Efficient Adversarial Attacks on Online Multi-agent
Reinforcement Learning

Guanlin Liu  Lifeng Lai
Department of Electrical and Computer Engineering
University of California, Davis
One Shields Avenue, Davis, CA 95616
{glnliu, 1flai}@ucdavis.edu

Abstract

Due to the broad range of applications of multi-agent reinforcement learning
(MARL), understanding the effects of adversarial attacks against MARL model is
essential for the safe applications of this model. Motivated by this, we investigate
the impact of adversarial attacks on MARL. In the considered setup, there is an
exogenous attacker who is able to modify the rewards before the agents receive
them or manipulate the actions before the environment receives them. The attacker
aims to guide each agent into a target policy or maximize the cumulative rewards
under some specific reward function chosen by the attacker, while minimizing the
amount of manipulation on feedback and action. We first show the limitations
of the action poisoning only attacks and the reward poisoning only attacks. We
then introduce a mixed attack strategy with both the action poisoning and the
reward poisoning. We show that the mixed attack strategy can efficiently attack
MARL agents even if the attacker has no prior information about the underlying
environment and the agents’ algorithms.

1 Introduction

Recently reinforcement learning (RL), including single agent RL and multi-agent RL (MARL), has
received significant research interests, partly due to its many applications in a variety of scenarios
such as the autonomous driving, traffic signal control, cooperative robotics, economic policy-making,
and video games [Silver et al., 2016, Brown and Sandholm, 2019, Vinyals et al., 2019, Berner et al.,
2019, Shalev-Shwartz et al., 2016, OroojlooyJadid and Hajinezhad, 2019, Baker et al., 2020, Zhang
et al., 2021a]. In MARL, at each state, each agent takes its own action, and these actions jointly
determine the next state of the environment and the reward of each agent. The rewards may vary for
different agents. In this paper, we focus on the model of Markov Games (MG) [Shapley, 1953]. In this
class of problems, researchers typically consider learning objectives such as Nash equilibrium (NE),
correlated equilibrium (CE) and coarse correlated equilibrium (CCE) etc. A recent line of works
provide non-asymptotic guarantees for learning NE, CCE or CE under different assumptions [Sidford
et al., 2020, Zhang et al., 2020a, Bai and Jin, 2020, Xie et al., 2020, Liu et al., 2021, Jin et al., 2021,
Mao and Basar, 2022].

As RL models, including single agent RL. and MARL, are being increasingly used in safety critical
and security related applications, it is critical to developing trustworthy RL systems. As a first step
towards this important goal, it is essential to understand the effects of adversarial attacks on RL
systems. Motivated by this, there have been many recent works that investigate adversarial attacks on
single agent RL under various settings [Behzadan and Munir, 2017, Huang and Zhu, 2019, Ma et al.,
2019, Zhang et al., 2020b, Sun et al., 2021, Rakhsha et al., 2020, 2021].
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On the other hand, except the ones that will be reviewed below, existing work on adversarial attacks
on MARL is limited. In this paper, we aim to fill in this gap and systematically investigate the
impact of adversarial attacks on online MARL. We consider a setting in which there is an attacker sits
between the agents and the environment, and can monitor the states, the actions of the agents and the
reward signals from the environment. The attacker is able to manipulate the feedback or action of the
agents. The objective of the MARL learner is to learn an equilibrium. The attacker’s goal is to force
the agents to learn a target policy or to maximize the cumulative rewards under some specific reward
function chosen by the attacker, while minimizing the amount of the manipulation on feedback and
action. Our contributions are follows.

1) We propose an adversarial attack model in which the attacker aims to force the agent to learn
a policy selected by the attacker (will be called target policy in the sequel) or to maximize the
cumulative rewards under some specific reward function chosen by the attacker. We use loss and cost
functions to evaluate the effectiveness of the adversarial attack on MARL agents. The cost is the
cumulative sum of the action manipulations and the reward manipulations. If the attacker aims to
force the agents to learn a target policy, the loss is the cumulative number of times when the agent
does not follow the target policy. Otherwise, the loss is the regret to the policy that maximizes the
attacker’s rewards. It is clearly of interest to minimize both the loss and cost.

2) We study the attack problem in three different settings: the white-box, the gray-box and the
black-box settings. In the white-box setting, the attacker has full information of the underlying
environment. In the gray-box setting, the attacker has no prior information about the underlying
environment and the agents’ algorithm, but knows the target policy that maximizes its cumulative
rewards. In the black-box setting, the target policy is also unknown for the attacker.

3) We show that the effectiveness of action poisoning only attacks and reward poisoning only attacks
is limited. Even in the white-box setting, we show that there exist some MGs under which no action
poisoning only Markov attack strategy or reward poisoning only Markov attack strategy can be
efficient and successful. At the same time, we provide some sufficient conditions under which the
action poisoning only attacks or the reward poisoning only attacks can efficiently attack MARL
algorithms. Under such conditions, we introduce an efficient action poisoning attack strategy and an
efficient reward poisoning attack strategy, and analyze their cost and loss.

4) We introduce a mixed attack strategy in the gray-box setting and an approximate mixed attack
strategy in the black-box setting. We show that the mixed attack strategy can force any sub-linear-
regret MARL agents to choose actions according to the target policy specified by the attacker with
sub-linear cost and sub-linear loss. We further investigate the impact of the approximate mixed attack
strategy attack on V-learning [Jin et al., 2021], a simple, efficient, decentralized algorithm for MARL.

1.1 Related works

Attacks on Single Agent RL: Adversarial attacks on single agent RL have been studied in various
settings [Behzadan and Munir, 2017, Huang and Zhu, 2019, Ma et al., 2019, Zhang et al., 2020b,
Sun et al., 2021, Rakhsha et al., 2020, 2021]. For example, [Behzadan and Munir, 2017, Zhang
et al., 2020b, Rangi et al., 2022] study online reward poisoning attacks in which the attacker could
manipulate the reward signal before the agent receives it. [Liu and Lai, 2021] studies online action
poisoning attacks in which the attacker could manipulate the action signal before the environment
receives it. [Rangi et al., 2022] studies the limitations of reward only manipulation or action only
manipulation in single-agent RL.

Attacks on MARL: [Ma et al., 2022] considers a game redesign problem where the designer knows
the full information of the game and can redesign the reward functions. The proposed redesign
methods can incentivize players to take a specific target action profile frequently with a small
cumulative design cost. [Gleave et al., 2020, Guo et al., 2021] study the poisoning attack on multi-
agent reinforcement learners, assuming that the attacker controls one of the learners. [Wu et al., 2022]
studies the reward poisoning attack on offline multi-agent reinforcement learners.

Defense Against Attacks on RL: There is also recent work on defending against adversarial attacks
on RL [Banihashem et al., 2021, Zhang et al., 2021b, Lykouris et al., 2021, Chen et al., 2021, Wei
etal., 2022, Wu et al., 2021]. These work focus on the single-agent RL setting where an adversary
can corrupt the reward and state transition.



2 Problem setup

2.1 Definitions

To increase the readability of the paper, we first introduce some standard definitions related to MARL
that will be used throughout of the paper. These definitions mostly follow those defined in [Jin et al.,
2021]. We denote a tabular episodic MG with m agents by a tuple MG(S, {A;}~,, H, P,{R;}" ),
where S is the state space with |S| = S, A; is the action space for the i agent with |4;| = A;,
H € Z7 is the number of steps in each episode. We let a := (a1, - - , a,,) denote the joint action
of all the m agents and A := A; x --- x A, denote the joint action space. P = {Py}pcp) is a
collection of transition matrices. Pp, : S x A x & — [0, 1] is the probability transition function that
maps state-action-state pair to a probability, R; , : S x A — [0, 1] represents the reward function for
the i agent in the step h. In this paper, the probability transition functions and the reward functions
can be different at different steps. We note that this MG model incorporates both cooperation and
competition because the reward functions of different agents can be arbitrary.

Interaction protocol: The agents interact with the environment in a sequence of episodes. The total
number of episodes is K. In each episode k € [K] of MG, the initial states s; is generated randomly
by a distribution Py(-). Initial states may be different between episodes. At each step h € [H] of an
episode, each agent ¢ observes the state sj, and chooses an action a; ;, simultaneously. After receiving
the action, the environment generates a random reward ; 5, € [0, 1] for each agent ¢ derived from a
distribution with mean R; ,(sp, ay), and transits to the next state s,41 drawn from the distribution
Py, (|sn,an). Pr(|s, a) represents the probability distribution over states if joint action a is taken
for state s. The agent stops interacting with environment after H steps and starts another episode. At
each time step, the agents may observe the actions played by other agents.

Policy and value function: A Markov policy takes actions only based on the current state. The
policy m; 5, of agent i at step h is expressed as a mappings 7; , : S — A4,. m; ,(a;|s) represents the
probability of agent ¢ taking action a; in state s under policy 7; at step h. A deterministic policy is a
policy that maps each state to a particular action. For notation convenience, for a deterministic policy
m;, We use 7; 1, (s) to denote the action a; which satisfies 7; 5 (a;|s) = 1. We denote the product policy
of all the agents as 7™ := 7 X - -+ X m,,,. We alsodenote m_; := 7y X - -+ X W] X Mip1 X -+ X Ty
to be the product policy excluding agent <. If every agent follows a deterministic policy, the product
policy of all the agents is also deterministic. We use V7, : & — R to denote the value function of

agent i at step / under policy 7 and define V7, (s) := E {Zﬁ:h Tin|sh =8, 7'('] . Given a policy 7
and step h, the i agent’s Q-function Q7 + S x A — R of a state-action pair (s, a) is defined as:

Qfp(s,a) =E |0y rinlsn = s,an = aﬂr].

Best response: For any policy 7m_;, there exists a best response of agent ¢, which is a policy
that achieves the highest cumulative reward for itself if all other agents follow policy 7_;. We
define the best response of agent i towards policy 7_; as u'(7_;), which satisfies pf(7_;) =
arg max, Viir}ixw’i (s) for any state s and any step h. We denote max,, V;’T}ixmi (s) as thﬂ’ (s)
for notation simplicity. By its definition, we know that the best response can always be achieved by a
deterministic policy.

Nash Equilibrium (NE) is defined as a product policy where no agent can improve his own cumulative
reward by unilaterally changing his strategy.

Nash Equilibrium (NE) [Jin et al., 2021]: A product policy 7 is a NE if for all initial state s,
Max; e (Vi:r'l’ﬂ‘i (s) = V{71 (s)) = 0 holds. A product policy 7 is an e-approximate Nash Equilibrium
if for all initial state s, max;e [ (V;’[iﬂ’i (s) = VT (s)) < eholds.

General correlated policy: A general Markov correlated policy 7 is a set of H mappings 7 :=
{mh : QxS — Aa}tnerm)- The first argument of 7, is a random variable w €  sampled from
some underlying distributions. For any correlated policy © = {m, },c[x) and any agent 4, we can
define a marginal policy 7_; as a set of H maps 7; = {74 —; : @ X S = A_, }pern), Where
Ay =A1 X -+ X A1 X Ajp1 X -+ X Ay, Ttis easy to verify that a deterministic joint policy is
a product policy. The best response value of agent i towards policy m_; as uf (7_;), which satisfies

Ty X T4

pf(r_;) == argmax, V/'y (s) for any state s and any step h.



