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ABSTRACT

Online nonconvex optimization has been an active area of research recently. Pre-
vious studies either considered the global regret with full information about the
objective functions, or studied the local regret with window-smoothed objective
functions, which required access to unlimited number of gradient oracles per time
step. In this paper, we focus on the more challenging and practical setting, where
access to only a single oracle is allowed per time step, and take the local regret
of the original (i.e., unsmoothed) objective functions as the performance metric.
Specifically, for both settings respectively with a single exact and stochastic gra-
dient oracle feedback, we derive lower bounds on the local regret and show that
the classical online (stochastic) gradient descent algorithms are optimal in the
class of linear-span algorithms. Moreover, for the more challenging setting with a
single function value oracle feedback, we develop an online algorithm based on a
one-point running difference gradient estimator, and show that such an algorithm
achieves a local regret that a generic stochastic gradient oracle can best achieve.

1 INTRODUCTION

Online optimization is a popular learning framework that models sequential decision-making in
a non-stationary environment, and it has attracted a lot of attention in the past decade (Hazan
et al., 2016; Orabona, 2019). In online optimization, an agent interacts with the environment by
selecting a sequence of control variables z1, ..., x; and receiving information about loss functions
f1(), ..., fi(+) from the environment. Specifically, at each iteration ¢, the agent selects a control
variable x; based on the historical information about f1, ..., f;_1. After the selection has been made,
certain feedback about f; is revealed to the agent, who then selects the next control variable x4, 1
based on the updated information. The goal of the agent is to select z; sequentially to minimize a
certain metric of regret, typically defined as the cumulative difference between the function value at
the chosen control variable and the minimal function value with hindsight information.

In the existing studies on online optimization, many efficient online algorithms have been proposed
to minimize different types of regret for convex objective functions, whose global minimum can be
efficiently achieved with gradient oracles (Agarwal et al., 2010; Suggala & Netrapalli, 2020; Héliou
et al., 2020; Zinkevich, 2003; Hall & Willett, 2013; Jadbabaie et al., 2015; Mokhtari et al., 2016;
Zhang et al., 2018). As a comparison, the more challenging online nonconvex optimization has not
been well explored yet. Specifically, the existing studies on online nonconvex optimization have
focused on two major settings. One line of work adopted the global regret as the performance metric
(Krichene et al., 2015; Agarwal et al., 2019; Lesage-Landry et al., 2020; Héliou et al., 2020), which
compares the algorithm output to the global minimum of the nonconvex objective functions. However,
accessing the global minimum of nonconvex functions is typically infeasible. Another line of work
considered the more feasible local regret (Hazan et al., 2017; Aydore et al., 2019; Hallak et al., 2021;
Guan et al., 2023), which compares the control variables to the stationary points of corresponding
nonconvex functions. Importantly, these nonconvex functions are smoothed versions of the online
nonconvex objective functions f; averaged over a sliding window. These studies designed online
algorithms that achieve a sublinear local regret of the smoothed nonconvex objective functions with a
sufficiently large window length. However, the local regret of window-smoothed functions can be
very different from that of the original online objective functions and hence may not accurately reflect
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the actual performance of the system, especially when the functions f; change rapidly. Therefore, we
are motivated to study the following fundamental problems in this work.

e (QI: What are the fundamental lower bounds on the local regret (without function smoothing)
for online nonconvex optimization with different types of single oracle feedback, e.g., exact
gradient, stochastic gradient, and function value oracles?

e (2: What online learning algorithms can achieve these lower bounds on the local regret using
only single oracle feedback of nonconvex functions?

1.1 OUR CONTRIBUTIONS

In this paper, we follow the line of research on the local regret of online nonconvex optimization, and
focus on the setting with only a single oracle feedback per time step. In particular, we study the local
regret of the original online objective functions (i.e., without window-smoothing). Below we discuss
the major challenges in each setting and summarize our contributions.

¢ Single Gradient Oracle (SGO) feedback, where only one gradient oracle is available at a
time. In this setting, instantiating the existing analysis (Hazan et al., 2017; Guan et al., 2023) by
taking the window size w = 1 provides an Q(T") lower bound on the local regret, which ignores
the intrinsic function variation over time and can be overly pessimistic when the functions
change slowly. We provide a tighter and problem-dependent lower bound on the local regret
that captures how the function variation affects the hardness of the problem. Then, we show
that the classical online gradient descent algorithm achieves the optimal regret bound for the
class of linear-span algorithms.

o Single Stochastic Gradient Oracle (SSGO) feedback, where only one stochastic gradient
oracle is available at a time and the local regret is harder to optimize. In this setting, the
existing study (Guan et al., 2023) provides an {2 (T') lower bound by taking window size
w = 1, but it does not capture the impact of function variation and can be overly pessimistic.
We characterize the challenge through establishing another tight lower bound on the expected
local regret. Then, we show that the online stochastic gradient descent algorithm achieves the
optimal regret for the class of linear-span algorithms.

e Single function value oracle (SVO) feedback, where only one function value oracle is
available at a time. In this setting, the challenge lies in constructing a good gradient estimator
with only one function value oracle.We found that online gradient descent with the classical
one-point gradient estimator has poor performance due to large variance. To address this, we
developed a one-point running difference gradient estimator. We show that such a zeroth-order
gradient estimator, when applied to the online gradient descent algorithm, achieves an optimal
local regret for the class of linear-span algorithms with generic stochastic gradient oracle.

The above three settings capture different application scenarios. The SGO setting applies to white-box
systems with known objective functions, where exact gradients can be calculated. However, many
systems can have various uncertainties, e.g., loss functions depending on random samples or systems
with intrinsic noise. In such a case, even if the system objective function is known, the calculation
of their gradients can still be stochastic, leading to the SSGO setting. Moreover, the SVO setting is
suitable to model black-box systems, where objective functions are unknown but only function values
can be queried. For example, the recommendation system can provide users’ ratings (i.e., reward
values), but the reward function following which users provide ratings is typically unknown.

1.2 RELATED WORK

Online convex optimization: Online convex optimization has been extensively studied in the past,
and we refer the readers to the standard textbooks (Hazan et al., 2016; Orabona, 2019; Shalev-Shwartz,
2012) and a recent survey (Hoi et al., 2021) to obtain a comprehensive understanding. Below we
summarize a few main directions on the topic.

Studies on online convex optimization can be generally divided into three categories based on which
notion of regret they are interested in and what feedback information a learner has for the design.
Extensive works such as Agarwal et al. (2010); Suggala & Netrapalli (2020); Héliou et al. (2020)
studied static regret, which is defined as the difference between cumulative losses and the minimum
cumulative losses with hindsight information. Many other works (Zinkevich, 2003; Hall & Willett,
2013; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al., 2018; Héliou et al., 2020) studied
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the dynamic regret, where the comparison is made to the function value at a given reference point
(typically chosen as a global minimum of the instantaneous objective function) at each time step.
Among these three lines of research, the studies on the dynamic regret (Zinkevich, 2003; Hall &
Willett, 2013; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al., 2018; Héliou et al., 2020)
are closest to this paper. Their development of upper bounds on the dynamic regret uses the Lipschitz
smoothness, gradient update direction, and the convexity of online functions. In particular, their upper
bounds involve various types of function variation such as the path length (defined as the summation
of differences between two adjacent global minimal variables) and the gradient variation. In our
study of online nonconvex optimization, the development of upper bounds on the dynamic regret
also uses the Lipschitz smoothness and the gradient update direction (which are the same as online
convex optimization). However, since there is no convexity property we can use here, we leverage
the Lipschitz smoothness of each objective function to connect the local regret to the cumulative
difference in function values, which leads to a different function variation we define in eq. (2).

