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Abstract
Current deep-learning techniques for processing sets are
limited to a fixed cardinality, causing a steep increase
in computational complexity when the set is large. To
address this, we have taken techniques used to model
long-term dependencies from natural language process-
ing and combined them with the permutation equiv-
ariant architecture, Set Transformer (STr). The result
is Set Transformer XL (STrXL), a novel deep learn-
ing model capable of extending to sets of arbitrary
cardinality given fixed computing resources. STrXL’s
extension capability lies in its recurrent architecture.
Rather than processing the entire set at once, STrXL
processes only a portion of the set at a time and uses
a memory mechanism to provide additional input from
the past. STrXL is particularly applicable to processing
sets of high-throughput sequencing (HTS) samples of
DNA sequences as their set sizes can range into hun-
dreds of thousands. When tasked with classifying HTS
prairie soil samples and MNIST digits, results show
that STrXL exhibits an expected memory size-accuracy
trade-off that scales proportionally with the complexity
of downstream tasks, but, unlike STr, is capable of gen-
eralizing to sets of arbitrary cardinality.

Deep learning excels at tasks utilizing ordered data such as
text generation, image classification, and voice recognition.
For example, many languages have a temporal structure, and
words depend on their predecessors; while images have a po-
sitional structure, each pixel makes sense only in the context
of its neighbors. In contrast, tasks such as multiple instance
learning Lee et al. [2019], shape identification , and future
prediction of molecule states Zhang et al. [2021] all take un-
ordered sets as input.

The inherent lack of spatial relationships in sets renders
most deep-learning models inadequate. Their inadequacy
stems not from the fact that their order-dependent architec-
tures are entirely incapable of processing sets, but because
ensuring absolute robustness to permutation would require
training on all permutations of the elements. The computa-
tional complexity of O(n!) for a set of size n would be an
impractical ask on modern hardware, making the need for a
naturally permutation invariant model more apparent.
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Zaheer et al. [2018] responded to this necessity by propos-
ing Deep Sets, an efficient, naturally permutation invari-
ant deep learning architecture. Rather than training on all
permutations, the model passes each element through a
neural network individually and then aggregates the out-
puts through permutation equivariant pooling operations.
Although it is a universal set function approximator, its in-
dependent processing hinders higher-order element-wise in-
teractions from being established.

STr builds on the work of Deep Set’s pooling operations,
but introduces the Transformer block Vaswani et al. [2017]
with removed positional encodings to learn the complex-
ity between set element interactions Lee et al. [2019]. Re-
peated stacks of these permutation equivariant blocks allow
a hierarchical representation of what set elements are most
influential to emerge. The time complexity of the Trans-
former’s Multi-Head Self Attention (MHA) is O(n2), but
can be reduced to O(nm) with the use of Induced Set At-
tention Blocks (ISABs). In contrast, Mini-Batch Consistent
Models Andreis et al. [2021] represent a newer form of per-
mutation equivariant models that use slot attention to pro-
cess sets of arbitrary cardinalities. However, their method of
slot encoding prevents contextualized item embeddings and
restricts the embedding to the full set. Due to this limitation,
we have based our architecture on STr’s foundation.

While STr is effective at modeling complex relationships
in sets, it is still subject to a common problem in deep learn-
ing: modeling long-term dependencies. For HTS samples,
whose sets range into the hundreds of thousands, even with
ISABs, STrs become computationally intractable. For in-
sight on how to better model the long-term dependencies re-
quired in HTS samples and other larger sets, we have looked
to Natural Language Processing (NLP), a field that has ar-
guably wrestled the most with this problem in long text cor-
pora. Many NLP solutions to this rely on sparsity to reduce
the computational cost Jaszczur et al. [2021], Zaheer et al.
[2021], similar to STr’s ISAB. However, it is not possible
to extend to truly arbitrary lengths with a sparse model as it
still requires the full input, so we are led instead to the pos-
sibility of using Transformer XL’s (TrXL) Dai et al. [2019]
memory-based, sliding window technique instead.