Coarse Correlated Equilibrium (CCE)[Jin et al., 2021]: A correlated policy 7 is an CCE if for all

sTT—i

initial state s, max;c ] (V;r1 (s) = Vi1 (s)) = 0 holds. A correlated policy 7 is an e-approximate
CCE if for all initial state s, max; e, (V;iﬂ”‘ (s) = V7 (s)) < e holds.

Strategy modification: A strategy modification ¢; for agent i is a set of mappings ¢; := {(S X
AP xS x A — A} ne[#)- For any policy 7;, the modified policy (denoted as ¢; o ;) changes
the action ; 5 (w, s) under random sample w and state s to ¢;((s1, @1, .., S, aipn), Tin(W,s)).
For any joint policy m, we define the best strategy modification of agent 7 as the maximizer of

maxe, V;Sfiwﬂ@mi (s) for any initial state s.

Correlated Equilibrium (CE)[Jin et al., 2021]: A correlated policy 7 is an CE if for all initial state
S, MAX; ¢ ] MAXg, (‘/;’(fiom)@”’i (s) — V7 (s)) = 0. A correlated policy 7 is an e-approximate CE
if for all initial state s, max;e[,,,] maxg, (V;fiwi)@ﬂ’i (s) = VT (s)) < eholds.

In Markov games, it is known that an NE is an CE, and an CE is an CCE.

Best-in-hindsight Regret: Let 7" denote the product policy deployed by the agents for each
episode k. After K episodes, the best-in-hindsight regret of agent 7 is defined as Reg, (K, H) =

1k
T T

K -
maXq! Zk:l[vm (Slf) - Vi,l (Slf)}
2.2 Poisoning attack setting

We are now ready to introduce the considered poisoning attack setting, in which there is an attacker
sits between the agents and the environment. The attacker can monitor the states, the actions of
the agents and the reward signals from the environment. Furthermore, the attacker can override
actions and observations of agents. In particular, at each episode k& and step h, after each agent ¢
chooses an action aﬁ ,» the attacker may change it to another action a¥, € A,. If the attacker does not

override the actions, then Ef n = a;. When the environment receives 6%, it generates random rewards
,

rz’f 5, With mean R; p, (s’fb, 6;2) for each agent ¢ and the next state slfb 1 is drawn from the distribution

Py, (+|s¥,ak). Before each agent i receives the reward 7%, , the attacker may change it to another
reward 7, . Agent i receives the reward 7, and the next state s;_ ; from the environment. Note that
agent ¢ does not know the attacker’s manipulations and the presence of the attacker and hence will

still view 77, as the reward and s7’, , as the next state generated from state-action pair (s}, aj,).

In this paper, we call an attack as action poisoning only attack, if the attacker only overrides the
action but not the rewards. We call an attack as reward poisoning only attack if the attacker only
overrides the rewards but not the actions. In addition, we call an attack as mixed attack if the attack
can carry out both action poisoning and reward poisoning attacks simultaneously.

The goal of the MARL learners is to learn an equilibrium. On the other hand, the attacker’s goal is to
either force the agents to learn a target policy 7' of the attacker’s choice or to force the agents to learn a
policy that maximizes the cumulative rewards under a specific reward function R; , : S x A — (0, 1]
chosen by the attacker. We note that this setup is very general. Different choices of 7t or Ri
could lead to different objectives. For example, if the attacker aims to reduce the benefit of the agent
1, the attacker’s reward function R+ j, can be set to 1 — R; 5, or choose a target policy 7l that is
detrimental to the agent ¢’s reward. If the attacker aims to maximize the total rewards of a subset of
agents C, the attacker’s reward function Ry j, can be setto ) .. R; 5, or choose a target policy at =
argmax ) ;. V" (s1) that maximizes the total rewards of agents in C. We assume that the target
policy 7 is deterministic and R; j,(s,77(s)) > 0. We measure the performance of the attack over K
episodes by the total attack cost and the attack loss. Set 1(+) as the indicator function. The attack cost

over K episodes is defined as Cost(K, H) = Y1, S/, 32", (1(6;“’,1 #af,)+ [, — rfh\)
There are two different forms of attack loss based on the different goals of the attacker.

If the attacker’s goal is to force the agents to learn a target policy 7', the attack loss over K episodes
is defined as Loss1(K, H) = Zle Zthl >l (aiﬁh £ wjh(sfh))

If the attacker’s goal is to force the agents to maximize the cumulative rewards under some specific re-
ward function Rt chosen by the attacker, the attack loss over K episodes is defined as Loss2(K, H) =



Zszl [V]Zr1 (sh) — fo (s¥)]. Here, Vi",(s) is the expected cumulative rewards in state s based on

the attacker’s reward function R under product policy 7 and VT’TI* (s) = max; Vi (s). 7* denote
the product policy deployed by the agents for each episode k. 7* is the optimal policy that maximizes
the attacker’s cumulative rewards. We have Loss2(K, H) < H * Loss1(K, H).

Denote the total number of steps as 7' = K H. In the proposed poisoning attack problem, we call an
attack strategy successful if the attack loss of the strategy scales as o(7T'). Furthermore, we call an
attack strategy efficient and successful if both the attack cost and attack loss scale as o(T').

The attacker aims to minimize both the attack cost and the attack loss, or minimize one of them
subject to a constraint on the other. However, obtaining optimal solutions to these optimization
problems is challenging. As the first step towards understanding the attack problem, we show the
limitations of the action poisoning only or the reward poisoning only attacks and then propose a
simple mixed attack strategy that is efficient and successful.

Depending on the capability of the attacker, we consider three settings: the white-box, the gray-box
and the black-box settings. The table below summarizes the differences among these settings.

Table 1: Differences of the white/gray/black-box attackers

white-box attacker gray-box attacker black-box attacker
MG Has full information No information No information
il Can be calculated if R; given Required and given Not given
R Not required if 7' given Not required if 71 given ~Required and given
Lossl  Suitable by specify ' Suitable Not suitable
Loss2  Suitable if I2; given Suitable if R; given Suitable

3 White-box attack strategy and analysis

In this section, to obtain insights to the problem, we consider the white-box model, in which the
attacker has full information of the underlying MG (S, {A;}/,, H, P,{R;}*,). Even in the white-
box attack model, we show that there exist some environments where the attacker’s goal cannot be
achieved by reward poisoning only attacks or action poisoning only attacks in Section 3.1. Then, in
Section 3.2 and Section 3.3, we provide some sufficient conditions under which the action poisoning
attacks alone or the reward poisoning attacks alone can efficiently attack MARL algorithms. Under
such conditions, we then introduce an efficient action poisoning attack strategy and an efficient reward
poisoning attack strategy.

3.1 The limitations of the action poisoning attacks and the reward poisoning attacks

As discussed in Section 2, the attacker aims to force the agents to either follow the target policy 7' or
to maximize the cumulative rewards under attacker’s reward function R;. In the white-box poisoning
attack model, these two goals are equivalent as the optimal policy 77* on the attacker’s reward function
I can be calculated by the Bellman optimality equations. To maximize the cumulative rewards
under attacker’s reward function I; is equivalent to force the agents follow the policy 7t =%

Existing MARL algorithms [Liu et al., 2021, Jin et al., 2021] can learn an e-approximate {NE,
CE, CCE} with O(1/¢?) sample complexities. To force the MARL agents to follow the policy 7',
the attacker first needs to attack the agents such that the target policy 7' is the unique NE in the
observation of the agents. However, this alone is not enough to force the MARL agents to follow
the policy 7'. Any other distinct policy should not be an e-approximate CCE. The reason is that,
if there exists an e-approximate CCE 7 such that (77 (s)|s) = 0 for any state s, the agents, using
existing MARL algorithms, may learn and then follow 7, which will lead the attack loss to be
O(T) = O(K H). Hence, we need to ensure that any e-approximate CCE stays in the neighborhood
of the target policy. This requirement is equivalent to achieve the following objective: for all s € S,
and policy T,

"’"’,7‘[‘1'_1 St
Znel[i}vf](vu (s) — Vit (s)) =0;
if 7 is a product policy and 7 # 7', then max(f/i:riw‘i (s) — ‘72”1(3)) > 0; (1)

1€[m]

if 7(x'(s)]s') = 0 for all s', then max(V,';""(s) — V77 (s)) > e,

i€[m)]



where V is the expected reward based on the post-attack environments.

We now investigate whether there exist efficient and successful attack strategies that use action
poisoning alone or reward poisoning alone. We first show that the power of action poisoning attack
alone is limited.

Theorem 1 There exists a target policy n' and a MG (S,{A;}™,, H, P, {R;}™ ) such that no
action poisoning Markov attack strategy alone can efficiently and successfully attack MARL agents
by achieving the objective in (1).

We now focus on strategies that use only reward poisoning. If the post-attack mean reward R is
unbounded and the attacker can arbitrarily manipulate the rewards, there always exists an efficient and
successful poisoning attack strategy. For example, the attacker can change the rewards of non-target
actions to —H. However, such attacks can be easily detected, as the boundary of post-attack mean
reward is distinct from the boundary of pre-attack mean reward. The following theorem shows that if
the post-attack mean reward has the same boundary conditions as the pre-attack mean reward, the
power of reward poisoning only attack is limited.

Theorem 2 [f we limit the post-attack mean reward R to have the same boundary condition as that
of the pre-attack mean reward R, i.e. R € [0, 1), there exists a MG (S, {A;}"™, H, P, {R;}™ ) and
a target policy w1 such that no reward poisoning Markov attack strategy alone can efficiently and
successfully attack MARL agents by achieving the objective in ().

The proofs of Theorem 1 and Theorem 2 are provided in Appendix F. The main idea of the proofs is
as follows. In successful poisoning attacks, the attack loss scales as o(T") so that the agents will follow
the target policy 7' in at least T' — o(T") times. To efficiently attack the MARL agents, the attacker
should avoid to attack when the agents follow the target policy. Otherwise, the poisoning attack cost
will grow linearly with T". The proofs of Theorem 1 and Theorem 2 proceed by constructing an MG
and a target policy 7' where the expected rewards under 71 is always the worst for some agents if the
attacker avoids to attack when the agents follow the target policy.

3.2 White-box action poisoning attacks

Even though Section 3.1 shows that there exists MG and target policy such that the action poisoning
only attacks cannot be efficiently successful, here we show that it can be efficient and successful for a
class of target policies. The following condition characterizes such class of target policies.

Condition 1: For the underlying environment MG (S, {A;}7, H, P,{R;}",), the attacker’s

target policy w1 satisfies that for any state s and any step h, there exists an action a such that
i t )

Vi (s) > th(s, a), for any agent i.

Under Condition 1, we can find a worse policy 7~ by

i () =arg max min (V7 (5) = QTi(s,a)) 545 € 0], Vi (5) > Qh(s,0). @)
ac elm

Under this condition, we now introduce an effective white-box action attack strategies: d-portion

attack. Specifically, at the step h and state s, if all agents pick the target action, i.e., @ = w;rl(s), the

attacker does not attack, i.e. a = a = ’/T;rL(S). If some agents pick a non-target action, i.e., a # 7'(';2(5),

the d-portion attack sets a as

a —=

3

_ WIL(S), with probability dy, (s, a)/m
7, (s), with probability 1 — dj (s, a)/m,

where dj,(s,a) = m/2+ 1" L(a; = 7}, (s)) /2.

