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Abstract
Fisher’s fiducial argument is widely viewed as a failed
version of Neyman’s theory of confidence limits. But
Fisher’s goal—Bayesian-like probabilistic uncertainty
quantification without priors—was more ambitious
than Neyman’s, and it’s not out of reach. I’ve recently
shown that reliable, prior-free probabilistic uncertainty
quantification must be grounded in the theory of im-
precise probability, and I’ve put forward a possibility-
theoretic solution that achieves it. This has been met
with resistance, however, in part due to the statistical
community’s singular focus on confidence limits. In-
deed, if imprecision isn’t needed to answer confidence-
limit-related questions, then what’s the point? In this
paper, for a class of practically useful models, I ex-
plain specifically why the fiducial argument gives valid
confidence limits, i.e., it’s the “best probabilistic ap-
proximation” of the possibilistic solution I recently
advanced. This sheds new light on what the fiducial ar-
gument is doing and on what’s lost in terms of reliability
when imprecision is ignored and the fiducial argument
is pushed for more than just confidence limits.
Keywords: Bayesian, confidence distribution, false
confidence, generalized fiducial, group invariance

1. Introduction
In the early 20th century, statistical inference and Bayesian
inverse probability were synonymous. Fisher, dissatisfied
with the Bayesians’ insistence on an a priori distribution
and their default use of flat prior distributions, put forward
a novel alternative—the fiducial argument (e.g., Fisher,
1930, 1933, 1935). At a high level, the fiducial argument
takes the model-based probabilities for the observable data,
depending on fixed parameters, and flips them into proba-
bility statements about the unknown parameters, depending
on the observed data; see, e.g., Zabell (1992), Seidenfeld
(1992), and Dawid (2020) for details. Fisher’s proposal was
ingenious but too good to be true in general, so, naturally,
both supporters and skeptics carefully scrutinized Fisher’s
claims, some even attempted reformulating Fisher’s pro-
posal. Most notable is Neyman’s theory of confidence limits,
which Neyman himself considered to be “an extension of
the previous results of Fisher” (Neyman, 1941). Besides
Neyman, the work of Dempster (e.g., Dempster, 1967, 1968)
aimed at fixing/extending the fiducial argument, and was

a key development in imprecise probability theory. More
recently, Hannig and others have developed a theory of
generalized fiducial inference in which the “fiducial flip”
can be applied more systematically; see, e.g., Hannig et al.
(2016), Murph et al. (2021), and Section 2.2.

One thing that Fisher and Neyman would’ve agreed on is
that the fiducial argument and the theory of confidence inter-
vals are distinct. Still, much of the debate surrounding the
two theories focused on whether the fiducial argument pro-
duced confidence limits. Fisher said yes, he was later proved
wrong, hence “Fisher’s biggest blunder” (Efron, 1998). It’s
surprising to me that Fisher didn’t shift the conversation
away from confidence limits. Even if the fiducial-limits-
are-confidence-limits claim was correct, that was a losing
battle: a particular confidence limit construction, even an
ingenious one, can’t do better than the “best” confidence
limits available in a given application.

Lost in this singular confidence-limit focus is that Fisher’s
goal was more ambitious: it aimed to provide Bayesian-like
probabilistic uncertainty quantification in the absence of
prior information. That goal remains the “most important
unresolved problem in statistical inference” (Efron, 2013),
but, with a few exceptions (e.g., Taraldsen and Lindqvist,
2013), modern e�orts in this direction remain focused solely
on confidence-limit related questions. This is still a losing
battle, I think, so a di�erent perspective is needed.

Simply put, a full-blown probability distribution isn’t
needed to get confidence limits. Instead, the construction
of data-dependent probability distributions for inference is
motivated by a desire to quantify uncertainty more broadly.
In that case, the evaluation of proposed solutions ought to be
consistent with these broader objectives, so the metrics I’ve
been advocating for take the (data-dependent) probability
as the primitive, and require that the “probabilities” this
distribution assigns to true/false hypotheses tend to not be
small/large. The rationale is that judgments will be made
based on the magnitudes of these probabilities, so the above
condition implies that these inferences would be reliable or
valid; see Section 2.3. It’s only after realizing that precise
probability distributions are incapable of achieving this
kind of reliability that the need for imprecise-probabilistic
or possibilistic considerations. That’s the motivation behind
the possibility-theoretic inferential model (IM) framework
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that I’ve been advocating for recently (e.g., Liu and Martin,
2021; Martin, 2021a, 2022b).

Despite the clear di�erences between fiducial and IMs,
there are some superficial similarities. In particular, it’s
common for the confidence limits derived from an IM to
match those derived from a fiducial-like solution. Some
authors (e.g., Cunen et al., 2020; Cui and Hannig, 2022)
have recognized this connection and drawn the conclusion
that the IM’s imprecision is unnecessary, that it’s somehow
enough to work with fiducial/confidence distributions and,
more generally, precise probability theory. These arguments
are squarely focused on confidence limits, so they overlook
the fact that the “confidence” property satisfied by “confi-
dence distributions” isn’t preserved under the probability
calculus. For a theory of “confidence distributions” to do
anything more than produce confidence limits, it must have
its foundations in the theory of imprecise probability.

