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Abstract—Multi-provider multi-user multi-access edge com-
puting provides a recent market-driven networking paradigm
facilitating the user data offloading process. In this paper we
introduce the AGORA framework, which employs a sophisti-
cated multi-leader multi-follower Stackelberg game that jointly
optimizes the data offloading, computing resource allocation,
and computing resource pricing, all facilitated through a non-
cooperative game-theoretic approach. In order to support the
aforementioned modeling and approach, a novel utility function
that quantifies the users satisfaction, factoring in the computing
service cost, and an innovative profit function for the MEC
providers is introduced, emphasizing the market penetration and
the computing service provision costs. Numerical results, obtained
via modeling and simulation, demonstrate AGORA’s remarkable
adaptability, accommodating homogeneous and heterogeneous
user computing demands, while simultaneously outperforming
proportional fairness resource allocation approaches, and signifi-
cantly enhancing the MEC providers’ profitability and the users’
satisfaction from the edge computing services.

Index Terms—Multi-access Edge Computing, Network Eco-
nomics, Game Theory, Resource Management.

I. INTRODUCTION

Multi-access edge computing (MEC) is an integral part of
the vision of 5G/B5G systems and the Internet of Things
(I0T), for real-time data processing, low-latency applications,
and decentralized, interconnected ecosystems [1]. Extended
research efforts have been devoted to the individual problems
of optimal data offloading within MEC environments sup-
ported by multiple MEC providers and the optimal pricing
policies to maximize the MEC providers’ profit [2]. How-
ever, these efforts, though promising, remain fragmented, and
consequently the joint optimization of the data offloading,
computing resource allocation, and MEC services pricing yet
remains highly unexplored [3]. In this paper, we introduce
the AGORA framework®, which enables all the users and
MEC providers to determine their optimal data offloading
strategies and their computing resource allocations and pricing,

§ The authors had equal contribution.
This work has been supported by the National Technical University of Athens
Research Committee Grant on “Network Management and Optimization”
(Award #95028000). The research of Dr. Tsiropoulou was partially supported
by the NSF Awards #2219617 and #2319994.
“AGORA in Ancient Greek refers to a market.

respectively, while optimizing their experienced MEC service
and profit, respectively.

A. Related Work

The problem of resource management and pricing of MEC
resources has attracted the interest of the academic and indus-
trial communities. An incentive mechanism for MEC systems
is introduced in [4] via utilizing market-based pricing to en-
courage service provisioning by the MEC providers and incor-
porating a profit-maximizing multiround auction mechanism
for resource trading. A trading model is proposed in [5] that
addresses the resource allocation challenges in MEC systems
with multiple MEC servers and users, utilizing evolutionary
and non-cooperative game models. A multi-market trading
framework for MEC systems is presented in [6] that utilizes
double auctions within groups of users being served by the
same MEC server, a market selection game, and a theory-based
learning algorithm to enable MEC providers to participate in
multiple auctions and optimize their strategies, resulting in
significantly improved social welfare.

The maximization of the users’ and/or the MEC providers’
social welfare under optimal resource allocation and pricing
strategies has been thoroughly explored in the existing lit-
erature. A sharing economy-inspired business model and a
distributed pricing mechanism for MEC resource allocation is
analyzed in [7], aiming at increasing resource efficiency and
maximizing the overall social welfare of the users. A deep
reinforcement learning and game theory-based approach to
address the offloading decision problem in a software-defined
networking-driven MEC system is studied in [8]. The authors
aim to optimize the selection of MEC servers, the amount
of offloaded data, and the pricing of computing services to
maximize the overall profit of the MEC providers. An auction
pricing-based MEC offloading strategy is proposed in [9]
that maximizes the overall profit of the MEC providers by
considering the users’ devices’ battery capacity and the users’
task tolerable delay.

The theory of Stackelberg games has lately been adopted
to deal with the resource allocation and pricing problem in
MEC systems [10]. A nonlinear pricing strategy for the MEC



provider is introduced in [11] via formulating a Stackelberg
game among one MEC provider and the users, resulting in
an optimized profit for the MEC provider and a minimum
computing service cost for the users, via determining their
optimal amount of offloaded data. A similar Stackelberg game-
theoretic approach is discussed in [12] in order to maximize
the profit of the MEC providers by incorporating energy
conservation and latency reduction into the users’ offloading
strategies and determining optimal pricing policies. A multi-
leader multi-follower Stackelberg game is introduced in [13]
to optimize the amount of offloaded data from Unmanned
Aerial Vehicles (UAVs) to multiple MEC providers, in order
to ultimately achieve an optimal tradeoff between the MEC
providers’ profit and the UAVs’ resource demand.

