’s task scheduler to replace
worker threads with worker proclets, ship closures to the
workers, and shuffle data between mappers and reducers via
our hashtable (changing 548 out of Phoenix’s 3,066 LOC).
K-means is compute-intensive (0.7—4.6ms/invoc.), but has
smaller proclet state (31 KiB—19 MiB/proclet). Overall, we
found it easy to modify Phoenix MR to work in a distributed
setting. Our version follows the same partition-aggregate com-
munication pattern that makes distributed MapReduce frame-
works sensitive to stragglers in k-means.

6 Evaluation

We evaluate Nu with these three applications, as well as mi-
crobenchmarks that measure the impact of specific design
decisions. Our evaluation seeks to answer four questions:
1. Can migration in Nu prevent performance disruption
during intense resource pressure? (§6.1)
2. How does porting applications to Nu impact their perfor-
mance? (§6.2)
3. How well does Nu scale with the number of servers?
(86.3)
4. What is the effect of compute intensity, as well as that of
our key design decisions, on Nu’s performance? (§6.4)

Setup. Except §6.4.2, all other experiments run on a cluster
of 32 physical servers in CloudLab [24]. The servers are
€6525-100g instances (24-core AMD 7402P at 2.80GHz,

of Machines ‘ Controller Proclet servers Clients

SocialNetwork 1 26 5
KV Store 1 15 16
K-means 1 30 1

Figure 6: Allocation of machines for each application.

128 GB RAM, Mellanox ConnectX-5 NIC), connected by
a 100 GbE network. We run §6.4.2 on c6525-100g servers,
c6525-25¢ servers (i.e., the variant with 25GbE NICs), and
our local servers with a 200 GbE network.

Servers run Ubuntu Linux 20.04 with kernel v5.10 patched
to pre-zero free pages (§4.3). We disable ASLR, as Nu does
not support it yet.

6.1 Application Performance under Resource Pressure

Nu’s proclet-centric design enables fine-grained, rapid migra-
tion. The key goal of this design is to achieve high applica-
tion performance even under resource pressure. To evaluate
this, we expose Nu and our applications (§5) to compute
and memory resource pressure and measure the application
performance as proclets migrate to other machines. We skip
SocialNetwork for compute pressure, as this application can
handle it with a standard front-end load balancer. We run
experiments using 32 machines, one of which serves as the
controller (§4.4). The remaining machines are either proclet
servers or clients, and we partition them appropriately for the
application (Figure 6). To evaluate Nu’s ability to manage
disruptions under demanding load conditions, we generate
enough client load to use ~70% of CPU capacity across all
proclet servers. Then, we induce resource pressure on one
proclet server, causing it to migrate its proclets to the other
servers.

In these experiments, memory pressure comes from an
antagonist process that allocates memory as fast as Linux’s
virtual memory subsystem permits (= 7 GB/s measured in
our machine with 4K pages). Once the memory usage of the
machine goes above the threshold, Nu starts to migrate pro-
clets to free memory. A good result would show Nu migrating
proclets sufficiently quickly to keep up with the allocation
rate of the antagonist, without disrupting application perfor-
mance. To assess the benefit of rapid migration, we compare
Nu against a baseline that emulates MigrOS [61], a recent
RDMA-based live migration system. To emulate MigrOS, we
throttle Nu’s migration speed to 600 MB/s on average with a
200 ms initial delay. Since migration speed is slower than the
antagonist’s memory allocation, the machine starts swapping.
We swap to a fast device: Linux brd, a block device backed
by RAM. (The common alternative—killing processes—is
even more disruptive, wastes work, and yields no meaningful
baseline.)

Figure 7a shows the 99.9" percentile latency of client re-
quests in the SocialNetwork application. At t=3.9s, the an-
tagonist starts allocating memory, and once Nu’s runtime
detects that the free memory size goes below 1 GiB (a con-

figurable threshold) at 4.9s, it starts migrating proclets to
another machine. During the migration, client-perceived la-
tency increases by less than 19%. At t=5.7s, all proclets have
migrated and latency recovers. Figure 7b shows the same ex-
periment with the baseline (Nu emulating MigrOS’s migration
speed). Since it migrates memory slower than the antagonist
requests, memory runs out at #=5s and Linux starts swapping.
Thus, the 99.9™ latency increases from 639us to 206ms. The
antagonist finishes at #=10s, and latency eventually recovers
as memory use drops. Figure 8 summarizes the results for the
same experiment on KVS and k-means, which show a similar
trend (graphs in §A.1).

Compute pressure is harder to handle well than memory
pressure as the CPU use can spike instantly. Figure 9 shows
that Nu experiences a higher performance impact when faced
with an antagonist that suddenly uses half the available CPU
cores. However, disruption is still short-lived as Nu resolves
pressure rapidly through fast migration. By contrast, the per-
formance impact on the baseline lasts ~15 x longer.

These results show that Nu frees resources quickly under
pressure, migrating proclets faster than Linux can allocate
memory. Consequently, the pressuring workload (here, the
antagonist) neither runs out of resources nor slows down,
and the applications experience only modest tail latency in-
creases. This means that Nu-based applications can use spare
resources without risk: Nu can always migrate proclets if
other workloads need the resources.