I’ve already responded to some of these critiques (Mar-
tin, 2021a; Martin et al., 2021), but I have new insights
that will help clear up this confusion about confidence lim-
its versus (imprecise) probabilistic inference. Specifically,
my goal here is to give a characterization of the relation-
ship between the fiducial solution—which agrees with the
default-prior Bayes solution, among others, in the context
I’m considering—and the IM solution. Following some
background in Section 2 and a description of the models
under consideration (Section 3.1), I show in Section 3.3
that the fiducial solution is the maximal, inner probabilistic
approximation to the IM’s possibility measure output. This
connection, plus the IM’s validity property, explains why
the fiducial argument returns genuine confidence limits—
agreeing with the IM’s limits—in this class of problems.
It also sheds light on why the IM’s imprecision is needed,
i.e., the maximal inner probabilistic approximation of the
marginal IM need not be the corresponding marginal fidu-
cial distribution. It’s for this and other reasons (Section 4)
that no precise-probabilistic fiducial-like argument can re-
solve Efron’s “most important unresolved problem.” Finally,
in Section 5, I o�er a partial answer to a key question: which
hypotheses are not a�icted by false confidence (Balch et al.,
2019; Martin, 2019) relative to the fiducial solution?

2. Background
2.1. Problem Setup

Let - 2 X denote observable data—could be a scalar, a
vector, a matrix, a collection scalars, vectors, or matrices,
or something else entirely. The standard textbook case of
a sample from some population is covered by this general
setup, as are many others. Let P\ denote a posited statistical
model for the observable - , depending on a parameter
\ 2 T. Again, the parameter \ is very general, but it’s

typically a scalar or a vector. Of course, the parameter is
unknown and, as is customary, when I’m referring to the
uncertain variable I’ll write it as K.

The goal is to make inference about K based on only the
observed value G of - and the model. By “make inference”
I mean quantify uncertainty about K, given - = G, via a
(precise or imprecise) probability distribution supported on
T. Of course, there are many ways that this can be carried
out, and I’ll describe those most relevant to this paper below.
First I have to stress that there is no prior knowledge about
K assumed here, i.e., the prior about K is vacuous. I don’t
believe a vacuous-prior-knowledge assumption is realistic
in most applications (Martin, 2022a), but this is the typical
starting point in the literature. This means that neither
ordinary Bayesian inference with a single prior distribution
(Berger, 1985; Bernardo and Smith, 1994; Ghosh et al.,
2006) nor generalized Bayesian inference with a proper
subset of all prior distributions (Walley, 1991; Augustin
et al., 2014) are viable options to achieve the desired goal.
Other solutions, like the ones below, are needed.

2.2. Fiducial-Like Constructions
Fisher’s original fiducial argument can be directly applied
in only a relatively narrow range of problems. Among
those, there’s a fairly general—but still narrow—sub-class
of problems amenable to a Fisher-style analysis; these are
the invariant statistical models discussed in Section 3. But
despite Fisher’s failure to formulate a fully general “theory
of fiducial inference,” his big idea is so appealing that many
others have advanced their own versions. I’ll give details
here about only two of these alternatives.

Default-prior Bayes The basic idea is to take the posterior
distribution to have a density (with respect to Lebesgue
measure on T) given by

@G (\) / !G (\) @(\), \ 2 T,

where !G is the likelihood function based on data - = G, @
is some non-negative function, not necessarily a probability
density, and the proportionality constant is determined by
integrating the expression in the above display. Of course,
if that integral diverges, which is possible when @ isn’t a
density, then the posterior isn’t well defined. This idea goes
back at least to Laplace, who suggested that, in the absence
of genuine subjective prior input for K, one can take a flat,
uniform prior distribution on T. The uniform prior’s lack of
reparametrization invariance was later resolved by Je�reys
(1946). While Je�reys’s class of priors is widely used, it has
two shortcomings: first, the Fisher information it depends
on doesn’t always exist (e.g., Shemyakin, 2014; Lin et al.,
2019); second, a “good” default prior for K can’t support
“good” posteriors for all features of K (e.g., Fraser, 2011;
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Fraser et al., 2016). Reference priors (e.g., Berger et al.,
2009; Bernardo, 1979) aim to overcome these issues.

Generalized fiducial Following Hannig et al. (2016), the
starting point is a data-generating equation

- = 0(K, /), / ⇠ P, (1)

where 0 is a known function and P is a known probability
distribution. This is familiar in the context of data simu-
lation. For inference, this expression e�ectively links the
observable data - to the uncertain K through a random
variable with known distribution. This is the basic start-
ing point for many di�erent frameworks, including those
in Fraser (1968), Dawid and Stone (1982), and Dempster
(2008). Hannig defines the generalized fiducial distribution
for K, given - = G, as the weak limit (as Y ! 0) of the
random variable (function of /) that solves the constrained
optimization problem

arg min
\ 2T

3

�
G, 0(\, /)

�
s.t. min

\ 2T
3

�
G, 0(\, /)

�
 Y,

where 3 is an appropriate distance measure. I’ll focus here
on the case where the above solution is unique, but that’s not
necessary. When other suitable conditions are met, there’s
a simple formula for the generalized fiducial density, i.e.,

@G (\) / !G (\) � (G, \), (2)

where � (G, \) is basically a Jacobian term resulting from
the transformation of (/ ,P) to the solution K of the above
optimization problem. Despite the obvious similarities,
there’s a key di�erence between Bayes’s rule and the right-
hand side of (2): � is not a prior density chosen by the user,
it’s determined by the model (and the distance 3).