Further, a number of works such as Hazan & Seshadhri (2009); Daniely et al. (2015); Zhang et al.
(2019); Garber & Kretzu (2022) studied the adaptive regret, which is defined as the static regret on
the subsets of all iterations, bridging between the dynamic regret and the static regret. Online convex
optimization has also been studied under function value feedback, which captures many practical
applications. In particular, Flaxman et al. (2005) and Saha & Tewari (2011) studied the setting
with one-point gradient estimators, and Agarwal et al. (2010) studied the setting with multiple-point
estimators. Further, Cao & Liu (2018); Kim & Lee (2023) studied functional constrained online
optimization and Yi et al. (2020); Wang et al. (2022) studied distributed online optimization with
both one-point and two-point estimators.

Online nonconvex optimization: One line of studies on online nonconvex optimization considered
the global regret as the performance metric, which is defined as the cumulative discrepancy between
the loss of the algorithm output and the lowest possible loss. Particularly, Krichene et al. (2015)
extended the Hedge algorithm to the continuum and showed it achieves a sublinear regret. Yang
et al. (2018) developed an improved algorithm based on the Hedge algorithm with a novel weighting
strategy. Agarwal et al. (2019) extends the bandit algorithm of follow-the-perturbed-leader to the
nonconvex setting, and Suggala & Netrapalli (2020) further showed that such an algorithm achieves
the optimal regret. Online nonconvex optimization has also been studied under certain assumptions
on nonconvex objective functions, such as the weak pseudo-convex condition (Gao et al., 2018)
and the Polyak-Lojasiewicz condition (Mulvaney-Kemp et al., 2022). Moreover, the global regret
minimization of online nonconvex functions has also been studied under the function value feedback
in Gao et al. (2018); Héliou et al. (2020; 2021); Gao et al. (2018).

Another line of research studied the more feasible local regret that compares the control variables
to the stationary points of window-smoothed nonconvex functions. Particularly, Hazan et al. (2017)
provided the first analysis, where the objective functions are smoothed via a sliding window and
developed a lower bound on the local regret. The authors further devised a nested-loop algorithm and
showed that it achieves the regret lower bound. Aydore et al. (2019) adopted the nested-loop type
algorithm to a dynamic environment application, and Hallak et al. (2021) adopted the same approach
and extended it to the setting with nonsmooth functions. Guan et al. (2023) considered the setting with
a limited number of feedback concerning the gradient or the function value of the window-smoothed
objectives and provided tight lower and upper bounds for linear-span algorithms. Our study follows
this line of research with the following main differences. First, we do not take window-smoothed
objective functions but rather focus on the original functions and their corresponding local regret and
provide a problem-dependent analysis based on the function variation. Second, all the algorithms
developed in the above studies require multiple feedback oracles concerning f; due to the window-
smoothing, whereas we study the settings with only a single oracle feedback of f;. It is worth noting
that the aforementioned previous studies on the complimentary regret metric based on window-
smoothed functions are still valuable, particularly for studying slowly changing environments. In the
future, it is interesting to continue their line of work and obtain refined problem-dependent bounds
based on function variations.

Gradient estimation with function value oracles: Various gradient estimation methods have
been applied to online optimization when there is only function value (i.e., bandit) feedback. The
performance of these gradient estimators highly affect the performance of their corresponding online
algorithms. Specifically, the conventional one-point gradient estimator was developed in Flaxman et al.
(2005); Dekel et al. (2015); Gasnikov et al. (2017) to estimate the gradient of a function based only
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on one function value. Two-point gradient estimators (Agarwal et al., 2010; Nesterov & Spokoiny,
2017; Shamir, 2017) are also designed to estimate the gradient based on two function values and can
achieve much better performance over the conventional one-point estimator. Recently, Zhang et al.
(2022) proposed a novel one-point estimator which uses an immediate previous function value during
iterations to serve as the second function value in the gradient estimator to reduce the variance. Such
an estimator has been shown in Zhang et al. (2022) to achieve a much better performance than the
conventional one-point estimator but still performs weaker than the two-point estimator. Inspired
by such an estimator, in this paper, we propose a one-point running difference estimator for online
nonconvex optimization and show that it enjoys the same regret bound as two-point estimator.

2 PRELIMINARY

In this paper, we consider the online nonconvex optimization (ONO) problem with a sequence of
objective functions fi, fa, ..., fi, . ... The objective functions are smooth and bounded on R and
are generally nonconvex. We adopt the following standard assumption that is widely used in the
online optimization literature (Agarwal et al., 2010; Flaxman et al., 2005; Hazan et al., 2017; Aydore
et al., 2019; Zhao et al., 2020; Hallak et al., 2021).

Assumption 1. For all t > 1, function f; : R? — R satisfies | f;(z)| < M for some M > 0 and
for all x € RY. Moreover, there exist universal constants Lo, L1 > 0 such that for any z,y € R?,
|f(z) — f(y)] < Lollxz—yl|, and |V f(z) = V()| < L1||lx — y||, where || - || denotes the {2 norm.

At each iteration ¢, the agent first submits a control variable z; € R? to the system based on the
historical feedback. After that, the feedback about objective function f; is revealed from the system,
and based on that, the agent further determines the next control variable. For such an ONO problem,
we study the following local regret.

T
(Local regret): R(T) := Z IV fi(z)| (1)
t=1

Intuitively, the local regret defined in eq. (1) compares the control variables to the stationary points
x; that satisfies V fy(x;) = 0. It can also be interpreted as the dynamic local regret because the
comparison baseline is a stationary point of the instantaneous objective function f;.

We note that the previous work of online nonconvex optimization (Hazan et al., 2017; Hallak et al.,
2021; Guan et al., 2023) studied the local regret with window-smoothing, which is defined as

Ry (T) = S, |V Fy o (21)]], where Fy o (2) = 1 Zf:tfwﬂ fi(z) corresponds to the smoothed
objective function averaged over a sliding window of size w. It reduces to our definition of the local
regret in eq. (1) when w = 1. In Hazan et al. (2017); Hallak et al. (2021); Guan et al. (2023), the
window size w is chosen to be large so that the smoothed functions {F} ,, }, change slowly over
the iterations, making it easier to minimize the local regret. However, the local regret of window-
smoothed functions can be very different from that of the original functions and hence may not

accurately reflect the actual performance of the system, particularly when functions change rapidly.

In this work, we focus on online nonconvex optimization with single oracle feedback about f, per
iteration, and our goal is to develop algorithms that minimize the local regret in eq. (1). In particular,
we consider the following single oracle feedback settings:

¢ Single Gradient Oracle (SGO) feedback: At each time ¢, one can only access a single
exact gradient oracle.

o Single Stochastic Gradient Oracle (SSGO) feedback: At each time ¢, one can only
access a single stochastic gradient oracle.

e Single Value Oracle (SVO) feedback: At each time ¢, one can only access a single
function value oracle.

We also define the following notion of function variation over time, a fundamental quantity that is

useful to characterize the local regret in the nonconvex setting.
T+1

Vp = Z sup |fi—1(z) — fi(z)]. )

t—o TERC

The above function variation intuitively reflects how much the online learning objective functions
vary over time. In particular, when Vi = 0, all f;’s are the same as f;, and online learning problem
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reduces to an offline optimization problem. On the other hand, when Vi = ¢T for some constant
¢ > 0, the number of objective functions f; that are totally different from all previous ones can scale
linearly with 7". No algorithm can perform well for these rapidly changing functions f; because all
received information is about f7 up to f;_1, which contains little information about f;.