B. Contributions and Outline

In this article we strive to treat the problem of joint
optimization of the users’ data offloading, the MEC providers’
computing resource allocation, and the MEC services pricing,
particularly when these decisions are expected to be au-
tonomously and independently made by the users and the MEC
providers in a distributed manner. Specifically, the AGORA
framework is introduced, capturing not only the users’ experi-
enced utility from consuming computing resources to process
their data, but also the MEC providers’ profit. To realize this,
while considering a multi-provider multi-user multi-access
edge computing system, a novel utility function of the users’
experienced satisfaction from consuming edge computing re-
sources by multiple MEC providers is designed, accounting for
the corresponding experienced service cost. Moreover, a new
profit function for the MEC providers is designed to capture
the benefits from serving multiple users, i.e., penetration to
the market, and cost to provide the computing services.

Then, a multi-leader multi-follower Stacklberg game is
introduced to determine the users’ optimal data offloading
strategies following the partial data offloading paradigm, the
MEC providers’ optimal computing resource allocation for
each user, as well as the associated market computing prices
set by each MEC provider. A non-cooperative game theoretic
approach is followed to determine the Stackelberg equilibrium.
The fundamental difference between the proposed AGORA
framework compared to the existing literature is the consid-
eration of a multi-variable approach reflecting both the users’
and the MEC providers’ perspectives.

Detailed numerical results are presented, obtained via mod-
eling and simulation, in order to demonstrate the operational
characteristics of the AGORA framework and capturing its
adaptability in scenarios where the users have homogeneous
and/or heterogeneous computing demand characteristics. A
comparative evaluation is also performed demonstrating the
MEC providers’ profit and the users’ satisfaction benefits com-
pared to the proportional fairness resource allocation approach.

The rest of the paper is organized as follows. Section II
presents the system model, while the AGORA framework is
analyzed in Section III. Section IV presents the numerical
evaluation and Section V concludes the paper.

II. SYSTEM MODEL

A multi-provider multi-user multi-access edge computing
(MEC) system is considered, consisting of a set of MEC
providers/servers M = {1,....,m,...., M} and a set of users
N ={1,...,n,..., N}, who can perform partial data offload-
ing to multiple MEC servers. Each user is characterized by a
computing task A, = (By,Cy, dn,tn,en), where B, [bits]
denotes the user’s total amount of data, C,, [CPU-cycles]
indicates the CPU-cycles needed to process the computing
task, with C,, = ¢,B,, where ¢, [%} captures
the computing task’s computing intensity, and ¢,, [sec], e,
[J] denote the latency and energy constraints respectively, for
user n. Each user can perform partial offloading to potentially
all the servers, with by, = [bn.1,- -, bpm, - - -, bn,as] denoting
the user’s data offloading vector and Y by, < B,,. Also,

VmeM
each user can process locally an amount of data b,, min on
its device. Each MEC server is characterized by an overall
computing capacity Fj, [%] and a price per com-
puting resource unit P, [ﬁ} Each MEC provider is

sec

assumed to have a maximum price limit P2/%% a5 defined by
the market regulations. Each MEC server allocates part of its
computing capacity to the users who offload data to this MEC
server, where £, = [fin1s-- -5 frons -« S N [%]
denotes the MEC server’s m computing capacity allocation

vector, with > fon < Fip.
VYneN . . . .
Each user experiences satisfaction by offloading and pro-

cessing part of its total amount of data to the MEC servers,
which is a concave and strictly increasing function with respect
to the amount of offloaded data (first term of Eq. 1), given that
the amount of data, which can offload to the MEC servers, is
upper bounded. Also, each user experiences a cost imposed by
the MEC servers to process its data, and its satisfaction is also
impacted by the offloading strategies of the rest of the users
within the examined multi-provider multi-user MEC system
(second term of Eq. 1). The user’s satisfaction is accordingly
formulated as follows:
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~n are normalization parameters to guarantee that the impact
of the user’s pure satisfaction and experienced cost are of the
same order of magnitude, resulting in a unitless user’s utility
function (Eq. 1).

Focusing on the MEC providers’ utility (for simplicity of
notation in our analysis, we consider that a MEC provider is
equivalent to a MEC server m), a MEC provider experiences
a revenue while considering the market penetration of the
other MEC providers in terms of serving the users (first



term of Eq. 2), and a cost associated with maintaining its
computing infrastructure (second term of Eq. 2), and its energy
consumption to process the users’ offloaded data (third term of
Eq. 2). Thus, the MEC server’s utility function is formulated
as follows.
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In order to rationalize and balance the impact of three different
terms on shaping the MEC server’s utility, the following
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Cm = ,0 <z, <1, and r > 1 are introduced, while
ensurlng that the MEC server’s utility is dimensionless.