One important real-world application of such models
is the analysis of HTS samples, but to our knowledge,
deep learning models for processing HTS samples have yet



to be explored in the literature. Current algorithmic tech-
niques for modeling HTS samples first perform heavy pre-
processing Hao et al. [2022], and the few deep learning mod-
els that do process HTS samples only do so one sequence at
a time Ji et al. [2021], Alharbi and Rashid [2022], Wang
et al. [2023]. A deep learning model capable of processing
HTS samples would allow us to directly capture interactions
between the raw sequences, advancing our understanding of
how microorganisms influence one another when it comes
to tasks such as gene expression, disease-causing mutations,
and microorganism impacts when compared to current tech-
niques.

Our contributions are as follows: (1) a novel architec-
ture capable of extending to sets of arbitrary cardinality, (2)
a novel learned compression mechanism for more efficient
memory utilization, and (3) the first attempt to process raw
HTS samples using deep learning.

Background
Set Transformer
STr was developed to allow for more complex map-
pings of sets by capturing interactions between respec-
tive elements Lee et al. [2019]. STr preserves the un-
derlying encoder-decoder structure of the vanilla Trans-
former Vaswani et al. [2017] but modifies it to be permu-
tation equivariant. The encoder consists of multi-head atten-
tion blocks (MAB) as defined by Vaswani, but without posi-
tional encodings. The MAB is formally defined as:

MAB(X,Y ) = LN(H + rFF(H)),

where H = LN(X + MHA(X,Y, Y ))
(1)

Here X ∈ Rn×d represents the set of n d-dimensional
vectors, LN is layer normalization proposed by Ba et al.
[2016], MHA is multi-head attention a described in Vaswani
et al. [2017], and rFF is a row-wise feed-forward layer. Since
STr uses self-attention for the sets, they additionally for-
mally define a Set Attention Block (SAB) which is an MAB
with the same inputs:

SAB(X) = MAB(X,X) (2)

Rather than using a fixed pooling mechanism such as
mean, max, or sum, STr’s decoder portion is modified to
introduce a learned pooling operation, Pooling by MHA
(PMA) as shown below in equation 3. PMA aggregates the
features with k learnable seed vectors which can then be
used for classification, regression, or set prediction.

PMAk(Z) = MAB(S, rFF(Z)) ∈ Rk×d (3)

Here Z ∈ Rn×d is the set of n d-dimensional feature
vectors to be pooled and S ∈ Rk×d is the set of k learnable
seed vectors.

Induced attention Lee et al. [2019] is a modification in-
troduced by STr to reduce computational/space complexity
and allow for the handling of larger set cardinalities. Rather
than performing MHA between every element of the set,

induced attention projects the input set onto m learned in-
ducing points to create an intermediate representation and
then re-projects that representation back to its original di-
mensionality by attending to the original set. This transfor-
mation allows for a global encoding of important features of
the set while still allowing every element to interact with ev-
ery other element and reduces the computational complex-
ity of MHA from O(n2) to O(nm). However, neither the
vanilla STr nor its variant with induced attention can scale
to truly arbitrary cardinalities as they both depend on taking
the full set as input.

Transformer XL

TrXL was introduced to better model long-term dependen-
cies in NLP without increasing computational complex-
ity Dai et al. [2019]. The model is described in Algorithm
1. TrXL breaks the input text into segments and consecu-
tively passes each through a series of Transformer decoder
blocks. Each decoder block consists of Relative MHA, two
layer-norms, and a feed-forward neural network. To prevent
the context fragmentation problem that appears when treat-
ing each segment independently Al-Rfou et al. [2018], TrXL
introduces a segment-level recurrent memory into the archi-
tecture.

Each layer caches its past activations to allow the current
segment to attend not only to itself, but also to past segments.
To prevent the current input from influencing the previous
layers, the gradients for each layer are stopped from propa-
gating backward through the memory. Once the memory is
full, the oldest hidden states are discarded.

