
A Tight Threshold Bound for Search Trees with 2-way
Comparisons?

Sunny Atalig and Marek Chrobak

University of California at Riverside, USA

Abstract. We study search trees with 2-way comparisons (2WCST’s), which in-
volve separate less-than and equal-to tests in their nodes, each test having two
possible outcomes, yes and no. These trees have a much subtler structure than
standard search trees with 3-way comparisons (3WCST’s) and are still not well un-
derstood, hampering progress towards designing an efficient algorithm for com-
puting minimum-cost trees. One question that attracted attention in the past is
whether there is an easy way to determine which type of comparison should be
applied at any step of the search. Anderson, Kannan, Karloff and Ladner studied
this in terms of the ratio between the maximum and total key weight, and defined
two threshold values: �� is the largest ratio that forces the less-than test, and �

+

is the smallest ratio that forces the equal-to test. They determined that �� = 1
4 ,

but for the higher threshold they only showed that �+ 2 [37 ,
4
9]. We give the tight

bound for the higher threshold, by proving that in fact �+ = 3
7 .

1 Introduction

Search trees are decision-tree based data structures used for identifying a query value
within some specified set K of keys, by applying some simple tests on the query. When
K is a linearly ordered set, these tests can be comparisons between the query and a key
from K. In the classical model of 3-way comparison trees (3WCST’s), each comparison
has three outcomes: the query can be smaller, equal, or greater than the key associ-
ated with this node. In the less studied model of search trees with 2-way comparisons
(2WCST’s), proposed by Knuth [7, §6.2.2, Example 33], we have separate less-than and
equal-to tests, with each test having two outcomes, yes or no. In both models, the search
starts at the root node of the tree and proceeds down the tree, following the branches
corresponding to these outcomes, until the query ends up in the leaf representing the
key equal to the query value 1.

The focus of this paper is on the static scenario, when the key set K does not change
over time2. Each key k is assigned a non-negative weight wk, representing the frequency

? Research supported by NSF grant CCF-2153723.
1 Here we assume the scenario when the query is in K, often called the successful-query model.

If arbitrary queries are allowed, the tree also needs to have leaves representing inter-key in-
tervals. Algorithms for the successful-query model typically extend naturally to this general
mode without increasing their running time.

2 There is of course vast amount of research on the dynamic case, when the goal is to have the
tree to adapt to the input sequence, but it is not relevant to this paper.

< 6

= 1

1 < 4

= 3

3 2

= 4

4 5

= 6

6 = 7

7 8

y

y n

y

y n

n

y n

n

y n

y n8

4 3 3 2

9

8 7

Fig. 1: An example of a 2WCST. This tree handles keys 1, 2, 3, 4, 5, 6, 7, 8 with respective weights
8, 3, 4, 3, 2, 9, 8, 7. Computing the cost in terms of leaves, we get 8 · 2 + 3 · 4 + 4 · 4 + 3 · 4 +
2 · 4 + 9 · 2 + 8 · 3 + 7 · 3 = 127.

of k, or the probability of it appearing on input. Given these weights, the objective is to
compute a tree T that minimizes its cost, defined by cost(T) =

P
k2K wk · depth(k),

where depth(k) is the depth of the leaf representing key k in T . This concept naturally
captures the expected cost of a random query.

Using the now standard dynamic programming algorithm, optimal 3WCST’s can be
computed in time O(n3), where n = |K| denotes the number of keys. As shown already
by Knuth [6] in 1971 and later by Yao [10] in 1980, using a more general approach, the
running time can be improved to O(n2). This improvement leverages the property of
3WCST’s called the quadrangle inequality (which is essentially equivalent to the so-
called Monge property or total monotonicity — see [3]). In contrast, the first (correct3)
polynomial-time algorithm for finding optimal 2WCST’s was developed only in 2002
by Anderson, Kannan, Karloff and Ladner [1]. Its running time is O(n4). A simpler
and slightly more general O(n4)-time algorithm was recently given in [4].

The reason for this disparity in the running times lies in the internal structure of
2WCST’s, which is much more intricate than that of 3WCST’s. Roughly, while the op-
timal cost function of 3WCST’s has a dynamic-programming formulation where all
sub-problems are represented by key intervals, this is not the case for 2WCST’s. For
2WCST’s, a similar approach produces intervals with holes (corresponding to earlier
failed equal-to tests), leading to exponentially many sub-problems. As shown in [1]
(and conjectured earlier by Spuler [8,9]), this can be reduced to O(n3) sub-problems
using the so-called heaviest-first key property.

