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Abstract—Generating safe motion plans in real-time is a key
requirement for deploying robot manipulators to assist humans
in collaborative settings. In particular, robots must satisfy strict
safety requirements to avoid self-damage or harming nearby
humans. Satisfying these requirements is particularly challenging
if the robot must also operate in real-time to adjust to changes
in its environment. This paper addresses these challenges by
proposing Reachability-based Signed Distance Functions (RDFs)
as a neural implicit representation for robot safety. RDF, which
can be constructed using supervised learning in a tractable
fashion, accurately predicts the distance between the swept
volume of a robot arm and an obstacle. RDF’s inference and
gradient computations are fast and scale linearly with the
dimension of the system; these features enable its use within a
novel real-time trajectory planning framework as a continuous-
time collision-avoidance constraint. The planning method using
RDF is compared to a variety of state-of-the-art techniques and
is demonstrated to successfully solve challenging motion planning
tasks for high-dimensional systems faster and more reliably than
all tested methods.

I. INTRODUCTION

Robotic manipulators will one day assist humans in a variety
of collaborative tasks such as mining, farming, and surgery.
However, to ensure that they operate robustly in human-centric
environments, they must satisfy several important criteria.
First, robots should be autonomous and capable of making
their own decisions about how to accomplish specific tasks.
Second, robots should be safe and only perform actions that
are guaranteed to not damage objects in the environment,
nearby humans, or even the robot itself. Third, robots should
operate in real-time to quickly adjust their behavior as their
environment or task changes.

Modern model-based motion planning frameworks are typ-
ically hierarchical and consist of three levels: a high-level
planner, a mid-level trajectory planner, and a low-level track-
ing controller. The high-level planner generates a sequence
of discrete waypoints between the start and goal locations of
the robot. The mid-level trajectory planner computes time-
dependent velocities and accelerations at discrete time in-
stances that move the robot between consecutive waypoints.
The low-level tracking controller attempts to track the trajec-
tory as closely as possible. While variations of this motion

This work is supported by the Ford Motor Company via the Ford-UM
Alliance under award N022977, National Science Foundation Career Award
#1751093 and by the Office of Naval Research under Award Number NOOO14-
18-1-2575

IRobotics Institute, University of Michi gan, Ann Arbor, MI
<jmichaux, , ramv, chenqy)@umich.edu.
2Computer Science, University of Michigan, Ann Arbor, MI

chengy@umich.edu.edu.
3Mechanical Engineering, University of Michigan, Ann Arbor, MI (ramv,
kwonys)@umich.edu.

Fig. 1: RDF is a neural implicit safety representation that computes distances
between the swept volume of a robotic arm and obstacles within a receding-
horizon trajectory planning framework. The top panels show two different
orthographic views of a single planning iteration with several intermediate
poses of the robot arm in collision with one of the obstacles (red cubes). The
bottom panels show orthographic views of the 3D reconstruction of RDFs
signed distance field (transparent blue) with one of the obstacle centers (red
spheres) interior to RDF’s zero-level set.

planning framework have been shown to work on multiple
robotic platforms [1], there are still several limitations that
prevent wide-scale, real-world adoption of this method. For
instance, this approach can be computationally expensive
especially as the robot complexity increases, which can make it
impractical for real-time applications. By introducing heuris-
tics such as reducing the number of discrete time instances
where velocities and accelerations are computed at the mid-
level planner, many algorithms achieve real-time performance
at the expense of robot safety. Unfortunately, this increases the
potential for the robot to collide with obstacles.

To resolve this challenge, this paper proposes Reachability-
based Signed Distance Functions (RDFs), a neural implicit
representation for robot safety that can be effectively em-
bedded within a mid-level trajectory optimization algorithm.
RDF is a novel variation of the signed distance function
(SDF) [2]-[4] that computes the distance between the swept
volume (i.e., reachable set) of robot manipulator and obsta-
cles in its environment. We use RDFs within a receding-
horizon trajectory planning framework to enforce safety by
implicitly encoding obstacle-avoidance constraints. RDF has
advantages over traditional model-based representations for
obstacle-avoidance. First, by approximating the swept volume
RDF learns a continuous-time representation for robot safety.
Second, RDF replaces the need to do computationally ex-



pensive collision checking at every planning iteration with
a rapidly computable forward pass of the network. Third,
RDF’s fast inference and gradient computations make it ideal
as a constraint in trajectory optimization problems. Fourth, as
we illustrate in this paper, RDF scales better than existing
planning algorithms with respect to the dimension of the
system.

A. Related Work

Our approach lies at the intersection of swept volume
approximation, neural implicit shape representation, and robot
motion planning. We summarize algorithms in these areas and
highlight their computational tractability.

Swept volume computation [5]-[9] has a rich history in
robotics [10] where it has been used for collision detection
during motion planning [11]. Because computing exact swept
volumes of articulated robots is analytically intractable [10],
many algorithms rely on approximations using convex polyhe-
dra, occupancy grids, and CAD models [12]-[14]. However,
these methods often suffer from high computational costs and
are generally not suitable when generating complex robot
motions and as a result, are only applied while perform-
ing offline motion planning [15]. To address some of these
limitations, a recent algorithm was proposed to compute a
single probabilistic road map offline whose safety was verified
online by performing a parallelized collision check with a
precomputed swept volume at run-time [16]. However, this
method was not used for real-time trajectory generation.

An alternative to computing swept volumes is to buffer the
robot and perform collision-checking at discrete time instances
along a given trajectory. This is common with state-of-art
trajectory optimization approaches such as CHOMP [17] and
TrajOpt [18]. Although these methods have been demonstrated
to generate robot motion plans in real-time by reducing the
number of discrete time instances where collision checking
occurs, they cannot be considered safe as they enforce collision
avoidance via soft penalties in the cost function.

A recent approach called Reachability-based Trajectory De-
sign (RTD) [19] combines both swept volume approximation
and trajectory optimization to generate safe motion plans in
real-time. At runtime, RTD uses zonotope arithmetic to build
a differentiable reachable set representation that overapprox-
imates the swept volume corresponding to a continuum of
possible trajectories the robot could follow. It then solves
an optimization problem to select a feasible trajectory such
that the subset of the swept volume encompassing the robot’s
motion is not in collision. Importantly, the reachable sets
are constructed so that obstacle avoidance is satisfied in
continuous-time. While extensions of RTD have demonstrated
real-time, certifiably-safe motion planning for robotic arms [1],
[20] with seven degrees of freedom, applying RTD to higher
dimensional systems is challenging because, as we illustrate
in this paper, it is unable to construct reach sets rapidly.