3  ONLINE NONCONVEX OPTIMIZATION WITH SGO

Previous studies (Hazan et al., 2017; Hallak et al., 2021; Guan et al., 2023) of online nonconvex
optimization have been focusing on window-smoothed functions that require access to multiple
gradient oracles of f;. In this section, we study online nonconvex optimization with SGO, where only
a single access to the gradient oracle of f; is available at each time ¢.

3.1 LOWER BOUND ON LOCAL REGRET UNDER SGO

In order to understand the complexity limit of the problem under SGO, we establish a lower bound
on the local regret. We first specify the algorithm class that we consider as follows.

Definition 1 (Linear-span (Nesterov, 2003)). The class of online learning algorithms A with SGO
feedback at each time generates a sequence of variables {x.}7°, according to

t
Ti41 € {1’1 + Za,‘ﬂVfl(xv) tag; € R,i=1,...,t
i=1
The above class of algorithms queries only a single gradient oracle each time step, and it covers many
widely used gradient-based algorithms, including gradient descent, accelerated gradient descent, etc.

The following theorem establishes the first lower bound on the local regret in online nonconvex
optimization for all linear-span algorithms with SGO feedback defined in Definition 1.

Theorem 1. Consider any algorithm A that satisfies Definition 1 and has access to a single gradient
oracle V f; at each iteration. Then, for problems with the dimension d > Q(1 + Vr), there exist
{ft}521 with function variation Vr (defined in eq. (2)) and satisfying Assumption 1, for which
R(T) > Q1+ Vp).

Theorem 1 shows that the hardness of the problem over any linear-span algorithm is entirely deter-
mined by the function variation defined in eq. (2), i.e., the changes of the objective functions. If the
objective function f; is totally different from the previous functions, then all previous learning history
is not helpful, and the agent is forced to learn each f; from scratch. In such a case, the local regret
must be Q(7"). Nonetheless, if the changes of functions are small and scale sublinearly with 7', it can
be possible to achieve a sublinear regret.

As a comparison, although the existing works (Hazan et al., 2017; Guan et al., 2023) provided lower
bounds on the local regret that can instantiate to our setting of SGO (Hazan et al. (2017, Theorem
2.7) with w = 1 and Guan et al. (2023, Theorem 1) with w = 1 and o = 0), their resulting lower
bounds do not capture the impact of the function variation V. They are vacuous with the order of
Q(T). In contrast, our lower bound in Theorem 1 is tighter and problem-dependent by capturing how
the function variation affects the hardness of the problem.

Proof Outline of Theorem 1. The details of the proof can be found in Appendix A.1. The main idea
of the proof is as follows. Given a total budget of V- on the function variation, the objective function
can have Q(1+ Vr) times of rapid change. Thus, we divide the total time steps into €(1+ V) blocks,
choose the same objective function within each block and change the objective function across blocks.
We then construct a series of functions whose gradients are orthogonal to each other and assign them
to these blocks, which hinders the agent from constructing V f; () based on feedback from previous
blocks. This construction of {f;}7_, forces the agent to restart the learning process in each block.
The agent suffers from a high value of ||V f;(z)||? at the beginning of each restart, and thus the local
regret is doom to be Q(1 + V). O

3.2 LoCAL REGRET OF ONLINE GRADIENT DESCENT

Consider the simple online gradient descent (OGD) algorithm described in Algorithm 1, which clearly
belongs to the class of linear-span algorithms defined in Definition 1. At each iteration ¢ + 1, the
OGD algorithm with constant stepsize 1 > 0 takes the update

Tt41 = Tt — vat(mt)~ 3)
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Algorithm 1 Online Gradient Descent (OGD)
Input: Initial point =1, stepsizes n
fort=1,...,7T do

Update x;1; based on eq. (3)
end for

Our next result shows that OGD achieves the local regret O(1 + V) for online nonconvex optimiza-
tion, which matches the lower bound in Theorem 1. This implies that OGD is optimal in the class of
linear-span algorithms for online nonconvex optimization with SGO.

Theorem 2. Suppose Assumption 1 holds. Consider Algorithm 1 with initial point 1 = 0, and

stepsize n = L% Then, we have R(T) < O(1 + Vr).

The proof of Theorem 2 is included in Appendix A.2. The main idea is to leverage the Lipschitz
smoothness of each objective function to connect the local regret to the cumulative difference
Zthl fir1(xs11) — fe(z4y41) that is upper-bounded by Vr.

4 ONLINE NONCONVEX OPTIMIZATION WITH SSGO

In many practical online learning scenarios, the exact gradient feedback may not be available, and
one has access to only noisy stochastic gradient oracles. Thus, in this section, we consider the setting
where only a single stochastic gradient oracle (SSGO) is available at each time step. We adopt the
following standard unbiasedness and bounded variance assumptions on the stochastic gradient, which
is widely adopted in the online optimization literature (Agarwal et al., 2010; Flaxman et al., 2005;
Hallak et al., 2021; Hazan et al., 2017; Guan et al., 2023).

Assumption 2. For every t, the stochastic gradient gi(x) (as an estimator of the true gradient

V fi(x)) satisfies that for all x € R?, E [g¢(z)] = V fi(z) and E [||gt(m) - Vi (x)Hﬂ < o2, where

O'g is the variance of the stochastic gradient feedback.

4.1 LOWER BOUND ON LOCAL REGRET WITH SSGO

We first establish a novel lower bound on the local regret of the class of linear-span algorithms defined
in Definition 1 in the nonconvex SSGO setting.

Theorem 3. Suppose that an algorithm A satisfies Definition 1 with V fi(x;) replaced by its stochastic
version gi(xy). Then, for problems with the dimension d > ) (\/T(l + VT)), there exist { f+}72,
with the function variation Vr (defined in eq. (2)) and satisfying Assumption 1 as well as {g:}32,

satisfying Assumption 2, for which E [R(T')] > Q (O'g VvI(1+ VT)>.

Proof Outline of Theorem 3. The detailed proof is provided in Appendix B.2. Rather than taking the
sigmoid function as the basic example function in the proof of Theorem 1, we adopt the components
of hard-to-learn function in offline nonconvex optimization (Carmon et al., 2021; Arjevani et al.,
2022) to construct the hard case here, to capture how the randomness of the stochastic gradient can
hinder the learning process. O

Theorem 3 provides the first meaningful lower bound on the local regret for online nonconvex
optimization with SSGO feedback. It captures how the regret scales with the variance of stochastic
gradients, the number of iterations, and the function variation. The existing result only provides a
vacuous §2(7T) lower bound by taking w = 1 in Guan et al. (2023, Theorem 1).

Compared to the lower bound in Theorem 1 for the SGO setting, the lower bound in Theorem 3
is larger due to: (a) \/T'(1+ V) > Q(Vr) because Vr < O(T') and (b) the positive variance o.
Hence, stochastic gradients cause the problem to be harder than exact gradients.

4.2 LOCAL REGRET OF ONLINE STOCHASTIC GRADIENT DESCENT

In this subsection, we show that the standard online stochastic gradient descent (OSGD) algorithm
achieves the lower bound on the local regret in the nonconvex setting with SSGO feedback.
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Algorithm 2 Online Stochastic Gradient Descent (OSGD)
Input: Initial point =1, stepsizes n
fort=1,...,7T do
Update x;,; based on eq. (4)
end for

At each t, the OSGD algorithm (see Algorithm 2) with constant stepsize 1 > 0 takes the update
Tiy1 = Tt — ngt(xt), 4)

where g, is the stochastic gradient that satisfies Assumption 2.

Our lower bound in Theorem 3 implies that the lowest possible regret for the class of linear-span
algorithms to expect is O (ag vT(1+ VT)). The following theorem shows that such an optimal
rate for linear-span algorithms is attained by OSGD.