6.2 Comparison with Existing Implementations

Nu seeks to provide logical processes that match or exceed
the performance of current architectures even in the absence
of resource pressure. Although Nu allows distributed opera-
tion, local proclet invocations would ideally match the per-
formance of computing on a single machine. We therefore
compare the performance of Nu-based applications to base-
line implementations without logical processes on a single
machine. We measure tail latency under varying load for long-
running services (SocialNetwork and KVS), and throughput
for k-means. A good result would show Nu matching the
baseline on NUMA-optimized, compute-intensive applica-
tions (e.g., Phoenix k-means), and it would outperform the
baseline on RPC-based applications because Nu’s fastpath
avoids RPC overheads.

Figure 10 shows the results. Nu matches or exceeds the
baseline’s performance in all cases. For SocialNetwork (Fig-
ure 10a), Nu serves about 850k requests/second with sub-
millisecond 99.9™ percentile latency. The baseline implemen-
tation, which runs microservices in Docker containers and
uses Thrift RPCs, scales to only 8,000 operations/second, with
a9-60 ms 99.9™-ile latency (very left of the graph). Nu outper-
forms the baseline because its fastpath avoids the overheads
of loopback RPCs (serialization and network syscalls) with a
single machine. For KV Store, Nu outperforms memcached
on Linux by 15x, serving 12M operations/second to mem-

2x10°

7 I L [IRBERIRE
- >
3 & 2000
S%
é(' 1000

&) 1

3

0

~ 105

&

(0]

2 100

[2]

D

2 o5

£

[0)

= 90g 4 8 12 16 20 0 4 8 12 16

Time [s] Time [s]

(a) Nu (fast migration).

(b) Baseline (slow migration).

Figure 7: SocialNetwork runs alongside a memory antagonist that starts at 3.9s. When the memory usage reaches the high watermark, Nu
starts migrating proclets rapidly (the gray window). By matching the allocation speed of the antagonist, Nu keeps the memory usage flat and
resolves the pressure in 0.86s. SocialNetwork’s 99.9"-ile latency is unaffected. By contrast, the baseline fails to migrate fast enough and starts
swapping, which leads to 206ms latency (322). After the antagonist finishes, the memory usage and the latency gradually return to normal.

Baseline Nu
Workload

[Disruption Effect] (Slow migration) (Fast migration)
P Duration Effect Duration | Effect
SocialNetwork 206ms 761us
999 Lat [us] | O | G220 | O3 |2

KV Store 1.64s 85us
99.9% Lat. [us] | %% 10,000 1% | 2.6x)

K-Means 3.25 4.71
Tput. [#itersis] | 070 | 3% | 2™ | (2.9%)

Figure 8: Under memory pressure, proclet migration with Nu sees
shorter disruption and better performance during disruption than
migration at state-of-the-art process live-migration speed (baseline).

Baseline Nu
Workload
[Disruption Effect] (Slow migration) | (Fast migration)
up Duration | Effect | Duration | Effect
KV Store 874us 1086us
99.9% Lat. [us] | 00 | 26.5%) | O | (32.9%)
K-Means 2.41 4.57
Tput. iters's] | 00 [(:503%)| 2™ | (5.8%)

Figure 9: Under compute pressure, Nu sees short disruption and
acceptable performance during proclet migration.

cached’s 800k at sub-millisecond latency (Figure 10b). Cru-
cially, Nu performs as well as the same KV Store running on
Caladan [28], which also uses kernel-bypass networking and
a user-level threading runtime. Finally, Nu matches Phoenix
MR'’s performance (Figure 10c). Phoenix MR is designed for
scalability on a single NUMA machine, and exploits shared
memory for performance, so it is a strong baseline. The k-
means workload requires sharing the intermediate clustering
result across all workers. In a shared-memory setting, this
shared state can be a global variable (as in the baseline), but
in a distributed framework would involve per-worker copies.
Since Nu supports migration, it must be prepared to oper-

ate distributedly and keep per-worker (per-proclet) copies,
which amplifies the application’s cache footprint on a single
machine. We therefore compare two Nu setups: per-worker
copies (label Nu) and global state (Nu%), and add a modified
baseline with per-worker states (Baseline”). Nu® measures
the overhead of Nu’s infrastructure with pinned (unmigrat-
able) proclets. The overall results show that Nu’s proclet
invocations on a single machine are fast enough to match the
performance of single-machine baselines.

6.3 Scalability

Next, we consider how Nu scales as the proclets of a logical
process are spread across many machines. For each of our
three applications, we run an experiment where the runtime as-
signs its proclets round-robin across servers. We consider two
versions of the SocialNetwork application: the one from §6.2,
which we wrote with logical processes and proclet decompo-
sition in mind; and a second version that mirrors the exact
microservice decomposition in DeathStarBench. We measure
throughput for equal-sized input, i.e., a strong-scaling setup.
Because Nu’s local proclet invocation is faster than remote in-
vocation, the single-machine setup has a substantial efficiency
advantage, which makes linear scalability difficult to achieve.
An ideal result would therefore show scalability close to linear
as the number of machines increases.