A growing trend in machine learning and computer vision is
to implicitly represent 3D shapes with learned neural networks.
One seminal work in this area is DeepSDF [2], which was

the first approach to learn a continuous volumetric field that
reconstructs the zero-level set of entire classes of 3D objects.
Gropp et. al [3] improved the training of SDFs by introducing
an Eikonal term into their loss function that acts as an
implicit regularizer to encourage the network to have unit
[2-norm gradients. Neural implicit representations have also
been applied to robotics problems including motion planning
[21], [22], mapping [23], [24], and manipulation [25]-[27].
Particularly relevant to our current approach is the work by
Koptev et. al [28], which learned an SDF as an obstacle-
avoidance constraint for safe reactive motion planning. Similar
to approaches described above, [28] only enforces safety
constraints at discrete time points.

B. Contributions

The present work investigates learned neural implicit rep-
resentations with reachability-based trajectory design for fast
trajectory planning. The contributions of this paper are as
follows:

1. A neural implicit representation called RDF that com-
putes the distance between a parameterized swept volume
trajectory and obstacles;

2. An efficient algorithm to generate training data to con-
struct RDF; and

3. A novel, real-time optimization framework that utilizes
RDF to construct a collision avoidance constraint.

To illustrate the utility of this proposed optimization frame-
work we apply it to perform real-time motion planning on
a variety of robotic manipulator systems and compare it to
several state of the art algorithms.

The remainder of the paper is organized as follows: Section
IT summarizes the set representations used throughout the pa-
per; Section III describes the safe motion planning problem of
interest; Section IV defines several distance functions that are
used to formulate RDF; Section V formulates the safe motion
planning problem; Section VI describes how to build RDF and
use it within a safe motion planning framework; Sections VII
and VIII summarize the evaluation of the proposed method on
a variety of different example problems.

II. PRELIMINARIES

This section describes the representations of sets and op-
erations on these representations that we use throughout the
paper. Note all norms that are not explicitly specified are the
2-norm.

A. Zonotopes and Polynomial Zonotopes

We begin by defining zonotopes, matrix zonotopes, and
polynomial zonotopes.

Definition 1. A zonotope Z C R" is a convex, centrally-
symmetric polytope defined by a center ¢ € R", generator
matrix G € R"*"s, and indeterminant vector § € R"s:

Z={zeR" | z=c+GB, ||Bll- <1} (1)



where there are ng € N generators. When we want to em-
phasize the center and generators of a zonotope, we write
Z = (c,G).

Definition 2. A matrix zonotope Z C R" is a convex, centrally-
symmetric polytope defined by a center ¢ € R", generator
matrix G € R"*"s, and indeterminant vector § € R":

Z={zeR"|z=c+GB, |||l <1} 2)
where there are ng € N generators.

Definition 3 (Polynomial Zonotope). A polynomial zonotope
P C R" is given by its generators g; € R" (of which there are
ng), exponents o; € N's, and indeterminates x € [—1,1]"¢ as

g
P:TZ(gi,Oth) = {ZGR" ‘ 7= Zgixai,xé [—1,1]";;}.
i=0
(3)

We refer to x% as a monomial. A term g;x% is produced by
multiplying a monomial by the associated generator g;.

Note that one can think of a zonotope as a special case
of polynomial zonotope where one has an exponent made up
of all zeros and the remainder of exponents only have one
non-zero element that is equal to one. As a result, whenever
we describe operations on polynomial zonotopes they can
be extended to zonotopes. When we need to emphasize the
generators and exponents of a polynomial zonotope, we write
P = PZ (g, 0,x). Throughout this document, we exclusively
use bold symbols to denote polynomial zonotopes.

B. Operations on Zonotopes and Polynomial Zonotopes

This section describes various set operations.
1) Set-based Arithmetic: Given a set Q C R" let dQ C R"
be its boundary and Q¢ C R denote its complement.

Definition 4. The convex hull operator conv: R" — R" s
defined by
conv(Q) = ﬂCa 4

where Cy is a convex set containing €.

Let U, V C R". The Minkowski Sum is U®V = {u+v |
u e U,v eV}, the Multiplication of UV = {uv |ucU,veV}
where all elements in U and V must be appropriately sized to
ensure that their product is well-defined.

2) Polynomial Zonotope Operations: As described in Tab.
I, there are a variety of operations that we can perform on
polynomial zonotopes (e.g., minkowski sum, multiplication,
etc.). The result of applying these operations is a polynomial
zonotope that either exactly represents or over approximates
the application of the operation on each individual element of
the polynomial zonotope inputs. The operations given in Tab.
I are rigorously defined in [20]. A thorough introduction to
polynomial zonotopes can be found in [29].

One desirable property of polynomial zonotopes is the
ability to obtain subsets by plugging in values of known
indeterminates. For example, say a polynomial zonotope P

Operation Computation
P; &P, (PZ Minkowski Sum) ([20], eq. (19)) Exact
PP, (PZ Multiplication) ([20], eq. (21)) Exact
slice(P,xj,0) ([20], eq. (23)) Exact
inf(P) ([20], eq. (24)) Overapproximative
sup(P) ([20], eq. (25)) Overapproximative
f(P1) C P, (Taylor expansion) ([20], eq. (32)) | Overapproximative

TABLE I: Summary of polynomial zonotope operations.

represented a set of possible positions of a robot arm operating
near an obstacle. It may be beneficial to know whether a
particular choice of P’s indeterminates yields a subset of
positions that could collide with the obstacle. To this end,
we introduce the operation of “slicing” a polynomial zonotope
P =PZ (g, o,x) by evaluating an element of the indeterminate
x. Given the j® indeterminate x; and a value ¢ € [—1,1],
slicing yields a subset of P by plugging ¢ into the specified
element x;:

g
slice(P,x;,0) CP= {Z eP|z= Zgixa[, xXj= G} . (5
i=0
One particularly important operation that we require later
in the document, is an operation to bound the elements of
a polynomial zonotope. It is possible to efficiently generate
these upper and lower bounds on the values of a polynomial
zonotope through overapproximation. In particular, we define
the sup and inf operations which return these upper and
lower bounds, respectively, by taking the absolute values of
generators. For P C R”, these return

sup(P) = go+ ) Igil, (6)
i=1

inf(P)=go— Y lgil. (7)
i=1

Note that for any z € P, sup(P) >z and inf(P) < z, where the
inequalities are taken element-wise. These bounds may not be
tight because possible dependencies between indeterminates
are not accounted for, but they are quick to compute.

III. ARM AND ENVIRONMENT

This section summarizes the robot and environmental model
that is used throughout the remainder of the paper.

A. Robotic Manipulator Model

Given an n, degree of freedom serial robotic manipulator
with configuration space Q and a compact time interval 7 C R
we define a trajectory for the configuration as g : 7 — Q C R".
The velocity of the robot is ¢: T — R". Let N, = {1,...,n4}.
We make the following assumptions about the structure of the
robot model:

Assumption 5. The robot operates in an ng-dimensional
workspace, which we denote W C R". The robot is composed
of only revolute joints, where the j" joint actuates the robot’s
j™ link. The robot’s j™ joint has position and velocity limits

given by q;(t) € [‘Izliqu;ﬁm] and q;(t) € [q;nm’q;lim] for all



t € T, respectively. Finally, the robot is fully actuated, where
the robot’s input is given by u: T — R"™.