Theorem 4. Suppose Assumptions 1 and 2 hold. Consider Algorithm 2 with initial point x1 = 0, and

stepsize ) = min { Zil , G%]q / HTVT} Then, we have E [R(T)] < O (09\/(1 + VT)T).

Proof Outline of Theorem 4. The detailed proof is provided in Appendix B.3. The main step lies in
decomposing the regret into the tracking error of the stationary points, which is bounded by O(%),
and the variance of the stochastic gradient (by taking the conditional expectation given the history
information) which is bounded by (’)(7703). Then, the final regret bound can be obtained by the best
tradeoff between the tracking error and the variance via the stepsize 7. O

Theorem 4 provides an upper bound on the expected value of the local regret. Next, we establish a
more refined characterization of the local regret with a high probability guarantee. To this end, we
first state the following boundedness assumption on the stochastic gradient.

Assumption 3. For any t and x € RY, there exists a constant G > 0, such that the stochastic
gradient satisfies ||g:(z)|| < G almost surely.

Theorem 5. Suppose Assumptions I to 3 hold. Consider the OSGD Algorithm 2 with initial point

11
2Ly oy

1—&wehave R(T) <O (O'g (1+ VT)T) +0 (ag\/JW).

Theorem 5 shows that if the stochastic gradient feedback has a bounded norm, the local regret
concentrates around its expected value with high probability.

x1 = 0 and stepsize n = min # } Then, for any 0 < & < 1, with probability at least

Proof Outline of Theorem 5. The detailed proof is provided in Appendix B.4. Below we summarize
our main proof steps. In the proof of Theorem 4, we have shown that conditioned on the filtration

_ 1 Linc?
Fi=0o(g1(x1), ., 9e-1(xe-1)), [V Fi(ze)? < f‘(x‘)(l%[étl(g)”; UFe 2(11_721"77). Based on the

above property, we can construct the following super-martingale sequence Zy = 0, and Z; 11 =
2
Zy 4+ |V folay)||? — Lo =Seeee) 1% It can be shown that |Z; — Z;_1| is bounded by a

(I—Linn  ~ 2(0—Lin)"
certain constant. Then by applying the Azuma-Hoeffding inequality to {Z;}, we can obtain a high
probability upper bound on the local regret. O

5 ONLINE NONCONVEX OPTIMIZATION WITH SVO

In this section, we study the online nonconvex optimization problem with the agent having access to
only a single function value oracle (SVO) feedback at each time t.
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5.1 ALGORITHM DESIGN

The setting with SVO feedback is much more challenging than the gradient feedback because with
only a single function value, the gradient of the function cannot be estimated accurately. The
conventional one-point gradient estimator (Flaxman et al., 2005) has been used in online optimization
and is also widely adopted in offline gradient-free algorithms. The performance of such an estimator
is much worse than the standard two-point gradient estimator used previously in online optimization
(Agarwal et al., 2010). Albeit the great performance gain, the two-point estimator cannot be used in
our setting of SVO because it requires two function value oracles at each time step.

Hence, our goal here is to design an online algorithm that requires only a single function value oracle,
but achieves the same regret as that of a two-point estimator. To this end, we design the following
one-point gradient estimator based on the running difference of online function values:

6ft(ﬂft) = % (fe(we + 0ug) — fro1(ze—1 + dus—1)), Q)

where u; is drawn from the uniform distribution over unit sphere on R¢ independently from history.
Such an estimator uses the consecutive value feedback to construct a similar residual structure as the
two-point estimator. Our idea is inspired by the one-point residual estimator proposed in Zhang et al.
(2022) for offline optimization but has a subtle yet critical difference. The one-point residual estimator
in Zhang et al. (2022) is given by V fi(z:) = % (fe, (x4 Oug) — fe,_y (x4—1 + Sug—1)), where
& and &_ 1 are two samples following the same distribution as the sampling variable £. Thus, both
fe, and fe, | are unbiased noisy samples of [E¢[f¢|. However, in our one-point running difference
estimator, f; and f;_; are two online functions and can be very different. Their relationship is only
captured by the function variation over time. This difference causes a significant difference in the
theoretical analysis: our analysis relies on the function variation V7 to bound the regret in online
optimization, whereas the analysis in Zhang et al. (2022) exploits the stochastic unbiased property
of the two functions in offline optimization. Compared to the one-point estimator used in Guan
et al. (2023), our estimator does not skip updates in every other iteration and thus is much more
sample efficient. We then propose an OGD-type algorithm (see Algorithm 3) for online nonconvex
optimization with SVO feedback, which uses the one-point running difference gradient estimator
given in eq. (5) to update the variable.

Algorithm 3 OGD with One-point Running Difference Estimation

Input: Initial point x1, stepsizes 7 and parameter §

fort=1,...,T do
Draw u; from the uniform distribution over the unit sphere and observe f;(x; + duy)
Let Vfi(ze) = 4 (filze + 6u) — fr1(we—1 + Sup—1)) ue
Let Ti41 = Tt — T]Vft($t)

end for

5.2 REGRET ANALYSIS

As aforementioned, the technical analysis of Algorithm 3 in online optimization is very different from
the one-point gradient residual estimator in offline optimization. In particular, our main technical
development lies in providing a novel upper bound on the magnitude of the one-point running
difference gradient estimator regarding the function variation (see Lemma 1). With such a property,
the local regret can be further bounded via the function variation.

Lemma 1. Suppose 1 and § are chosen satisfying n < 0/(4Lod). For Algorithm 3, we have

1
=T

t
N 2 2
i ||| + 48 Y e fen el 16213, ©6)

T=2

|95 <

Proof Outline of Lemma 1. The proof of Lemma 1 is provided in Appendix C.1. It mainly relies on
two developments: (a) extracting the function variation from the form of the gradient estimator; and
(b) constructing the contraction of gradient norms by selecting sufficiently small stepsize. [

Applying Lemma 1, we establish the following upper bound on the regret for Algorithm 3.
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Theorem 6. Suppose Assumption 1 holds. Consider Algorithm 3 with initial point x1 = 0, per-
turbation 6 = /(1 + V) /T and stepsize n = 6 /(4Lod). Then, the expected local regret satisfies

E[R(T)] < O(d\/(1+ V)T).

The result in Theorem 6 indicates that our one-point running difference gradient estimator (when
applied to OGD) achieves the regret lower bound that a generic stochastic gradient oracle can best
achieve (i.e., Theorem 3), where the variance of our gradient estimator is at the order of (’)(d2). We
will also show below that our one-point estimator yields the same regret as the standard two-point
estimator. Both of the above facts indicate that Algorithm 3 achieves a desirable regret performance.

Proof Outline of Theorem 6. The detailed proof is provided in Appendix C.2. Differently from the
proof of Theorem 4, the main technical development here lies in upper-bounding the bias and
variance of our one-point running difference gradient estimator. More specially, the bias term satisfies

E [@ft(xtﬂft] =E [%ft(xt + 5ut)ut\}}] = V fi.s(z¢), which can be shown to be bounded by

O(9). The variance term has been bounded in Lemma 1. Then, the tradeoff between the bias, the
variance, and the tracking error of the stationary points via ¢ and 7 provides the best regret bound. [

Comparison to standard one-point and two-point estimators: Previous online optimization studies
(Flaxman et al., 2005) mainly adopted the conventional one-point gradient estimator, for which it
can be shown (see Appendix D.1) that the local regret of OSGD with such an estimator in online
nonconvex optimization is bounded as IE [R(T')] < O(d(1+ Vy)3T%). As a comparison, Theorem 6
obtained by our one-point running difference estimator achieves much smaller regret (note that V-
scales at most with the order of 7', and can scale much slower than 7T'). Furthermore, it can be
shown that the local regret of OSGD with standard two-point gradient estimator (Agarwal et al.,
2010) satisfies IE [R(T)] < O(d+/(1 4+ V)T (in Appendix D.2). Clearly, Theorem 6 shows that
our one-point estimator achieves the same regret as the two-point estimator. This is the first result
in online nonconvex optimization that establishes that one function value oracle achieves the same
regret as two oracles.