We show the results in Figure 11. Nu scales well in all
three applications, and achieves nearly linear scalability for
KV Store and k-means. The SocialNetwork application is
the most challenging to scale (Figure 11a). A direct port
from the original microservice architecture to Nu (where each
microservice becomes one proclet) results in many proclets
with methods that have low compute intensity. When invoked
remotely, calls to these methods can be costly, while the ad-
ditional resources of a remote machine speed up the more
compute-intensive invocations. On balance, Nu’s throughput

€ Nu Baseline (Linux) X Nu Baseline (Linux) Nu€ (global states)
20 + Baseline (Caladan) = Baseline (Linux)
) 1000 — % Nu
£16) Baseline” (Linux, per-worker states)
5 E) 03 T T T T
S 12 |- 2025 | -
5 g % 02 A]
2 3015 e s T
o 4 § 01 AT %w b
2 3 0.05 [s —
0 = 0 E 1 1] 1
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 = 0 10 20 30 40 50
Load [MOPS] Load [MOPS] Number of Cores
(a) SocialNetwork (b) KV Store (¢) K-means

Figure 10: Nu-based applications match or outperform baselines on a single machine. For SocialNetwork, Nu’s fastpath helps it outperform the
expensive RPCs in the baseline; in KV Store, Nu matches Caladan’s [28] performance; and for k-means, Nu matches the baseline depending on
how state is represented: as a global shared array (typical in a NUMA setting) or as per-worker arrays (as in distributed settings).

== Nu 160 5
Nu (original structure)) v
. Baseline (DeathStarBench) o B o4l
2 10 T T T T T O 120 1 Q
Q 8¢ % 3t
5 i | =
= 1 2% 2 af
2 4t i 2 =4
E) S 401 l S 1}
S 2 f | E :
ﬁ 0 L L L . 0 L O 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 4 8 12 16 20 24 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30

Number of Machines

(a) SocialNetwork

Number of Machines

(b) KV Store

Number of Machines

(¢) K-means

Figure 11: Nu scales well as the number of machines increases. The Nu-native SocialNetwork application, which merges the baseline’s
stateless microservices, scales better than the direct port of the baseline because its proclets better amortize the cost of remote invocations.
K-means scales sub-linearly as the overhead of broadcasting each iteration’s intermediate results increases with the number of machines.

still increases with the number of machines—from 786k to
1.37M ops/sec—but less so than when the application is de-
composed into proclets that have sufficient compute intensity
(786k to 8.44M ops/second). However, both Nu-based imple-
mentations perform one to two orders of magnitude better
than the DeathStarBench baseline (45k ops/sec). The KVS
implementation on Nu scales very well (Figure 11b) as it re-
lies on client-side request steering (in response to hints from
Nu’s runtime) to direct clients’ requests to the right machine,
which then makes a local proclet invocation. K-means (Figure
1 1c) has high compute intensity, which makes scaling easy.
We conclude from these results that Nu’s logical processes
scale well when proclets are distributed across machines if
a proclet’s methods have sufficient compute intensity. §6.4.1
evaluates the impact of compute intensity on Nu’s efficiency.

6.4 Design Drill-Down
6.4.1 Impact of Compute Intensity

We now examine the efficiency of Nu’s mechanism for proclet
method invocation (§3.2). Intuitively, the more compute an
invocation does, the easier it is to amortize the overheads of
the invocation (serialization, networking, and threading); yet,
the lower these overheads are, the better Nu’s performance
becomes. Our experiment is a sensitivity analysis in which we
vary the compute duration in a proclet’s method between 0.1

and 50us, and we measure the aggregate invocation through-
put. We use sufficient threads to maximize throughput, saturat-
ing the machine that runs the proclet. We consider two cases
for Nu: two proclets in the same machine (local), and proclets
in different machines (remote). We compare the performance
of Nu against three common mechanisms to invoke a task: (7)
a function call in a Linux process; (i) an RPC using Thrift, a
popular open-source RPC framework [75]; and (iii) an RPC
using a modified Thrift that uses Caladan [28] to reduce TCP
and threading overheads. We measure throughput in a closed-
loop setting. A good result would show performance of Nu
close to local function calls for local invocations, and at least
as good as Thrift for remote invocations.

The results in Figure 12 show that when the invocation
is local, Nu’s performance tracks closely that of Linux func-
tion calls. This happens because of Nu’s fastpath for local
invocations. When invocation is on a remote proclet, com-
pute intensity (invocation duration) matters. For short invoca-
tions (0.1us), Nu is =13 x worse than local function calls, but
2.4 x better than Caladan-based Thrift (and 29.4 x better than
Thrift on Linux). As the invocation becomes more compute-
intensive, these gaps close: for a 10us task, Nu’s remote in-
vocation achieves 85% of local function call throughput. We
conclude that locality matters for remote proclet invocations
with low compute intensity, but that Nu delivers near-single-

A Linux func call

Nu (remote obj) Linux Thrift

3¢ Nu (local obj) + Caladan Thrift
10

£ 80 ——t =
& 60

S 40

S

&5 20

0 e
0 2 4 6 8 10 48 50

Invocation duration [ps]

Figure 12: Efficiency (y-axis) of Nu invocations as a function of
compute intensity (invocation duration), normalized to Linux func-
tion call throughput. Nu’s local proclet invocation matches the per-
formance of a function call, and Nu outperforms Linux Thrift by
2.4-29.4x for remote invocations when compute intensity is low.

machine performance for tasks with compute intensity as low
as 10us.