Theorem 3 If the attacker follows the d-portion attack strategy on the MG agents, the best response
of each agent i towards the target policy 7rT_i is ﬁj. The target policy 7' is an {NE, CE, CCE} from
any agent’s point of view. If every state s € S is reachable at every step h € [H| under the target
policy, 7t is the unique {NE, CE, CCE}.



The detailed proof can be found in Appendix G.1. Theorem 3 shows that the target policy 7' is the
unique {NE, CE, CCE} under the d-portion attack. Thus, if the agents follow an MARL algorithm that
is able to learn an e-approximate {NE, CE, CCE}, the agents will learn a policy approximate to the
target policy. We now discuss the high-level idea why the d-portion attack works. Under Condition 1,
7~ is worse than the target policy 7' at the step H from every agent’s point of view. Thus, under the d-
portion attack, the target action strictly dominates any other action at the step H, and 7' is the unique
{NE, CE, CCE} at the step H. From inductionon h = H, H — 1, - - - , 1, we can further prove that the
7l is the unique {NE, CE, CCE} at any step h. We define AI;(S) = Qf;(s, W,TL(S)) - Qz;(s, 7, (s))
and the minimum gap A,,;;, = Minye(g) ses,ic(m] = Aj;b(s) In addition, any other distinct policy
is not an e-approximate CCE with different gap € < A,,;,/2. We can derive upper bounds of the
attack loss and the attack cost when attacking some special MARL algorithms.

Theorem 4 If the best-in-hindsight regret Reg(K, H) of each agent’s algorithm is bounded by
a sub-linear bound R(T') for any MG in the absence of attack, and mincgs ;c[m] AI;(S) >

Zg:hﬂ MAX e S ie[m] AH/ (8) holds for any h € [H), then d-portion attack will force the agents
to follow the target policy with the attack loss and the attack cost bounded by

E[Loss1(K, H)] < 2m*R(T)/Amin, E[Cost(K, H)] < 2m3R(T)/Amin. )

3.3 White-box reward poisoning attacks

As stated in Theorem 2, the reward poisoning only attacks may fail, if we limit the post-attack mean
reward R to satisfy the same boundary conditions as those of the pre-attack mean reward R, i.e.
R € [0, 1]. However, similar to the case with action poisoning only attacks, the reward poisoning only

attacks can be efficiently successful for a class of target policies. The following condition specifies
such class of target policies.

Condition 2: For the underlying environment MG (S,{A; Y"1, H, P,{R;}",), there exists constant
n > 0 such that for any state s, any step h, and any agent i, (R; j,(s, w1 (s))—n)/(H—h) > A > 0
where Ap = [maxsxaxh Rin (8, a) — Mingxaxn Rin (8, a)].

We now introduce an effective white-box reward attack strategies: n-gap attack. Specifically, at the
step h and state s, if agents all pick the target action, i.e., @ = 71'}: (s), the attacker does not attack, i.e.
7;,n = T, for each agent 7. If agent ¢ picks a non-target action, i.e., @ # W:L(S), the n-gap attack sets
Tin = Rip(s,71(s)) — (n+ (H — h)AR)1(a; # wjh(s)) for each agent i. From Condition 2, we
have 7; 5, € [0, 1].

Theorem 5 [If the attacker follows the n-gap attack strategy on the MG agents, the best response
of each agent t towards any policy w_; is 7r2-L. The target policy 't is the {NE, CE, CCE} from any
agent’s point of view. If every state s € S is reachable at every step h € [H| under the target policy,
7t is the unique {NE, CE, CCE}.

The detailed proof can be found in Appendix H.1. Theorem 5 shows that the target policy 7' is the
unique {NE, CE, CCE} under the 7-gap attack. Thus, if the agents follow an MARL algorithm that is
able to learn an e-approximate {NE, CE, CCE}, the agents will learn a policy approximate to the
target policy. Here, we discuss the high-level idea why the 7-gap attack works. Ay, is the difference
between the upper bound and the lower bound of the mean rewards. Condition 2 implies that each
action is close to other actions from every agent’s point of view. Although we limit the post-attack
mean reward R in [0, 1], the target policy can still appear to be optimal by making small changing
to the rewards. Under Condition 2 and the 7-gap attacks, the target actions strictly dominates any
other non-target actions by at least 1 and any other distinct policy is not an e-approximate CCE with
different gap ¢ < 7. Thus, T becomes the unique {NE, CE, CCE}. In addition, we can derive
upper bounds of the attack loss and the attack cost when attacking MARL algorithms with sub-linear
best-in-hindsight regret.

Theorem 6 If the best-in-hindsight regret Reg(K, H) of each agent’s algorithm is bounded by a
sub-linear bound R(T') for any MG in the absence of attack, then n-gap attack will force the agents
to follow the target policy with the attack loss and the attack cost bounded by

E[Loss1(k, H)] < mR(T)/n, E[Cost(K, H)] < m?*R(T)/n. 5)



We note that proposed sufficient conditions (namely Condition 1 and Condition 2), under which the
action poisoning only attacks or the reward poisoning only attacks can be efficient and successful,
may be strict. They may not always hold in practice. This motivates us to investigate mixed attack
strategy to be discussed in the sequel.

4 Gray-box attack strategy and analysis

In the gray-box attack setting, the attacker has no prior information about the underlying environment
and the agents’ algorithm, and it only observes samples generated when the agents interact with
the environment. However, the attacker is given the target policy 1. Since the 7)-gap reward attack
strategy and d-portion action attack strategy described in Section 3 for the white-box setting rely on
the information of the underlying environment, these two attack strategies are not applicable in the
gray-box setting. In addition, without the information of the underlying environment, the attacker
cannot check whether the action poisoning attack alone or the reward poisoning attack alone can be
efficiently successful. Building on insights obtained from the white-box attack strategies, we develop
a mixed attack strategy for MG in the gray-box attack setting.

In the proposed mixed attack strategy, at the step h and state s, if agent 4 picks the target action,

ie., a;p = wj h(s), the attacker does not override the action and the reward, i.e. a;» = a; 5 and

73.n = 75,5 If agent ¢ picks a non-target action, i.e., a; j, 7# WJ h(s), the attacker overrides its action

Qi p = 772: »(s) and then overrides the reward 7 , = 0.

Theorem 7 If the attacker follows the mixed attack strategy the best response of each agent i towards
any product policy w_; is 71';-[. The optimal policy 7' is the unique {NE, CE, CCE}.

The detailed proof can be found in Appendix I.1. Here, we discuss the high-level idea why the
mixed attack works. Under the mixed attacks, the state transitions are the same over the different
actions and the reward of the non-target actions is worse than the target action. Thus, in the post-
attack environment, the target policy is better than any other policy from any agent’s point of view,
and any other distinct policy is not an e-approximate CCE with different gap € < Ry, Where
Rpnin = mingepp) minges mingep,) Ri (s, w;rl(s)) Thus, 7' is the unique {NE, CE, CCE}. In
addition, we can derive upper bounds of the attack loss and the attack cost when attacking some
special MARL algorithms.

Theorem 8 If the best-in-hindsight regret Reg(K, H) of each agent’s algorithm is bounded by a
sub-linear bound R(T) for any MG in the absence of attacks, then the mixed attacks will force the
agents to follow the target policy w1 with the attack loss and the attack cost bounded by

E[Loss1(K,H)] < mR(T)/Rumin, E[Cost(K, H)] < 2mR(T)/Rmin- (6)

5 Black-box attack strategy and analysis

In the black-box attack setting, the attacker has no prior information about the underlying environment
and the agents’ algorithm, and it only observes the samples generated when the agents interact with
the environment. The attacker aims to maximize the cumulative rewards under some specific reward
functions I2; chosen by the attacker. But unlike in the gray-box case, the corresponding target policy
71 is also unknown for the attacker. After each time step, the attacker will receive the attacker reward
4. Since the optimal (target) policy that maximizes the attacker’s reward is unknown, the attacker
needs to explore the environment to obtain the optimal policy. As the mixed attack strategy described
in Section 4 for the gray-box setting relies on the knowledge of the target policy, it is not applicable
in the black-box setting.

However, by collecting observations and evaluating the attacker’s reward function and transition
probabilities of the underlying environment, the attacker can perform an approximate mixed attack
strategy. In particular, we propose an approximate mixed attack strategy that has two phases: the
exploration phase and the attack phase. In the exploration phase, the attacker explores the environment
to identify an approximate optimal policy, while in the attack phase, the attacker performs the mixed
attack strategy and forces the agents to learn the approximate optimal policy. The total attack cost
(loss) will be the sum of attack cost (loss) of these two phases.

In the exploration phase, the approximate mixed attack strategy uses an optimal-policy identification
algorithm, which is summarized in Algorithm 1, listed in Appendix A. It will return an approximate



optimal policy 7. Note that 7% denotes the product policy deployed by the agents for each episode .
V is the upper bound of V™" and V is the lower bound of v, By minimizing V' — V, Algorithm 1
finds an approximate optimal policy 7rf. Here, we assume that the reward on the approximate optimal
policy 71 is positive, i.e. Rpin = ming, e[z Minses Mingepm) Rin (s, 77;2(3)) > 0. In the exploration
phase, the attacker will override both the agents’ actions and rewards.

After the exploration phase, the approximate mixed attack strategy performs the attack phase. The
attacker will override both the agents’ actions and rewards in this phase. At the step h and state s, if

agent ¢ picks the action 7riT h

(s), the attacker does not override actions and rewards, i.e. i h = Gih
and 7; p, = r; 5. If agent ¢ picks action a; j, # 7rZ.T$ h(s), the attacker overrides the action @; », = a; n
and then overrides the reward 7; ,, = 0. The attack strategy in the attack phase is same with the
mixed attack strategy. From Theorem 7, in the attack phase, the best response of each agent ¢ towards
product policy Wii is 7rZ-T and 7t is the unique NE. Here, we discuss the high-level idea why the
approximate mixed attack works. The attacker finds an approximate optimal policy 7! by Algorithm 1.
If 7 is close to 71 and the exploration phase is sub-linear time dependent, the performance of the
approximate mixed attack strategy will be close to the mixed attack strategy. We build a confidence
bound to show the value function difference between 7* and 7' in the following lemma.

Lemma 1 [f the attacker follows the Algorithm 1 in Appendix A on the agents, for any § € (0, 1),
with probability at least 1 — 56, the following bound holds:

Es,~ ) [Vi1 (51) — Vi (51)] < 2H2S+/2A1log(2SAHT/6) /7. ©)

We now investigate the impact of the approximate mixed attack strategy attack on V-learning [Jin
et al., 2021], a simple, efficient, decentralized algorithm for MARL. The reader’s convienience, we
list V-learning in Appendix J.2.