Since Lemma 1 has already provided an upper bound on ||§ ft(x¢)||, we can further obtain the
following high probability upper bound on the local regret without making a further assumption on
the norm of “gradient” as in Assumption 3.

Theorem 7. Suppose Assumption 1 holds. Consider Algorithm 3 with initial point ©1 = 0, pertur-
bation 6 = (14 Vp)/T, and stepsize n = §/(4Lod). Then, for any 0 < £ < 1, with probability at

least 1 — & we have R(T) < O (d\/T(l + Vr)log (1/5))

Proof Outline of Theorem 7. The detailed proof is provided in Appendix C.3. Below we summarize
our main idea of the proof. In the proof of Theorem 6, we have obtained the following bound:

I Fua)]| < De0=ttes) 4 1 poas ¢ Lo |97, @)|?| 7]

Based on the above bound, we construct the following super-martingale: Yy = 0, and Y;4; =
Y: + IV fe(xe)]]? + M — L1 LodS — %H@ft(xt)HQ We then construct a sequence of
scalar ¢; such that ¢; > |Y;1 — Y;|. Finally, we obtain the probability bound on the local regret by
applying Azuma-Hoeffding inequality and upper-bounding Zthl 2. O

6 CONCLUSION

In this paper, we investigate the online nonconvex optimization with a single oracle feedback per
time step. We take the local regret of original objective functions as performance metric and study
three single oracle settings: with an (exact) gradient oracle, with a stochastic gradient oracle, and
with a function value oracle. We provide the first regret lower bound for both the exact and stochastic
gradient oracles, and we show that the online (stochastic) gradient descent can achieve the optimal
local regret for the class of linear-span algorithms. For the setting with function value oracle, we
propose one-point running difference gradient estimator and show that incorporating such an estimator
into online gradient descent achieves a local regret that a generic stochastic gradient oracle can best
achieve for the class of linear-span algorithms.
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Supplementary Materials

A PROOFS OF SECTION 3
In this section, we provide the proofs for Theorems 1 and 2 in Section 3.

A.1 PROOF OF THEOREM 1

The main idea of the proof is as follows. Given a total budget of Vi on the function variation, the
objective function can have Q(1 + Vr) rapid changes. Thus, we divide the total time steps into
Q(1 + V) blocks, choose the same objective function within each block and change the objective
function across blocks. We then construct a series of functions whose gradients are orthogonal to each
other and assign them to these blocks, which hinders the agent from constructing V f;(z;) based on
feedback from previous blocks. This construction of { f;}7_, forces the agent to restart the learning
process in each block. The agent suffers from a high value of ||V f;(z;)||? at the beginning of each
restart, and thus the local regret is doomed to be (1 + V7).

To present the detailed proof, we first specify the objective functions for each block. Define the
one-entry sigmoid functions as

fk(l') M @)

1+ exp([z]r)’

where ¢ > 0 is a constant that will be determined later, and [z];, is the k-th entry of the vector x.
Clearly, we have, 0 < fr(z) < ¢, and

: cexp ([z]:)
Vv =" ¢,
Tee) = 5 exp ([l 2
with ey, is the kth basis of the Euclidean space. Then we have, for every x and y,
~ ~ ~ c
|fe(x) = fr(2)] < sup [V fr(z)] < B
rER4
and
- - V3e
IVFu(z) = VIl < Zg-lle = yll

Therefore, by taking ¢ = min{M, 2L, 6+/3L1}, each fr (x) satisfies Assumption 1.

We now divide the total T iterations into (%1 — 2 blocks, and let B = LV;:S-lJ be the length of

each block. Within each block, we fix the objective function, i.e., for all k,

f(k—1)B+1(CU) = f(k—l)B+2($) =...= fep(x) = fk(x)
Thus, due to our construction, we have

]

T+1 e
qu = Z sup |fi—1(x) — fi(z)] = Z sup |frr+1(x) — fex ()]
t=2 zER4 k=1 zERY

(1225 <

Due to our construction, for the k-th block, the gradients received from the previous £ — 1 block
reveal only the first kK — 1 dimensions. Thus, by Definition 1, [x;5+1]x = O for all k. And we have

IV frpi1(@ep)|? = Cz
Therefore, we have
- il 1+V,
RT) =D IIVAEE@)IP > D [IVip@)]® =c q TW _ 2> — Q1+ V).
t=1 k=1

13
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A.2 PROOF OF THEOREM 2

The main idea for this proof is to leverage the Lipschitz smoothness of each objective function to
connect the local regret to the cumulative difference E;F:l fre1(xeq41) — fi(xeqq) that is upper-

bounded by V. By the L;-gradient Lipshitz condition of f;(x), we have
L
Je(@eg1) < fe(@e) + (Vfe(@e), meq1 — 20) + 71||$t+1 —ay|?

. 2
9 e~ (n- B0 ) 194Gl

ii 1
2 e = SV AP, ®)

where () follows from the update rule in eq. (3) and (47) follows because n = L%

Rearranging eq. (8) and telescoping, we have

T
R(T) = IV i)l
t=1
<2L1 Y (filwe) = filwen))

=2L1(fi(21) = fr(@rs1) + 200 Y (frra (@) = folern))

t=1
©)
< 4L M + 2L, V7,
where (7) follows from the upper bound of the function value and the definition of V.

B PROOFS OF SECTION 4

In this section, we first introduce the hard-to-learn nonconvex function constructed by Carmon et al.
(2020). This function is utilized next in the proof of Theorem 3. We then provide the proofs of
Theorems 3 to 5.

B.1 HARD-TO-LEARN NONCONVEX FUNCTION

In Carmon et al. (2020), the authors constructed a special nonconvex function that is hard for a
gradient-based algorithm to learn. The function Fi : RX — R is defined as

K
Fre(w) = =00 &([a]1) + Y _[U(~[a]im1)®([2)s) — ([a)i-1)®([2]y)], ©
=2

where K is a certain integer, [z]; denotes the ith entry of x, and the ¥(z) and ®(z) are defined as

0 z2<1/2

eXp(l—Qzll)z) z>1/27

B(2) = \/g/; exp <_t;) .

The hard function satisfies the following properties (Carmon et al., 2020).

U(z) =

and

|Fi(z)| < 24K (10)
IVFk ()| < 23VEK (11)
[VFk(z) = VFk(y)| < 152]|z — y]|. (12)
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B.2 PROOF OF THEOREM 3

Rather than taking the sigmoid function as the basic example function in the proof of Theorem 1, we
adopt the components of the aforementioned hard-to-learn function in eq. (9) to construct the hard
case here, to capture how the randomness of the stochastic gradient can hinder the learning process.