One can make the one-joint-per-link assumption without loss
of generality by treating joints with multiple degrees of
freedom (e.g., spherical joints) as links with zero length. Note
that we use the revolute joint portion of this assumption to
simplify the description of forward kinematics; however, these
assumptions can be easily extended to more complex joint
using the aforementioned argument or can be extended to
prismatic joints in a straightforward fashion.

Note that the lack of input constraints means that one
could apply an inverse dynamics controller [30] to track any
trajectory of of the robot perfectly. As a result, we focus on
modeling the kinematic behavior of the manipulator. Note, that
the approach presented in this paper could also be extended
to deal with input limits using a dynamic model of the
manipulator; however, in the interest of simplicity we leave
that extension for future work.

1) Arm Kinematics: Next, we introduce the robot’s kine-
matics. Suppose there exists a fixed inertial reference frame,
which we call the world frame. In addition suppose there
exists a base frame, which we denote the O™ frame, that
indicates the origin of the robot’s kinematic chain. We assume
that the jM reference frame {%;,5;,%;} is attached to the
robot’s j revolute joint, and that z; = [0,0,1]" corresponds
to the j™ joint’s axis of rotation. Then for a configuration
at a particular time, ¢(f), the position and orientation of
frame j with respect to frame j— 1 can be expressed using
homogeneous transformations [30, Ch. 2]:

. J=l¢ . J—1
gy = (B

where Rj-_l (q;(t)) is a configuration-dependent rotation matrix
and pj-_l is the fixed translation vector from frame j— 1 to
frame ;.

With these definitions, we can express the forward kine-
matics of the robot. Let FK; : Q — R*** map the robot’s
configuration to the position and orientation of the j™ joint
in the world frame:

w0 =TT i) = |0 P140) )

where )
Ri(a(r)) = Ro(q(r)) = Ir’IIR;' @) a0
and _
pila(0)) = l'ilmq(r))p;l. (an

B. Arm Occupancy

Next, we define the forward occupancy of the robot by
using the arm’s kinematics to describe the volume occupied
by the arm in the workspace. Let L C R denote a polynomial
zonotop overapproximation to the volume occupied by the

7" link with respect to the j® reference frame. The forward
occupancy of link j is the map FO; : Q — P(W) defined as

FO;(q(1)) = p;(q(t)) ®R;(q(t))L;,

where the first expression gives the position of joint j and
the second gives the rotated volume of link j. The volume
occupied by the entire arm in the workspace is given by the
function FO : Q — P(W) that is defined as

(12)

Fo(g(r)) = ) FO;(g(1)) < W. 13
j=1

For convenience, we use the notation FO(¢(T')) to denote the
forward occupancy over an entire interval 7.

C. Environment

Next, we describe the arm’s environment and its obstacles.

1) Obstacles: The arm must avoid obstacles in the envi-
ronment while performing motion planning. These obstacles
satisfy the following assumption:

Assumption 6. The transformation between the world frame
of the workspace and the base frame of the robot is known, and
obstacles are represented in the base frame of the robot. At any
time, the number of obstacles ng € N in the scene is finite. Let
O be the set of all obstacles {01,0;,...,0,, }. Each obstacle
is convex, bounded, and static with respect to time. The arm
has access to a zonotope that overapproximates the obstacle’s
volume in workspace. Each zonotope overapproximation of the
obstacle has the same volume and is an axis-aligned cube.

A convex, bounded object can always be overapproximated
as a zonotope [31]. In addition, if one is given a non-convex
bounded obstacle, then one can outerapproximate that obstacle
by computing its convex hull. If one has an obstacle that
is larger than the pre-fixed axis-aligned cube, then one can
introduce several axis-aligned cubes whose union is an overap-
proximation to the obstacle. Note because we use the zonotope
overapproximation during motion planning, we conflate the
obstacle with its zonotope overapproximation throughout the
remainder of this document.

Dynamic obstacles may also be considered within the RDF
framework by introducing a more general notion of safety [32,
Definition 11], but we omit this case in this paper to ease
exposition. Finally, if a portion of the scene is occluded then
one can treat that portion of the scene as an obstacle. We say
that the arm is in collision with an obstacle if FO(¢(1))N O, #
0 for any j €N, or { € No where No ={1,...,n¢}.

D. Trajectory Design

Our goal is to develop an algorithm to compute safe trajecto-
ries in a receding-horizon manner by solving an optimization
program over parameterized trajectories at each planning it-
eration. These parameterized trajectories are chosen from a
pre-specified continuum of trajectories, with each uniquely
determined by a trajectory parameter k € K C R, ni € N. K
is compact and can be designed in a task dependent or robot



morphology-specific fashion [1], [19], [33], [34], as long as it
satisfies the following properties.

Definition 7 (Trajectory Parameters). For each k € K, a
parameterized trajectory is an analytic function q(-;k): T — Q
that satisfies the following properties:

1. The parameterized trajectory starts at a specified initial
condition (qo,qo), so that q(0;k) = qo, and ¢(0;k) = go.

IL. G(t5;k) =0 (i.e., each parameterized trajectory brakes to
a stop, and at the final time has zero velocity).

The first property allows for parameterized trajectories to
be generated online. In particular, recall that RDF performs
real-time receding horizon planning by executing a desired
trajectory computed at a previous planning iteration while con-
structing a desired trajectory for the subsequent time interval.
The first property allows parameterized trajectories that are
generated by RDF to begin from the appropriate future initial
condition of the robot. The second property ensures that a fail
safe braking maneuver is always available.

IV. REACHABILITY-BASED SIGNED DISTANCE FUNCTIONS

This section defines the signed distance function between
sets. Signed distance functions are used in robotics in a
variety of applications including representing collision avoid-
ance constraints. This section describes how to extend the
signed distance function to a distance function between the
forward occupancy of a robot and an obstacle. This novel
distance function, which we call the reachability-based signed
distance function (RDF), enables us to formulate the collision
avoidance problem between a parameterized reachable set and
an obstacle as an optimization problem.

A. Overview of Signed Distance Fields
We begin by defining an unsigned distance function:

Definition 8. Given a set Q C R", the distance function
associated with Q is defined by

d(x:Q) = min ||x—y]. 14
(:Q) ;g;gl\x ¥l (14

The distance between two sets Q1,Q, C R" js defined by

d(Q1,Q2) :nggl [lx=¥l. (15)

YEIQ)

Notice that this distance function is zero for sets that have
non-trivial intersection. As a result, this distance function
provides limited information for such sets (i.e., it is unclear
how much they are intersecting with one another). To address
this limitation, we consider the following definition:

Definition 9. Given a subset Q of R", the signed distance
function s between a point is a map s : R" — R defined as

o [d(x,09)
s(2) = {—d(x,asz)

ifxeQ°

if x € Q. (16)

The signed distance between two sets Q,Qy C R" js defined

as
d(Q1,Q)

—d(Q1,Q))

fQNQ =0

. (17)
otherwise.