Algorithm 1 Transformer XL
1: mems0 ← 0
2: segments← Segment(x)
3: for segment t = 1, 2, ..., T do
4: h(1)

t ← Embed(segmentst)
5: for layer l = 1, 2, ..., L do
6: mt ← concat(StopGrad(mems(l)), h(l)

t )

7: attn← MHA(l)(h(l)
t ,mt,mt)

8: norm← LN(attn(l) + h(l)
t )

9: mems(l)t+1 ←
concat(mems(l)t , h(l)

t ) [−mem len :]

10: hl+1
t ← LN(rFF(l)(norm(l)) + norm(l))

11: end for
12: end for

Absolute positional encodings no longer work with a re-
current transformer because the current and past segments
would have the same position. To solve this, TrXL intro-
duces relative positional encodings which provide informa-
tion on how far away a token is relative to another rather than
where it is globally. However, these positional encodings,
prevent TrXL from being capable of permutation invariant
processing.
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Figure 1: Illustration of memory in CTr. Segments are transferred into memory. When the memory is full, rather than discarding
the oldest, CTr compresses them via a pooling operation and stores them in a long-term memory cache.

Compressive Transformer
Compressive Transformer (CTr) builds on TrXL’s architec-
ture, but modifies the memory mechanism to compress the
excess memory rather than discarding it entirely Rae et al.
[2019]. After the current segment is processed, it moves
into short-term, uncompressed memory (see Figure 1). Once
the short-term memory is full, the older memories are com-
pressed into long-term memory through compression func-
tions such as max/mean pooling, 1D convolution, dilated
convolution, and most-used. This method allows the current
segment to have access to a much larger temporal range than
in TrXL.

Additionally, CTr introduces two auxiliary losses: auto-
encoding loss and attention reconstruction loss. The auto-
encoding loss tries to recreate the original uncompressed
memories from the compressed memories. However, the
auto-encoding loss does not perform as well as the auto-
reconstruction loss. The auto-reconstruction loss attempts to
reconstruct the MHA between the uncompressed memory
and current segment from the compressed memory and cur-
rent segment. Because the second loss is a lossy objective, it
is hypothesized that this allows the model to discard what is
not needed, whereas the first forces the model to remember
even potentially useless information. In both cases, the gra-
dients are only used for optimizing the compression function
and do not propagate into the main network.

However, similar to TrXL, there is a dependence on the
order preventing it from being a permutation invariant archi-
tecture.

DNABERT
DNABERT is a method that uses stacks of transformer
blocks to produce contextualized embeddings of DNA se-
quences Ji et al. [2021]. Each sequence is split into over-
lapping kmers and associated with a class token. The model
is pretrained on two objectives: 15 percent of the sequence
is masked out and the model is forced to recreate the miss-
ing part, and the consecutive sequence prediction task. The
class token representation is thereby conditioned and used
as the resulting embedding for a complete DNA sequence.

The original model is pretrained on sequence reads of 500
bases in length from the human genome and fine-tuning of
the pretrained models may be performed on a variety of tasks
related to human health and genetics.

DNABERT was integrated into a recently released on-
line framework for DNA sequence analysis, DeepBIO Wang
et al. [2023] and was demonstrated to be the current state-
of-the-art deep learning model for DNA sequence analy-
sis. However, it is currently limited to processing single
DNA sequences and is not trained on appropriate microor-
ganism DNA segments. Both of these issues currently limit
DNABERT’s applicability to HTS samples.

Methods
MNIST Point Clouds Dataset
MNIST point cloud classification is a common benchmark
to validate a set model’s performance. The task is created
by turning MNIST handwritten digits into point cloud rep-
resentations Li Deng [2012] as seen in Figure 2. The task is
to correctly classify the number.

We generate our sets of MNIST point clouds by uniformly
selecting random pixels sampled from the original handwrit-
ten digit. For each pixel selected, we generate a continuous
2d point from a Gaussian distribution. The result is a point
cloud that represents the original 2d handwritten digit.

We use this set to validate the performance of STrXL on
a simple benchmark classification task.

HTS Samples Dataset
Our HTS dataset contains 205 prairie soil samples collected
in Nachusa, Illinois. Each sample contains 150-length se-
quences targeting the 16s ribosomal RNA (rRNA) region of
the bacteria present. These samples are raw reads off the se-
quencer without any downstream processing or decontami-
nation.

We set up a sample identification task where each sam-
ple becomes an individual class. Given a sample, the model
must correctly identify the correct class out of 205 possible
classes. We chose a classification task as it does not require



Figure 2: Illustration of MNIST point cloud of a 4.

any additional biological metadata to validate our model’s
performance on HTS samples.

Since we are performing sample classification, we cannot
leave out entire samples for validation/testing so we set aside
20% of the sequences in each sample for validation.