The two very di�erent approaches described above pro-
duce similar looking inferential output. For the class of
problems considered in Section 3, their respective out-
puts are the same. More generally, both return probability
distribution with density functions determined by the likeli-
hood times a “weight function.” Given their similar forms,
one might expect the two solutions to have similar prop-
erties. As is common, let’s consider large-sample case
where G

= = (G1, . . . , G=) is an iid sample of size = ! 1
from a common distribution depending on a parameter
K 2 T ✓ R⇡ . When standard regularity conditions are
satisfied, both the above solutions have a corresponding
Bernstein–von Mises theorem, which goes as follows. Let
GG= denote the ⇡-dimensional Gaussian distribution with
mean equal to the maximum likelihood estimator and co-
variance matrix equal to =

�1 times the (observed) Fisher
information matrix. Then the theorem states that the total
variation distance between Q-= and G-= is vanishing (in
PK-probability) as = ! 1; for a proof in the Bayesian

case, see van der Vaart (1998, Ch. 10.2), and details for the
generalized fiducial distribution can be found in Hannig
et al. (2016) and the references therein.

The total-variation distance is strong enough metric to
ensure that confidence limits derived from the Bayes or
fiducial distributions are, in fact, confidence limits, at least
approximately as = ! 1. For the most part, the theory
behind these solutions stops here—because the focus is
squarely on confidence limits. As I explained above, a focus
on confidence limits will fall short of resolving the “most
important unresolved problem.” To reach the goal, a broader
perspective on uncertainty quantification is needed.

2.3. Inferential Models
The inferential model (IM) formulation, first developed
in Martin and Liu (2013, 2015), has output that takes the
mathematical form of a possibility distribution or, equiv-
alently, a consonant belief function. Their motivation for
imprecision was that, in order to be reliable when quantify-
ing uncertainty more broadly than with confidence limits,
one needs to be more conservative. The possibilistic brand
of imprecision, compared to other imprecise probability
models (e.g., lower previsions), is ideally suited to achieve
the error rate control properties that statisticians desire.

More recently, Martin (2022a) developed a simpler and
more flexible IM construction, one that makes direct use of
the model’s likelihood function rather than a data-generating
equation like in (1). Let !G (\) denote the likelihood func-
tion, and define the relative likelihood

'(G, \) = !G (\)
supo2T !G (o)

, \ 2 T. (3)

Next, define the possibility contour

cG (\) = P\ {'(- , \)  '(G, \)}, \ 2 T. (4)

Note that cG has maximum value 1, which is attained at
a maximum likelihood estimator \̂G 2 arg max\ !G (\).
The contour function determines the IM’s imprecise-
probabilistic output via the formulae

N G (�) = sup
\ 2�

cG (\) (5)

N G (�) = 1 � N G (�2), � ✓ T.

Here N G and N G are conjugate lower and upper probabil-
ities or, more specifically, N G and N G are necessity and
possibility measures, respectively. I’ll call the IM’s output
possibilistic to emphasize that N G is a possibility measure.
Details concerning interpretation of the IM’s output can be
found in Martin (2022a,b); details on computation can be
found in Syring and Martin (2021) and Hose et al. (2022).

The possibility contour expression in (4) is familiar—it’s
the p-value for a likelihood ratio test of the null hypothesis
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�0 : K = \—but that’s not the reason why the contour is
defined in this way. The principles behind this construction
are presented in Martin (2022b, Sec. 4).

The IM framework originated from the desire to achieve
both Bayesian-like “probabilistic” uncertainty quantifica-
tion and frequentist-style calibration and error rate control
guarantees. Indeed, of primary importance is that the IM’s
output be valid in the sense that G 7! N G satisfy

sup
\ 2�

P\ {N - (�)  U}  U, U 2 [0, 1], � ✓ T. (6)

There’s an equivalent condition in terms of G 7! N G ,
but it’s not needed here. The intuition behind (6) is as
follows: assigning a small N G-value to a true assertion
might lead to an erroneous inference, so (6) helps protect the
decision-maker by ensuring that such events are su�ciently
improbable. This is the IM’s reliability guarantee. It’s
easy to see that the IM with upper probability N G in (5)
satisfies (6): it follows immediately from the inequality
N - (�) � c- (K), for all � that contain K, and the fact that
c- (K) is stochastically no smaller than Unif(0, 1). Note that
(6) is di�erent from the usual frequentist Type I error control
in testing. Validity covers all �’s at once, hence ensuring
reliability even when interest is in a (potentially non-linear)
feature k(K) of K; just take, e.g., � = {\ : k(\)  7}.

Finally, adjustments can be made to the IM construction
above that do not a�ect the validity and, in fact, can often
help to improve its e�ciency. One is that it su�ces to work
with a minimal su�cient statistic. Also, for cases where
the minimal su�cient statistic has an ancillary component,
like in the class of problems considered below, I showed
(Martin, 2022b, Sec. 6) that the IM construction should be
carried out conditional on the ancillary statistic. Further
details on this will be given in Section 3.2.

3. A Fiducial–IM Connection
3.1. Invariant Statistical Models
Let G denote a group of bijections 6 : X ! X acting on X,
with function composition � as the binary operation.1 As
is customary in the literature, I’ll write 6G for the image of
G 2 X under transformation 6 2 G ; and if 61 and 62 are two
group elements, then 61�62 denotes their composition. Since
G is a group, it’s associative, i.e., 61�(62�63) = (61�62)�63

for all 61, 62, 63 2 G , it contains the identity transformation
4, and for every 6 2 G , there exists an inverse 6

�1 2 G
such that 6 � 6

�1 = 6
�1 � 6 = 4. Some examples include

location shifts, rescaling, rotations, a�ne transformations,
and permutations. Note that the group G is typically finite-
dimensional, e.g., rotations in Euclidean space correspond
to unit-determinant matrices.

1If X is a product space, then G can be extended, if necessary, by
applying it coordinate-wise.

