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1 Abstract

Human-generated Spatial-Temporal Data (HSTD), rep-
resented as trajectory sequences, has undergone a data
revolution, thanks to advances in mobile sensing, data
mining, and Al Previous studies have revealed the effec-
tiveness of employing attention mechanisms to analyze
massive HSTD. However, traditional attention models
face challenges when managing lengthy and noisy tra-
jectories as their computation comes with large memory
overheads. Furthermore, attention scores within HSTD
trajectories are sparse (i.e., most of the scores are ze-
ros), and clustered with varying lengths (i.e., consecu-
tive tokens clustered with similar scores). To address
these challenges, we introduce an innovative strategy
named Memory-efficient Trajectory Attention (MeTA).
We leverage complicated spatial-temporal features (e.g.,
traffic speed, proximity to Pols) and design an inno-
vative feature-based trajectory partition technique to
shrink trajectory length. Additionally, we present a
learnable dynamic sorting mechanism, with which at-
tention is only computed between sub-trajectories that
have prominent correlations. Empirical validations us-
ing real-world HSTD demonstrate that our approach
not only yields competitive results but also significantly
lowers memory usage compared with state-of-the-art
methods. Our approach presents innovative solutions
for memory-efficient trajectory attention, offering valu-
able insights for handling HSTD efficiently.

Keywords: Human-generated Spatial-Temporal
Data Mining, Sparse Attention

2 Introduction

Recent advancements in mobile sensing, data mining,
and AI have ushered in a paradigm shift in handling
Human-generated spatial-temporal data (HSTD). No-
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Figure 1: Attention scores heatmaps. Each heatmap
corresponds to a distinct trajectory, highlighting block-
wise sparsity patterns within each trajectory.

tably, companies like Uber [20] and Lyft [14] have har-
nessed human mobility models, utilizing GPS data from
pedestrians, drivers, and gig-workers, to enhance safety
and authorization [6]. HSTD plays a pivotal role in
urban status monitoring, traffic management [27], and
deciphering mobility patterns [25]. Moreover, attention
mechanisms have made significant inroads into HSTD
research. Transformer-based models have demonstrated
their prowess in encoding spatial and temporal informa-
tion for location generation and successful pre-training
and fine-tuning on large-scale real-world datasets, yield-
ing remarkable performances [7,9,12].

Limitations of State-of-the-art (SOTA). Atten-
tion mechanisms [21] have demonstrated impressive per-
formances for enabling deep learning models to handle
long-range dependencies in data more effectively. While
powerful, the memory cost of the traditional full at-
tention mechanisms [21] scales quadratically with se-
quence length, becoming infeasible for long HSTD se-
quences, like vehicle trajectories, and air quality maps
in a big city. This leads to an increasing demand for
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Figure 2: Our MeTA (a), and a comparison with
SOTA attention maps (b) local attention [13], (c) sparse
attention [18] and (d) full attention [21].

the development of sparse and efficient attention mech-
anisms [2-4, 10,18, 23], and is particularly pronounced
in the context of efficient spatial-temporal pre-training
models. These works have explored sparse, local at-
tention mechanisms for memory efficiency, where each
token attends to a small subset of key-value pairs rather
than the full set [21]. However, these methods use pre-
defined sparse patterns or sliding windows over local
contexts. As a result, they cannot capture complicated
spatial-temporal correlations. e.g., in a city, short seg-
ments might be used in dense urban areas with frequent
turns and stops, whereas longer segments could be used
on highways where movement is more uniform. This
allows for a more detailed analysis of traffic flow and
congestion in varying city zones.