6.4.2 Migration Time and Bandwidth

‘We now measure the time it takes to migrate a proclet in Nu.
The experiment migrates proclets of varying sizes to another
machine and measures the migration time. We vary the test
proclet’s memory size by adjusting its heap size, from 64 KiB
to 16 MiB. The proclet has a single thread with a small stack
(64 bytes). A good migration latency would be ~=100us for
modest-sized proclets—orders of magnitude faster than tra-
ditional resource balancing mechanisms. For larger proclets,
we expect the latency to approach network transfer time.

. Migration Time [us]
Heap Size | 5 obE~ 100 GbE 200 GbE
64 KiB 21 21 9
1 MiB 343 111 61
2 MiB 683 216 108
16 MiB | 5452 1,512 771

Figure 13: Nu migrates proclets with different heap sizes (64 KiB—
16 MiB) faster with increasing network speeds (25/100/200GbE).

Figure 13 shows the results. With 100 GbE (i.e., the net-
work setting used for all other experiments), Nu migrates
small proclets (up to 1 MiB) in under 125us. This corresponds
to a bandwidth of 3-9 GB/s. For larger proclets (2 MiB-16
MiB), the latency varies from 200us to 1,500us, which corre-
sponds to a bandwidth of ~11 GB/s, close to the 100 GbE line
rate. The results of 25 GbE and 200 GbE show similar trends.
Proclet migration benefits from higher network bandwidth;
for example, with 200 GbE, Nu only takes ~100us to mi-
grate a 2 MiB proclet. We conclude that Nu migrates proclets
quickly and that its migration uses the network efficiently.

6.4.3 Controller Performance

To understand whether Nu’s controller can become a perfor-
mance bottleneck, we benchmark it as a standalone compo-
nent to measure its capacity. Depending on the type of control
message, the controller achieves 0.79-0.96 million msg/s. This
is two to three orders of magnitude higher than the real load

demand (542-21,450 msg/s) we measured in the end-to-end
experiments (§6.1). This makes sense as Nu’s runtime caches
the proclet location resolution result, thereby moving the con-
troller off the critical path of steady-state application traffic.
The controller is only involved in the control plane of initial
proclet location resolution and migration.

6.4.4 Proclet Replication

Nu allows replicating proclets for fault-tolerant operation.
Replication imposes overhead because it forwards all invoca-
tions of a proclet to a backup in a different machine (§3.5).
We measure the invocation throughput of calling 8,192 re-
mote replicated proclets, as we vary the compute intensity as
in §6.4.1. These invocations do not have sub-operations. The
baseline is the same setup without replication. A good result
would show a modest loss of throughput with replication.

Compute Intensity [us]
Throughput [MOPS] ‘ 0.1 1 10 20 30
with replication 13.18 1056 252 152 1.12
without replication 21.04 1486 356 197 1.37

Figure 14: Replicated proclets achieve 63—82% of unreplicated
throughput, depending on compute intensity.

Figure 14 shows the results. Throughput drops by 37% with
a 0.1us compute intensity, but this drop gradually shrinks to
18% as compute intensity grows to 30us. Replication adds
~1.2us to each operation to invoke the backup proclet, an
overhead that gets amortized at larger compute intensities.
This result shows that fault-tolerance for critical proclets is
feasible and need not come at severe performance cost.

7 Conclusion

We presented logical processes, a new abstraction that decom-
poses an application into proclets, which are small units of
state and compute. Logical processes and proclets solve a key
hindrance to increasing datacenter resource utilization: the
lack of microsecond-granularity fungibility in resource use.
We found that logical processes and our Nu prototype im-
prove fungibility by making applications granular and mi-
grating proclets quickly under resource pressure. For three
applications, Nu matches the performance of strong baselines,
scales well, and migrates their proclets within hundreds of mi-
croseconds with little disruption to application performance.
Nu is available as open-source software [66].

Acknowledgements

We thank our shepherd Dejan Kostié, the anonymous review-
ers, Irene Zhang, Akshay Narayan, and members of the MIT
PDOS group for their helpful feedback. We appreciate Cloud-
lab [24] for providing the experiment platform. This work
was funded in part by a Facebook Research Award, a Google
Faculty Award, the DARPA FastNICs program under contract
#HRO0011-20-C-0089, the NSF under award CNS-2104398,
and VMware.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan
Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto
Peon, Larry Kai, Alexander Shraer, Arif Merchant, and
Kfir Lev-Ari. “Slicer: Auto-Sharding for Datacenter
Applications”. In: Symposium on Operating Systems
Design and Implementation (OSDI). 2016.

Pradeep Ambiati, Ifiigo Goiri, Felipe Vieira Frujeri,
Alper Gun, Ke Wang, Brian Dolan, Brian Corell,
Sekhar Pasupuleti, Thomas Moscibroda, Sameh El-
nikety, Marcus Fontoura, and Ricardo Bianchini. “Pro-
viding SLOs for Resource-Harvesting VMs in Cloud
Platforms”. In: Symposium on Operating Systems De-
sign and Implementation (OSDI). 2020.

Cristiana Amza, Alan L Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. “Treadmarks:
Shared memory computing on networks of worksta-
tions”. In: IEEE Transactions on Computers (TC) 29.2
(1996).

Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. “A View of Cloud Computing”. In:
Communications of the ACM (CACM) 53.4 (2010).

John Bachan, Scott B. Baden, Steven Hofmeyr, Math-
ias Jacquelin, Amir Kamil, Dan Bonachea, Paul H.
Hargrove, and Hadia Ahmed. “UPC++: A High-
Performance Communication Framework for Asyn-
chronous Computation”. In: IEEE International Par-
allel and Distributed Processing Symposium (IPDPS).
2019.

Henri E. Bal, M. Frans Kaashoek, and Andrew S.
Tanenbaum. “Orca: a language for parallel program-
ming of distributed systems”. In: IEEE Transactions
on Software Engineering (TSE) 18.3 (1992).

Luiz André Barroso, Urs Holzle, and Parthasarathy
Ranganathan. The Datacenter as a Computer: Design-
ing Warehouse-Scale Machines, Third Edition. Syn-
thesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2018.

Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken. “Legion: Expressing locality and inde-
pendence with logical regions”. In: Proceedings of the
International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC). 2012.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. “The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane”. In: ACM Transactions on
Computer Systems (TOCS) 34.4 (2017).

J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
“Munin: Distributed Shared Memory Based on Type-
specific Memory Coherence”. In: ACM Symposium
on Principles and Practice of Parallel Programming
(PPoPP). 1990.

Benjamin Berg, Daniel S. Berger, Sara McAllister,
Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael
Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. “The CacheLib
Caching Engine: Design and Experiences at Scale”.
In: Symposium on Operating Systems Design and Im-
plementation (OSDI). 2020.

Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson. “Hoard: A Scalable
Memory Allocator for Multithreaded Applications”.
In: International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). 2000.

Andrew P. Black, Norman C. Hutchinson, Eric Jul, and
Henry M. Levy. “The development of the Emerald pro-
gramming language”. In: ACM SIGPLAN conference
on History of programming languages. 2007.

Jeff Bonwick and Jonathan Adams. “Magazines and
Vmem: Extending the Slab Allocator to Many CPUs
and Arbitrary Resources”. In: USENIX Annual Techni-
cal Conference (ATC). 2001.

Sergey Bykov, Alan Geller, Gabriel Kliot, James R.
Larus, Ravi Pandya, and Jorgen Thelin. “Orleans:
cloud computing for everyone”. In: ACM Symposium
on Cloud Computing (SoCC). 2011.

cereal: A C++11 library for serialization. 2021. URL:
https://github.com/USCilab/cereal (visited on
09/20/2022).

Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. “X10: An
Object-Oriented Approach to Non-Uniform Cluster
Computing”. In: Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA). 2005.

Yue Cheng, Zheng Chai, and Ali Anwar. “Character-
izing Co-Located Datacenter Workloads: An Alibaba
Case Study”. In: Proceedings of the Asia-Pacific Work-
shop on Systems (APSys). 2018.

https://github.com/USCiLab/cereal

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. “Overload
Control for us-scale RPCs with Breakwater”. In: Sym-

posium on Operating Systems Design and Implementa-
tion (OSDI). 2020.

Christopher Clark, Keir Fraser, Steven Hand, Jacob
Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. “Live Migration of Virtual Ma-
chines”. In: Symposium on Networked Systems Design
and Implementation (NSDI). 2005.

Common Object Request Broker Archictecture
(CORBA). URL: https://www.omg.org/spec/
CORBA (visited on 09/20/2022).

Checkpoint/Restore In Userspace (CRIU). URL:
https://www.criu.org (visited on 09/20/2022).

Jeffrey Dean and Sanjay Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters”. In:
Symposium on Operating Systems Design and Imple-
mentation (OSDI). 2004.

Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. “The
Design and Operation of CloudLab”. In: USENIX An-
nual Technical Conference (ATC). 2019.

Michael J. Feeley, William E. Morgan, Frédéric H.
Pighin, Anna R. Karlin, Henry M. Levy, and Chan-
dramohan A. Thekkath. “Implementing Global Mem-
ory Management in a Workstation Cluster”. In: ACM
Symposium on Operating Systems Principles (SOSP).
1995.

Message P Forum. MPI: A Message-Passing Interface
Standard. Technical report. University of Tennessee,
1994.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter,
and Keith Winstein. “Encoding, Fast and Slow: Low-
Latency Video Processing using Thousands of Tiny
Threads”. In: Symposium on Networked Systems De-
sign and Implementation (NSDI). 2017.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. “Caladan: Mitigating Interference at Mi-
crosecond Timescales”. In: Symposium on Operating
Systems Design and Implementation (OSDI). 2020.

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-
Software Implications for Cloud & Edge Systems”.
In: International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). 2019.

Jonathan Goldstein, Ahmed S. Abdelhamid, Mike
Barnett, Sebastian Burckhardt, Badrish Chan-
dramouli, Darren Gehring, Niel Lebeck, Christopher
Meiklejohn, Umar Farooq Minhas, Ryan Newton,
Rahee Peshawaria, Tal Zaccai, and Irene Zhang.
“A.M.B.R.O.S.I.A: Providing Performant Virtual Re-
siliency for Distributed Applications”. In: Proceedings
of the VLDB Endowment (PVLDB) 13.5 (2020).