Theorem 9 Suppose ADV_BANDIT_UPDATE of V-learning follows Algorithm 3 in Appendix J.2
-1
and it chooses hyper-parameter wy = o (Hf:z(l - ai)) Y = HIB?%B and oy = % For

given K and any § € (0,1), let . = log(mHSAK/S). The attack loss and the attack cost of the
approximate mixed attack strategy during these K episodes are bounded by

40
E[Loss2(K,H)] < HT + ——mVH9ASK. + 2H>SK\/2A1/T,

mn (8)
E[Cost(K,H)| < 2mHT + 80 VHS5ASKu.

min

Let 7 be the executing output policy of V-learning, the attack loss of the executing output policy 7 is
upper bounded by

* . 7 2
Vi (o)~ V(o) < oS JELAL L 2TES | ohzs adufr. ©)

If we choose the stopping time of the exploration phase 7 = K2/3, the attack loss and the attack
cost of the approximate mixed attack strategy during these K episodes are bounded by O(K 2/ 3) and
Vi (s1) = Vi (s1) < O(K /%),

6 Numerical Results

In this section, we empirically compare the performance of the action poisoning only attack strategy
(d-portion attack), the reward poisoning only attack strategy (1-gap attack) and the mixed attack
strategy.

We consider a simple case of Markov game where m = 2, H = 2 and |S| = 3. This Markov game is
the example in Appendix F.2. The initial state is s; at A = 1 and the transition probabilities are:
P(s2]s1,a) = 0.9, P(s3]s1,a) = 0.1, if a = (Defect, Defect),

10
P(ss]s1,a) = 0.1, P(ss|s1,a) = 0.9, if a # (Defect, Defect). (10)



Table 2: Reward matrices

state s1 Cooperate  Defect state so Cooperate  Defect state s3 Cooperate  Defect
Cooperate (1, 1) (0.5, 0.5) Cooperate (1, 1) (0.5, 0.5) Cooperate (1, 1) (0.5, 0.5)
Defect (0.5,0.5)  (0.2,0.2) Defect 0.5,0.5) (0.1,0.1) Defect (0.5,0.5) (0.9,0.9)

The reward functions are expressed in the following Table 2.

We set the total number of episodes K = 107. We set two different target policies. For the first target
policy, no action/reward poisoning Markov attack strategy alone can efficiently and successfully
attack MARL agents. For the second target policy, the d-portion attack and the 7-gap attack can
efficiently and successfully attack MARL agents.

Case 1. The target policy is that the two agents both choose to defect at any state. As stated in
Section 3 and Appendix 3.1, the Condition 1 and Condition 2 do not hold for this Markov game
and target policy, and no action/reward poisoning Markov attack strategy alone can efficiently and
successfully attack MARL agents.

In Figure 1, we illustrate the mixed attack strategy, the d-portion attack strategy and the n-gap attack
strategy on V-learning agents for the proposed MG. The z-axis represents the episode k in the MG.
The y-axis represents the cumulative attack cost and attack loss that change over time steps. The
results show that, the attack cost and attack loss of the mixed attack strategy sublinearly scale as
T, but the attack cost and attack loss of the d-portion attack strategy and the 7-gap attack strategy
linearly scale as 7', which is consistent with our analysis.

810 1410 2000
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4000
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Figure 1: The attack loss (cost) on case 1. Figure 2: The attack loss (cost) on case 2.

Case 2. The target policy is that the two agents choose to cooperate at state s; and so but to defect
at state s3. As stated in Section 3 and Appendix 3.1, the Condition 1 and Condition 2 hold for this
Markov game and target policy. Thus, the d-portion attack strategy and the 7)-gap attack strategy can
efficiently and successfully attack MARL agents.

In Figure 2, we illustrate the mixed attack strategy, the d-portion attack strategy and the n-gap attack
strategy on V-learning agents for the proposed MG. The results show that, the attack cost and attack
loss of all three strategies sublinearly scale as 7', which is consistent with our analysis. Additional
numerical results that compare the performance of the mixed attack strategy and the approximate
mixed attack strategy are provided in Appendix B.

7 Conclusion

In this paper, we have introduced an adversarial attack model on MARL. We have discussed the
attack problem in three different settings: the white-box, the gray-box and the black-box settings.
We have shown that the power of action poisoning only attacks and reward poisoning only attacks is
limited. Even in the white-box setting, there exist some MGs, under which no action poisoning only
attack strategy or reward poisoning only attack strategy can be efficient and successful. We have then
characterized conditions when action poisoning only attacks or only reward poisoning only attacks
can efficiently work. We have further introduced the mixed attack strategy in the gray-box setting that
can efficiently attack any sub-linear-regret MARL agents. Finally, we have proposed the approximate
mixed attack strategy in the black-box setting and shown its effectiveness on V-learning. This paper
raises awareness of the trustworthiness of online multi-agent reinforcement learning. In the future,
we will investigate the defense strategy to mitigate the effects of this attack.
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A The exploration phase of the approximate mixed attack strategy

The exploration phase of the approximate mixed attack strategy uses an optimal-policy identification
algorithm, which is summarized in Algorithm 1. It will return an approximate optimal policy 7,
which is an approximate optimal policy.

Algorithm 1: Exploration phase for Markov games
Input: Stopping time 7. Set B(N) = (H+/'S + 1)y/log(2AHT7/5)/(2N).
1: Initialize Q, ,,(s,a) = Vi n(s,a) = H, QT7h(s, a) =V, ,(s,a) =0,
Vias1 =V g =0,A=00,No(s) = Nyp(s,a) = Ni(s,a,s’) = 0and R; »(s,a) =0
for any (s, s’, a,i,h).

2: forepisode k =1,...,7do

3: forsteph=H,...,1do

4: for each (s,a) € S x A with Nj,(s,a) >0 do

5: Update @, ,(s,a) = min{R; , + PV ni1(s,a) + B(Nu(s,a)), H} and
th(s, a)= maX{Rth + IP}LKT7h+1(S, a) — B(Ny(s,a)),0}.

6: end for

7: for each s € S with Nj,(s,a) > 0 do

8: Update 7, (s) = maxqe Qi 4(s, ).

9: Update Vi (s, a) = Q; (s, mn(s)) and V ;. (s, a) = QT’h(s,wh(s)).

10: end for

11:  end for

120 W E,_p, o (Via(s) = Vi (s) + Hy/ 2520 < A then
13; A=, p o Vii(s) = Vyii(s) + Hy/ 222D and ot = 7

14:  endif
15 forsteph=1,...,H do

16: Attacker overrides each agent’s action by changing a; j, to a; , Where ap, = mx(sp,).

17: The environment returns the reward r; 5, and the next state 5,1 according to action ay,.
The attacker receive its reward 74 5.

18: Attacker overrides each agent’s reward by changing r; ;, to 7 p, = 1.

19: Add 1 tOANh(Sh, &h) andANh(sh, &h, Sh+1). IPh(A'l‘S}H 6h) = Nh(Sh, &}“ -)/Nh(sh, 6h)

20: Update R; p(sh, an) = Ry n(sn,an) + (11t — Ry n(sh, @n)/Nn(sh, an).

21:  end for A

22: Update N()(Sl) = No(Sl) + 1 and IP()() = No()/k‘

23: end for

24: Return 7.

B Additional numerical results

In this section, we empirically compare the performance of the mixed attack strategy and the
approximate mixed attack strategy. We consider a multi-agent system with three recycling robots. In
this scenario, a mobile robot with a rechargeable battery and a solar battery collects empty soda cans
in a city. The number of agents is 3, i.e. m = 3. Each robot has two different energy levels, high
energy level and low energy level, resulting in 8 states in total, i.e. S = 8.

Each robot can choose a conservative action or an aggressive action, so A; = 2 and A = 8. At the
high energy level, the conservative action is to wait in some place to save energy and then the mean
reward is 0.4. At the high energy level, the aggressive action is to search for cans. All the robots
that choose to search will get a basic reward 0.2 and equally share an additionally mean reward 0.9.
For example, if all robots choose to search at a step, the mean reward of each robot is 0.5. At the
low energy level, the conservative action is to return to change the battery and find the cans on the
way. In this state and action, the robot only gets a low mean reward 0.2. At the low energy level, the
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conservative action is to wait in some place to save energy and then the mean reward is 0.3. We use
Gaussian distribution to randomize the reward signal.

We set the total number of steps H = 6. At the step h < 3, it is the daytime and the robot who
chooses to search will change to the low energy level with low probability 0.3. At the step h > 4,
it is the night and the robot who chooses to search will change to the low energy level with high
probability 0.7. The energy level transition probabilities are stated in Figure 3 and Figure 4. "H’
represents the high energy level. 'L’ represents the low energy level. C’ represents the conservative
action. "A’ represents the aggressive action.

P=0.7 ) P=0.3

P=0.9"~ ¢ A —"p=09 P0I™=<cC A —7P=0.9
Figure 3: Energy level transitions at h < 3. Figure 4: Energy level transitions at h > 4.

We consider two different attack goals: (1) maximize the first robot’s rewards; (2) minimize the the
second robot’s and the third robot’s rewards. For the gray box case, we provide the target policy
that maximizes the first robot’s rewards or minimizes the the second robot’s and the third robot’s
rewards. For the black box case, we set I?; ;, = Ry, to maximize the first robot’s rewards and set
Ri =1— Ry /2 — R3 /2 to minimize the second robot’s and the third robot’s rewards.
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Figure 5: The cumulative attack loss and cost of the mixed attack and the approximate mixed attack.

We set the total number of episodes K = 107. In Figure 5, we illustrate the mixed attack strategy and
approximate-mixed attack strategy on V-learning agents for the proposed MG. The z-axis represents
the episode £ in the MG. The y-axis represents the cumulative attack cost and attack loss that change
over time steps. The results show that, the attack cost and attack loss of the mixed attack strategy
and approximate-mixed attack strategy sublinearly scale as T', which is consistent with our analysis.
Furthermore, Figure 5 shows that the performance of the approximate-mixed attack strategy nearly
match that of the mixed attack strategy. This illustrates that the proposed approximate-mixed attack
strategy is very effective in the black-box scenario.

C Related works

Due to the page limit of the main paper, we do not provide a comprehensive comparison with prior
research on adversarial attacks. We add the following discussion to Appendix.

Among the existing works on attacks in single-agent RL, the most related paper is [Rangi et al., 2022],
which studies the limitations of reward only manipulation or action only manipulation in single-agent
RL and proposed an attack strategy combining reward and action manipulation.

There are multiple differences between our work and [Rangi et al., 2022]. First, the MARL is modeled
as a Markov game, but the single-agent RL is modeled as a MDP. In Markov game, each agent’s
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action will impact other agents’ rewards. Second, the learning object of single-agent RL and MARL
is different. The single-agent RL algorithms learn the optimal policy, but MARL algorithms learn
the equilibrium. Since the attacks on one agent will impact all other agents and the equilibrium is
considered as the agents’ learning object, we have to develop techniques to carefully analyze the
impact of attacks and the bound of the attack cost.

Here, we discuss the related work on the adversarial attacks on single MARL. [Ma et al., 2019]
studies reward poisoning attack against batch RL in which the attacker is able to gather and modify
the collected batch data. [Rakhsha et al., 2020] proposes a white-box environment poisoning model
in which the attacker could manipulate the original MDP to a poisoned MDP. [Behzadan and Munir,
2017, Zhang et al., 2020b, Rangi et al., 2022] study online white-box reward poisoning attacks in
which the attacker could manipulate the reward signal before the agent receives it. [Sun et al., 2021]
proposes a practical black-box poisoning algorithm called VA2C-P. Their empirical results show that
VA2C-P works for deep policy gradient RL agents without any prior knowledge of the environment.
[Rakhsha et al., 2021] develops a black-box reward poisoning attack strategy called U2, that can
provably attack any efficient RL algorithms. [Xu et al., 2021] investigates training-time attacks on
RL agents and the introduced attacker can manipulate the environment.