One other challenge in designing a faster algorithm is that, for any sub-problem, it
is not known a priori whether the root should use the less-than test or the equal-to test.
The intuition is that when some key is sufficiently heavy then the optimum tree must
start with the equal-to test (to this key) at the root. On the other hand, if all weights are
roughly equal (and there are sufficiently many keys), then the tree should start with a
less-than test, to break the instance into two parts with roughly the same total weight.

3 Anderson et al. [1] reference an earlier O(n5)-time algorithm by Spuler [8,9]. However, as
shown in [5], Spuler’s proof is not correct.

Addressing this, Anderson et al. [1] introduced two threshold values for the maximum
key weight. Denoting by W the total weight of the keys in the instance, these values are
defined as follows:

– �
� is the largest � such that if all key weights are smaller than �W then there is no

optimal tree with an equal-to test at the root.
– �

+ is the smallest � such that if any key has weight at least �W then there is an
optimal tree with an equal-to test at the root.

In their paper4, they proved that �� = 1
4 and �

+ 2 [37 ,
4
9]. These thresholds played a

role in their O(n4)-time algorithm for computing optimal 2WCST’s. The more recent
O(n4)-time algorithm in [4] uses a somewhat different approach and does not rely on
any threshold bounds on key weights.

Nevertheless, breaking the O(n4) barrier will require deeper understanding of the
structure of optimal 2WCST’s; in particular, more accurate criteria for determining
which of the two tests should be applied first are likely to be useful. Even if not improv-
ing the asymptotic complexity, such criteria reduce computational overhead by limiting
the number of keys to be considered for less-than tests.

With these motivations in mind, in this work we give a tight bound on the higher
weight threshold, by proving that the lower bound of 3

7 for �+ in [1] is in fact tight.

Theorem 1. For all n � 2, if an instance of n keys has total weight W and a maximum

key weight at least
3
7W then there exists an optimal 2WCST rooted at an equal-to test.

In other words, �
+  3

7 .

The proof is given in Section 3, after we introduce the necessary definitions and
notation, and review fundamental properties of 2WCST’s, in Section 2.

Note: For interested readers, other structural properties of 2WCST’s were recently
studied in the companion paper [2]. In particular, that paper provides other types of
threshold bounds, including one that involves two heaviest keys, as well as examples
showing that the speed-up techniques for dynamic programming, including the quad-
rangle inequality, do not work for 2WCST’s.

2 Preliminaries

Notation. Without any loss of generality we can assume that set of keys is K =
{1, 2, ..., n}, and their corresponding weights are denoted w1, w2, . . . , wn. Through-
out the paper, we will typically use letters i, j, k, ... to represent keys. The total weight
of the instance is denoted by W =

P
k2K wk. For a tree T by w(T) we denote the total

weight of keys in its leaves, calling it the weight of T . For a node v in T , w(v) denotes
the weight of the sub-tree of T rooted at v.

Each internal node is either an equal-to test to a key k, denoted by h= ki, or a
less-than test to k, denoted by h< ki. Conventionally, the left and right branches of the

4 In [1] the notation for the threshold values �� and �
+ was, respectively, � and µ. We changed

the notation to make it more intuitive and consistent with [2].

tree at a node are labelled by “yes” and “no” outcomes, but in our proof we will often
depart from this notation and use relation symbols “=”, “ 6=”, “<”, etc, instead. For
some nodes only the comparison key k will be specified, but not the test type. Such
nodes will be denoted h⇤ ki, and their outcome branches will be labeled “=/�” and
“6=/<”. The interpretation of these is natural: If h⇤ ki is h= ki then the first branch is
taken on they “yes” answer, otherwise the second branch is taken. If h⇤ ki is h< ki then
the second branch is taken on the “yes” answer and otherwise the first branch is taken.
This convention will be very useful in reducing the case complexity.

A branch of a node is called redundant if there is no query value q 2 K that traverses
this branch during search. A 2WCST T is called irreducible if it does not contain any
redundant branches. Each tree can be converted into an irreducible tree by “splicing
out” redundant branches (linking the sibling branch drectly to the grandparent). This
does not increase cost. So throughout the paper we tacitly assume that any given tree is
irreducible. In particular, note that any key k appearing in a node h⇤ ki of an irreducible
tree must satisfy all outcomes of the tests on the path from the root to h⇤ ki. (The only
non-trivial case is when h⇤ ki is h< ki and there is a node h= ki along this path. In
this case, h< ki can be replaced by h< k + 1i, as in this case k cannot be n if T is
irreducible.)