Martin Greenberger. Management and the Computer
of the Future. Wiley, 1962.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G. Shin. “Effi-
cient Memory Disaggregation with Infiniswap”.
In: Symposium on Networked Systems Design and
Implementation (NSDI). 2017.

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center”. In:
Symposium on Networked Systems Design and Imple-
mentation (NSDI). 2011.

Calin Iorgulescu, Reza Azimi, Youngjin Kwon,
Sameh Elnikety, Manoj Syamala, Vivek R. Narasayya,
Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack
Zhang, and Junhua Wang. “PerfIso: Performance Iso-
lation for Commercial Latency-Sensitive Services”. In:
USENIX Annual Technical Conference (ATC). 2018.

Kubernetes. URL: https://kubernetes.io (visited
on 09/20/2022).

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. “Splinter:
Bare-Metal Extensions for Multi-Tenant Low-Latency
Storage”. In: Symposium on Operating Systems Design
and Implementation (OSDI). 2018.

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. “Implementing lineariz-
ability at large scale and low latency”. In: ACM Sympo-
sium on Operating Systems Principles (SOSP). 2015.

https://www.omg.org/spec/CORBA
https://www.omg.org/spec/CORBA
https://www.criu.org
https://kubernetes.io

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yonggiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. “KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC”.
In: ACM Symposium on Operating Systems Principles
(SOSP). 2017.

Huaicheng Li, Daniel S. Berger, Stanko Novakovic,
Lisa Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and
Ricardo Bianchini. First-generation Memory Disag-
gregation for Cloud Platforms. 2022.

Kai Li and Paul Hudak. “Memory Coherence in Shared
Virtual Memory Systems”. In: ACM Transactions on
Computer Systems (TOCS) 7.4 (1989).

Yilong Li, Seo Jin Park, and John Ousterhout. “Mil-
liSort and MilliQuery: Large-Scale Data-Intensive
Computing in Milliseconds”. In: Symposium on Net-
worked Systems Design and Implementation (NSDI).
2021.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. “MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage”. In: Symposium
on Networked Systems Design and Implementation
(NSDI). 2014.

Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. Technical report. Massachusetts
Institute of Technology, 2012.

David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
“Heracles: Improving resource efficiency at scale”. In:
International Symposium on Computer Architecture
(ISCA). 2015.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph Hellerstein.
“GraphLab: A New Framework for Parallel Machine
Learning”. In: Proceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI). 2010.

Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. “Imbalance in the cloud: An
analysis on Alibaba cluster trace”. In: Proceedings of
the 2017 IEEE International Conference on Big Data
(Big Data). IEEE. 2017.

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson, 2008.

Jason E. Miller, Harshad Kasture, George Kurian,
Charles Gruenwald, Nathan Beckmann, Christopher
Celio, Jonathan Eastep, and Anant Agarwal. “Graphite:
A distributed parallel simulator for multicores”. In:
IEEE Symposium on High Performance Computer Ar-
chitecture (HPCA). 2010.

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

Dejan S. Milojicic, Fred Douglis, Yves Paindaveine,
Richard Wheeler, and Songnian Zhou. “Process migra-
tion”. In: ACM Computing Surveys 32.3 (2000).

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. “Ray: A Distributed Framework for
Emerging Al Applications”. In: Symposium on Op-
erating Systems Design and Implementation (OSDI).
2018.

Deepak Narayanan, Fiodar Kazhamiaka, Firas
Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth
Kandula, Stephen Boyd, and Matei Zaharia. “Solving
Large-Scale Granular Resource Allocation Problems
Efficiently with POP”. In: ACM Symposium on
Operating Systems Principles (SOSP). 2021.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
“Latency-tolerant Software Distributed Shared Mem-
ory”. In: USENIX Annual Technical Conference (ATC).
2015.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McEI-
roy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. “Scaling Memcache at Facebook™. In: Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI). 2013.

Robert W. Numrich and John Reid. “Co-Array For-
tran for Parallel Programming”. In: SIGPLAN Fortran
Forum 17.2 (1998).

Diego Ongaro and John Ousterhout. “In Search of an
Understandable Consensus Algorithm”. In: USENIX
Annual Technical Conference (ATC). 2014.

John Ousterhout. A Philosophy of Software Design.
Yaknyam Press, 2018.

Kay Ousterhout, Patrick Wendell, Matei Zaharia,
and Ion Stoica. “Sparrow: Distributed, Low Latency
Scheduling”. In: ACM Symposium on Operating Sys-
tems Principles (SOSP). 2013.

Seo Jin Park. “Achieving both low latency and strong
consistency in large-scale systems”. PhD thesis. Stan-
ford University, 2019.

David A. Patterson, Garth A. Gibson, and Randy H.
Katz. “A Case for Redundant Arrays of Inexpensive
Disks (RAID)”. In: International Conference on Man-
agement of Data (SIGMOD). 1988.

Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert Tappan Morris. “Improving network con-
nection locality on multicore systems”. In: European
Conference on Computer Systems (EuroSys). 2012.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Maksym Planeta, Jan Bierbaum, Leo Sahaya Daphne
Antony, Torsten Hoefler, and Hermann Hartig. “Mi-
grOS: Transparent Live-Migration Support for Con-
tainerised RDMA Applications”. In: USENIX Annual
Technical Conference (ATC). 2021.