Here, we discuss the related work on the adversarial attacks on MARL. [Ma et al., 2022] considers a
game redesign problem where the designer knows the full information of the game and can redesign
the reward functions. The proposed redesign methods can incentivize players to take a specific target
action profile frequently with a small cumulative design cost. Ma’s work considered the norm-form
game but we considered the Markov game. The norm-form game is a simple case of the Markov
game with horizon H = 1. [Gleave et al., 2020, Guo et al., 2021] study the poisoning attack on multi
agent reinforcement learners, assuming that the attacker controls one of the learners. In our work,
the attacker is not one of the learners, but an external unit out of the original Markov game. The
attacker can poisoning the reward/action of all learners at the same time so that can fool the learners
to learn a specific policy. [Wu et al., 2022] studies the reward poisoning attack on offline multi-agent
reinforcement learners. The attacker can poisoning the reward of the agents. We considered the online
MARL. In offline MARL, the attacker can estimate the underline Markov game from the offline
datasets. In online MARL, the attacker may not have the knowledge (reward/transition functions)
of the Markov game. [Wang et al., 2021] studies the backdoor attack in two-player competitive RL
systems. The trigger is the action of another agent in the environment. They propose a unified method
to design fast-failing agents which will fast fail when trigger occurred. [Liu et al., 2022] studies the
controllable attack by constraining the state distribution shift caused by the adversarial policy and
offering a more controllable attack scheme. [Chen et al., 2023] considers a situation that fraction of
agents are adversarial and can report arbitrary fake information. They design two Byzantine-robust
distributed value iteration algorithms that can identify a near-optimal policy with near-optimal sample
complexity. [Mohammadi et al., 2023] studies targeted poisoning attacks in a two-agent setting where
an attacker implicitly poisons the effective environment of one of the agents by modifying the policy
of its peer.

D Discussion

Due to the page limit of the main paper, we put the discussions regard the attack detection, the
computational cost, the scalability of the attack strategies in Appendix.

Attack detection We did not consider the attack detection in our problem, but the attack detection
problem is also important. In this paper, we assumed that the agents do not know the existence of the
attacker. Under this assumption, if the agents have no prior information of the MG, the proposed
white and gray box attack is hard to be detected. As we consider the Markov attack strategy in this
paper, the post-attack environment under the Markov attack strategy is still a Markov game. Without
reference or prior information of the MG, the agents can not figure out whether the environment they
observe is a post-attack environment or an attack-free environment. The proposed black attack may
be detected, as the transition probabilities of the post-attack environment change over time. The goal
of our paper is to understand and identify the impacts of different adversarial attacks. We hope our
work can inspire follow-up work that can detect and mitigate such attacks so that RL models can be
used in safety-critical applications. It is an important future direction for us to pursue.
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Computational cost For the proposed black-box attack strategy (the approximation mixed attack),
the computational cost is O(S2AHT + mK H). The proposed algorithm will compute the Q-values
for each visited action-state pair at every steps and every episodes in the exploration phase. The
computation of Q)-value costs O(.S). Thus, the total computational cost in the exploration phase is
O(S?AHT). In the attack phase, the attacker only need to change the action and the reward for each
agent so that the computational cost in the attack phase is O(mK H).

Scalability The gray-box attack strategies can be directly used in large-scale environments, even in
some high-dimensional continuous environment. However, in the continuous space, the attacker does

. —al . .1
not change the non-target action to 0 but to r; 5, * eclain=ainll in order to avoiding sparse reward.

The ideas of the black-box attack strategies still work. However, the exploration phase should resort
to some function approximation methods to efficiently explore an approximate target policy. Then
the attack phase keeps the same as the gray-box attack.

E Notations

In this section, we introduce some notations that will be frequently used in appendixes.

The attack strategies in this paper are all Markov and only depend on the current state and
actions. The post-attack reward function has the same form as the original reward func-
tion which is Markov and bounded in [0,1]. Thus, the combination of the attacker and the
environment MG(S,{A;},,H,P,{R;}™,) can also be considered as a new environment

MG(S, {A; ¥, H, P,{R;} ), and the agents interact with the new environment. R; j, : Sx.A —
[0, 1] represents the post-attack reward function for the 7* agent in the step h. The post-attack transi-
tion probabilities satisfy P, (s'|s,a) = >, Ap(a’|s,a)Py(s']s,a’).

We use Ei, Kfi, Qvi and ‘71 to denote the mean rewards, counter, ()-values and value functions of the

new post-attack environment that each agent ¢ observes. We use NV k vk and % to denote the counter,
value functions, and policy maintained by the agents’ algorithm at the beginning of the episode k.

For notation simplicity, we define two operators P and ID as follows:
IPh[V](& a) = ]ES/NPh(.MQ) [V(S/)} ,

]Dfr[Q](s) = anrr(ﬂs) [Q(Sa a)} : (v

Furthermore, we let A denote the action manipulation. A = {Aj, },¢(q is a collection of action-
manipulation matrices, so that Ay (-|s, a) gives the probability distribution of the post-attack action
if actions a are taken at state s and step h. Using this notation, in the d-portion attack strategy, we

have Ah(wIL(s)|s, a) = dp(s,a)/m,and Ay (7, (s)|s,a) =1 —dp(s,a)/m.

F Proof of the insufficiency of action poisoning only attacks and reward
poisoning only attacks

F.1 Proof of Theorem 1

We consider a simple case of Markov game where m = 2, H = 1 and |S| = 1. The reward function
can be expressed in the matrix form in Table 3.

Table 3: Reward matrix

Cooperate  Defect
Cooperate (1, 1) 0.5,0.5)
Defect (0.5,0.5) (0.1,0.1)

The target policy is that the two agents both choose to defect. In this MG, the two agents’ rewards
are the same under any action. As the action attacks only change the agent’s action, the post-attack
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Table 4: Post-attack reward matrix

Cooperate  Defect

Cooperate (1, 1) (rg, m2)

Defect (r3, T3) (ra, T4)

rewards have the same property. The post-attack reward function can be expressed in the matrix form
in Table 4.

To achieve the objective in (1), we first have o < ry and r3 < 74, as the target policy should be an
NE. Since the other distinct policy should not be an e-approximate CCE, we consider the other three
pure-strategy policies and have

TN >To +€0ITy >To+ €
1 >71r3+€0rry >r3+e€. (12)
r3 >1T1+ €01y >11+€

Note that r3 > r; + € and r; > r3 + € are contradictory and ro > r1 + € and r; > ro + € are
contradictory. We must have 4 > r3 + € or r4 > r2 + €. As the action attacks will keep the same
boundary of the rewards, r3 > 0.1 and ro > 0.1. Then, 4 > 0.1 + €.

Suppose there exists an action poisoning attack strategy that can successfully attack MARL agents.
We have 3% SO s 1 (af,h = WT(sﬁh)> =T —o(T) = Q(T), i.e. the attack loss scales
on o(T'). To achieve the post-attack reward satisfy 4 > 0.1 + ¢, the attacker needs to change the
target action (Defect, Defect) to other actions with probability at least ¢, when the agents choose the
target action. Then, we have 3", S270 S B(1(aF, # a¥,,)) = Q(eT). The expected attack
cost is linearly dependent on 7. Hence, there does not exist an action poisoning attack strategy that is
both efficient and successful for this case.

F.2 Proof of Theorem 2

We consider a simple case of Markov game where m = 2, H = 2 and |S| = 3. The reward functions
are expressed in the following Table 5.

Table 5: Reward matrix

state s; Cooperate  Defect
Cooperate (1, 1) 0.5, 0.5)
Defect (0.5,0.5) (0.2,0.2)
state so Cooperate  Defect
Cooperate (1, 1) 0.5,0.5)
Defect (05,05) (0.1,0.1)
state sg Cooperate  Defect
Cooperate (1, 1) 0.5,0.5)

Defect (0.5,0.5) (09,09

The initial state is s; at h = 1 and the transition probabilities are:

P(s2]s1,a) = 0.9, P(s3]s1,a) = 0.1, if a = (Defect, Defect),

1
P(s2]s1,a) = 0.1, P(s3]s1,a) = 0.9, if a # (Defect, Defect). (13)

The target policy is that the two agents both choose to defect at any state. The post-attack reward
function of the three states can be expressed in the matrix form in Table 6.
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Table 6: Post-attack reward matrix

state s1 Cooperate  Defect
Cooperate (1, 72) (r3, m4)
Defect (r5, 76) (r7,78)
state so Cooperate  Defect
Cooperate (-, -) (-,-)
Defect (-,-) (r9, r10)
state sg Cooperate  Defect
Cooperate  (-,-) (-,-)
Defect (-,-) (r11, r12)

We limit that the post-attack mean reward R has the same boundary condition with that of the
pre-attack mean reward R, i.e. R € [0,1]. Then, 0 < ry,...,72 < 1.

Suppose there exists a reward poisoning attack strategy that can successfully attack MARL agents,
we have Zle Z,Ijzl >l (aﬁh =7t (sfh)) =T —0o(T) = QT), i.e. the attack loss scales on
o(T).

If [rg —0.1] > 0.1, |r10 — 0.1] > 0.1, |11 — 0.9] > 0.1, or |r12 — 0.9] > 0.1, we have the attack cost
S i S B(FF, —rF L)) = Q0.1%K) = Q(T). Thus, Jrg—0.1] < 0.1, |r1o—0.1] < 0.1,
|r11 —0.9] < 0.1and |r12 — 0.9] < 0.1.

For the target policy, we have YN/iTlT (s1) = 77 + 0.9 % rg + 0.1 % r1;. For the policy «' with
71 (s1) = (Cooperate, Defect), 75(s2) = (Defect, Defect), m5(s3) = (Defect, Defect), we have
Vfl/(sl) =7r3+0.1%x7r9+0.9%r;.

To achieve the objective in (1), the attacker should let the target policy to be an NE. Thus, we have
Vi (s1) > Vi (s1) and then 77 + 0.9 % 79 +0.1r13 > 13+ 0.1 %779 +0.9 %711, As rg —0.1] < 0.1
and |r;; — 09| < 0.1, we have r7 > r3 + 0.48. From the boundary condition, we have 3 > 0 and
then 77 > 0.48. The attack cost scales at least on £2(0.28 * T') for a successful reward attack strategy.

In summary, there does not exist an reward poisoning attack strategy that is both efficient and
successful for this case.

G Analysis of the d-portion Attack

G.1 Proof of Theorem 3

We assume that the minimum gap exists and is positive, i.e. A,,;, > 0. This positive gap provides an
opportunity for efficient action poisoning attacks.

We assume that the agent does not know the attacker’s manipulations and the presence of the
attacker. The attacker’s manipulations on actions are stationary. We can consider the combina-
tion of the attacker and the environment MG(S, {A;}7,, H, P,{R;}" ) as a new environment
MG(S,{A;}™,,H, P,{R;}"), and the agents interact with the new environment. We define Q;

and V; as the QQ-values and value functions of the new environment MG that each agent ¢ observes.
We first prove that 71 is an NE from every agent’s point of view.