Side weights. We use some concepts and auxiliary lemmas developed by Anderson et
al. [1]. In particular, the concept of side-weights is useful. The side-weight of a node v

in a 2WCST T is defined by

sw(v) =

8
><

>:

0 if v is a leaf
wk if v is an equal-to test h= ki
min {w(L), w(R)} if v is a less-than test with sub-trees L,R

Lemma 1. [1] Let T be an optimal 2WCST. Then sw(u) � sw(v) if u is a parent of v.

The lemma, while far from obvious, can be proved by applying so-called “rotations”
to the tree, which are local rearrangements that swap some adjacent nodes. As a simple
example, if u = h= ki is a child of v = h= li and sw(u) > sw(v) then exchanging
these two comparisons would reduce the tree cost, contradicting optimality. For the
complete proof, see [1].

Lemma 1 implies immediately the following:

Lemma 2. [1] For n > 2, if an optimal 2WCST for an instance of n keys is rooted at

an equal-to test on i, then i is a key of maximum-weight.

We remark that in case of ties between maximum-weight keys a subtlety arises that
led to some complications in the algorithm in [1]. It was shown later in [4] that this issue
can be circumvented. This issue does not arise in our paper, and the above statement of
Lemma 2 is sufficient for our argument.

More about rotations. We will extend the concept of rotations to involve nodes of the
form h⇤ ki, with unspecified tests. This makes the rotations somewhat non-trivial, since

2 A

X 2 B

Z Y

/2 2

/2 2
=)

2 B

2 A

X Z

Y

/2

/2 2

2

Fig. 2: A tree rotation using general queries.

< a

X ⇤ b

Y Z

< �

=/� 6=/<
=)

⇤ b

Y < a

X Z

=/� 6=/<

< �

(a) Valid if tree is irreducible.

= a

X ⇤ b

Y Z

= 6=

=/� 6=/<
=)

⇤ b

Y = a

X Z

=/� 6=/<

= 6=

(b) Valid if a < b or h⇤ bi = h= bi.

Fig. 3: Rotating a node with double outcomes.

such nodes represent two different possible subtrees, and we need to justify that the tree
obtained from the rotation is correct in both cases.

To give a simple condition for ensuring valid rotations, we generalize 2WCSTs by
considering arbitrary types of tests, not merely equal-to or less-than tests. Any binary
test can be identified by the set of keys that satisfy the “yes” outcome. We can thus
represent such a test using the set element relation, denoted h2 Ai, with branches la-
belled “2” and “/2”. An equal-to test h= ki can be identified by the singleton set {k}
or its complement K � {k}, and a less-than test h< ki can be identified by (�1, k) or
[k,1).

Consider the rotation in Figure 2, where we denote the sub-trees and the keys they
contain by X , Y , and Z. Comparing the trees on the left and the right, we must have
Y = A \ B = B, which implies that for the rotation to be correct we need B ✓ A. (If
the tree on the left is irreducible, the containment must in fact be strict.) On the other
hand, if B ✓ A then in both trees we have Z = A \ B and X = K � A. This gives us
the following property:

Containment Property: The rotation shown in Figure 2 is valid if and only if B ✓ A.

We remark that other rotations, such as when h2 Bi is in the /2-branch of h2 Ai, can
be accounted for by the above containment property, by replacing h2 Ai with h2 Āi,
where Ā is the complement of A.

Consider Figure 3a, with tests h< ai and h⇤ bi. Assuming the original tree is irre-
ducible, we have b � a, with strict inequality if h⇤ bi is a less-than test. We identify
h< ai with set A = [a,1) and h⇤ bi with B = {b} or [b,1) (second option corre-
sponds to h< bi). Then by our inequalities, it is clear that B ⇢ A and the rotation is
valid. By a similar reasoning, the rotation shown in Figure 3b is also valid, assuming

either a < b or h⇤ bi is an equal-to test. For proving Theorem 1, we need only consider
these two rotations (or the corresponding reverse rotations).