S(.Q] ,Qz) = {

Note that signed distance functions are continuous [35],

differentiable almost everywhere [35], [36], and satisfy the
Eikonal equation:

Definition 10. Suppose s is the signed distance function
associated with a set Q C R". Then the gradient of s satisifes
the Eikonal Equation which is defined as

Vsl = 1. (18)

We use this property to construct our loss term in VI-C

B. Reachability-Based Signed Distance Functions

This subsection describes the reachability-based distance
function as the signed distance function associated with for-
ward occupancy of a robot.

Definition 11. The reachability-based distance function asso-
ciated with the forward occupancy reachable set FO(q(T;k))
is a mapping defined by

r(x,FO;(¢(T3k))) = minr;(x;FO;(¢(T5K)))  (19)

where r; is the signed distance function associated with the
j™" forward occupancy FO j such that

rj(x;FO;(q(T:k))) = s(x;FO;(q(T;k))).

The reachability-based distance between an obstacle O C R?

and the robot’s forward occupancy reachable set FO is defined
by

(20)

r(0,FO(q(T3k))) = mins(0,FO;(q(T3k))-

2n

One can use this distance function to formulate trajectory
optimization problems as we describe next.

V. FORMULATING THE MOTION PLANNING PROBLEM
USING POLYNOMIAL ZONOTOPES

To construct a collision free trajectory in a receding-horizon
fashion, one could try to solve the following nonlinear opti-
mization problem at each planning iteration:

?eiII(] cost (k) (22)
q;(t:%) C 4] 3ims 9 jim] VjieNgteT (23)
q(t:k) S 4] i 4 i) ViEN,teT (24)
r(0¢,FO(q(T;k))) >0 YeeNg (25

The cost function (22) specifies a user-defined objective, such
as bringing the robot close to some desired goal. Each of
the constraints guarantee the safety of any feasible trajectory
parameter. The first two constraints ensure that the trajectory
does not violate the robot’s joint position and velocity limits.
The last constraint ensures that the robot does not collide with
any obstacles in the environment. Note in this optimization



problem, we have assumed that the robot does not have to
deal with self-intersection constraints.

Implementing a real-time optimization algorithm to solve
this problem is challenging for several reasons. First, the
constraints associated with obstacle avoidance are non-convex.
Second, the constraints must be satisfied for all time ¢ in an
uncountable set 7. To address these challenges, a recent paper
proposed to represent the trajectory and the forward occupancy
of the robot using a polynomial zonotope representation [20].
We summarize these results below.

A. Time Horizon and Trajectory Parameter PZs

We first describe how to create polynomial zonotopes repre-
senting the planning time horizon T. We choose a timestep At
so that n; := At eN. Let N, :={1,...,n,}. Divide the compact
time horizon 7 C R into n, time subintervals. Consider the
i" time subinterval corresponding to ¢ € [(i — 1)At,iAt]. We
represent this subinterval as a polynomial zonotope Tj, where

T, = {t eT |t="TD0A 4 LA x, €[, 1}} (26)

with indeterminate x;, € [—1,1].

Now we describe how to create polynomial zonotopes
representing the set of trajectory parameters K. In this work,
we choose K = X, K;, where each K is the compact one-
dimensional interval K; = [—1,1]. We represent the interval K
as a polynomial zonotope Kj = xi; where x;; € [—1,1] is an
indeterminate.

B. Parameterized Trajectory and Forward Occupancy PZs

The parameterized position and velocity trajectories of the
robot, defined in Def. 7, are functions of both time ¢ and the
trajectory parameter k. Using the time partition and trajectory
parameter polynomial zonotopes described above, we create
polynomial zonotopes q;(T;;K) that overapproximate g;(z;k)
for all ¢ in the i time subinterval and k € K by plugging the
polynomial zonotopes T; and K into the formula for g;(z;k).

Recall that T; and K; have indeterminates x; and Xkjs
respectively. Because the desired trajectories only depend on
t and k, the polynomial zonotopes q;(Tj;K) and ¢;(T;; K)
depend only on the indeterminates x; and x;. By plugging
in a given k for x; via the slice operation, we obtain a
polynomial zonotope where x; is the only remaining inde-
terminate. Because we perform this particular slicing oper-
ation repeatedly throughout this document, if we are given
a polynomial zonotope, qdyj(Ti;K), we use the shorthand
qj(Ti:k) = slice(qj(Ti;K),xt, k). Importantly, one can ap-
ply [20, Lemma 17] to prove that the sliced representation is
over approximative as we restate below:

Lemma 12 (Parmaeterized Trajectory PZs). The parameter-
ized trajectory polynomial zonotopes qqj(Ti;K) are overap-
proximative, i.e., for each j € N, and k € K,

q;(t;k) € qj(Ti; k)

One can similarly define §;(T;;K) that are also overapproxi-
mative.

vt € T 27

Next, we describe how to use this lemma to construct an
overapproximative representation to the forward occupancy.
In particular, because the rotation matrices Rj-_l(qj(t;k))
depend on cos(g;(t;k)) and sin(q;(t;k)) one can compute
cos (qj(T;; K)) and sin (q;(T;; K)) using Taylor expansions as
in ([20], eq. (32)). By using this property and the fact that
all operations involving polynomial zonotopes are either exact
or overapproximative, the polynomial zonotope forward occu-
pancy can be computed and proven to be overapproximative:

Lemma 13 (PZ Forward Occupancy). Let the polynomial
zonotope forward occupancy reachable set for the j™ link at
the i time step be defined as:

FO;(q(Ti;K)) = pj(q(Ti; K)) &R (q(Ti; K))Lj,  (28)
then for each j € N, k € K, FO;(q(t;k)) € FO;(q(Tj;k)) for
all t € T;.

For convenience, let
ng
FO(q(T;:K)) U FO;(q(T;;K)). (29)

C. PZ-based Optimization Problem

Rather than solve the optimization problem described in
(22) — (25), [20] uses these polynomial zonotope over ap-
proximations to solve the following optimization problem:

rkréilr(l cost(k) (30)
q;(Ti;k) € [‘1] lim> 4, l1m} VjENgi€eN, (31)
qJ(Tl’k) [q] hquj l1m} VjENg,ieN, (32)
r(01,FO(q(Ti:k))) > 0 VLENg €N, (33)

This formulation of the trajectory optimization problem has
the benefit of being implementable without sacrificing any
safety requirements. In fact, as shown in [20, Lemma 22], any
feasible solution to this optimization problem can be applied
to generate motion that is collision free. Though this method
can be applied to 7 degree of freedom systems in real-time,
applying this method to perform real-time planning for more
complex systems is challenging as we show in Sec. VIIL

VI. MODELING RDF WITH NEURAL NETWORKS

This section presents RDF, a neural implicit representation
that can encode obstacle-avoidance constraints in continuous-
time. In particular, RDF predicts the distance between obsta-
cles and the entire reachable set of a robotic arm. To construct
this neural implicit representation, we require training data.
Unfortunately computing the exact distance to the reachable
set of multi-link articulated robotic arm is intractable because
that multi-link arm is a non-convex set. To build this training
data, we rely on the polynomial zonotope-based representa-
tions presented in the previous section.