George Prekas, Marios Kogias, and Edouard Bugnion.
“ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks”. In: ACM Symposium on Op-
erating Systems Principles (SOSP). 2017.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, and Christos Kozyrakis. “Evaluating
MapReduce for Multi-core and Multiprocessor Sys-
tems”. In: IEEE Symposium on High Performance
Computer Architecture (HPCA). 2007.

Alexander Rasmussen, George Porter, Michael Con-
ley, Harsha V. Madhyastha, Radhika Niranjan Mysore,
Alexander Pucher, and Amin Vahdat. “TritonSort:
A Balanced Large-Scale Sorting System”. In: ACM
Transactions on Computer Systems (TOCS) 31.1
(2013).

Zhenyuan Ruan, Tong He, and Jason Cong. “INSIDER:
Designing In-Storage Computing System for Emerg-
ing High-Performance Drive”. In: USENIX Annual
Technical Conference (ATC). 2019.

Zhenyuan Ruan, Seo Jin Park, Adam Belay, Marcos
K. Aguilera, and Malte Schwarzkopf. Nu: Logical
Processes for Resource Fungibility. URL: https://
github.com/Nu-NSDI23/Nu (visited on 09/20/2022).

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. “AIFM: High-Performance,
Application-Integrated Far Memory”. In: Symposium
on Operating Systems Design and Implementation
(OSDI). 2020.

Daniel J. Scales, Kourosh Gharachorloo, and Chan-
dramohan A. Thekkath. “Shasta: A Low Overhead,
Software-only Approach for Supporting Fine-grain
Shared Memory”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1996.

Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. “Fine-grain Access Control for Distributed
Shared Memory”. In: International Conference on Ar-

chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1994.

Malte Schwarzkopf. “Operating system support for
warehouse-scale computing”. PhD thesis. University
of Cambridge Computer Laboratory, 2016.

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. “Omega: Flexible, Scal-
able Schedulers for Large Compute Clusters”. In: Eu-

ropean Conference on Computer Systems (EuroSys).
2013.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. “Serverless in the Wild: Characteriz-
ing and Optimizing the Serverless Workload at a Large
Cloud Provider”. In: USENIX Annual Technical Con-
ference (ATC). 2020.

Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han,
Dmitri Petrov, Jim Carrig, John Hugg, and Nathan
Bronson. “FlightTracker: Consistency across Read-
Optimized Online Stores at Facebook”. In: Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI). 2020.

David Teigland and Heinz Mauelshagen. ‘“Volume
Managers in Linux”. In: USENIX Annual Technical
Conference (ATC). 2001.

Apache Thrift. URL: https://thrift.apache.org
(visited on 09/20/2022).

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. “Borg: The next Generation”.
In: European Conference on Computer Systems (Eu-
roSys). 2020.

Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory
R. Ganger. “TetriSched: Global Rescheduling with
Adaptive Plan-Ahead in Dynamic Heterogeneous Clus-
ters”. In: European Conference on Computer Systems
(EuroSys). 2016.

VMware VirtualCenter User’s Manual. 2003. URL:
https://www.vmware.com/pdf/VirtualCenter_
Users_Manual .pdf (visited on 09/20/2022).

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li,
Zhenyuan Ruan, Khanh Nguyen, Michael D. Bond,
Ravi Netravali, Miryung Kim, and Guoqing Harry Xu.
“Semeru: A Memory-Disaggregated Managed Run-
time”. In: Symposium on Operating Systems Design
and Implementation (OSDI). 2020.

Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowd-
hury. “Ship Compute or Ship Data? Why Not Both?”
In: Symposium on Networked Systems Design and Im-
plementation (NSDI). 2021.

https://github.com/Nu-NSDI23/Nu
https://github.com/Nu-NSDI23/Nu
https://thrift.apache.org
https://www.vmware.com/pdf/VirtualCenter_Users_Manual.pdf
https://www.vmware.com/pdf/VirtualCenter_Users_Manual.pdf

[81] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. “Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing”. In: Symposium on Net-
worked Systems Design and Implementation (NSDI).
2012.

[82] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac
Ackerman, Steven D. Gribble, Arvind Krishnamurthy,
and Henry M. Levy. “Customizable and Extensible
Deployment for Mobile/Cloud Applications”. In: Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). 2014.

[83] Jin Zhang, Zhuocheng Ding, Yubin Chen, Xingguo
Jia, Boshi Yu, Zhengwei Qi, and Haibing Guan. “Gi-
antVM: A Type-II Hypervisor Implementing Many-
to-One Virtualization”. In: Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE). 2020.

[84] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. “CPI2: CPU
Performance Isolation for Shared Compute Clusters”.
In: European Conference on Computer Systems (Eu-
roSys). 2013.

A Appendix

In this appendix, we include the end-to-end performance re-
sults under resource pressure that were not included in §6.1
due to the space constraint.

A.1 Application Performance Under Memory Pressure

Figure 15 presents the 99.9" tail latency of KV store under
memory pressure. The results are similar to the SocialNetwork
results (Figure 7). Figure 16 shows the K-Means performance
under memory pressure using the throughput metrics as it is
a batch application. Nu achieves 97% throughput during mi-
gration, whereas the baseline only achieves 67% throughput.
Here we do not show the memory utilization as K-Means has
a tiny per-machine memory footprint. The baseline has lower
performance mainly because of the long task pausing time
caused by slow migration.