Not all tree modifications in our proof are rotations. Some modifications also insert

a new comparison test into the tree. This modification has the effect of making a tree
reducible, though it can be converted into a irreducible tree, as explained earlier in this
section. Insertions are used by Anderson et al. [1] in proving the tight bound for �� and
will also be used in proving Theorem 1

3 Proof of Theorem 1

In this section we prove Theorem 1, namely that the lower bound of 3
7 on �

+ in [1] is
tight.

Before proceeding with the proof, we remind the reader that h⇤ ki denotes an un-
specified comparison test on key k, and that its outcomes are specified with labels“=
/�” and “6=/<”.

The proof is by induction on the number of nodes n. The cases n = 2, 3 are trivial
so we’ll move on to the inductive step. Assume that n � 4 and that Theorem 1 holds
for all instances where the number of keys is in the range {2, . . . , n� 1}.

To show that the theorem holds for any n-key instance, consider a tree T for an
instance with n keys and whose maximum-weight key m satisfies wm � 3

7w(T), and
suppose that the root of T is a less-than test h< ri. We show that we can then find
another tree T

0 that is rooted at an equal-to test node and has cost not larger than T .
If r 2 {2, n}, then one of the children of h< ri is a leaf, and we can simply replace

h< ri by an appropriate equal-to test. So we can assume that 2 < r  n � 1, in
which case each sub-tree of h< ri must have between 2 and n�1 nodes. By symmetry,
we also can assume that a heaviest-weight key m is in the left sub-tree L of h< ri.
Since wm � 3

7w(T) �
3
7w(L), we can replace L with a tree rooted at h= mi without

increasing cost, by our inductive assumption. (A careful reader might notice that, if a
tie arises, the inductive assumption only guarantees that the root of this left subtree will
be an equal-to test to a key of the same weight as m. For simplicity, we assume that this
key is m, for otherwise we can just use the other key in the rest of the proof.) Let T1 be
the 6=-branch of h= mi and T2 be the �-branch of h< ri.

By applying Lemma 1 to node h= mi and its parent h< ri, we have that w(T2) �
wm � 3

7w(T), which in turn implies that w(T1)  1
7w(T). Since T2 is not a leaf, let

its root be h⇤ ii with sub-trees T3 and T4, where T3 is the =/�-branch. The structure
of T is illustrated in Figure 4a.

To modify the tree, we break into two cases based on T3’s weight:

Case 1: w(T3) � 1
3w(T2). To obtain T

0, rotate h= mi to the root of the tree, then
rotate h⇤ ii so that it is the 6=-branch of h= mi. (The irreducibility of T implies that the
Containment Property in Section 2 holds for both rotations.) Node m goes up by 1 in
depth and subtrees T1 and T4 both go down by 1 (see Figure 4b). So the total change in
cost is

< r

= m

m T1

⇤ i

T3 T4

<

= 6=

�

=/� 6=/<

(a) Original tree T

= m

m ⇤ i

T3 < r

T1 T4

= 6=

=/� 6=/<

< �

(b) Modified tree T 0

Fig. 4: On the left, tree T in the proof of Theorem 1. On the right, the modification for Case 1.
Notice that T3 is either the leaf i or contains all keys greater than or equal to i, depending on the
comparison test h⇤ ii.

cost(T 0)� cost(T) = w(T1) + w(T4)� wm

= w(T)� 2wm � w(T3) wm + w(T1) + w(T3) + w(T4) = w(T)

 w(T)� 2wm � 1
3wm w(T3) � 1

3w(T2), w(T2) � wm

= w(T)� 7
3wm

 0 wm � 3
7w(T)

Case 2: w(T3) <
1
3w(T2). Note that in this case, w(T4) >

2
3w(T2). We’ll first handle

some trivial cases. If T4 is a leaf j, we can replace h⇤ ii with h= ji and do the same
rotations as in Case 1 (swapping the roles of T4 and T3). If T4 contains only two leaves,
say k and j, applying Lemma 1 we obtain that wk, wj  w(T3), which in turn implies
that w(T2)  3w(T3) < w(T2) — a contradiction.

Therefore, we can assume that T4 contains at least 3 leaves and at least 2 comparison
nodes. Let h⇤ ji be the test in the root of T4. If h⇤ ji is a less-than test and any of its
branches is a leaf, we can replace h⇤ ji with an equal-to test. If h⇤ ji is an equal-to test
than its 6=-branch is not a leaf (because T4 has at least 3 leaves). Thus we can assume
that the 6=/<-branch of h⇤ ji is not a leaf, and let h⇤ ki be the root of this branch. This
means that both h⇤ ji and h⇤ ki follow from an 6=/<-outcome. Let T5 be the =/�-
branch of h⇤ ji and T6 and T7 be the branches of h⇤ ki. The structure of T is shown in
Figure 6a.