Importantly, we show that we can conservatively approxi-
mate the distance between an obstacle and sliced polynomial
zonotope-based representation as the solution to a convex
program. This allows us to efficiently generate the training



Fig. 2: Visual illustration of Alg. 1. (Left) Forward occupancy reachable set as a function of some initial conditions (Alg. 1, line 6). (Middle) Forward
occupancy reachable set buffered by the obstacle generators (Alg. 1, line 7). (Right) Convex hull of each link’s forward occupancy reach set (Alg. 1, line 11).

data required to construct our neural implicit representation.
Subsequently, we give an overview of the neural network
architecture and loss function used for training. Finally, we de-
scribe how to reformulate the trajectory optimization problem
using the neural network representation of the reachability-
based signed distance function.

A. Derivation of RDF Approximation

This subsection derives an approximation to the
reachability-based signed distance function defined in
Def. 11. The core idea is to approximate the distance between
an obstacle and the polynomial zonotope forward occupancy
FO(q(T;;K)) (29) over of time for an entire trajectory. Note
that slicing a polynomial zonotope of all of its dependent
coefficients results in a zonotope [29]. This allows RDF to
approximate both positive and negative (i.e. signed) distances
by leveraging the zonotope arithmetic described in A-A. We
now present the main theorem of the paper whose proof can
be found in supplementary material Appendix A:

Theorem 14. Suppose a robot is following a parameterized
trajectory q(t;k) for all t € T. Consider an obstacle O with
center co and generators Go and FO;(q(Ti;k)) with center
cr and generators Gp. Let P = U;’;lFO}’“f(q(Ti;k)) where
FO}’“f(q(Ti;k)) = (¢r,Go UGF). Define the function 7; as
follows:

F(co.y) =4 MO0 Tco? T (34)
—d(co,dP}) otherwise,
and define the function 7 as follows:
f(CO,UjeNqu) = 5161}\2 fj(CO,ij). 35)

If FO;(q(Ti;k)) VO # 0, then 7(co,P;) > r(0,FO(q(T;k))).
If FO;(q(Ti;k)) MO = 0, then 7(co,P;) < r(0,FO(¢q(T;k))).

This theorem is useful because it allows us to conservatively
approximate r using 7 which computes the distance between
a point and a convex set. As we show next, this distance
computation can be done by solving a convex program. Recall
that a convex hull can be represented as the intersection of a
finite number of half planes, i.e.,

h
Pi= () 3"
]’lGNhJ

(36)

where Nj, j={1,---,n; ;} and ny, ; is the number of half-spaces
[37, Ch. 1]. As a result, one can determine whether a point
p € R™ is in side of P; using the following property [37, Ch.
1]:

pePi=A"p-b" <0 vi=N,

¢ (37)

where Agh) e R, bg-h) € R represents each half-space, J—Cﬁ-h).
As a result, one can compute the distance in (35) as:

d(co,aﬂ’j):mgn Hp—COH (38)

AMps <0 vheN, (9
where depending upon the norm chosen in the cost function
one can solve the optimization problem using a linear or a
convex quadratic program. In the instance that there is non-
trivial intersection between an obstacle and P;, one can apply
the Euclidean projection [38, p.398] to directly calculate the

distance between cp and every half-space i}fﬁ.h) supporting P;:

d(co,dP;) = hg?d(co,ﬂfﬁ-”’) (40)
5]
CYG)
A co—b;
= — max J o J

< ) 41
Ny a7) w

B. Model Architecture

We follow the RDF model design of [3] and use an Multi-
Layer Pereceptron (MLP) with 8 hidden layers and a jump
connection in the middle between the 4" and 5™ hidden layers.
The network takes as input x = (go, o, k,c,) C R¥47", which
consists of a concatenation of vectors corresponding to the
initial joint positions g, initial joint velocities ¢, trajectory
parameters k, and obstacle center cp. As described in Section
II-D each gg, g,k corresponds to particular desired trajectory
and reachable set FO C R that may or may not be in collision.
The network outputs an approximation § = (7,72, -- ,fnq) of
the reachability-based signed distance between the obstacle
center cp and forward occupancy of each link FO;.

C. Loss Function

This section describes the loss function used to train the
RDF model. We apply a mean square error loss added to



Fig. 3: 3D Reconstruction of RDF’s zero-level sets compared to Alg. 1. (Top) Convex hull of each link’s forward occupancy reach set (purple) before buffering
by obstacle generators (Alg. 1, line 6). (Middle) Following buffering, the size of the new forward occupancy (green) is increased (Alg. 1, line 7). (Bottom)
RDF’s zero-level set (blue) is shown to be a smooth approximation to that of the convex hull buffered forward occupancy reach set (middle, green).

Algorithm 1: RDF (g, o, k,O)
I: {q(Ti;K) RS Nt} — (6]076}0)
2: co,Gp < O
3 fori=1:n

4: for j=1:n,

5: FO;(q(T;;K)) «— PzFO(q(Ti; K))

6: FO{)(q(Ti;k)) — Slice(FOj(q(Ti;K)),k)
7: FO™(q(Ti; k) + FO(q(Tisk)) & Z§,

8: end for

9: end for

10: for j=1:n,
11: P« conv (Ui, FOM(q(Ti;k)))

12: if co € P; then

13: Fj < —d(co,dP;) I/ negative distance
14: else

15: Fj < d(co,dP;) Il positive distance
16: end if

17: end for

18: Return {7; : j € N,}

an Eikonal loss term similar to [3]. The mean square er-
ror loss forces the network to learn to predict the distance
while the Eikonal loss regularizes the gradient of the RDF
prediction. Given an input, ground-truth RDF distance pair x =
(9:4:k,¢c0), y = (F1,72,- -+ ,,) from a batched dataset sample
(Xpateh, Yparen), our network, parameterized by its weights 6,
computes the output batch Yyuen = {99 = fo(x),x € Xparen}
and results in the loss:

L = Lyse + & Lgikonal (42)
where | |
Luse = = ¥ (— Y. (i —F)?) (43)
Yl ne i S
1 1 & . )
L Eikonal = |7 Z(*Z(”VCO”I'”*U )7 (44)

)4

ser Mai=

while o is a hyperparameter that denotes the coefficient of
Eikonal loss Lgikona Used in the total loss L.