Condition 1 implies that 7' is not the worst policy from every agent’s point of view, and there exists
a policy w~ that is worse than the target policy from every agent’s point of view. Denote Aj;(s) =

f;(s,w}t(s)) - ?L(S,ﬂ';(s)) We define the minimum gap A, = mingeim) ses,icim] =
Al%(s).
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We set PV, 11 (s,a) = Egip,(s.a) {V»frh_H (s')} . From d-portion attack strategy, we have

7

_ ~ d _ d .
) = Fonssa) + 0 T s + (12 20 By o o),
(14)
and
Rin(s,a) = dh(;’ @) Rin(s,mh(s)) + (1 - d’(;a)) Rin(s, 7 (s)). (15)

Since the attacker does not attack when the agents follow the target policy, we have N;f,: 1(8) =
VT;IH(S). Then,

(3

i) =22 0n o) + (1- 20D orisme). ao)
If a; # ﬂjh(s) we have
=~ ~at 1 — Amin
Th(s,ml(s) x ai) = QT(sa) = 5 (QI (5.7 (5) = Qs (1)) = S (17)

We have that policy 7riT is best-in-hindsight policy towards the target policy 7711- at step h in the

= 7!'T 7\'1- . = 7!‘T .
observation of each agent ¢, i.e. V. }1:1 “(s) = th 41 (s) for any agent 4, any state s and any policy
m_4.

Since the above argument works for any step h € [H], we have that the best response of each agent i
towards the target product policy WT_i is 772 and the target policy is an {NE, CE, CCE} under d-portion
attack.

Now we prove that the target policy 7rZ-T is the unique {NE, CE, CCE}, when every state s € S is
reachable at every step h € [H] under the target policy.

If there exists an CCE 7’ under d-portion attack, we have max; ¢, (ViTiﬂ’i (s) — 171”1’ (s)) = 0 for
any initial state s.

At the step H, @ZH(s,a) = Ripu(s,a). Since R;p(s,m,(s)) > Riu(s,75(5) + Amin

with A,in, > 0, the policy wj p 1s the unique best response towards any policy 7_; g, i.e.

. . ol s P
Vi (s) = Vi (s) and VT () > VTR0 (s) for any g (s) # g ().

Thus, we have 74, (sg) = WL(S p) for any state sg that is reachable at the time step H under policy
7'. We assume that every state s € S is reachable at every step h € [H] under the target policy.

Under d-portion attacks, the post-attack action a;, = W;(S) with probability more than 0.5. Thus,
every state s € S is reachable at every step h € [H| under any policy 7 and d-portion attacks.

Recall that for any a; # 7rjy n(8)s
QF(s.ml 1 (5) x a_i) — QT (s,@) = Apin/2m. (18)

Suppose {7}, }_, .\ = {m],}_, ., for any states. If i (c[s) # W}L’h(-|8) at a reachable state s,
we have
Vi (8) =Eannt (1) [QF (s, a)]

~ 1
:Ea~7r;L(-\s) [Qi,h(saa)]

o (19)
SIEa,iwgi’h(-p)[ i,h(SﬂTi,h(S) X a_;)] = cApin/2m

~natxn’,
=Vin “'(s) = cApin/m
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with some constant ¢ > 0. Then, 7’ is not an CCE in such a case.

From inductionon h = H, H — 1,--- ,1, #’ =« for any states. If every state s € S is reachable at
every step h € [H| under the target policy, 7' is the unique {NE, CE, CCE}.

G.2 Proof of Theorem 4

Consider an arbitrary Markov policy 7. From d-portion attack strategy, we have

~ dn(s,a
Ta(s.a) :%Ri,h(s,ﬂl(s)) -

DD, (s ) +

PV, 41 (5,75 (5))
:W (Rin(s.7](5) = Rinls.m; (5))) .
N % (PaTu12 5.7} () — Pl (o, ()
+ Rip(5, L (5)) + PV, o (5,7 (5))

m=di($,a) p (s 7 (s)

m — dp(s,a)

m

+

and

:W (Ri7h(5, WL(S)) - Ri,h(svﬂ';(s)))

Dr, d](5) b
mld](s) —m ~
+ = (P (5,7 (5)) = Pa Vi (53 (5)) )
+ Rip(s,ml(5)) + PrVT (5,74 ()
Now we bound the difference between ‘N/fh (s) and ‘71“,1 (s) for any policy .
Vi,h (s) — 1h(5) =Vih (5) = Da,| i,h}(s) + D, [th](s) - Vi,h(s) . 22)
(a) (b)
For term (a), from equations (20) and (21), we have
i
7 (5) = Dr, [Q741(5)
m — Dq, [d]( ) -
_T’ (Rin(s,mh(5)) = Rin(s, w7 (5))) (23)
m — D, [d](s)

+ (IPh thrl(S W}t( ) — PLV; h+1(5 m, (s )))

m

Since the attacker does not attack when the agents follow the target policy, we have ‘72”,1 1(8) =
7\'1- 7
i,h+1 (s)-

T T

Vi (5) ~ D @5 (5) =Pl (7 (s 7l (o) - Qh(s.mr () . @

Denote A}, (s) = QF,(5,}(5)) — QT (5, (5)). We have
. - Aj—(s) ™
V:r}l (S) - Dﬂ'h[ ZF;L]( ) = 2’};1 a~7rh( |s) [Z ]]- a; 75 7T )‘| . (25)
=1
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For term (b), from equations (20) and (21), we have

D, [Q7](5) — Vi ()
:MP zh+1(s mh(s) + %’L[d}()ﬂ)hv 1 (87 (5))

— %Ph ih1(8, i (s)) — %’M()th "1 (5,7, (5)) 26)
:wph[v‘l L ‘Z.frh_,_l](s, W;TL(S))

+ 2Pl g, i Tl ()

~7I'T ~7'r
=By, (15,),a~An(|s,a),anmn(1s) [ Vina1(5) = Ving1(s)]-
By combining terms (a) and (b), we have

~7TT ~7T
Vi,h(sh) - Vi,h(sh)

Al% (sn)
:’QTanhush) [l(az‘ # Wj,h(sh))
~ ot ~ (27)
+ E8h+1~Ph( |sh,a),a~Ap(:|sh,a),a~my(-|sn) [V; h+1(5h+1) - Vi,h—i—l(sh-i-l)]
AI e (5n7)
B [ 33 o ol ) 5|
h'/=h i=1
From the definition of the best-in-hindsight regret and (27), we have
it ko ok
Reg; (K, H) =max » [V, ~'(s7) — Vi (s7)]
i k=1
28
K ~7TT><7r71 k Tk ( )
ZZ[Vzl (s1) 1 (s1)]
k=1

7rT T4 17 . . .
Now, we bound 21 Vi T (sy) — i1 (s1)] for any policy 7. We introduce some special strategy
modifications {¢i’h}h:1. For any b’ > h, we have qbz’h omin(s) = ﬂj}h,(s) and for any h/ < h, we
have ¢I,h & ﬂ—i,h/(s) = T4,h’ (8) Thus,

i=1
H ot omixns ~ ol emixm_; 29
=Y D W s) = VT (1)

m N
~ @l omixm_; ~¢! M X T4
(% Lo () e (so)

=1

[ ~¢pf T3 X T4 ~of T X4

S VY (V;TEHO U (sp) — Ve '<sH>)]
. (30)

~7TT ™

=Exap Y (Vi,ff (su) =V, H(SH))]
Li=1
(& Az H(‘SH)

=E,ap ; Wasg # 7 y(su)) ’2m




For h < H, we have

- ~ ¢! jomixm_; ~¢f h O X T
Z Vir (s1)=Viy (s1)

=1
~ ol omixm_; ~¢f iXT
<‘/f;b’h<>7r X T (Sh) _ ‘/iib;LJHAOTr X7 (Sh)>]

.MS'

:IETA',A,P

=1

&MS‘

~o! B 1O X T @1
:EW;/AJD (]D¢j$h<>m,h XT_in lDzzS;r,thlom,thr,i_’h) |:Qz,h :| (Sh)

1—min (Sh, WJ,;L(Sh)>

2m

i=1

O X T

(]Dﬂf 7]Dﬂ7) |:R h +IPhV h‘_:jirl i L:| (Sh)

:IETA',A,P

o

Il
-

K2

where the second equation holds as gb;r RO X T_j = gb;r hy1 O i X T atany time step h’ > h and
the last equation holds from equation (20).

Note that Q1 n=1Tin+PLVT h+1 =R+ IPhV h+1 From equation (31), we have

m

~¢j O XT—j ~¢j O X
S (o ) - T )

i=1

m 1 -y (sh,wj’h(sh))

:]E‘n',A7P Z

(Dot = D) [Q74] (1)

. 2m
=1
)
m 1 Ti,h (3h77"§,h(5h)> ~¢T a1 O X T4
+E;apP o (D, —D,-) [PhVi’ﬁﬂ - lPhV h+1 (sn)
i=1
®
(32)
Denote AZ;(S) = f;(s, WZL(S)) - Qf;(& 7, (s)). Thus,
m 1 —mp (sh,ﬂjh(sh)>
® =E, : AT~ . 33
ar |y - Gon) ()
Now, we bound item @. If (D .+ — D-) {IP,?V };Jrh;rlowi XT_s IPhV h+1} (sn) > 0,
D hprOmiX T
(Du ~ Do) P47 P | o)
21Dﬂ- [d](sh) 2 <>7r7;><7r_~ ~ -t
) N AU Taallon) -
2(m — Dy, [d)(51)) promons oot
+ mh D,-Pp [Vv hif = Vihsal(sn)
~¢I T XTT—4 T
=2Exa,p |:Vi,hﬁirlo T (sh) — ‘/i,i:+1(5h+1):| ;

because the RHS of the inequality is smaller or equal to 0.
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O XT—;

If (]:DﬂqL — ID ) |:IPhV ’:ifl IPh,V h+1:| (Sh) S 0’

O X T

(D — D, >[1th,;£# | IPthH] (5n)

21]37!‘ d Ty XT—4
> ) @, >[]PW i

2D, [d L omXT—i 3
e N e M [ >

1‘7

P,V h+1:| (sn)

2(m — Dy, [d)(s

O X —

)) i i ot
D,-P [‘/z hJ}Hl - Vi,h+1]<5h)

_|_

QT X4

~él, - ~ ot
OB p [Vi,hﬁl (sns1) — m—?m(shm] .