This idea behind the remainng argument is this: We now have that T5, T6 and T7

together are relatively heavy (because T4 is), while T1 and T3, which are at lower depth,
are light. If this weight difference is sufficiently large, it should be thus possible to
rebalance the tree and reduce the cost. We will accomplish this rebalancing by using
keys i, j and k, although it may require introducing a new less-than test to one of these
keys.

For convenience, re-label the keys {i, j, k} = {b1, b2, b3} such that b1  b2  b3.
The goal is to use h< b2i as a “central” cut-point to divide the tree, with h< ri and

< r

= m

m T1

= i

i = j

j < k

T6 T7

<

= 6=

�

= 6=

= 6=

< �

=)

= m

m < j

< r

T1 < k

T6 T
0
7

= i

i = j

j T
00
7

= 6=

<

< �

< �

�

= 6=

= 6=

Fig. 5: An example conversion of T (on the left) into T
0 (on the right) in Case 2, where k < j < i.

T
0
7 and T

00
7 are copies of T7.

h⇤ b1i in its <-branch. The �-branch will contain h⇤ b3i and, if h⇤ b2i is an equal-to
test, also h⇤ b2i.

The idea is illustrated by the example in Figure 5. In tree T
0 we have two copies of

T7, denoted T
0
7 and T

00
7 . (Because of this T 0 is not irreducible. As explained in Section 2,

T
0 can be then converted into an irreducible tree by splicing out redundant branches.)

These copies are needed because the range of T7 is partitioned by the h< ji test into two
subsets, with query keys smaller than j following the <-branch and the other following
the �-branch. We refer to this in text later as “fracturing” of T7. However, since these
subsets form a disjoint partition of the range of T7, the total contribution of T 0

7 and T
00
7

to the cost of T 0 is the same as the contribution of T7 to the cost of T . More generally,
such fracturing does not affect the cost as long as the fractured copies of a subtree are
at the same depth as the original subtree.

Ultimately, using the case assumption that w(T3) <
1
3w(T2), we want to show the

following:
Claim 1: There exists a tree T

0 such that

cost(T 0)� cost(T)  w(T1)� wm + 2w(T3).

In other words, we want to show that in the worst case scenario, we have a modified
tree whose cost is at worst equivalent to moving key m up by one, T1 down by one, and
T3 down by 2. This suffices to prove Case 2 as then

cost(T 0)� cost(T)  w(T1)� wm + 2w(T3)

= w(T)� 2wm + w(T3)� w(T4) wm + w(T1) + w(T3) + w(T4) = w(T)

 w(T)� 2wm + 1
3w(T2)� 2

3w(T2) w(T3) <
1
3w(T2), w(T4) >

2
3w(T2)

= w(T)� 2wm � 1
3w(T2)

 w(T)� 2wm � 1
3wm w(T2) � wm

 0

Before describing the construction of T 0, we’ll first establish Claim 2 below.

Claim 2: r < b2 (so that h< ri and h< b2i are distinct tests).
Because keys i, j, and k are in the �-branch of h< ri, we have that r  b1, b2, b3.

As any irreducible tree can perform at most two tests on the same key, if bi = r then bi

is distinct from the other two keys. Then bi = b1 must hold to preserve order, and thus
b2 > b1 = r. This proves Claim 2.

The modified tree T
0 then has the following form: h= mi is at the root, h< b2i is at

the 6=-branch of h= mi, and h< ri is at the <-branch of h< b2i. Notably, T1 will still
be in the <-branch of h< ri in T

0, which implies that m moves up by 1 and T1 moves
down by 1, thus matching the w(T1)�wm terms in Claim 1. The right branch of h< ri
leads to h⇤ b1i. The rest of T 0 will be designed so that all subtrees T3, T5, T6 and T7

will have roots at depth at most 4, so in particular T6 and T7 will never move down.
Then it suffices to show that the new depths of T3 and T5 imply a cost increase no

greater than 2w(T3). More precisely, we will show that T 0 has one of the following
properties: Compared to T , in T

0

(j1) T3 moves down by at most 2 and T5’s depth doesn’t change, or

(j2) If h⇤ ji is an equal-to test then T5 and T3 move down at most by 1 each. (This
suffices because w(T5) = wj  w(T3) if h⇤ ji is an equal-to test, by applying
Lemma 1 to T .)