A.2 Application Performance Under Compute Pressure

In the next experiment, we evaluate Nu’s performance un-
der compute pressure. Compute pressure is harder to handle
well than memory pressure, since Nu’s solution to resource
pressure—proclet migration—itself consumes compute re-
sources. The antagonist process in this experiment is a syn-

thetic CPU-spinning workload that occupies half the CPU
cores on the machine, reducing the compute resources avail-
able both to the application and to Nu’s proclet migrations. In
addition, the CPU load of the antagonist can spike instantly;
this is different from the memory load which only increases
gradually. Therefore, we would expect a higher impact on
application performance than when Nu migrates proclets un-
der memory pressure. A good result for Nu would show that
the application still achieves acceptable performance, even if
degraded for some (ideally short) time.

Figure 17a shows Nu’s results. At t=4.9s, the compute
pressure starts on one machine, taking away half of the ap-
plication cores, and Nu immediately starts migrating proclets
to reduce load on the machine. 99.9™ latency increases from
33 us to 1086 us. This latency spike makes sense as the ma-
chine’s compute resources are degraded by 50% and Nu needs
additional compute to migrate proclets. The latency gradually
decreases as proclets migrate and the other machine starts
serving client requests, and soon recovers back to 33 us as the
migration ends at r=5.44s. In contrast, for the baseline, the
latency disruption lasts 7.96s, which is 15X of the Nu’s 0.54s
duration. Figure 18 shows the result of K-means. Nu takes
24ms to resolve the pressure and achieves 94.2% throughput

6
0 1 ITTn 0N Nnr ri
= = =
0d 1
§§ 00
2k
io\o 50 n
2} \
(o]
»
0
g110
2 105
2 \.—.—I
:)100----------------- - EE E O O O W W= = = = -
=
%95 '
= 90; 20 40 60 80 60 80

Time [s]

(a) Nu (fast migration).

Time [s]

(b) Baseline (slow migration).

Figure 15: For KV store under memory pressure, Nu is able to maintain 99.9'" tail latency under 85us as it migrates proclets faster than the
memory allocation speed of the antagonist. In contrast, the baseline suffers from poor tail latency (= 2x 10%us) since it cannot keep up with the

allocation speed and has to swap memory.

6
D 5 [t o e S it e P
0
L4
= 3
2
= 2
8 1
e
Fo
0 2 4 6 8 10 0 2 4 6 8 10
Time [s] Time [s]

(a) Nu (fast migration).

(b) Baseline (slow migration).

Figure 16: For K-means under memory pressure, Nu maintains stable throughput during migration, whereas the baseline only achieves 67%
throughput. We do not show the memory utilization here as K-means has a tiny per-machine memory footprint.

__ 1200 1200
(2] 0
= =
> 900 - 900
Lo Lo
o o
B 600 Be 600
>- >-
o o
<& 300 X3 300
o o
> N &
0 0
_ 100 _ 100
a2 80 02 80
D O D O
29 60 29 60
o » o
g2 40 g2 40
Ea 20 52 20
< O (@)
0 3 3 9 12 15 0 3 6 9 12 15
Time [s] Time [s]
(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 17: Under compute pressure, the KV store server becomes overloaded and the client-perceived 99.9" tail latency spikes from 33 us to
~1 ms. Nu only takes 0.54 s to fully recover the performance, while the baseline requires 7.96 s (=15X).

7z 6 7 °
2] 2]
g ST 5 S
£ 4 £ 4
=] 3 =] 3
Q. Qo
5 2 5 2
> >
S 1 s 1
ey <
~ = 0

__100 __100
02 80 o2 80
=0 n O
29 60 29 60
(o R o n
g2 40 g2 40
E 2 20 E E 20

(@] (@]

0 P 6 8 10 0 2 z 8 10
Time [s] Time [s]
(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 18: For K-means under compute pressure, Nu takes 24ms to resolve the pressure and achieves 94.4% throughput during migration. In
contrast, the baseline takes 0.65s and only achieves 49.7% throughput.

during migration. In contrast, the baseline takes 0.65s and
only achieves 49.7% throughput.

These results demonstrate that Nu’s logical processes react
quickly to CPU pressure. Some performance degradation is
unavoidable, but the impact is short-lived: after a sub-second
delay, proclet migrations relieve the resource pressure.

	Introduction
	Motivation: Resource Fungibility
	The Logical Process Abstraction
	Address Spaces and Cache Coherence
	Programming Model
	Porting Applications to Logical Processes
	Security and Threat Model
	Fault Tolerance

	The Nu Runtime System
	Serialization and Communication
	Memory Management
	Migration
	Controller
	Replication
	Limitations

	Application Case Studies
	Evaluation
	Application Performance under Resource Pressure
	Comparison with Existing Implementations
	Scalability
	Design Drill-Down
	Impact of Compute Intensity
	Migration Time and Bandwidth
	Controller Performance
	Proclet Replication

	Conclusion
	Appendix
	Application Performance Under Memory Pressure
	Application Performance Under Compute Pressure