III. AGORA FRAMEWORK

In this section, we present the AGORA framework, which
leverages a complex multi-leader multi-follower Stackelberg
game to optimize data offloading strategies, computing re-
source allocation, and market pricing within the MEC system,
following a non-cooperative game-theoretic approach to find
the Stackelberg equilibrium.

A. Users’ Optimal Data Offloading

Each user aims at maximizing its utility (Eq. 3a), while
considering the data offloading feasibility constraints (Eq. 3b
- 3c), the allocated computing capacity from a MEC server
(Eq.3d), and its latency (Eq.3e) and energy (Eq.3f) constraints.
Thus, the corresponding optimization problem of each user’s
utility function is formulated as follows:
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n data rate offloading its data to the MEC server m, with

o2 denoting the background noise, P, m [W] is the user’s
transmission power, and g, ,, is its channel gain. The three
terms in the latency constraint (3e) capture the user’s experi-
enced delay, consisting of the data transmission delay, and the
data processing delay at the MEC servers, and locally on the
user’s device, respectively, where [c,, [M] denotes
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the local computing capability of user n. The two terms in

(3f) represent the user’s energy consumption due to the data
offloading and the local data processing, respectively, with e,
[%] denoting the user’s local energy consumption rate.

The optimization problem (3a)-(3f) can be formulated as
a non-cooperative game G = [N, {By}vnen {Un}vnen]s
where A is the set of players, i.e., users, B,, is their strategy
set in terms of the total amount of data, and U,, denotes their
payoff function (Eq. 2).

Theorem 1: The non-cooperative game (G is a concave n-
person game and admits at least one Pure Nash Equilibrium
(PNE).

Proof: The strategy set {B,}vncn is by definition a
convex and compact set. Also, the utility function {U, }vnen
is continuous, and we need to show that it is concave
with respect to b,,Vn € N. We set: f(b,,b_,) =

anlog(l + Nn(z bn,m - bn,min)) and g(bnab—n) =
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the above analysis, we conclude thatv?he Hessian matrix of
U, is negative definite, and the utility function U,, is concave.
Therefore, we conclude that the non-cooperative game G is a
concave n-person game. Given that the non-cooperative game
G is a concave n-person game, then based on Theorem 1 in
[14], there exists at least one PNE. |
Theorem 2: The PNE b* = [b},..., b}, ..., b} is unique.
Proof: Based on [14], [15], we need to show that
o(b,A) = > A\, Uy,(b) is diagonally strictly concave (DSC)

for some )\\m> 0. Thus, we need to prove: (i) U, is strictly
concave in by, (ii) U, is convex in b_y,, and (iii) o(b, )
is concave in b. The first condition holds true based on
Theorem 1. The second condition also holds true, given that
OUn — 2f _ 2BnPmbam 0, given that f3,, takes very small

v, T A T g,

values. Finally, by following a similar analysis as in the proof
of Theorem 1 and by appropriately choosing A > 0, we derive
that o(b, A) is concave in b. Thus, we conclude that the PNE

b* = [bjf,...,b},...,b}] is unique. [ |

B. MEC Providers’ Optimal Computing Resource Allocation
and Pricing

Focusing on the MEC server’s resource allocation and
pricing, each MEC server aims at maximizing its utility func-
tion (Eq. 4a), considering its computing capacity feasibility
constraints (Eq. 4b-4c), and the pricing bounds captured by
the maximum computing capacity pricing P}%* (Eq. 4d),
and the computing demand from the users (Eq. 4e). Thus,
the corresponding optimization problem of each MEC server’s
utility function is defined as follows.
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The above optimization problem can be captured as a
multi-nature multi-variable non-cooperative game, given the
involvement of both the computing capacity of the MEC
servers and its corresponding price. The non-cooperative
game among the MEC servers is formulated as G =
M, {F, P Yvmerts {Um bvmem], where M is the set of
players, i.e., MEC servers, {F},, P, } denotes the multi-nature
multi-variable strategy set, and U, is the MEC server’s utility
function.

Theorem 3: The non-cooperative game G is a concave n-
person game and admits at least one PNE.