Our preliminary investigations in Fig. 1 show that
using a full attention mechanism is not necessary for
spatial-temporal data. Fig. 1 shows the heat maps of
the attention scores of two trajectories. They show
that when using full attention on a driver identifica-
tion task trained on taxi trajectory data, the resulting
attention scores demonstrate (1) sparse attention pat-
terns (i.e., most of the attention scores are zeros, indi-
cated by a darker color), and (2) strong varying-length
clusters (i.e., tokens on the same road grouped in sub-
trajectories of a similar color). This sparsity in attention
scores is attributed to the variable nature of spatial-
temporal data in taxi trajectories, where segments of
high activity, such as busy city streets, alternate with
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more uniform segments like highways. Consequently,
the model focuses more on complex, frequently chang-
ing areas. Additionally, unique driving behaviors, influ-
enced by varied urban environments, lead to distinct at-
tention clusters, exemplified by concentrated attention
in stop-and-go urban traffic versus less focus on con-
sistent highway driving. These observations underscore
the importance of intelligently grouping GPS records
to form sub-trajectories based on geographical features,
allowing for a deeper exploration of attention patterns
within each trajectory. Additionally, applying full at-
tention across an extended sequence introduces redun-
dancy and noise when extracting spatial-temporal rep-
resentations. Our approach tackles the above limita-
tions with a memory-efficient attention mechanism for
trajectory data. It involves a feature-based trajectory
partitioning step, and a learnable sorting mechanism to
focus attention exclusively on essential sub-trajectories.

All of these design choices contribute to our Memory-

efficient Trajectory Attention (MeTA) mechanism, ul-

timately enhancing the memory efficiency of spatial-
temporal tasks. Our contributions can be summarized
as follows:

e We introduce an advanced partition strategy to trans-
form lengthy trajectories into shorter ones. This
mechanism strategically segments trajectories into
groups of consecutive spatial-temporal data point
groups (or sub-trajectories) based on the strong spa-
tial correlation and key geographical attributes. (Sec-
tion 4.1)

e We further develop a learnable sorting mechanism so
that sub-trajectories with stronger correlations are
ranked higher. With this, we filter out unnecessary
query-key computation and create a sparse attention
matrix. This achievement sets a groundbreaking
precedent for achieving high memory efficiency within
the context of trajectory attention in the spatial-
temporal domain. (Section 4.2 and Section 4.3).

e We validate our framework using real-world HSTD
and demonstrate competitive results compared to
baselines. Our approach plays a pivotal role in en-
hancing the memory efficiency of our spatial-temporal
attention mechanism and refining the memory effi-
ciency of HSTD analysis(See Section 5). We made
our code and unique dataset available to contribute to
the research community via GitHub link.".

3 Overview

In this section, we introduce the memory-efficient tra-
jectory attention problem and outline associated chal-
lenges in research. For brevity, we provide a summary

TMeTA page: https://github.com/mhu3/MeTA
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Table 1: Notations.

Notations Descriptions

p = (lat,Ing, t, sta, spd) GPS record.

7 ={a, (p1,p2, " ,Pn)} Trajectory.

" ={a, (D, ,Pitk)} Sub-trajectory.

T Trajectory set.

VA Trajectory embedding.

z' Sub-trajectory embedding.

L Attention layer number.

H Hidden size.

A Attention matrix.

Wy, Wi, Wy Query, key, value matrices.
dg,dg,dy Dimension of query, key, value.
q;,kj,v; Query, key, value of j-th head.
Q,K,V query, key and value of Z.
Nhead Attention head number.

of the notations used in this paper in Table 1.

3.1 Human-Generated Spatial-Temporal Data
as Trajectories. Human-generated spatial-temporal
data (HSTD) encapsulates sequential human decisions
during mobility. For instance, freight tracking, rep-
resented as GPS traces, and automatic fare collection
data, recorded as transaction records, offer insights
into choices made in delivery routes and daily com-
mutes. Hence, HSTD can be interpreted as a series of
trajectories, with humans navigating through spatial-
temporal regions. We formally define these concepts
subsequently.

Definition 1. (A trajectory 7). With the wide
use of GPS devices on vehicles, smartphones, smart-
watches, etc., people can generate substantial spatial-
temporal data at any location and time. Each GPS
point p consists of latitude lat, longitude Ing, a times-
tamp t, driving status sta, and speed spd, denoted as
p = (lat,lng,t, sta,spd). Driving status illuminates
the mobility pattern of a trajectory. For example,
taxis might be marked based on whether they have
a passenger on board. Driving status and speed are
both important features for spatial-temporal data min-
ing problems. A trajectory 7 is a sequence of n GPS
points generated by the human agent a, denoted as
7 = {a,(p1,p2, - ,pn)} and we denote the set of tra-
jectories as T .