The group G connects to the statistical model as follows.
Suppose that, for each 6 2 G and each \ 2 T, there exists a
corresponding 6̄\ 2 T such that

P\ (6- 2 ·) = P6̄\ (- 2 ·), (\, 6) 2 T ⇥ G . (7)

The most common example of this is where the distribution
of - depends on a location parameter \ and, consequently,
the distribution of - + 0 depends on the location parameter
\ + 0. When the statistical model {P\ : \ 2 T} satisfies (7),
it’s called an invariant statistical model. A good textbook
presentation on this is Schervish (1995, Ch. 6); a more
comprehensive account is given in Eaton (1989). Here I’ll
present only the necessary details.

Define G as the collection of those bijections 6̄ : T ! T,
corresponding to the mappings 6 2 G . It is easy to check
that G is a group. As is often the case in applications, I’ll
assume that the distributions P\ all have a density respect
to some underlying f-finite measure. So I’ll follow the
suggestion2 from Theorem 3.1 in Eaton (1989) and say that
the family {?\ : \ 2 T} is invariant with respect to G if

?\ (G) = ?6̄\ (6G) j(6), G 2 X, \ 2 T, 6 2 G , (8)

where j(6) is the “multiplier” from a change-of-variables.
These model assumptions aren’t necessary to define the
fiducial, Bayes, and IM solutions; this just sets a context in
which a connection between them can be made.

The set G G = {6G : 6 2 G } ✓ X is called the orbit of G
corresponding to G. The orbits partition X into equivalence
classes, so every point G 2 X falls on exactly one orbit.
This partition can be used to construct a new and useful
coordinate system on X. Identify G 2 X with (6G , DG),
where DG 2 U denotes the label of orbit G G and 6G 2 G
denotes the position3 of G on the orbit G G.

Henceforth, I’m going to sacrifice a bit of generality
for the sake of readability. As is common in the literature,
instead of assuming that G and G are isomorphic, I’m
going to follow Schervish (1995, p. 371) and assume that
T = G = G ; this means we don’t have to distinguish 6, 6̄,
and \ and we don’t have to track functions that connect the
three. With this in mind, let’s agree on the following

Model Assumptions Let {?\ : \ 2 T} be a family of den-
sities invariant with respect to a locally compact topological
group G in the sense of (8) and, as explained above, take
T = G = G . In addition, the following hold:

A1. The left Haar measure _ and the corresponding right
Haar measure d on (the Borel f-algebra of) G exist
and are unique up to scalar multiples.

2Eaton’s Theorem 3.1 says that (8) implies (7) but, the converse is
only “almost” true. That is, (7) and existence of densities implies (8) on a
null set that can depend on (\ , 6) . However, this null set dependence on
(\ , 6) can be avoided in all the applications that he’s familiar with.

3Position is relative to a predetermined reference point on the orbit: if
AG is that reference point on G G, then 6G is defined such that G = 6GAG .
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A2. There exists a bijection C : X ! G ⇥U, with both C and
C
�1 measurable, that maps G 2 X to its position–orbit

coordinates (6G , DG) 2 G ⇥ U.
A3. The distribution of C (-) = (⌧,*) 2 G ⇥ U induced

by the distribution of - ⇠ P- |\ has a density with
respect to _ ⇥ ` for some measure ` on U.

A few quick remarks about these assumptions are in order.
First, it’s not necessary that T = G = G , only that G and
G are isomorphic and that there’s a bijection that relates
T and G . Next, for A1, existence and uniqueness of the
left and associated right Haar measures on locally compact
topological groups is a classical result and I’ll refer the
reader to the corresponding classical texts: Halmos (1950)
and Nachbin (1965). For A2, note that C (6G) = (6 � 6G , DG)
for all 6 2 G . That is, 6 only acts on the first coordinate
in C, so it’s invariant with respect to G in the second
coordinate—the orbit label is una�ected by actions in G .
Finally, for A3, existence of a joint density with respect to
a product measure simply ensures no di�culty in defining
a conditional distribution for ⌧, given * = D; moreover,
* = *- , as a function of - ⇠ P\ is an ancillary statistic.

The simplest example is that of a location parameter
where G = G = (R, +). Since this group is abelian, the left
and right Haar measures are the same and both equal to
Lebesgue measure. The function G 7! C (G) in A2 consists
of two components: in its “6G” coordinate an equivariant
function of G that estimates the location and, in its “DG”
component, an invariant function of G, such as residuals. For
example, 6G = Ḡ the arithmetic mean of G = (G1, . . . , G=)
and DG = {G8� Ḡ : 8 = 1, . . . , =}. Note that the DG coordinate
satisfies a constraint, so, after it’s represented in a suitable
lower-dimensional space U, ` can be taken as Lebesgue
measure there. There are many other problems that fit this
general form; see, e.g., Section 3.4 below and Chapters 1–2
of Fraser (1968), including the exercises.

3.2. Fiducial and IM Solutions
For the above-described invariant statistical models, there
is a standard/accepted fiducial distribution construction,
which I’ll describe below. The IM solution as presented in
Section 2.3 is relatively straightforward in this case too.

Just a quick remark on notation before getting started.
Recall that, for simplicity, I’m assuming T = G = G . In this
case, generic values of \ 2 T can be identified with trans-
formations in G ; the same goes for the uncertain variable
K. So, in what follows, I’ll treat \ as a transformation that
maps G to \G, can be inverted to \

�1, and can be composed
via � with other transformations in G .

A key result (e.g., Schervish, 1995, Corollary 6.64)
says that the density of - or, equivalently, the density of
C (-) = (⌧,*) 2 G ⇥ U, under P\ , is given by

?\ (6, D) = 5 (\�1�6, D), (_ ⇥ `)-almost all (6, D), (9)

where 5 : G ⇥U ! R is a fixed function that doesn’t directly
depend on \. The particular form of 5 isn’t important for
us here—all that matters is how it depends on \.