D. RDF-based Trajectory Optimization

After training, we generate a model Fyyjg that takes in
(go,40,k,cor) and predicts the reachability based distance
between the obstacle and the robot’s forward occupancy. Using
this representation, we can reformulate the motion planning
optimization problem described by (30)—(33) into:

IIPeiII(l cost (k) (45)
5(Tisk) C 4] 1ims @] yim) Vj€Ngi €N (46)
a5(Ti:K) S 4 3im» 4 tim] VjeNgt €N (47)
ynie (90, q90,k,cop) > 6 VL ENg (48)

where 6 is a buffer threshold of the RDF collision-avoidance
constraint, equation (48). Note in particular that one com-
putes the gradients of the last constraint by performing back-
propagation through the neural network representation. The
gradient of the first two constraints can be computed by
applying [20, Section IX.D].

VII. RDF EXPERIMENTAL SETUP

This section describes our experimental setup including
simulation environments, how the training and test sets were
generated, and how the network hyperparameters were se-
lected.

A. Implementation Details

We use Gurobi’s quadratic programming solver [39] to
construct the ground truth reachability-based positive dis-
tance in Alg. 1. The RDF model is built and trained with
Pytorch [40]. In the motion planning experiment, we ran
trajectory optimization with IPOPT [41]. A computer with
12 Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz and an
NVIDIA RTX A6000 GPU was used for experiments in Sec.



Fig. 4: Real-time receding-horizon trajectory planning with RDF in a cluttered
environment. (Left) The arm safely moves from the start pose (purple) through
intermediate configurations (grey) to reach the goal (green) while avoiding
obstacles (red cubes). (Right) During the highlighted planning iteration all
obstacle centers (red spheres) remain outside RDF’s zero-level set (blue).

VIII-A and VIII-B. A computer with 12 Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz and an NVIDIA RTX A6000 GPU
was used for the motion planning experiment in Sec. VIII-C.

B. Simulation and Simulation Environment

Each simulation environment has dimensions characterized
by the closed interval [—1,1]" and the base of the robot arm
is located at the origin. For each 2D environment, every link
of the robotic arm is of same size and is adjusted according to
the number of links n, to fit into the space. We consider planar
robot arms with 2, 4, 6, 8, and 10 links, respectively. In each
environment all obstacles are static, axis-aligned, and fixed-
size where each side has length 1(']2& . For example, the 2D
6-DOF arm has a link length of 0.139m while obstacles are
squares with side-length 0.028m. In 3D we use the Kinova
Gen3 7-DOF serial manipulator [42]. The volume of each
Kinova’s link is represented as the smallest bounding box
enclosing the native link geometry.

We also ensure that each robot’s initial configuration is
feasible and does not exceed its position limits. Each planning
trial is considered a success if the 12-distance between the
arm’s configuration and goal configuration is within 0.1 rad. A
planning trial is considered a failure if the robot arms collides
with an obstacle, if the trajectory planner fails to find a feasible
trajectory in two successive steps, or if the robot does not reach
the goal within 400 planning steps.

C. Desired Trajectory

We parameterize our trajectory with piece-wise linear ve-
locity. We design trajectory parameter k = (ky,--- ,k, q) € R
as a constant acceleration over [0,7,). Then, the rest of the
trajectory takes a constant braking acceleration over [f,,]
to reach stationary at #. Given an initial velocity gg, the
parameterized trajectory is given by

%-f-kla
q(t;k) = 9 gorht
{q?[[pp(tf_t)y

r€0,1p)

tE [ty 1. “49)

Env. Dim. | DOF | Mean Error (cm) |
0.16 £+ 0.15
0.26 + 0.30
0.37 £ 0.36
0.39 + 0.48
0.51 £ 0.52

0.45 £+ 0.48

S ENESINES)

—|
)

3
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TABLE II: Mean /1-norm error of each RDF model evaluated on test set

D. Dataset

We compute the dataset for RDF by randomly sampling data
points consisting of the initial joint position g, initial joint ve-
locity qo, and trajectory parameter k. For each initial condition,
we then randomly sample n, = 16 obstacle center positions in
[—1,1]" and compute the ground truth distances between the
forward reachable set of the robot and obstacles using Alg.
1. The input to the network is then x = (qo,qo,k,co) where
(qo,4q0,k) specifies the desired trajectory and the reachable
set and ¢ defines position of the center of the obstacle. The
corresponding label is y = (7,7, - ,an) where 7; is the the
approximation of reachability-based signed distance to each
link outlined in Alg. 1. For the 2D tasks, the datasets consist
of 2.56 million samples while the 3D datasets consist of 5.12
million sample. 80% of samples in each case are used for
training and 20% are used for validation. Another set of the
same size as the validation set is generated for testing.

E. Network Hyperparameters

We train models using all combinations of the following
hyperparameters: learning rates /r = (0.001,0.0001), Eikonal
loss coefficients @ = (0.0,0.001,0.0001), and § = (0.9,0.999)
and weight decay y = 0.01 for the Adam optimizer. We train
the 2D and 3D models for 300 and 350 epochs, respectively.
The model that performs best on the validation set is chosen
for further evaluation.

VIII. RESULTS

This section evaluates the performance of the trained RDF
network in terms of its accuracy, inference time, the time
required to compute its gradient, and its ability to safely solve
motion planning tasks. We compare RDF’s safety and success
rate on motion planning tasks to ARMTD [1], CHOMP [17],
and the method presented in [43].

A. RDF Accuracy and Runtime Compared to Alg. 1

This section compares RDF’s distance prediction accuracy
to the distances computed by the Alg. 1. We perform these
comparisons for 2D planar multi-link robot arms and the
Kinova Gen3 7DOF arm on the test sets that were not used to
either train or validate RDF. As shown in Table II, each model
has a mean prediction error of < lcm in the /1-norm. These
results are supported by Fig. 3, which shows RDF’s zero-level
sets are smooth approximations to Alg.1.

We then compared the mean runtime of RDF’s inference
and gradient computations to the computation time of Alg.
1 and its first-order numerical gradient. These comparisons
are done over a random sample of 1000 feasible data points
(40,90,k,c,). As shown in Table III, RDF computes both



distances and gradients at least an order of magnitude faster
than Alg. 1. This result holds even when considering only the
time required to solve the quadratic program in Alg. 1. Note
also that RDF’s runtime appears to grow linearly with the DOF
of the system, while Alg. 1’s grows quadratically.

B. Accuracy & Runtime Comparison with SDF

We compared RDF’s distance prediction accuracy and run-
time to that of an SDF-based model similar to [43] over
an entire trajectory in 3D. To train a discrete-time, SDF-
based model similar to that presented in [43], we generated
a dataset of 5.12 million examples. Each input to this SDF
takes the form x = (g4(¢;k),co) and the corresponding label
is y = (81,82, ,8y,), where §; is the distance between cp and
a polynomial zonotope over approximation of jM link of the
robot. Note that, in principle, this is equivalent to evaluating
RDF at stationary configurations by specifying go = 0 and
k = 0. Following [43], we also ensure that the number of
collision and non-collision samples are balanced for each link.