From (27), we have

~ ~f O X T
Vi1 (snan) = Vo™ (sna)

ATh (Sh )
E[ S 3 taw # oy 222 )

h'=h+1 i=1

< Al (5) o

< Z (m—1) max

h—h s€S,ic[m]  2m

(m—1)  +_
STA;};(SFL)’

where the last inequality holds when min,cs ;cjm) An(s) > Zgzhﬂ MaXes, ic[m] A;r;, (s).
Combine the above inequalities, we have

m ] — Ti,h (sh,ﬂlh(sh)) (m _ 1)

@>-E, Al 37
> AP ; o - in(sn)| s (37)
and
~¢l T3 X T4 ; T XTT—4
> (V T (1) = Vi <sl>>
=1
=0+ @
[(m 11— Tih (Sh, jh(sh))
ZETF,A,P Aii(sh)
; 2m? b (38)
p Al (sn)
=E;a.pP ; Lagn #7 (Sh))éT
(& Amin
>IE7T)/A’p Z]l(aih £ (Sh)) oz
Li=1 m
In summary,

= E[Loss1 (K, H)]

H m
Reg,(K,H) > Erap | > Lain # 7l ,(sn)) (39)
h=1

m2 2m2

If the best-in-hindsight regret Reg( K, H) of each agent’s algorithm is bounded by a sub-linear bound
R(T), then the attack loss is bounded by E[Loss1(K, H)] < 2m*R(T)/Amin.
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The d-portion attack strategy attacks all agents when any agent ¢ chooses an non-target action. We
have

K H m
Cost(K, H) :Z Z Z (l(aﬁh # af,h) + W’ih - Tf,hD
k=1h=1i=1
K H m (40)
S ZZ Z ]]-[ z h 7é a’ ]

E
I
-
>
Il
-

i=1

Then, the attack cost is bounded by mE[Loss1(K, H)] < 2m3R(T)/Amin-

H Analysis of the 7-gap attack

H.1 Proof of Theorem 5

We assume that the agent does not know the attacker’s manipulations and the presence of the
attacker. The attacker’s manipulations on rewards are stationary. We can consider the combina-
tion of the attacker and the environment MG(S,{A;}",,H, P,{R;}™,) as a new environment

MG(S {A; Y™, H,P,{R;}™,), and the agents interact with the new environment. We define Q;
and V; as the @-values and Value functions of the new environment MG that each agent ¢ observes.
We introduce some special strategy modifications {¢! , }/__,. For any &’ > h, we have ¢!, o
i (8) = 7T;r ,(s) and for any A’ < h, we have (JSI b © Tihe (8) = 7 (). Thus,

"'qﬁjhOﬂ'iXﬂ' i jh+1<>71'5><71’ i

H
T (s1) = Vi (s1) = DIV T(s) = VT T ). (41)

h=1

ot
K
Vi

We have that for any policy m,

1 ) .
@l L OomiXT_;

[Vn

[ "’(151 , O XTT—; "’(;51 QT Xy
B (VT ) = T )

’“¢>I 1 O X T
(s1) = Vom0 )

[ ~¢I,h+10ﬂ.i Xm_j (42)
=Eza.p (D@hom,hm,i,h _D@Hlom,hm,i,h) Qi,h (sn)

zh+1<>77 XT_;

=E;ar (ID Foxmin T IDM) [Rz h+PLY, 1 } (Sh)} .

Since EM(S, a)=R;p(s,71(s)) — (n+ (H — h)Ag)1(a; # wjh(s)) from 7)-gap attack strategy
and (H — h) ming xq xp Rip (8, a") < IPhV h+1(5 a') < (H —h) maxy xq'xh Ripe (8, a") for
any s and a, we have

~ At ) )
(;Sl.,h<>7r1 P&

~¢I )1 O X T
v, (51) = Vi )]

=Era.p [Z mr(alsp)(n+ (H — h)Ag)1(a; # Wj,h(sh))]

+ E,TJAJJ lz wh(a|sh)]l(ai 7é 71'37 ( )) <]PhV }z'ﬁflo‘n’iXﬂii(shaﬂ-lh(sh) X G ) IPhV }:.t,}_zirlomXﬂ'i(sh»a)>‘|
>Era,p lz mh(alsn)nl(a; # wZ,h(s))]
=E;ap []l(afi,h # Wj,h(s))} uE
(43)
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Thus,

T><7'r> ~
VT (s1) = V(s >E7r/APlZ (ain # 7 (sn)) [ n > 0. (44)

The target policy is an NE, and then also is an CE or CCE.

Now we prove that the target policy 7rZ-T is the unique {NE, CE, CCE}, when every state s € S is
reachable at every step h € [H| under the target policy.
If there exists an CCE n’ under 7-gap attack, we have max;cn, ](Vji “i(s) — 17[‘1/ (s)) =

0 for any initial state s. If m;,(:[s) # 7r3 »(:|s) at a reachable state s, we have that

E. ap [Zle 1(aip # w;h(sh))]. Thus,

7\'1- 7T =~/
Vz,fx “(s1) = V(1) > Epap lz anﬁéﬂ (sn))| n>0, (45)
h=1

and 7’ is not an CCE. In summary, the target policy 7T2-L is the unique {NE, CE, CCE}.
H.2 Proof of Theorem 6
From the definition of the best-in-hindsight regret and (51), we have

Trl

Reg; (K, H) maxz 1X7T 51 Vzﬂ( )]

(46)
K ~7'rt><7'rk,- k Stk 0k
ZZ[VML “(sy) = VT ()]
k=1
From (44), we have
K H
Reg,(K,H) > Erepp | Y 1 @k, # 7, (s)l | n (47)
k=1 h=1
and .
> Reg;(K, H) = njE[Loss1(K, H)]. (48)

i=1
If the best-in-hindsight regret Reg( K, H) of each agent’s algorithm is bounded by a sub-linear bound
R(T), then the attack loss is bounded by E[Loss1(K, H)] < mR(T)/n.

The 7-gap attack strategy attacks all agents when any agent ¢ chooses an non-target action. Note that
the rewards are bounded in [0, 1]. We have

K H

>

h=11

hE

Cost(K,H) = (Maﬁh # af,h) + |7~'£€,h - rzk,hD

! (49)

1> T
M=
NE

<

Laf, # 7, (sk)]m

=~
Il

1h=1i=1
mIE[Loss1(K, H)] < m?>R(T)/n.

Il
_

Hence, the attack cost is bounded b

<

I Analysis of the gray-box attacks

L1 Proof of Theorem 7
We assume that the agent does not know the attacker’s manipulations and the presence of the

attacker. The attacker’s manipulations on actions are stationary. We can consider the combina-
tion of the attacker and the environment MG(S, {A;}™,, H, P,{R;} ) as a new environment
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(S {A;}™,, H, P, {E }m™ ), and the agents interact with the new environment. We define Qi
and V as the ()-values and value functions of the new environment MG that each agent ¢ observes.

We first prove that the best response of each agent ¢ towards any policy 7_; is 71'1‘T .
From the mixed attack strategy, we have
Q7 (s, a) =Lla; = 7}, ()| Rin(s, 7 (5)) + PV 41 (5,74 (5)). (50)

Consider an arbitrary policy 7 and an arbitrary initial state s;. We have

=V (1) = DAlGE ™ (51) + D@7 (1) —

'] (s1)
a1~ (ls1) {1 ai1 #7%1 s1)]Ri1(s1, 7] (51) } o

7rl
1’ ~
5 “(s1, 7] (s1)) = P1ViS(s1, 7l (s1))

a1~ 1(-|s1) l[azl 7é7T )] i,1 31771 51)) [xmes - 7;771-2](51,771(81))

H
=...= lz (1 — Tih ( (Sh)|5h>> Rz‘,h(shaﬂ'};(sh))] > 0.

B 51)
Since Ry (sn, 7} (sn)) > 0, 17;13 “"(s1) — Vi (s1) = 0 holds if and only if 7 = m; holds for the

states that are reachable under policy 7. We conclude that the best response of each agent i towards

any policy 7_; is 7r;-r under the mixed attack strategy. The target policy 7! is an NE, CE, CCE under
the mixed attack strategy.

Now we prove that the target policy wj is the unique {NE, CE, CCE} under the mixed attack strategy,
when every state s € S is reachable at every step h € [H| under the target policy.

If there exists an CCE 7 under the mixed attack strategy, we have max;e ] (VT i (s)— ‘7/&/ (s))=0
for any initial state s.

~alxn’, ~
From (51), we have that if 7r; W (cs) # 7r.T »(|s) at areachable state s, V | i (sy) — Vi (s1) > 0.
Then ‘7:1 "(51) > VZ 1‘ ’1(51) > Vfl (s1). 7’ is not an CCE in this case.

We can conclude that 7/ = 7' for the states that are reachable under policy 7. If every state s € S is
reachable at every step h € [H| under the target policy, 7' is the unique {NE, CE, CCE}.

1.2 Proof of Theorem 8

We set Ryin = minge|g) Minges minge () Ri,h(S,WL(S))- From the definition of the best-in-
hindsight regret and (51), we have
K ~axnk. k Sak ok
Reg, (K, H) =max » [V, 7'(s7) = Vi (s7)]
‘ok=1

K H
=Y Eoar | (1-7h (w;h<sz>|s’z))Ri,h<sﬁmz<sz>>] (52)

B
Il
—_
=
Il
—_

K H
S B [z 1, £ wJ,h<s’;>mi7h<sﬁ,w;@ﬁ»]

K H
ZRminZEkA [Zl zh?éﬂ—zhsllj,)]‘|

h=1
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and
m
> Reg,(K, H) > RyinE[Loss1 (K, H)]. (53)
i=1

If the best-in-hindsight regret Reg(K, H) of each agent’s algorithm is bounded by a sub-linear

bound R(7T') under the mixed attack strategy, then the attack loss is bounded by E[Loss1(K, H)] <
R(T)/Rmin-

The mixed attack strategy only attacks agent 7 when agent ¢ chooses a non-target action. We have

K H m
COStKH ZZZ zh#az}L)+|Tzh_TZh|)
I:{h;li;l (54)
<SS a0 )
k=1h=11=1

Then, the attack cost is bounded by 2IE[Loss1 (K, H)] < 2mR(T)/Rumin.-

J Analysis of the black-box attacks
J.1  Proof of Lemma 1

—k . .
We denote by Q4 5. QT Iy VT h VT e NE, lPh, 7r and R 1, the observations of the approximate

mixed attacker at the beginning of episode k£ and time step h. As before, we begin with proving
that the estimations are indeed upper and lower bounds of the corresponding ()-values and state
value functions. We use 7* to denote the optimal policy that maximizes the attacker’s rewards, i.e.

Vfl (8) = max; V{7, (s).
Lemma 2 With probability 1 — p, for any (s,a,h) and k < 1,
—k o ok
QT,}L(S’ CL) 2 QT,h(Sa a)a Qih(s’ CL) < QT,h(Sv CL), (55)

—k * ok
Vin(s) = Vi (s), Vi (s) < Vi, (s). (56)

Proof. For each fixed k, we prove this by induction from h = H 4+ 1to h = 1. For the step H + 1,

we have V? H+1l = K]TC, He1l = QZ;H 11 = 0. Now, we assume inequality (56) holds for the step
h + 1. By the definition of )-values and Algorithm 1, we have

—k ot
QT,h(Sa a) - QT,h(Sv a)
—RE,(s,a) — RE,(s,a) + PEVS 11 (s,0) — PRV (s, @) + B(NE(s, a)) (57)
7 Vel * Dk 4 s c
=PE(Vine — Vi) (s,a) + (RY, — R ,)(s,a) + (lPh —Py)ViT (s, @) + B(Nf (s, a)).