DNA Sequence Embeddings
To make the HTS samples compatible with a deep learn-
ing framework, each sequence must first be embedded into
a vector representation. To create these embeddings, we use
the DNABERT architecture as it creates high-quality con-
textualized embeddings Ji et al. [2021]. As their model was
trained on human genome data, we pretrain it on our dataset.
As our dataset consists of fixed-length sequences, we no
longer require padding tokens or varying the length of the
sequence during interference/training. We also replace the
absolute positional encodings with relative encodings as rel-
ative is more analogous to sequence alignment. For example,
when comparing two sequences, if one were to be shifted
over by one nucleotide, absolute encodings would likely re-
sult in a very different embedding, while relatively encoded
embeddings would only be changed slightly. Lastly, we use
pre-layer normalization to stabilize learning Xiong et al.
[2020].

For the specific architecture, we use 64-dimensional em-
beddings with 8 pre-layer norm Transformer blocks each
containing 8 MHA heads. The training procedure and learn-
ing rate schedule are the same as the original DNABERT
paper.

STrXL
The set of embedded sequences is split into segments. Each
segment is passed through a series of Transformer blocks
which we have modified to use permutation equivariant
MABs rather than position dependent relative MABs. The
activations in each layer h(l)

t are cached to be used when
processing the next time-step h(l)

t+1. We modify each MAB

to use a pre rather than post layer norm Xiong et al. [2020]
and take in both the current segment h(l)

t and the concate-
nation of the memory with h(l)

t to produce mt (see 4). The
segment is then sent through PMA to aggregate its features.
Depending on the downstream task, either all the segments
can be pooled together or just the last one. The architecture
for STrXL is shown in Figure 3.

MAB(X,Y ) = rFF(LN3(H +X))

where H = MHA(LN1(X),LN2(Y ),LN2(Y ))
(4)

Here X represents the current segment being passed in as
the queries, while Y is the concatenation of the segment and
memory to be used as the keys and values.

Compressive Modification
We use the compressive memory modification to compare to
our TrXL baseline. As with STrXL, we replace their Relative
MHA with permutation equivariant MABs. We swap their
compression functions with PMA to preserve permutation
equivariance in the case of convolution and to encode more
information through learned vectors rather than fixed in the
case of max/mean/most-used pooling.

Training & Evaluation
MNIST Point Cloud
STrXL uses 3 different memory sizes: 250, 500, and 750
with a segment size of 250 embedded points. We train 5
independent models for 30 epochs using these 3 memory
sizes. Additionally, we train our control STr. Both STrXL
and STr are trained using set sizes of 1000, with embedding
point dimensions of 32, a batch size of 32 with an 80/20
train/validation split of the 60,000 digits in MNIST, and 2
Transformer blocks with 4 attention heads each.

HTS Samples
For this task, STrXL is again trained with 3 different mem-
ory sizes: 250, 500, 750. The memory sizes are all trained
on the same segment size of 250 embedded sequences.

CTr was trained with a memory size of 250 and a
compressed memory size of 250 making it comparable to
STrXL’s 500 memory. Like STrXL, it uses a segment size
of 250. Initially, CTr was trained with the auxiliary attention
reconstruction loss, however in 4/5 runs (Data not shown)
unstable learning behavior took place. A learning rate sched-
uler is the typical fix for this Vaswani et al. [2017] in trans-
formers, however, because our other models were trained
with a fixed rate, we decided to remove the auxiliary loss
and only keep the compressive memory operation.

We trained 5 independent models for each memory size
and architecture described above as well as our control STr.
Each model was trained for 60,000 steps using the Adam
optimizer with a learning rate of 1e − 3, training batch size
of 20, validation batch size of 5, set sizes of 1000 with
64 dimensional embedded sequences, and 8 pre-layer norm
Transformer blocks with 8 attention heads each.

For both MNIST point cloud classification and HTS sam-
ple identification, we pool only the last segment. Addition-
ally, we choose their respective hyperparameters to ensure
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Figure 3: Illustration of STrXL for HTS samples. In this example, the set is first split into segments containing 2 sequences
each. Each segment is then embedded and passed through 3 Transformer blocks. The outputs of each segment are then pooled
producing a set embedding.

stable learning behavior and keep them constant for each
model to allow fair comparisons.