To describe the rest of our modification, we break into two sub-cases, depending on
whether h⇤ b2i is and equal-to test or less-than test.

Case 2.1: h⇤ b2i = h< b2i. In this case, h⇤ b3i is at the �-branch of h< b2i in T
0. We

do not introduce any new comparison tests, obtaining T
0 shown in Figure 6b. We now

break into further cases based on which key b2 is.
First, we observe that b2 6= i, as for b2 = i the structure of T would imply that

j, k < i, meaning that i would be the largest key, instead of the middle one. Thus,
b2 2 {j, k}. This gives us two sub-cases.

Case 2.1.1: b2 = j. Then we have k < j by the structure of T , implying k = b1, and
i � j since i must now be b3. Then, in T

0, h⇤ b1i has branches T6 and T7, while
h⇤ b3i has branches T3 (=/�-branch) and T5 (6=/<-branch). In which case, only
T3 moves down by 1, satisfying (j1).

Case 2.1.2: b2 = k. Then the structure of T implies that k 6= {i, j}, so b1 < k, which
in turn implies that h⇤ b1i is an equal-to test. We now have two further sub-cases.
If (i, j) = (b1, b3) then, in T

0, T5 is in the =/�-branch of h⇤ b3i and leaf T3 = i

is in the =/�-branch of h⇤ b1i, implying T5’s depth doesn’t change and T3 moves
down by 2, satisfying (j1). If j = b1, then leaf T5 = j is below h⇤ b1i and T3 is
below h⇤ b3i, both moving down by 1, satisfying (j2).

Case 2.2: h⇤ b2i = h= b2i and both tests h⇤ b1i, h⇤ b3i are different from h< b2i. In
this case, h< b2i (the 6=-child of h= mi in T

0) is a newly introduced test. In T
0, we

will have h= b2i and h⇤ b3i in the �-branch of h< b2i. The order in which we perform
h= b2i and h⇤ b3i will be determined later.

< r

= m

m T1

⇤ i

T3 ⇤ j

T5 ⇤ k

T6 T7

<

= 6=

�

=/� 6=/<

=/� 6=/<

=/� 6=/<

(a) Original tree T

= m

m < b2

< r

T1 ⇤ b1

S1 S2

⇤ b3

S3 S4

= 6=

<

< �

=/� 6=/<

�

=/� 6=/<

(b) Modified tree T 0

Fig. 6: Original and modified tree for Case 2.1. S1, S2, S3, S4 is simply some permutation of
T3, T5, T6, T7.

We will say h= b2i is “performed first” if it is the root of the �-branch of h< b2i, in
which case h⇤ b3i is rooted at the 6=-branch of h= b2i, or “performed second”. Likewise
if h⇤ b3i is performed first, then h= b2i is performed second, rooted at the 6=/<-branch
of h⇤ b3i. Figure 7 illustrates these two possible configurations. In most cases, h= b2i
and h⇤ b3i are performed in the same order as in the original tree T (i.e. h⇤ ii comes
before h⇤ ji, which comes before h⇤ ki), though one case (Case 2.2.2) requires going
out-of-order, implying a rotation.

Because h< b2i is a new comparison, one of the sub-trees T3, T5, T6, T7 in T may
fracture, meaning that some of its keys may satisfy this comparison and other may not.
We will in fact show that only T6 or T7 can fracture, but their depths do not increase.
So, as explained earlier, this fracturing will not increase cost. (As also explained be-
fore, the redundancies created by this fracturing, and other that can occur as a result
of the conversion, can be eliminated by post-processing T

0 that iteratively splices out
redundant branches.) We again break into further cases based on which key b2 is.

Case 2.2.1: b2 = i and h⇤ ji is an equal-to test. Then T3 = i and T5 = j are both
leaves and can’t fracture. Perform h= b2i first and h⇤ b3i second (since i = b2, this
follows order of comparisons in the original tree). Then T3 and T5 both move down
by 1, satisfying (j2), with T3 = i = b2 in the =-branch of h= b2i and T5 = j in the
=-branch of either h⇤ b1i or h⇤ b3i (depending on whether j is b1 or b3).