Proof: The multi-nature multi-variable strategy set
{Fn,Pn},¥Ym € M is a convex and compact set,
and the utility function U,, is continuous in {F,,, Py}

We set: B = Z ;lm"’ ¢ = Z Z fm',n, D =
vn Yn Ym#Zm/
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DL RV
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6}32%79 [P”‘CDE a-n) _ 2D~1] < 0. Thus, the utility function

U, is concave in {fm,, P}, and G is a concave m-person

game and admits at least one PNE [14]. [ |
Theorem 4: The PNE {f*,P*} =
£5, .., B Py P, oo, Pyy] is unique.

Proof: Similarly to the proof of Theorem 2, we need
to show that h(k,f,P) = Z KmUn, (f,P) is DSC for some

k > 0. U, is strictly concave in {F,,,P,} based on

Theorem 3. We set: F = Z( S ) and we have: é?fo,m =
o 2 S
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is convex in {f_,,P_}. After applylng a snmlar analysis
as in the proof of Theorem 2 and selecting an appropriate
positive value for k, we derive that h(k,f,P) is concave in
{f,P}, and the PNE {f*,P*} is unique. ]

Based on Theorems 1 — 4, we can design a best response
dynamics algorithm to derive the Stackelberg equilibrium of
the overall AGORA framework [16].

IV. NUMERICAL EVALUATION

In this section, the performance evaluation of the proposed
AGORA framework is demonstrated via modeling and
simulation. The assessment starts with an evaluation of the
pure performance of the AGORA framework (Section TV-A),
followed by a scalability analysis, taking into consideration
both homogeneous and heterogeneous characteristics of users’
computing demands, in order to demonstrate the framework’s
efficiency and robustness in large-scale scenarios (Section
IV-B). Subsequently, a comparative evaluation is performed
to demonstrate the advantages of the AGORA framework
over conventional proportional fairness resource allocation
approaches (Section IV-C). It is noted that, unless otherwise
explicitly stated, we consider the following set of simulation
environment parameters throughout our evaluation: N = 6,
M = 4, B,, = [2000, 2500, 3000, 3500, 4000, 4500][ K bytes],
bpmin = 10% % B, ¢, = 100[CPU — cycles/bits],
tn, = 02 [sed, e, = 001J] ¥Yn € N,
F. = [5,5.5,6,6.5] x 105][CPU — cycles/sec], PMaz =
[1.0,1.7,2.4,3.1], [0.7,0.75,0.8,0.85,0.9,0.95],
pn = [0.7,0.75,0.8,0.85,0.9,0.95], v, = 14, ¥n € N,

Tm =

o = 10722, le, = 05 * 10°[CPU — cycles/sec),
len = 10~%[Joules/sec], W = 5[MHz],
ro= 1.2, Py, = [0.04,0.0324,0.03,0.025][W] and

Gnm = [0.0025,0.003,0.0035, 0.004] 105, ¥n € N.

A. Pure Operation and Performance

In this section, we examine the operational performance of
the AGORA framework, aiming to demonstrate how various
system attributes impact its function and overall effectiveness.
It is noted that, as presented above, the higher the user and
the MEC provider ID, the higher the total amount of data
and the computing capacity, respectively. Fig. la illustrates
the amounts of user-offloaded data to the MEC providers,
revealing that as the MEC provider IDs increase, so does
the data volume due to enhanced computing capabilities.
Similarly, users with higher IDs are characterized by a larger
total amount of data and consequently, they offload more data
to each MEC provider compared to lower ID users. Fig. 1b
shows the portion of total available data B,, offloaded by each
user independently of the provider, with users engaged in more
intensive computing tasks forwarding a larger amount of data.
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This rate, however, decreases with higher user IDs, as the users
with more data must offload a smaller portion to meet their
latency and energy constraints, as they are constrained by their
communication characteristics.

Fig. lc illustrates the computing supply from the MEC
providers to the users, with higher ID providers possess-
ing greater computing capabilities to meet user demands.
The users follow a corresponding trend, offloading more
data to providers with higher computing capabilities. Fig.
1d shows the price of the computing resources, i.e., P,
factor, announced by each provider and their resulting revenue.
Providers with higher IDs, attracting a greater users’ demand,
announce a higher price, leading to increased revenue.

B. Scalability Analysis

In this section, we perform a scalability analysis to show
the efficiency and robustness of the proposed framework.
Specifically, we increase the number of users, considering two
scenarios: (i) a Homogeneous Scenario, where all users have
computing tasks of the same size (i.e., 2 Mbits), and (ii) a
Heterogeneous Scenario, where each new introduced user has
a larger computing task size, increased by 0.5 Mbits, compared
to the baseline scenario presented in Section IV.