There are two important consequences of (9). The first
is presented as Lemma 6.65 in Schervish (1995).

Proposition 1 The fiducial distribution QG of K, given
- = G or, equivalently, given C (-) = (6, D), has a density
@G with respect to right Haar measure on G given by

@G (\) = 26 ?\ (6 | D), \ 2 T, C (G) = (6, D), (10)

where 26 is a constant that depends only on 6, and ?\ (6 | D)
is the conditional density of ⌧, given * = D, derived from
the joint density in (9). Also, @G in (10) is the Bayesian
posterior density under the right Haar prior.

Here’s what’s going on. If⌧ is as in C (-) = (⌧,*), where
- ⇠ P\ , then the conditional distribution of � := \

�1 � ⌧
in G , given * = D, doesn’t depend on \. Therefore, �
is a pivot, a function of (- , \) having distribution free of
\. Then the fiducial distribution for K, given - = G or,
equivalently, given (⌧,*) = (6, D), is

QG (�) = P(6 � ��1 2 � | * = D), � ✓ T,

where the probability on the right-hand side is with respect
to the conditional distribution of �, given * = D, derived
from P\ , which doesn’t depend on \. If that conditional
distribution is known, then the fiducial probabilities can be
directly evaluated or approximated via Monte Carlo. The
Bayes connection can be of some practical benefit, instead
of working with the (� | * = D) conditional distribution,
one can apply any of the Monte Carlo methods commonly
used to approximate Bayesian posterior distributions.

The next result, which is related to the ideas in the
previous paragraph, is the second important consequence
of (9), relevant to the IM solution.

Proposition 2 The relative likelihood function '(G, \) in
(3) depends on (\�1 � 6, D) only, where C (G) = (6, D). In
particular, if C (G) = (6, D), then

'(G, \) = 3D 5 (\�1 � 6, D),

where 3D is a constant that depends only on D.

Proof Since G 7! C (G) is a bijection, by (9) we have

'(G, \) = ?\ (6, D)
supo2T ?o (6, D)

=
5 (\�1 � 6, D)

supo2T 5 (o�1 � 6, D) .

Since o is free to vary across all of T or, equivalently, all of
G , so too is o�1 � 6. This implies that the supremum on the
right-hand side doesn’t depend on 6. The claim follows by
taking 1/3D equal to that supremum.
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The key observation is that, since '(- , \) depends on -

only through (\�1 � ⌧,*), and � := \
�1 � ⌧ is a pivot, it

follows that '(- , \) is a pivot too. The relative likelihood
is a pivot (or at least approximately so, via Wilks’s theorem)
in many of the familiar textbook problems, so this is not a
surprising result. In any case, it’s now straightforward to
write down the IM solution’s contour function:

cG (\) = P{ 5 (�, D)  5 (\�1 � 6, D) | * = D}, \ 2 T,

where the probability on the right is the conditional distri-
bution of �, given * = D, derived from P\ , which doesn’t
depend on \. Analogous to the formulation in Section 2.3, I
can let N G (�) = sup\ 2� cG (\) define the IM’s possibility
measure output. Where it’s helpful, I’ll write “c6 |D” and
“N 6 |D” to emphasize that the IM output depends on the
observed G only through C (G) = (6, D), and that D is fixed at
its observed value. With this notation, the contour satisfies

PK{c⌧ |D (K)  U | * = D}  U, U 2 [0, 1],

where (⌧,*) on the right-hand side depend implicitly on
- ⇠ PK . From here we get the following conditional version
of the validity property (6): for each � ✓ T,

sup
\ 2�

P\ {N⌧ |D (�)  U | * = D}  U, U 2 [0, 1] .

3.3. Connection
Roughly speaking, the main result here says that, in the
invariant statistical model setting, the fiducial distribution
QG described above is not only a member of the IM’s credal
set C (N G) but is a “maximal” such member in the sense
of being most di�use, having the heaviest tails, etc. First
I need to define this notion of maximality precisely. This
will be defined in terms of a generic uncertain variable
. , taking values in a space Y, about which uncertainty
is quantified via a possibility measure N . Recall that the
credal set C (N ) for a possibility measure N supported on
Y is the set of all probability measures it dominates, i.e.,
C (N ) = {P 2 prob(Y) : P(·)  N (·)}.

Definition 3 Given a possibility measure N on a space Y
with contour c, a probability measure P supported on Y is
a maximal element in the credal set C (N ) if

P{c(. )  U} = U, for all U 2 [0, 1] .

The well-known characterization (e.g., Couso et al., 2001;
Destercke and Dubois, 2014) says

P 2 C (N ) () P{c(. )  U}  U, U 2 [0, 1],

i.e., if the P-probability assigned to the U-lower level sets
of c is no more than U for every U 2 [0, 1]. So a maximal

element of the credal set assigns exactly the maximal prob-
ability to these lower level sets. Alternatively, maximality
implies that c characterizes the tails of P:

c(H) = P{c(. )  c(H)}, H 2 Y.

The following result establishes an apparently new con-
nection between the fiducial solution and the possibilistic
IM solution in the invariant statistical model setting. Specif-
ically, the fiducial distribution QG is a maximal member of
the IM’s credal set C (N G). That is, for each G 2 X,

QG{cG (K)  U} = U, for all U 2 [0, 1] . (11)

Note that QG and cG depend on G only through C (G) = (6, D).
Also, for the models under consideration here, the fiducial,
generalized fiducial, and default-prior Bayes solutions all
agree, so the following result applies to all of these.