For RDF, we generated 1000 samples where the i sample
is of the form (qo,qo,k,co);. Because SDF is a discrete-
time model, its corresponding i sample is the minimum
distance between the obstacle and a set of robot configurations
{qq(ty;k) : n € N,} sampled at timepoints #, evenly separated
by a given At. Note that for SDF, we considered multiple
time discretizations (Ar = 0.01s,0.02,0.15,0.5s,1.0s). During
the implementation of SDF, we allow the forward pass through
the network to be batched and evaluate all time steps for a
given discretization size, simultaneously. As shown in Table
IV, RDF has lower mean and max /1-norm error compared to
SDF. Similarly, RDF has a lower run time than SDF across
all time discretizations.

C. Receding Horizon Motion Planning

This subsection describes the application of RDF to real-
time motion planning and compares its performance to several
state of the art algorithms. We evaluate each method’s perfor-
mance on a reaching task where the robot arm is required
to move from an initial configuration to a goal configuration
while avoiding collision with obstacles and satisfying joint
limits. Note that the planner is allowed to perform receding-
horizon trajectory planning. We evaluate each planner’s suc-
cess rate, collision rate, and mean planning times under various
planning time limits. If the planner was unable to find a safe
solution, the arm will execute the fail-safe maneuver from the
previous plan.

1) 2D Results: In 2D, we compare the performance of RDF
to ARMTD [1] across a variety of different arms with varying
degrees of freedom from 2-10 DOF to better understand the
scalability of each approach. In each instance, the robot is
tasked with avoiding 2 obstacles and is evaluated over 500
trials. In the interest of simplicity, we select & in (48) to be
3cm to 3.5cm which is approximately 10 times larger than the
mean RDF error prediction as described in Tab. II. Because
our goal is to develop a planning algorithm that can operate in
real-time, we also evaluate the performance of these algorithms
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when each planning iteration is restricted to compute a solution
within 5,0.3 and 0.033s. Note that each planning algorithm
can only be applied for 400 planning iterations per trial.

Tables V and VI summarize the results. Across all ex-
periments, when both algorithms are given 5s per planning
iteration, ARMTD was always able to arrive at the goal
more frequently than RDF. A similar pattern seems to hold
as the number of degrees of freedom increase when each
algorithm is given 0.3s per planning iteration; however, in
the 10 DOF case ARMTD'’s success rate drastically decreases
while RDF’s performance is mostly unaffected. This is because
the computation time of ARMTD grows dramatically as the
number of DOFs increases as depicted in Table VII. This
observation is more pronounced in the instance where both
planning algorithms are only allowed to take 0.033s per
planning iteration. In that instance RDF’s performance is
unaffected as the number of DOFs increases while ARMTD
is unable to succeed beyond the 2DOF case. Note across
all experiments, none of the computed trajectories ended in
collision.

2) 3D Results: In 3D, we compare the performance of
RDF to ARMTD and an SDF-based version of the obstacle-
avoidance constraints within a receding-horizon trajectory
planning framework. Note that for RDF and SDF, we buffer
their distance predictions with buffer size 3cm, which is
approximately five times larger than the mean prediction error
in Tab. IV. We also compare the performance of each of the
aforementioned methods in 3D to CHOMP [17]. Because our
goal is to develop a planning algorithm that can operate in
real-time, we also evaluate the performance of these algorithms
when each planning iteration is restricted to compute a solution
within 5,0.3, 0.033, and 0.025s. We also consider the case of
avoiding 5 obstacles and 10 obstacles. Each obstacle case was
evaluated over 500 trials. Note that each planning algorithm
can only be applied for 400 planning iterations per trial.

Tables VIII and IX summarize the results of the perfor-
mance of each algorithm across different time limits for the 5
and 10 obstacles cases, respectively. First observe that as the
number of obstacles increases each algorithms performance
decreases. Note in particular that for a fixed number of obsta-
cles, the ability of each method to reach the goal decreases as
the time limit on planning decreases. Though ARMTD initially
performs the best, when the time limit is drastically reduced,
RDF begins to perform better. This is because the computation
time of ARMTD grows dramatically as the number of DOFs
increases as depicted in Table XII. The transition from when
ARMTD performs best to when RDF performs best occurs
when the time limit is restricted to 0.033s. Note that RDF,
ARMTD, and SDF are collision free across all tested trials.
However CHOMP has collisions in every instance where it
is unable to reach the goal. An example of RDF successfully
planning around 5 obstacles is shown in Fig. 4.

IX. CONCLUSION

This paper introduces the Reachability-based signed Dis-
tance Function (RDF), a neural implicit representation useful



Env. Dim. | DOF | Alg.1 Distance | Alg.1 Gradient QP Distance QP Gradient RDF Distance RDF Gradient
2 0.08 £+ 0.01 0.16 + 0.01 0.009 £ 0.006 | 0.015 £ 0.005 | 0.0008 £+ 0.00003 | 0.003 + 0.0003
4 0.18 £+ 0.01 0.70 + 0.03 0.020 £ 0.011 0.065 £+ 0.021 0.0009 + 0.00004 | 0.005 + 0.0008
2 6 0.28 £+ 0.01 1.65 + 0.05 0.028 £ 0.012 | 0.132 £ 0.033 | 0.0009 + 0.00004 | 0.006 + 0.0011
8 0.40 £+ 0.02 3.19 + 0.12 0.033 £ 0.015 | 0.238 £ 0.065 | 0.0010 + 0.00005 | 0.007 + 0.0016
10 0.85 + 0.02 8.53 £ 0.11 0.030 £ 0.008 | 0.300 £ 0.044 | 0.0010 + 0.00018 | 0.008 + 0.0019
3 7 1.59 + 0.11 11.1 4+ 0.80 0.251 £ 0.117 1.755 £ 0.807 | 0.0011 + 0.00013 | 0.006 + 0.0015
TABLE III: Mean Runtime of Distance and Gradient Computation |
Method Mean Error (cm) | | Max Error (cm) | | Runtime (ms) | DOF RDF ARMTD
RDF 0.55 + 0.71 11 0.75 + 0.02 2 0.022 £ 0.241 0.034 £ 0.127
SDF (At = 1.0s) 7.16 £ 11.5 88 1.17 £ 0.03 7 0.023 L 0.246 0071 £ 0.191
SDF (At = 0.5s) 0.96 + 1.57 38 1.18 £ 0.12
SDF (At =0.1s) 0.79 £ 0.93 17 1.15 = 0.03 6 0.037 + 0.310 0.108 + 0.156
SDF (Af = 0.029) 0.80 = 0.3 7 .11 £ 0.03 8 ]10.023 4 0.231 | 0.182 + 0.166
SDF (Ar = 0.01s) 0.80 £ 0.93 7 .12 £ 0.06 10 | 0.030 + 0.272 | 0.417 + 0.286

TABLE IV: RDF vs. SDF Distance Predictions

TABLE V: # of successes for
ARMTD in 2D planning with 5.0s,
0.3s, and 0.033s time limit T

TABLE VI: # of successes for RDF
in 2D planning with 5.0s, 0.3s, and
0.033s time limit T

for safe robot motion planning. We demonstrate RDF’s vi-
ability as a collision-avoidance constraint within a real-time
receding-horizon trajectory planning framework. We show
that RDF’s distance computation is fast, accurate, and unlike
model-based methods like ARMTD, scales linearly with the
dimension of the system. RDF is also able to solve challenging
motion planning tasks for high DOF robotic arms under
limited planning horizons.