1+Vp
k-th block containing the iterations (k —1)B + 1, (k — 1)B + 1,. .., kB. Moreover, the objective

functions f; within 741 are fixed to be a same function fk (z), i.e., for all k,

‘We divide the iterations into blocks with size B, and we set B = PM(TH)] . Denote 7}, to be the

fep1(2) = frpra(@) = -~ = fuanp(@) = fr(@),
where fi,(z) is defined as
fr()
2Py ([w]{(k1>i+1,...7k3})
= AU ®([z]k-1)B+1)
+eA? i[‘l’(—[l‘](lﬂ1)B+i1)¢’(—[9€](k1)3+i) = V([ k-1 Bri-1) ([ (k—1)B14)],

(13)

_ Ly oy _ 1 {1520, [10M . - . 2727 _
where ¢ = &L, X\ = \/len{ s ) S }, and K is an integer satisfying [02K?| = B.

Moreover, [x]; denotes the i-th entry of z, and [2](,,... ;) denotes the (b — a + 1)-dimensional vector
consisting of the entries [z],, .. ., [2]p.

We now verify that fk(a") satisfies Assumption 1. Using eq. (10), we obtain

N2 F (mh(’“)i*l““”m})’ < ZC/\2K < M. (14)

Next, by eq. (11), we have

’V <c/\2FK <[x]{(k1)B+1,..‘,kB}>) H _ o

A A
< 23¢VKA < Ly, (15)

which implies the Ly-Lipschitz continuous property.

’VFK ([x}{(kl)BJrL,,.,kB}) H

Moreover, by eq. (12), we obtain

‘ v (C/\QFK ([x]{(kl)BJrl,.u,kB})) _v (C/\QFK ([y]{(kmBH,...,kB})) H
A A

— )| VFK [x}{(kﬂ)BH ..... kB} \ V) [Z/]{(k71)3+1 ..... kB}
A A
< 152c||z —y||
< Lifz —yl. (16)

The eqgs. (14) to (16) prove that every f; satisfies Assumption 1. We next show that our choice of the
length B of each block ensures that the function variation does not exceed V. The function variation

ij of our construction is upper-bounded as follows:

— L& (@) T+1
V= Y s feae) = Aol = Y s i)~ fuclo)] < 200 |52
t=2 T€R k=1 *E€R?

where () follows from eq. (14). Since we set B = [%—‘ , we have ij < Vr. And, the choice

of K is determined immediately by the relationship [02K?| = B.
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Lastly, we let the stochastic gradient oracle g;(z) be

lg0(@)), = V()] <1+1{i>proji<w>} (Zt—l>)7 an

p

where proj (z) = max {i > 0| |[z];| > }}, and 2 ~ Bernoulli(p) with p = min {1 e }
Clearly g;(z) is unbiased and, by Arjevani et al. (2022, Lemma 3), the variance of g;(x) is smaller
than o,. Hence, the construction of g;(x) here satisfies Assumption 2.

Based on our designed functions f; and the stochastic gradient oracles g;, we next prove the regret
lower bound. At each block k, the stochastic gradient oracle feedback obtained from the previous
k — 1 blocks all lie in the first (k — 1) K dimensions of z. Therefore, due to Definition 1, we have
[T (k—1)K](k—1)K +1,... .k k = 0. And the objective function within the k-th block depends only on the
(kK — 1)K + 1-th of x up to its kK -th entry. Thus, the optimization within the k-th block equals the
offline optimization with total K iterations of updates. Applying Arjevani et al. (2022, Lemma 1),

with probability greater or equal to %, forall kB + 1<t < kB + min {%pg@), B}, we have

IV fulw)]| > ex =0 <\/17() (18)

We then conclude from eq. (18) that

B
E Y IV frpti(@rped)|

i=1 2p

Q0 (;{) ~min{K_10g(2),B} =0 (0lK). (19)

We next derive the following bound on the expected value of the local regret:

E[R(T)) =E ant |2]
_T%IJH

K
—F Z Z\|ka3+i($)”2

=Qogv/T(1+ Vp)). (20)

where (i) follows from eq. (19).

B.3 PROOF OF THEOREM 4
The main step lies in decomposing the regret into the tracking error of the stationary points which
is bounded by O (%), and the variance of the stochastic gradient (by taking the conditional

expectation given the history information) which is bounded by O (7703) . Then, the final regret bound
can be obtained by the best tradeoff between the tracking error and the variance via the stepsize 7.

To proceed the proof, following from the L;-gradient Lipshitz condition of f;(x), we have
L
fe(wer) < fr(@e) +(Vfe(@e), Tep1 — @) + ?1“35#1 —ay|?
i Lin®
= fi(@e) =V fe(21), 9¢ (1)) + THQt(Z‘t)HQ

< e m ), ane) + L) — VAP + LVl @D
where (4) follows from the update rule in eq. (4) and (4¢) follows from the Young’s inequality.
Taking expectation conditioned on z; on both sides of eq. (21) and applying Assumption 2, we have

E [fi(zeen)|ad] < fe(ze) —n (1= Lin) |V fe(zo)|1? + Lin’o). (22)
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Taking expectation on eq. (22), rearranging and telescoping, we have

E [R(T)]
T
=Y E[IVfi(a))]
=1
! 3 no?T
< 0 Loy 2 BVl ~ fienl + 700
: T no?T
~ (- L) (E @) = fraa(@re)] + ;]E [fra1(2e41) — ft(:vt+1)]> +1 _ng
Q # nagT
=i~ L) (M +2Ve) + — Ly’ (23)

where (7) follows from the upper bound of the function value and the definition of V. Applying the
definition of 1, we complete the proof.

B.4 PROOF OF THEOREM 5
Define a sequence of random variable {Z;}$2; as

fe(zer1) — fi(@) y

n

ZQ =0 and Zt+l = Zt +

1— L) ||V fe(ze)||* = Lino,.

Define F; = o(x1, %3, .., 2¢). Due to eq. (22), we have
E[Zi11|F] < Z;.

Moreover,

Ziss — 24 = f'f(””t“)n‘ Je@) 1 L)V f )| - o

(@)
< LoG + L3 +o,L1 M,
where (i) follows because

|fe(xeq1) = fe(xe)| < Lollwe — 21| = Lon||ge(ze)]| < LoGh,
and |V f;(z,)||* < L}, and n < UMQ

Therefore, {Z;}$°, is a super-martingale with a bounded difference. Applying the Azuma—Hoeffding
inequality to Zr 1, we have

2

€
Pr(Zrs1 — Zo > €) < 2exp | — .
HZrn-Zoze) s eXp< 2T(LOG+L%+0—9L1M)2>

By taking € = \/QT(LOG + L2 + 04L1M)?log (%), we have, with probability greater or equal to
1 - 69

2
Zry1 < \/2T(L0G + L2+ 0,L1M)?log (£>

Using the definition of Zr,; and rearranging the terms, we have, with probability great or equal to

1-¢,
T

R(T) = SNV ol
t=1

1 1 nagT

< —(2M 4+ 2Vp) +
W0 =L O T T = L

Substituting the definition of 7 into the above inequality completes the proof.

2
+ \/2T(L0G + L2+ 0,L1M)?log <§>
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C PROOFS OF SECTION 5

C.1 PROOF OF LEMMA 1
We upper-bound the variance term ||V f;(z)||? defined in eq. (5) as follows.

N 2
vat(ilft)
2
52 (fe(xe + 0uy) — fioa(zem1 + 5Ut—1))2
2

ﬁ(ft(xt +0ut) — fi(we) + fe(we) — fro1 (@) + feoa () — fio1(26-1)

+ fi1(weo1) = feoa (1 + 5“#1))2

4d? A2 2
< 672(]%(1'15 + 0u) — fr(ze))? + ?(ft(fﬂt) — feoa(m))? + 5T(ft—1($t) — fi1(2-1))?
2
+ %(ftfl(xtfl) - ftfl(iftﬂ + 6us_1))?
() AT2d212
< M Hfo (-1 H (ff(xt) ft—1(56t))2 +8d2Lg, o4

where (i) follows because f; and f;_; are Lo-Lipschitz continuous, and z; — z;—1 = nV feo1(me—q).