Theorem 4 Under the setup described in Sections 3.1–3.2,
for each fixed G, the fiducial distribution QG is a maximal
member of the IM’s credal set C (N G).

Proof The fiducial QG-probability can be rewritten as

QG{cG (K)  U} = P{c6 |D (6 � ��1)  U | * = D}.

Let IU (D) denote the U-quantile of the conditional distri-
bution of 5 (�, D), given * = D; this doesn’t depend on the
unknown parameter. Since c6 |D (6 � ⌘�1)  U if and only if
5 ((6 � ⌘

�1)�1 � 6, D) ⌘ 5 (⌘, D)  IU (D), it follows that

QG{cG (K)  U} = P{c6 |D (6 � ��1)  U | * = D}
= P{ 5 (�, D)  IU (D) | * = D}
= U,

which proves the claim (11).

Theorem 4 shows that, for invariant statistical models,
the standard fiducial solution (which agrees with the default-
prior Bayesian solution, among others) is the best proba-
bilistic approximation to the IM’s possibilistic output. This
eliminates any mystery surrounding the fiducial solution:
it’s the maximal inner probabilistic approximation to the
valid IM’s possibilistic output. That is, the fiducial argument
isn’t magically solving the problem of prior-free probabilis-
tic inference within the theory of precise probability, it’s
just the “best one can do” within that theory. Common sense
suggests that there’s no free lunch and, indeed, the cost
of artificially introducing precision is that one must limit
the scope of questions that can be reliably answered; see
Section 5 below. It’s true that the IM’s possibilistic output
lacks the granularity of probabilistic output, but my claim
is that, on its own, without the assistance of prior informa-
tion, data can only reliably support possibilistic reasoning.
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Pushing data any further than this, as fiducial-like solutions
do, creates a risk of inferences being unreliable.

There are further conceputal insights coming from Theo-
rem 4. As I mentioned in Section 2.1, the starting point is
that there are no non-trivial, a priori probability statements
that can be made about K. So, whether it be via the fiducial
argument or something else, the QG-probabilities come out
of thin air. In the invariant model case, one might be able
to justify these based on there being a consensus—most/all
of the available approaches identify the same QG . But this
doesn’t explain what the probabilities mean. They’re clearly
neither subjective nor objective and, to my knowledge,
there’s no agreed-upon interpretation. This isn’t a surprise
in light of Theorem 4. Indeed, what’s driving the fiducial
solution is a weaker, possibilistic uncertainty quantification.
The fiducial probability is just one of the many compatible
with the IM solution’s possibility measure and, therefore,
can’t have any genuine meaning.

3.4. Directional Data Example
Consider direction measurements on the plane, which can
be represented by angles relative to a reference point. Real-
world examples include wind direction and animal move-
ment studies. More generally, direction measurements can
be represented by points on the surface of a hypersphere.
This is common in astronomy, where the position of planets,
stars, etc. can be described by points on the celestial sphere.

As a very simple illustration, I’ll consider the roulette
wheel data from Example 1.1 in Mardia and Jupp (2000).
The experiment proceeds by spinning a roulette wheel and
recording the angle (in radians) of the position at which
the wheel stops. Let .= = (.1, . . . ,.=) be the observable
angles for = independent spins. The actual data in this case,
which consists of = = 9 angles, is presented graphically in
Figure 1. The model under consideration here is the von
Mises distribution which has a density function

?\ (H) / exp{^ cos(H � \)}, H, \ 2 [0, 2c).

Here ^ > 0 is a known concentration parameter, taken to
be equal to 2 in this illustration. It’s no trouble allowing
^ to be unknown as well, but that takes us outside of the
invariant statistical model context. The parameter K is an
unknown mean angle to be inferred from the data.

It’s easy to see that the minimal su�cient statistic for this
model is the pair

- = (⇠̄, (̄) =
�
=
�1 Õ=

8=1 cos.8 , =�1 Õ=
8=1 sin.8

�
.

Then - can be treated as “the data.” Since (⇠8 , (8) =
(cos.8 , sin.8) denotes the Cartesian coordinates of the
point on the unit circle corresponding to the angle .8 , it’s
clear that - = (⇠̄, (̄) is generally inside the unit circle; see
Figure 1. The more “concentrated” the .8’s are around a
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Figure 1: Open circles are the Cartesian coordinates corre-
sponding to the observed angles; two duplicate
observations near the north pole are stacked. The
solid circle is the arithmetic mean of those Carte-
sian coordinates, and the angle the black line
makes with the dotted reference line is the max-
imum likelihood estimator ⌧ of K; the black
line’s length is the sample concentration *.

particular angle, the closer - will be to the circle’s boundary.
Convert this average position to polar coordinates:

⌧ = arctan((̄/⇠̄) and * = (⇠̄2 + (̄
2)1/2

.

Here ⌧ is the angle the vector (⇠̄, (̄) makes with the
horizontal axis and * is the Euclidean length of (⇠̄, (̄). It’s
clear that (⌧,*) is a bijection of the minimal su�cient
statistic - , so write C (-) = (⌧,*). There is a group G
consisting of rotations of points in the plane; technically, G
is the special orthogonal group—orthogonal matrices with
unit determinant. Then⌧ can be interpreted as both an angle
or as a rotation in G by that angle. Similarly, the interior
of the unit circle can be partitioned into distinct concentric
circles, which correspond to orbits, and* determines which
of these orbits - sits on.