Fig. 2a-2b present the mean user-offloaded data and the
mean computing supply of the MEC providers in the two
scalability scenarios. In both scenarios, as the number of users
in the market grows, the provider supply increases to meet
the rising demand. This trend continues until the providers
reach their maximum supply capacity, after which they offer
their entire computing capability, regardless of the number of
users. However, the two scenarios differ in terms of user-
offloaded data size. In the homogeneous scenario, all users
offload the same amount of data until the providers reach their
capacity because all users are identical. In contrast, in the
heterogeneous scenario, the mean offloaded data increases as
the users possess a larger total amount of data. After the MEC
providers reach their computing capacity, the mean offloaded
data decreases in both scenarios since more users must share
the same computing supply, which cannot be further increased.
In the homogeneous scenario, the decrease in data occurs with
a slight delay due to the AGORA framework’s design, which
ensures that the MEC providers offer slightly more comput-
ing supply than the user demand, allowing continued data
offloading. This behavior is not observed in the heterogeneous
scenario as new users have significantly more data.

Fig. 2c presents the price P, of the computing resources
announced by each MEC provider as the number of users
increases in both scalability scenarios. In both cases, the pres-
ence of more users drives an increase in the MEC providers’
price, reflecting the increased demand. It is noted that in
the heterogeneous scenario, the price is even higher than the
homogeneous one due to the introduction of new users with
more complex computing tasks, resulting in greater demand.

C. Comparative Evaluation

In this section, we perform a comparative evaluation of the
AGORA framework against alternative approaches to highlight
its advantages. We explore three distinct comparative scenar-
ios, motivated by the key attributes of the AGORA framework:
(1) Proportional Offloading: the users offload all their available
data to providers in proportion to their computing capability,
with the MEC providers optimizing their utility to determine
the price and computing supply; (ii) Proportional Supply: the
users determine their offloaded data based on the AGORA
framework, while the MEC providers supply computing re-
source to the users proportionally to their total data, and set
their price by maximizing their utility; (iii) Fixed Price: All the
MEC providers have the same constant price F,,, chosen as
the mean value of the optimal price as derived by the AGORA
framework for fairness, while all other system parameters are
determined as in the AGORA framework.

Fig. 3 - 4 present a comparison of various system parameters
between the AGORA framework and the three alternative
scenarios. Specifically, in Fig. 3a, we observe the total size
of user-offloaded data to all the MEC providers. In the
Proportional Offloading and Proportional Supply scenarios,
the users offload all their data to the providers. However, the
Fixed Price scenario results in providers offering slightly lower
computing supply and the users offloading a smaller portion
of their data compared to the AGORA framework. Fig. 3b
illustrates the total computing supply of each provider to all
the users. In the Proportional Supply scenario, the providers
allocate their entire available computing capacity among the
users. The AGORA framework achieves the highest computing
supply among the other two scenarios. The Fixed Price sce-
nario leads to slightly lower computing supply, while in the
Proportional Offloading scenario, the lower computing supply
by the providers corresponds to a reduction in the computing
resource price. Fig. 3c presents the computing resource price
P,, of each provider. In the Fixed Price scenario, the price
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remains constant for all the providers. The AGORA framework
achieves the most favorable pricing for the MEC providers.
In the Proportional Supply scenario, the providers’ computing
supply is not concurrently optimized with their pricing, leading
to a slight reduction in the price, while in the Proportional
Offloading case, the lower providers’ computing supply results
in corresponding reductions in the price.

Finally, Figs. 4a and 4b depict the utilities of each user
and MEC provider. The AGORA framework benefits both the
users and the MEC providers in terms of utility by concur-
rently adjusting the market parameters, including offloaded
data, computing supply, and computing resource price. In
the Proportional Supply scenario, the allocation of all the
computing capacity by the MEC providers, exceeding the user
demand, burdens both the users and the providers. Comparing
the remaining scenarios, the Proportional Offloading scenario
allows the users to offload their total amount of data, benefiting
the providers, but the users are compelled to send data that
could be processed locally, making it challenging to meet their
latency and energy consumption constraints.

V. CONCLUSION

In this paper, we introduce the AGORA framework ap-
plicable in multi-provider multi-user multi-access edge com-
puting, featuring novel users’ utility and providers’ profit
functions, and a complex multi-nature multi-variable multi-
leader multi-follower Stackelberg game. The latter approach
involves multiple variables to determine the most efficient data
offloading strategies by the users to multiple MEC servers,
the allocation of computing resources by the MEC providers
to each user, and the associated market computing prices set
by each MEC provider. A non-cooperative game theoretic
approach is followed to determine the Stackelberg equilibrium.
The corresponding numerical results demonstrate the benefits
obtained by the joint optimization of the data offloading,
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