Since n < ; L ~» we have % < % Iteratively applying eq. (24), we obtain
< 4d2 : T T)  JT— T 2
HVft(:rt HVfo 7o H (Fr(@r) Qti 1(zr)) + 16d*L2. (25)

C.2 PROOF OF THEOREM 6

Differently from the proof of Theorem 4, the main technical development here lies in upper-bounding
the bias and variance of our one-point running difference gradient estimator. More specially, the bias

term satisfies IE [@ft(xtﬂ}'t] =E [%ft (¢ + §ut)ut|}'t] = V fi,5(x¢), which can be shown to be

bounded by O(4). The variance term has been bounded in Lemma 1. Then, the tradeoff between the
bias, the variance, and the tracking error of the stationary points via é and 7 provides the best regret
bound.

To proceed the proof, following from the Lipschitz-smooth condition, we have

Je(xerr) < filwe) + (Vfelae), w1 — a4) + %th-s-l - ftH2

= felwe) = (Y fole), V fi(we)) + (z)]%. (26)

Taking expectation on both sides of eq. (26) conditioned on F; := o (uq, ..., us—1), we obtain
E [fe(e41)[F]
< filwr) =0 (Vfulwe) B[V fulan)

ft}> + L12772]E [H@ft(:lft)nz‘ft}

= i)~ (Vo). Ve + B [Sea| F] - Thi)) + B9 2|7

< o) =l Ol + nla [ [ uGe0| 5] - Vi) + B [19 5t P 7]

(1) Ly Lodé Lin?

< fulw) =V A + 5+ SRR
where (i) follows from the Cauchy-Schwartz inequality and because |V fi(z)|| < Lo, and (i)
follows from the following Lemma 2.

[NZZERIRAR @7
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Lemma 2. For every t, we have

Lydo
5

e[

ft} - Vft(-rt)

Proof. Using the definition of V f,(x;), we have
[ [Vt !ft] - Vs

]-'t} V fe(xy)

=

i)

’E [dut (f (l't 4 5%5) ft(wt — 5Ut)) - d<Vft(’ut),Ut>Ut

20
e o (=)

() Lydo

< )

- 2
where (7) follows from Agarwal etal. (2010, Lemma 7) and (i%) follows because | fe(xe + oug) —
Fol@e) + (V folme), Su)| < B0 | il — Sug) — fulwe) + (V filwe), ug)| < £ and

fe(ze + 0uy) — fe(wy — duy)

7

t

— (Vfi(xy), duy)

2
_ Je(we + 0ug) — fe(x)(V fe(e), duy) B Je(xy = 0ug) — fi(we) + (V fie(ze), duy)
2 2
< fe(xe + 0ug) — fi(xy) — (V fie(2e), duy) I fe(xe = 0ug) — fi(we) + (V fi(xe), duy) '

2 2

Rearranging eq. (27), we obtain

LyLos L
S04 IR V@A) e®)

IV felzo)l” < % (fi(z) = Efe(@e1)|F]) +

Taking expectation on both sides of eq. (28) and telescoping, we obtain

T
L1L05T Ll’I] =
D) N B Z ||Vfo(xo)||2

t=1

ZE fe(@e) = fr(za)] +

(29)

To upper-bound the last term of eq. (29), we take a summation of eq. (25) over ¢ = 1 to T" and obtain

T
Z Hﬁft(zt)
t=1

"< H@fo(zo)H2 : Z L ZZ (frlwr) = froan@e))® g2 ap

— Q-7
R Y T—t
S 2 HVfO(l’O)H + (5T Z <(ft(xt ft 1 l‘t Z 27> + 16d2L2
=0
gzuﬁfo(a;o)H2 = Z folwy) = fioa(x0))? + 16d2L2T. (30)

Substituting eq. (30) into eq. (29), we obtain

Ly LoddéT

5 + Lin||V fo(zo) |2

ZE fe(@e) = felwg)] +
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AL nd? &
+ 8Ly Lind°T + ;;7 Z(ft(xt)—ft 1(z))?

t=1

T
x 1 Ly LodéT
_ fil@) = fra(@r) + IS B ) - fulwgn) + 22200
U i3 2
& 2 2,12 4Lynd? - 2
+ Lin||V fo(zo)||” + 8L1Lgnd™T + 52 > (filwe) = froa(a)
t=1
@) 2M V; L1LodST — 4Lyd*>M?> 8M Lind?V;
< 2 Ty TR0 | AT | gr p2ndPT 4 SEEVICTT gy
n n 2 02 5?2
where (i) follows because ||V fo(z0)]|| < %fd and
T T
Z fe(@e) = fra(@)? < QMZ [fe(xr) = fra(ze)| < 2M V.
t=1 t=1
Substituting the definition of 7 and ¢ into eq. (31), we obtain
E[R(T)) < O (d\/(l ¥ VT)T) .
C.3 PROOF OF THEOREM 7
Define a sequence of random variable {Y;}$°, as
x — fi(z LiLodé L
YO =0 and YiJrl _ Y;; + ||vft(xt)||2 + ft( t+1) ft( t) M 20 1n||vft(xt)||2
Define the filtrations F; = o(x1,. .., ). By eq. (28), we have {Y;} is a super-martingale. Moreover,
we have
T — fi(x LiLodd L
Vs — Y| = \nwt(xt)nz N t“)n Sl Dot TG )2
(i) N LiLodd L
< (o4 LallFatel + 290+ BT @) = o
where (i) follows because ||V f;(z;)|| < Lo and
Ji(@err) = fi(@) < Lollwer =zl = nLol|V fi(wo)Il
Applying the Azuma—Hoeftding inequality to Y7, we have, for every € > 0,
2
Pr (YT+1 2 6) S 2€Xp _T72 . (32)
t=1Ct
We next provide an upper bound on Zthl 3.
~ LiLodd | Lin 2
th -y (22+ Lol ¥ sl + 252 4 B9
t=1
@) T T
< ALT ALY VRGP + IS + B S (19 Ael?)’
t=1 t=1
@ 4 2TA 2 272 7252 22T’\ 2
< ALT +4L5 Y [V fila) P + LRLGA*0°T + Lin® | DIV AG)I® ) 33
t=1

where (i) follows by applying (a + b+ ¢ + d) < 4a® + 4b% + 4¢? + 4d? to every term in the
summation, and (i7) follows because Y - ; 27 < (Z?:l x;)? when x;’s are all positive.
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Applying Lemma 1, we have

Tr R T o T ¢ _ 2
S IV < val(xl)HQ <Z 2t11> + % SN (r(@r) — froaf@n)) + 16d*L3T
=1

t—7
t=11=2 2

AM2d? 4d? & Lo
< T + 5T (fr(l"r) - fT—l(xT))Q (z; ot—7 + 16d2L(2)T
t=1 T=

4M2d> n 8d*MVr

5 T 16d*L2T

i

< 16d*(LE + M*)T, (34)

—
a2

where (7) follows from the facts that § = 4/ # and Vpr < MT.

Substituting eq. (34) into eq. (33), we obtain

T
16L2
> et (AL} + 64L3d* (LG + M?))T + LIL3(1 + Vi) + GL; d?(L2 + M*)*T(1 4 V).
t=1 0
Therefore, there exist a constant C' > 0, such that
T
> ¢ <Cd’T(1+ Vp). (35)
t=1

Substituting eq. (35) into eq. (32) and taking € = \/ Cd*T(1+ Vr)log (%) , we have, with probabil-

ity greater or equal to 1 — &

Yoo < d\/CT(l + Vr)log (2) (36)

Substituting the definition of Y7 ; into eq. (36) and rearranging, we obtain, with probability greater
orequaltol — ¢

R(T) = IV Fila)l?