The details here align with the general setup above, so I
can proceed to carry out the fiducial (or default-prior Bayes)
and IM analyses. It’s a standard result (e.g., Mardia and
Jupp, 2000, Eq. 4.5.5) in the directional statistics literature
that the joint density for (⌧,*), factors as

?\ (6, D) = ?\ (6 | D) ?(D) / exp{^D cos(6 � \)} ?(D),

where ?(D) denotes the marginal density for *, which
doesn’t depend on \ and isn’t relevant here. The conditional
distribution of ⌧, given * = D, is easily seen to be von
Mises with concentration parameter ^D. The influence
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of conditioning on * makes intuitive sense because, as
indicated above, the statistic * acts like a measure of how
“concentrated” the observed angles are around a common
angle. It’s the conditional density above that drives both the
fiducial and IM analyses. Indeed, the fiducial density is

@G (\) / exp{^D cos(6 � \)}, \ 2 (0, 2c],

and, after simplification, the IM’s possibility contour is

c6 |D (\) = P{cos�  cos(6 � \) | * = D}, \ 2 [0, 2c),

where the probability is with respect to the conditional
distribution of � := ⌧ �K, given * = D, which is simply a
von Mises distribution with mean angle 0 and concentration
parameter ^D. Plots of \ 7! @G (\) (overlaid on Monte Carlo
samples from @G) and \ 7! c6 |D (\) are shown in Figure 2.
Both point to values of K near the maximum likelihood
estimator 6 = 0.89 as most plausible, as expected.

4. A New Fiducial Argument?
Theorem 4 says that, for a certain class of models, nothing
changes if we define the fiducial solution as the maximal
element in the IM’s credal set. This alternative view the
fiducial argument is appealing for at least one reason.

Whether it’s in the invariant statistical model setting or
not, we can always define the fiducial solution to be the
maximal element in the IM’s credal set; see Martin (2021b,
Sec. 3) and Taraldsen (2021, Sec. 2). That is, instead of
constructing a data-dependent distribution QG and hoping
that it satisfies certain properties (e.g., a Bernstein–von
Mises theorem), just define the fiducial distribution to be
the best probabilistic approximation of the IM’s possibilistic
output. This would ensure that the fiducial distribution’s
credible sets are genuine confidence sets, which is what
“confidence distributions” aim to achieve (e.g., Thornton
and Xie, 2020; Nadarajah et al., 2015; Xie and Singh, 2013).
The challenge with the suggested strategy is actually finding
the best probabilistic approximation. Outside the invariant
case, the currently-available fiducial solutions likely don’t
correspond to members of the IM’s credal set. So identifying
and numerically evaluating the “fiducial distribution” I just
defined could be a challenge. One idea is to apply the
possibility-to-probability transform in Dubois et al. (2004,
Sec. 3.2) to get a probability QG from the IM’s possibility
measure N G , but this is non-trivial even for scalar K.

To be clear: I’m not advocating for any fiducial argument.
The validity property described in Section 2.3 is essential
to the logic of statistical inference and, as shown in Balch
et al. (2019), there are no data-dependent probability dis-
tributions that can achieve it. My goal is simply to better
understand the fiducial argument. It’s now clear that, at
least in the class of problems considered above, the fiducial
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Figure 2: Fiducial and IM output for inference on the angle
K based on the roulette wheel data in Figure 1.

solution corresponds to a maximal probabilistic approx-
imation of the IM’s possibilistic solution. The level sets
of the IM’s possibility contour are confidence regions and
the connection established in Theorem 4 implies that the
fiducial confidence regions agree with these. However, the
connection between fiducial and IMs doesn’t imply that the
former is valid like the latter. Fiducial-like solutions are still
at risk for false confidence. This is because the maximal
probabilistic approximation of a marginal IM generally isn’t
the corresponding marginal fiducial distribution.

For example, Figure 3 shows the marginal fiducial (and
default-prior Bayes posterior) distribution and marginal
IM possibility contour forQ = cosK from the example in
Section 3.4. Despite the similarities in Figure 2, the (non-
linear) marginalization has changed their shapes. Here the
fiducial distribution’s mode is pushed close to the boundary,
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Figure 3: Marginal fiducial distribution and marginal IM
possibility contour for Q = cosK derived from
those for K as displayed in Figure 2.

whereas the IM’s mode is at the maximum likelihood esti-
mator cos 0.89 = 0.63; since the modes di�er, the fiducial
distribution is no longer the best probabilistic approximation
of the IM’s possibility measure. This post-marginalization
discrepancy is a result of di�erences between the proba-
bility and possibility calculi. The possibility calculus is
guaranteed to preserve the IM’s validity property, whereas
the probability calculus o�ers no such guarantees.

5. False Confidence Redux
Balch et al. (2019) show that data-dependent probabilities
used for inference su�er from false confidence. That is,
if G 7! QG is such a method, then the false confidence
theorem says, for any U 2 (0, 1) and any \ 2 T, there exists

hypotheses � ✓ T such that

� 3 \ and P\ {Q- (�)  U} > U. (12)

Intuitively, if U represents the cuto� between “small” and
“not small,” then (12) says that the event {Q- (�) is small}
has not-small P\ -probability when \ 2 �. Since we’d be
inclined to doubt the truthfulness of � when Q- (�) is
small, the property in (12) creates a risk of, e.g., regularly
rejecting true hypotheses. Consequently, inference based
on Q- is at risk of being systematically misleading.

The false confidence theorem, in its current form, is only
an existence result. It could be that the only problematic
�’s are trivial, not of practical interest. Despite the moti-
vating example in Balch et al. (2019) involving non-trivial
hypotheses, most statisticians have dismissed this result;
apparently they don’t believe non-trivial hypotheses can be
a�icted. So, the burden is on me/us to push this result to
the point that the conclusion can’t be denied.