Recall that B(N) = (HV/S + 1)/log(2AH7/p)/(2N). By Azuma-Hoeffding inequality, we have
that with probability 1 — 2p/SAH

- log(2SAHT/p)
k k
Vk S T, , (87 a) — Rth(s, a)‘ S W (58)
and
1 QSAH
Vk < T,‘(IP — PV (s, a) g \/ Og( T/p). (59)
Putting everythlng together, we have QT n(s,a) — QF o (s,a) (VT,,LJrl - V{“h)(s, a) > 0.

Similarly, Q h(s, a) < ch(s, a).
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Now we assume inequality (55) holds for the step h. As discussed above, if inequality (56) holds for
the step i + 1, inequality (55) holds for the step h. By Algorithm 1, we have

Vin(s) = Qs 7 () = QY als, m(5)) = QT (5. 7(5)) = Vi (s): (60)
Similarly, V¥, (s) < V{7, (5). O

Now, we are ready to prove Lemma 1. By Azuma-Hoeffding inequality, we have that with probability
1—2p,

(Bunro) ~ Eu o) [V (o) = Vit ()] | <y 282720 o
and Vk < T,
k

> (Baeroy = 101 = 55) [V (s1) = Vi ()] | < w, )

k'=1

Thus, for any k£ < 7,
* k
B, wpo() [Vfﬂ (s1) = Vi (51)}
* k
<E,,pxy [V (51) = Vit (51)] + H/STog(27/p)/(2F) (63)
—k )
<E,, p50) |Via(s1) =V a(s1)] + H/Slog(2r/p)/(28).
According to (61) and (62), we have

T

S (Bomssy [Vhalon) = VEa(s0)] + Hv/STog(2r/p)/(28))
k=1 (64)

T

<> (Vhalsh) = v (st >+Z3H\/Slog (2r/p)/(2F).

k=1 k=1

—k —k
We define AV/[(s) = Vin(s) = K’]fyh(s), AQﬁ(is,a) = Qi p(s,a) - Q’;h(s,a). By the update
equations in Algorithm 1, we have AQ% (s, a) < PFAVE | (s,a) + 2B(Nf(s,a)) and AV)F(s) =
AQF (s, 7 (s)). We define ¢F = AVF(sF) = AQF (sF, af). From (59) and (66), we have

ur, <P} AVh+1(shaah) +2B(Ny (53, ap,))

<PEAVF  (sp.af) + 3B(Nf(sy, af)) (65)

<PRAVi (sh, af) = Yy + Uiy + 3B(N; (7, af).
By Azuma-Hoeffding inequality, we have that with probability 1 — p/H, Vk < T,

k

’ / ’
Z |IPZ Avhk+1(8h 7ah ) — 1/)15+1|
k=1

S’log(2HT/p).

<H
- 2k

(66)

Since ¥, ; = 0 for all k, we have

21/11 <ZZ \]PkAVhH (s, aR) — 7/1h+1| +ZZ3B Ny (sh,ap))

k=1h=1 k=1h=1

H H Ny (s,a)
SZ /Slog 2HT/p Z z Z (HVS +1) 1og(QS/TllHT/p) (67)

h=1 (Sa) n=1

Slog(2H
0sCH/p) |,

<H?
2T

H(HVS + 1)\/25A710g(2SAHT /p)
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and therefore
> (Boppyr [VEnlo) = VEa(s)] + H/STog(2r/p)/(2H) )
k=1 (68)

log(2H
<H? Sog(277'/p 3H\/W+H HVS +1 \/QSATIOg(QSAHT/p).

Since

zm: (VT 1(s1) V;jf(sl))

71 = min < 1P (.
T
=1
Es ~po() {VT 1 (s1) =V (s )}

<E,, pic Vi (51) = Vil (s1)| + H\/STog(27/p) [ (2F)

+ H\/S 10g(27'/p)/(2k)> . (69)

(70)
log(2H
<H? w +3H\/2STog(27/p) /7 + H(HV'S + 1)/2SAlog(2SAHTp) /7
<2H?S\/2Alog(2SAHT [p)/T,
where the last inequality holds when S, H, A > 2. Similarly,
K
3 [VT T (sF) - v (31)] < 2H2S\/2Alog(2S A7 /p) /7. (71)

k=1
J.2 Proof of Theorem 9

For completeness, we describe the main steps of V-learning algorithm [Jin et al., 2021] in Algorithm 2
and the adversarial bandit algorithm in Algorithm 3.

Algorithm 2: V-learning [Jin et al., 2021]

1: Forany (s,a,h), Vi,(s) <~ H+1— h, Np(s) < 0, mp(als) < 1/A.

2: for episodes k =1,..., K do

3:  receive s1

4 for episodes h = 1,..., H do

5: take action aj, ~ 7 (-|sp), observe reward 7, and next state sp1.
6: t = Np(sp) < Np(sp) + 1.
7.
8
9

V}L(Sh) — (1 — ozt)Vh(sh) iat(rh + Vh+1(8h+1) + /Bt)
Vi(sp) < min{H + 1 — h, Vi(sp)}
7 (-|sn) - ADV_BANDIT_UPDATE(qy,, Z=2=Ver1(sne1)y op (g, h)" adversarial

: H
bandit.

10:  end for

11: end for

Algorithm 3: FTRL for Weighted External Regret [Jin et al., 2021]
1: Forany b € B, 61(b) + 1/B.
for episodet =1,..., K do
Take action by ~ 6,(-), and observe loss I (b; ).
I;(b) < Ly(by)1[by = b]/(8:(b) + ) for all b € B.

Or1(b) o exp[—(ve/we) S wili(b)]
end for

AN AN

We use the same learning rate «; in [Jin et al., 2021]. We also use an auxiliary sequence {ai}!_;
defined in [Jin et al., 2021] based on the learning rate, which will be frequently used in the proof:

t t

H41 Z.
YT H i o) = jl;[l(l —aj), ap = Oéz'jzlll(l —aj). (72)
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We follow the requirement for the adversarial bandit algorithm used in V-learning, which is to have a
high probability weighted external regret guarantee as follows.

Assumption 1 Foranyt € N and any ¢ € (0,1), with probability at least 1 — 6, we have
maXZat (0;,1;) — (0,1,)] < &(B,t,log(1/9)). (73)

In addition, there exists an upper bound Z(B,t,log(1/8)) > S1,_, £(B,t,log(1/8)) where (i)
&(B,t,log(1/6)) is non-decreasing in B for any t, ¢; (ii) Z(B, t,log(1/9)) is concave in t for any

In particular, it was proved in [Jin et al., 2021] that the Follow-the-Regularized-Leader (FTRL) algo-

rithm (Algorithm 3) satisfies Assumption 1 with bounds &(B, t,log(1/d)) < O(y/HBlog(B/d)/t)
and Z(B,t,log(1/0)) < O(y/HBtlog(B/j)). By choosing hyper-parameter w; =

at (H;Qa—ai))_l and v = /2B ¢(B tlog(1/6)) = 10\/HBlog(B/d)/t and
=(B,t,1log(1/d)) = 20/ H Btlog(B/J).

We use V¥, N* 7% to denote the value, counter and policy maintained by V-learning algorithm at
the beginning of the episode k. Suppose s was previously visited at episodes k!, -- - , k* < k at the

step h. Set ¢’ such that k% < 7 and k¥’ 1 > 7.

In the exploration phase of the proposed approximate mixed attack strategy, the rewards are equal to
1 for any state s, any action a, any agent 7 and any step h. The loss updated to the adversarial bandit
update step in Algorithm 2 is equal to hT

In the attack phase, the expected loss updated to the adversarial bandit update step in Algorithm 2 is
equal to

Zat

Thus, in both of the exploration phase and the attack phase, 7' is the best policy for the adversarial
bandit algorithm.

H—IP}LV;kj t ) —771'
Ly Z oD, <H’”1> (5)+ > angﬂEj( H’h)(s). (74)

j=t'+1 j=t'+1

By Assumption 1 and the adversarial bandit update step in Algorithm 2, with probability at least
1-4, forany (s h)e S x[H ]andanyk: > 7, we have

j ~
S 50) >Za7+ Z D, (L EViha) ) 4 Zt: oD | —2) (s)
t t~m H p 77;? H

j=t'+1 j=t’'+1
t’ t t ~
h—1 . H— IPhV h —F
J 7 +1 7 i,h
- . at H + Z atDWT ( H ($)+ Z OltID‘n"r < H )(S)
j=1 j=t'+1 Jj=t'+1
t 1
i i (s, m,(s))
= > o (1wl (o)ls)) BRI
J=t'+1
(75)

where ¢ = log(mHSAK/J).

Note that R, = miny e[z minges mlnze[m] R; n(s, 7Th( )). We have

H
——E(A 1) > =S of (1= mbh(mlu(5)ls)) - (76)
min j=t'+1
Let n¥ = N’ (s¥) and suppose s* was previously visited at episodes k!, - -- , k™ < k at the step h.

Let k7 (s) denote the episode that s was visited in j-th time.

k
ny

H J .
——SAnf) = Y ol (T=ah ] 6hish)). )
main j:N}: (SZ)Jrl v
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According to the property of the learning rate a;, we have

nk—1 nk
H h ' h ;
——fAnf )+ Y @< Y (1-alalehish). a8
man“tt j:N;;(Sﬁ)+1 mn j:N;(Sﬁ)+1
Then,

W8 Jranges Y (1=l shish) 19

mzn j= N}’;(sﬁ)Jrl

Computing the summation of the above inequality over h and s, we have

H K
E[Z 3 l[a?,h#ﬁ,h(S’ﬁ)]]

h=1k=7+1
H Nt (s) )
= Z Z Z (1 - Wf,.h(s) (th(sﬂs))
h=1sES j=N7 (s)+ (80)

4
gz 0 H5 AN (s).

In the exploration phase, the loss at each episode is up to H. In the attack phase, the expected number
of episodes that the agents do not follow 7 is up to 40 =, mv H7ASK..

According to Lemma 1, the attack loss is bounded by

0 mVHOASK. + 2H*SK\/2A1/T. (81)

min

E[loss(K,H)] < HT +

In the exploration phase, the approximate mixed attack strategy attacks at any step and any episode.
In the attack phase, the approximate mixed attack strategy only attacks agent ¢ when agent ¢ chooses
a non-target action. We have

K H m
Cost(K, H) =Y > > (U@, # afp) +[7in — i)

k=1h=11i=1

I a4+ D> Y Dk, £l (1+1).
k=1h=1i=1 k=r=1h=1i=1

Then, the attack cost is bounded by
80
E[Cost(K,H)| < 2mHT + VHSASK.. (83)

min
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For the executing output policy 7 of V-learning, we have

| K N y
=5 2 2 e (1= 9)19)
k=1 j=1
1 K NE(s) 1T NF(s) ]
K Z Z O‘?vk(s) (1 - ﬂ-ih(S)(ﬂ-;r,h(s)‘s)> tx o@%(s) (1 — Wf,h(s)(ﬂjh(sﬂs))
k=74+1j=NJ (s)+1 " k=1 j=1
1 K N/ (s)
= Y Y ag, (1= 0)ls)
k=7+1 j=1 '

(84)

The probability that the agents with 7 do not follow the target policy is bounded by 2272 % +

Rmin
2rmSH
K .

According to Lemma 1, the attack loss of the executing output policy 7 is upper bounded by

x . 2 H5A 2rmSH
Vi o0) — Vo) < B ( 20mS [H24, | 2 ) T
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