2M VW, L1 LoddT  4L1d*>M?
Sf—i—fT—I— 140 + 12 n
n n 2 1)

+ d\/CT(l + Vi) log <z)
~0 (d\/T(l + V) log (2)) . 37)

D CONVENTIONAL ONE-POINT AND TWO-POINT GRADIENT ESTIMATORS

8ML1’I7d2VT

+ 8L, L3nd®T + 57

In this section, we introduce the conventional one-point and two-point gradient estimators, and
provide the corresponding regret bounds if these estimators are adopted by OGD. These results serve
as comparison to the new running difference gradient estimator that we propose in Section 5.

D.1 REGRET OF CONVENTIONAL ONE-POINT GRADIENT ESTIMATOR

Consider the following one-point gradient estimator (Flaxman et al., 2005), which has been used in
online convex optimization and is also widely adopted in offline gradient-free algorithms.

. d
Vfi(ze) = gft(xt + dug)ug, (38)
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where u; is drawn independently from the uniform distribution over the unit sphere in R%. It has been
shown that

E [6 ft(m] = Vfis(xe),

where f; 5(x) = E,[fi(x + du)] with u be uniformly distributed on the unit sphere. Although the
expected value of such a one-point gradient estimator is close to the true gradient, i.e.,

B[V fi(@)] = V fol@)ll = |V frs(@) = Vfil@)]| < L6,

its variance explodes in the order of (9(5%). The trade-off between the bias and variance prohibits
us to choose a small §, and hence as we show below that the regret of OGD with such a one-point
gradient estimator can be large.

Consider the OGD algorithm with the above one-point gradient estimator as described in Algorithm 4.
The regret of such an algorithm is characterized in the following theorem.

Algorithm 4 OGD with Conventional One-point Gradient Estimator

Input: Initial point x1, stepsizes 7 and parameter §

fort=1,...,Tdo
Draw w; from the uniform distribution over the unit sphere
Observe fi(x¢ + du,) and let V fi(z,) = % - fi(xy + ouy)
Let Tyl = Tt — ant(act)

end for

Theorem 8. Suppose Assumption 1 holds. Consider Algorithm 4 with xo = 0, perturbation
1 3
0= (#) * and stepsize n = é (#) *. Then, the expected local regret satisfies
E [R(T)] < O(d(1 + V)iT3).

Clearly, the regret of OGD using the conventional one-point gradient estimator is much larger than
that of OGD using our running difference gradient estimator given in Theorem 6 (note that Vi scales
at most with the order of 7', and can scale much slower than 7"). The main reason is because the
conventional one-point estimator has a much larger variance and hence the tradeoff between the bias
and the variance requires a much large perturbation parameter 6 which is chosen to be (#)% . This
consequently leads to a worse regret than our one-point estimator.

Proof of Theorem 8. By the Lipschitz-smooth condition, we have

fless) S Fille) + (Vi) e = ) + e —

~ IAn? ~
= Julan) = n{9 fulr), ¥ fulw)) + Z5N fulae) |
. L d2 2M2
< fulw) = [V I P+ (¥ ulan), Vholae) = Viilao) + 55— (39)
Rearranging and taking expectation on both sides of eq. (39) conditioned on F; = o(uq,...,ui—1),
we obtain
@ fi(xs) — E[fe(zs1)|F Lyd*M?
IVhwo) £ HEIZEVEDI 940, T e - st + PG5
i) _ 2 012
(S fi(we) EE.;[t(CUt+1)|ft] + Lol;d(s + L1d25];4 77’ (40)

where (i) follows from the steps similar to those in the proof of Lemma 2 and (i¢) follows from the
Cauchy-Schwartz inequality, and because ||V fi(x;)|| < Lo, and ||V fi(x¢) — V fi s(xe)|| < L10.

Taking expectation on both sides of eq. (40) and telescoping, we obtain
E[R(T)]
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=D E[IVfila)|]

=1

~

LoleCST + leQMQUT

< fl(:zl) —E [fT+1(17T+1)] + 1 ZIE [ft-‘rl (th-&-l) - ft(xt)] +

7 n = 2 242
IM 2 2
_2M Ve | LoLaddT | LidMT
7 2 262

< O@d(1+ Vp)iT?h).

D.2 REGRET OF TWO-POINT GRADIENT ESTIMATOR

Although the two-point gradient estimator is not applicable to our setting with only a single function
value feedback, it serves as a desirable comparison benchmark for our designed one-point estimator.
In the literature, the standard two-point gradient estimators have been shown to achieve much better
performance than the conventional one-point estimator as well as a recently developed one-point
estimator in Zhang et al. (2022) in both online and offline optimization. In this section, by establishing
the regret of OGD with the standard two-point estimator, we will show that our running difference
one-point estimator can achieve the same performance as the standard two-point estimator.

Consider the standard two-point gradient estimator (Agarwal et al., 2010) given as follows:

V(@) = %(ft(ﬂct + dug) — fi(we))us. (41)

Compared to eq. (38), the two-point estimator in eq. (41) has the same expected value, but its variance
is bounded by L3d2, which is much smaller.

Now consider OGD with the above two-point gradient estimator as described in Algorithm 5. The
regret of such an algorithm is characterized in the following theorem.

Algorithm 5 OGD with Standard Two-point Gradient Estimator

Input: Initial point x4, stepsizes 1 and parameter ¢
fort=1,...,Tdo
Draw u; from the uniform distribution over the unit sphere
Observe fi(z¢ + dut) and fi(x:)
Let V fi(x;) = % (fe(we + 0ug) — fi(y)

Letzi41 = x4 — n?ft(l’t)
end for

Theorem 9. Suppose Assumption 1 holds. Consider Algorithm 5 with xo = 0, perturbation

_ [14+Vv, : _1 [11v
0 = \/ =L and stepsize n = 5/ =7

3 . Then, the expected local regret satisfies

E [R(T)] < O(dr/(1 + V)T).

Clearly, comparison of Theorem 6 and Theorem 9 shows that our one-point estimator achieves the
same regret as the two-point estimator, and they both outperform the conventional one-point estimator.
This is the first result in online nonconvex optimization that establishes that one function value oracle
achieves the same regret as two oracles.

Proof of Theorem 9. By the Lipschitz-smooth condition, we have
L
fe(wee) < fe(@e) + (Vfie(ae), w1 — @) + 71H93t+1 —ay|?

= Julw) =V Flw), Vi) + LIV Al
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2 = Ly Lod*n?
< folxe) = nlIV ez IIF +0{V folze), V(o) = Vfe(w)) + —F— (42)
Rearranging and taking expectation on both sides of eq. (42) conditioned on F; = o(uq,...,ui—1),
we obtain
) —E|fi(z F Ly Lod®
IV o) < S =BV 4 (9 ), ¥ o) = ¥ fus(on)) + 222
(4) -E LoL Ly Lod?
D fulz) [Jt(&”tﬂ)l}}] 4 Lo 21d5 LD 2od n 43)

where (7) follows from the steps similar to those in the proof of Lemma 2 and Cauchy-Schwartz
inquality.

Taking expectation on both sides of eq. (43) and telescoping, we obtain
E[R(T)]
T
Z ]E ||Vft (1) ]

=1

~+

IN

T
T T 1 LoL1d06T Ly L2d*nT
fi(z) — [;]fTJrl 7+1)] +5ZIE fon(zes) — fulae)] + 22 ; b 02 7
=1

O(d/T(1 + V).
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