Fortunately, the structure provided by the invariant sta-
tistical model allows for a more in-depth investigation into
this question. Unfortunately, what I present below still falls
short of characterizing those � that are a�icted with false
confidence. I can only give a (fairly general) su�cient con-
dition for a hypothesis � to be free of false confidence.
The necessary conditions that would completely settle the
matter are still out of reach, but I’m optimistic.

First a bit more notation/terminology. Let G be the group
of transformations on X described before, still with the
simplifying assumption that T = G = G , and let K be
another group with binary operation ⇤. Suppose further that
K is equipped with a total order . that’s bi-invariant in
the sense that, for all 0, 1, : 2 K ,

0 . 1 =) : ⇤ 0 . : ⇤ 1 and 0 ⇤ : . 1 ⇤ : .

Let k : G ! K be a homomorphism, so that k(6 � 60) =
k(6) ⇤ k(60) for all 6, 60 2 G . Now, for a fixed : 2 K ,
define the hypothesis about K as

� = {\ : k(\) . :}. (13)

Then hypotheses of the form (13), determined by k and : ,
are not a�icted by false confidence.

Theorem 5 For a homomorphism k from (G , �) to the
ordered group (K , ⇤, .), and for : 2 K , the hypothesis
� = �k,: in (13) is not a�icted with false confidence, i.e.,

sup
\ 2�

P\ {Q- (�)  U}  U, for all U 2 [0, 1] .

Proof Take � as in (13) and fix any \ 2 �. Then k(\) . :

and, hence, :
�1 ⇤ k(\) . 4, where 4 here denotes the

identity element in K . Recall that the fiducial distribution
K ⇠ QG equals the conditional distribution of 6���1, given
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* = D, which depends on the values (6, D) of C (G) but not
on \. Since . is bi-invariant and k is a homomorphism,
we find that k(K) . : is equivalent to k(�) & :

�1 ⇤ k(6)
and, consequently,

QG (�)  U () P{k(�) & :
�1 ⇤ k(6) | * = H}  U

() :
�1 ⇤ k(6) & IU (D),

where IU (D) is the (1 � U)-quantile of k(�), relative to .,
based on the conditional distribution of �, given * = D,
derived from - ⇠ P\ . But the distribution of ⌧, as a
function of - ⇠ P\ , given that the *-component of C (-) is
D, is exactly the distribution of \ � �, as a function of �,
given * = D. Therefore,

P\ {Q- (�)  U}
= P{:�1 ⇤ k(\ � �) & IU (D) | * = D}
= P{:�1 ⇤ k(\) ⇤ k(�) & IU (D) | * = D}
 P{k(�) & IU (D) | * = D}, (14)

where the inequality in (14) follows from the fact that

:
�1 ⇤ k(\) ⇤ k(�) & IU (D) (= k(�) & IU (D),

which, in turn, is a consequence of the fact that

\ 2 � () k(\) . : () :
�1 ⇤ k(\) . 4,

where 4 is the identity element in K . By definition of
IU (D), the probability in (14) is no more than U.

I apologize for the level of abstraction, but this formu-
lation helps to pinpoint the kind of structure that’s incom-
patible with false confidence. To make this result more
tangible, think of (K , ⇤, .) as real numbers under addition.
Then the most natural kinds of homomorphisms in this
case would be linear functions of \. Then Theorem 5 says
that hypotheses concerning linear functions of \ are free
from false confidence, e.g., if \ is a ⇡-vector, then the
fiducial (and Bayesian) probabilities assigned to hypotheses
� = {\ : \3  :} for : 2 R and 3 = 1, . . . ,⇡ are reliable.
Non-linear functions, such as k(\) = k\k from the applica-
tion in Balch et al. (2019), may not be homomorphisms and
Theorem 5 does not protect the corresponding hypotheses
from false confidence. Fraser (2011) also discusses the
di�erences between linear and non-linear functions of \ as
it relates to reliability of inference.

6. Conclusion
For invariant statistical models considered here, it’s well-
known that the fiducial and default (right Haar) prior Bayes
solutions agree and, moreover, that the credible sets derived

from these are exact confidence regions. Under the same
setup, I showed here that the fiducial solution can also be
viewed as the “best” probabilistic approximation to the
valid IM’s possibilistic solution. This sheds important new
light on the relationship between fiducial and IM solutions.
Indeed, if one’s only concerned with, say, confidence regions
for K, then both solutions give the same results and, hence,
there’s no need to bother with the IM’s imprecision. But if
one is interested in other questions, e.g., inference about
certain features k(K) ofK, then the connection between the
fiducial and IM solutions is broken and whatever reliability
the former might have for inference about K is lost when
marginalized to k(K).

Beyond invariant statistical models, one could define a
fiducial distribution to be the maximal probabilistic approx-
imation to the IM solution’s possibilistic output. Just like
in the invariant model case, this definition of a fiducial
distribution would ensure that fiducial credible regions are
exact confidence regions. But this strong calibration comes
at a computational cost. In that case, one might prefer an
existing constructive solution, e.g., generalized fiducial, but
this would likely not be a member of the IM’s credal set and,
therefore, the aforementioned confidence-connection can at
best be achieved in an asymptotically approximate sense.
And just like above, the strong validity property achieved
by the IM is out of reach for all fiducial solutions.

Since the validity property is fundamental to reliable
uncertainty quantification, my claim is that the IM solution
is objectively better than the Bayes/fiducial solution. So, if
one opts for the latter instead of the former, then it’s solely for
the familiarity and/or convenience of ordinary probability
theory, and this doesn’t come without the cost of a potential
loss of reliability. As the computational tools for evaluating
the IM output continue to develop, this convenience gap
will likewise continue to close, to the point that there’s no
justification to sacrifice on reliability.
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