To evaluate our models on both tasks, we calculate the
mean and 95% confidence interval (CI) using the last point
of validation accuracy in all 5 runs for each model.

Results
MNIST Point Clouds Classification
In this task, the model must correctly classify the digit repre-
sented by a cloud of points. The results for each architecture
are shown in Table 1:

Model Mean 95% CI

StrXL (250) 0.963 0.007
StrXL (500) 0.966 0.004
StrXL (750) 0.966 0.004
Str 0.959 0.007

Table 1: The resulting mean accuracy with 95% confidence
interval per model for the MNIST point cloud classification
task.

For this particular problem, although StrXL (500) and
StrXL (750) achieved the same accuracy, we bold StrXL
(500) as the best performing due to its additional benefit of
being more efficient through a smaller segment size. Ad-
ditionally, because all the models accuracy is similar, we
hypothesize that the MNIST point cloud classification task
is simple enough that the expected memory size-accuracy
trade-off does not have an effect.

HTS Sample Identification
In this task, the model must correctly identify the correct
HTS sample its input set originated from. The results for
classifying HTS samples are shown in Table 2:

With a memory size of 750, STrXL outperforms STr.
Since both models have access to the full set, the expected
results for each should have been close to the same value.
However, we hypothesize that because the set is randomly
shuffled, each segment drawn from it is representative of an
underlying distribution of the full set. The implication is that

Model Mean 95% CI

StrXL (250) 0.560 0.100
StrXL (500) 0.704 0.088
StrXL (750) 0.818 0.054
Compressive (500) 0.656 0.076
Str 0.752 0.075

Table 2: The resulting mean accuracy with 95% confidence
interval per model for the HTS sample identification task.

theoretically, a permutation invariant model could learn with
no recurrence because each segment can stand alone as its
representative distribution. This could not be said in NLP
where each segment is not a smaller distribution, but part of
a larger whole due to its dependence on order. We think this
compacted set representation is used to gate the future seg-
ments, allowing STrXL to more efficiently determine what
activations to propagate forward. Since STr is comparing ev-
erything to everything through each Transformer block, it is
harder to filter the most useful information out.

The memory size-accuracy trade-off is much more clear
in this task than in MNIST point cloud classification. We hy-
pothesize that the trade-off scales proportionally to the com-
plexity of the downstream task. In this case, HTS samples
encode a lot more information than digits of point clouds so
the accuracy between varying memory sizes begins to dif-
ferentiate.

Discussion
We have presented STrXL, a novel architecture capable of
extending to sets of arbitrary cardinality while maintain-
ing fixed computing resources. As expected, the accuracy
is proportional to the size of memory used but the trade-off
scales proportionality to the complexity of the downstream
task. This means that in domains where the task is simpler,
STrXL can provide the same accuracy with fewer comput-
ing resources. Alternatively, for a complex task, the memory
size could be increased allowing for a tunable accuracy with
respect to an individual’s computing resources.

We have also introduced a novel learned compression



mechanism to encode more information on how to compress
the set. With more exploration into the model, we think that
this could eventually relieve the need for an auxiliary loss in
CTr since the model will have already learned a reasonable
compression procedure.

Additionally, to our knowledge, we are the first to process
raw HTS samples using deep-learning. This allows many bi-
ological tasks to now have the full complexity of higher-
order relationships and interactions within them.

One limitation of STrXL is that it can only ever be a per-
mutation invariant approximation as breaking the set up does
introduce an order-dependence on which segment is pro-
cessed first. However, we believe any order introduced is
negligible as STrXL performs almost to the standard of STr
and, in the case of a 750 memory size, is better.

Another limitation is that the context fragmentation prob-
lem Al-Rfou et al. [2018] never fully disappears even with
the recurrence, however, the segment-level distribution rep-
resentation and recurrence do minimize it significantly.

Further work will include stabilizing the training of CTr
with learning rate schedules, exploring ways to improve the
learned compression, testing in-depth biology tasks such as
identifying microbes present, learning how microbes im-
pact the community, finding mutations within a sequence,
comparing samples from different seasons, classifying the
amount of Nitrogen in the soil, characterizing infections
growth rate, etc.
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