Future work will aim to improve RDF’s properties. First,
bounding the network’s approximation error will ensure that
RDF can be used with guarantees on safety. Second, better
architecture design and additional implicit regularization will
allow a single RDF model to generalize to multiple robot
morphologies. Finally, we will aim to extend RDF to handle
dynamic obstacles.
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Fig. 5: Illustration of signed distance for convex polytopes. In particular, this
works well with zonotopes.

APPENDIX A
PROOF OF THEOREM 19

Before proving the required result, we prove several inter-
mediate results.

A. Signed Distance Between Zonotopes

Here we derive the signed distance between two zonotopes.
To proceed we first require a condition for determining if two
zonotopes are in collision:

Lemma 15. Let Z; = (¢1,G1) and Zp = (c2,G2) be zonotopes.
Then ZyNZy # 0 if and only if ¢| € Zy pyy = (c2,G1 U Gy).

Proof. Suppose the intersection of Z; and Z, is non-empty.
This is equivalent to the existence of z; € Z; and z; € Z, such
that z; = zp. Furthermore, by definition of a zonotope (Defn.
1), this is equivalent to the existence of coefficients 8 and 5,
such that z; = ¢y + G111, 22 = c2 + G20, and

c1+Gifi=c2+Gf} (50
= c1=c2+G -G (51)
<= € (C17G1 U Gz) = Zz7buf. (52)

Thus we have shown that Z; NZ; # @ if and only if ¢| €
(c1,G1UG2) = Zy put. O

Lemma 15 can then be used to compute the the positive
distance between two non-intersecting zonotopes:

Lemma 16. Let Z; = (¢1,G1) and Z, = (¢3,G>) be non-
intersecting zonotopes.
d(Z1,22) = d(c15Z2 puy) (53)

where 25 puf = (6‘2, G J Gz).
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Proof. Suppose Z; and Z, are non-intersecting zonotopes such
that d(Zy,Z,) = r for some r € R™. That is, there exists z; € Z;
and zp € Z, such that

r=|lz1 — 2| (54)
= llet +Gi1f1 — (2 + G2 o) || (55)
= |lc1 = (c2+ G2 = G1B1) || (56)
> d(Cl,(Cz,Gl UGQ)) &7
=d(c1,Zpuf)- (58)

Now suppose d(c1,Z;pyf) = r. Then there exists coefficients
Bi1 and beta, such that

r=llc1 = (c2+ G111+ G2 || (59)

= [le1 = G1B1 — (2 + G2 )| (60)

= [lz1 — 22| (61)

>d(Z,,22). (62)

Together, these inequalities prove that d(Z,,Z,) =
d(c15Za pugf)- 0

Let int(S) denote the interior of a set. Before deriving the
negative distance we first define the penetration depth [44] of
two zonotopes:

Definition 17. The penetration depth of Z| and Z, in R" is
denoted n(Z1,Zy) and is defined by

n(Z1,Zy) =min{||t]| : int(Z,+tNZy) =0, teR™}. (63)

The penetration depth 7(Z;,Z,) can be interpreted as the
minimum translation applied to Z; such that the interior of
Z1 NZ, is empty. Following [45] we can now redefine the
penetration distance between Z; = (¢1,G1) and Z; = (¢2,G2)
in terms of ¢ and Z; pys.

Lemma 18. Let Z; = (¢1,G1) and Zy = (¢2,G2) be zonotopes
such that Z1NZy # 0. Then the penetration depth between Z;
and Zy is given by

n(Zy,2y) = m(ct,Zapuyp), (64)

Proof. Suppose Z; NZ, # 0. Then by Defn. 17, there exists a
translation vector ¢ € R" such that int(Z; +¢NZ,) = 0. This
means that Z; is translated by ¢ such that only the boundaries
of Z1 +t and Z, are intersecting. Thus, there exists z; € dZ;
and zp € d7Z, such that z; +1 = zp. Furthermore, there exist
coefficients B and 3, such that z; =c¢; +G1 1, 22 =2+ G2 B,
and

1 +G1ﬁ1 +t= 62+G2B2
< c1+t=c+Gp -G € aZZ"buf.

(65)
(66)
Since 7(c1,Zspyf) is the minimum distance between ¢ and
all points in dZ, pyr, this means that 7(cy,Zy pur) < ||7]].

Now suppose ¢i € Zppur. Let 1 € R" such that ||7|| is
the penetration depth of ¢; and Zp,s. Then there exists
coefficients B and B, such that zp = ¢; + G 1 + G2 3> and

ci+t=c2+G 1 +Gafn 67)
c1—Gifi+t =c2+Gaf. (63)



This means translating z; = ¢; — G181 € dZ; by t causes the
boundary of Z; to intersect the boundary of Z,. Therefore
n(Z1,Z,) < ||t]|. Together the above inequalities prove the
result. O

Theorem 19. Let Z| = (¢1,G1) and Z, = (¢2,G2) be zonotopes
such that Zy NZy # 0. Then the signed distance between Z;
and Z, is given by

d(ct;Zopur)  if €1 & Zopuy

. : (69)
—n(cr, Zopuf) I €1 € Zapuf

S(ZhZz) = {

Proof. The proof follows readily from Lemmas 16 and 18. [

Note that we provide a visual illustration of this theorem in
Fig. 5.
B. The Proof

We prove the desired result by considering two cases. First
assume ONFO(g(T;k)) =0 for all t € T. Then

r(0,FO(q(T;k))) = min min s(O,FO;(q(;k))) (70)

1€T jEN,

> min mi . .

= minmin s(0,FO;(a(Ti:k)) - (7D

_ . . b f .

= {2}\? ]nel}\g S(Co,FOj u (q(Ti,k))) (72)

= mins(co, | FOP(q(Ti:k)))  (73)
JENy ieN;

> mi '

> ;gg;S((:o,ﬂ’j) (74)

= min 7i(co,P;) (75)

= o, | P)). (76)

jeN,

where the first equality follows from the definition of r in
Def. 11, the second inequality follows from Lemma 13, the
third equality follows from Lemma 16, the fourth inequality
by flipping the order of minimization, and the fifth inequality
follows from Def. 4.

Thus 7 underapproximates the distance between the forward
occupancy and the obstacle. If instead O NFO;(q(t)) # 0
for some ¢ € T, replacing > with < shows that we can
overapproximate the penetration distance between an obstacle
and the forward occupancy.
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