Case 2.2.2: b2 = i and h⇤ ji is a less-than test. Then k < j, so j = b3 and k = b1.
By the case assumption, we have that j > i. Then in the �-branch of h< b2i,
we perform h< ji before h= ii (going out-of-order compared to the original tree),
which will be in the <-branch of h< ji. Then T3 = i will be below h= ii moving
down twice and T5 will be in the �-branch of h< ji staying at the same depth,
satisfying (j1).

Case 2.2.3: b2 = j. Then we may simply perform h= b2i and h⇤ b3i in the same order
as in the original tree. If h⇤ ii is an equal-to test, then T3 and T5 are both leaves,
and either both will go down by 1 (if i = b3 and k = b1), satisfying (j2), or only T3

< r

= m

m T1

⇤ i

T3 ⇤ j

T5 ⇤ k

T6 T7

<

= 6=

�

=/� 6=/<

=/� 6=/<

=/� 6=/<

(a) Original tree T

= m

m < b2

< r

T1 ⇤ b1

S1 S2

= b2

b2 ⇤ b3

S3 S4

= 6=

<

< �

=/� 6=/<

�

= 6=

=/� 6=/<

(b) Modified tree T 0, h= b2i goes first

= m

m < b2

< r

T1 ⇤ b1

S1 S2

⇤ b3

S3 = b2

b2 S4

= 6=

<

< �

=/� 6=/<

�

=/� 6=/<

= 6=

(c) Modified tree T 0, h⇤ b3i goes first

Fig. 7: Original and modified tree for Case 2.2. In this case, T5 = b2, and S1, S2, S3, S4 is some
permutation of T3, T6, T7, T

00, where T
00 is a copy of T6 or T7.

goes down by 2 (if i = b1 and k = b3), satisfying (j1). If h⇤ ii is a less-than test,
then j, k < i, so k = b1 and i = b3. h< ii will be performed first in the �-branch of
h< b2i and T3 will be in the �-branch of h< ii, implying T3 and T5 both go down
by 1, satisfying (j2).

Case 2.2.4: b2 = k. The analysis is similar to Case 2.1.2. By the structure of T ,
k 6= {i, j}, so b1 < k, implying h⇤ b1i is an equal-to test. Then perform h= b2i
and h⇤ b3i in the same order as the original tree (that is, h= ki is always performed
second). Thus h⇤ b1i is in the �-branch of h< ri and h⇤ b3i is in the �-branch of
h< b2i. If (i, j) = (b1, b3), then T3 (which is a leaf i) is at the =/�-branch of h⇤ b1i
and T5 is at the =/�-branch of h⇤ b3i, implying T5’s depth stays the same and T3

moves down by 2, satisfying (j1). If (i, j) = (b3, b1), then leaf T5 = j is below
h⇤ b1i and T3 is below h⇤ b3i, implying both trees move down by 1, satisfying (j2).

References

1. R. Anderson, S. Kannan, H. Karloff, and R. E. Ladner. Thresholds and optimal binary com-
parison search trees. Journal of Algorithms, 44:338–358, 2002.

2. Sunny Atalig, Marek Chrobak, Erfan Mousavian, Jiri Sgall, and Pavel Veselý. Structural
properties of search trees with 2-way comparisons. CoRR, abs/2311.02224, 2023.

3. Wolfgang W. Bein, Mordecai J. Golin, Lawrence L. Larmore, and Yan Zhang. The Knuth-
Yao quadrangle-inequality speedup is a consequence of total monotonicity. ACM Trans.

Algorithms, 6(1):17:1–17:22, 2009.
4. Marek Chrobak, Mordecai Golin, J. Ian Munro, and Neal E. Young. A simple algorithm for

optimal search trees with two-way comparisons. ACM Trans. Algorithms, 18(1):2:1–2:11,
December 2021.

5. Marek Chrobak, Mordecai Golin, J. Ian Munro, and Neal E. Young. On Huang and Wong’s
algorithm for generalized binary split trees. Acta Informatica, 59(6):687–708, December
2022.

6. D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.
7. D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-

Wesley Publishing Company, Redwood City, CA, USA, 2nd edition, 1998.
8. D. Spuler. Optimal search trees using two-way key comparisons. Acta Informatica,

31(8):729–740, 1994.
9. D. A. Spuler. Optimal search trees using two-way key comparisons. PhD thesis, James Cook

University, 1994.
10. F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Ray-

mond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors,
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30,

1980, Los Angeles, California, USA, pages 429–435. ACM, 1980.

	A Tight Threshold Bound for Search Trees with 2-way Comparisons