Definition 2. (A sub-trajectory 7). A sub-
trajectory 7' is a contiguous segment of a trajectory
7. It is represented as 7' = {a7 (piapiJrla"’ apiJrk)}a
where a is the human agent generating the trajectory,
and (p;, P11, - ,Pitk) is a consecutive sequence of k
GPS points from the original trajectory 7. The sub-
trajectory 7’ captures the spatial-temporal movement
of the agent within a specific time and location range.
Sub-trajectories can be partitioned based on the speed
or location, i.e., crucial features for spatial-temporal
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data analysis.

3.2 Limitations of Attention in Human Tra-
jectory Amnalysis. Though attention mechanisms
have proven to be a powerful tool for capturing in-
tricate spatial-temporal patterns in sequence data, its
time and space complexity is quadratic in sequence
length [7,9,12,26]. There are two fundamental compo-
nents of attention mechanisms: i) single-head attention
and ii) multi-head attention. These components, while
crucial in enhancing model performance, also contribute
to the quadratic complexity.

Given a trajectory 7 = {a, (p1,p2, - ,pn)} of 1

GPS records, an attention module first transforms it
into an embedding Z = [2; 22 --- 2z,], where each
z; is an embedding of a GPS point p; with embedding
dimension H.
Single-head attention is the standard attention used
in a transformer [21]. For a trajectory embedding
Z, it is linearly transformed using a query matrix
W, € REXH 3 key matrix Wy, € RH*H and a
value matrix W, € RHXH respectively. Each input
trajectory embedding is transformed into queries QQ =
(g1 @2 - gqn] With q¢; = 2;W,, keys K = [k1 k2 -+ ky]
with k; = z; Wy, and values V = [v; vg --- v,] with
v; = z;W,. Single-head attention attends each query
q; € Q to every key k; € K, which are further used to
compute a weighted sum of all values v; € V, leading
to the output,

T
Attn(Q, K, V) = Softmax (QK) V.

vH

Multi-head attention runs through the single-head
attention mnjeqq times in parallel. Each embedding tra-
jectory Z is chopped into npeaq pieces, with H/npeqd
dimensions, and gets processed by npe.q single-head
attention modules in parallel. These output values
from all heads are then concatenated and linearly trans-
formed by a matrix Wjss4 to produce the final outputs.
The attention computation for each head can be formu-
lated as:

SAJ(Z) = Attn(Zij,Zij,Zij),j =1,--,Nhead-

Finally, the outputs of all mpe,q attention heads are
concatenated and projected using a learnable matrix
Whsa € RnheadHXH,

MSA(Z) = Concat (SA1(Z), - ,SAn,...(Z)) Wnsa.

In the above computation, the matrix sizes of @,
K, and V increase with the trajectory length, and the
element-wise computation of the attention maps (i.e.,
QKT) is quadratic in time and space. This represents
a major bottleneck for efficiently applying attention
mechanisms to long HSTD trajectories.
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3.3 Problem Definition: Memory-efficient Tra-
jectory Attention. To deal with the limitations in the
SOTA works, we formally define our Memory-efficient
Trajectory Attention (MeTA) problem below:

MeTA Problem Definition. Given a set of trajec-
tories 7, our goal is to design a trajectory attention
mechanism that can deal with lengthy data with var-
ious geographical features and compute the attention
map efficiently in terms of memory usage.
Challenges. As illustrated in the introduction, the
MeTA problem is challenging from two perspectives:
(C1) Considering the vastness of HSTD, how can we
leverage the strong spatial-temporal correlation within
each trajectory to group tokens with similar geograph-
ical relationships, thereby reducing attention compu-
tation overhead? (See Section 4.1) (C2) With the
grouped trajectory representation, how can we develop
a memory-efficient attention mechanism that filters out
unnecessary attention calculations? (See Section 4.2
and 4.3)

4 Methodology

To tackle the above challenges, we introduce our
Memory-efficient Trajectory Attention, i.e., MeTA, and
illustrate its implementation. To cluster similar to-
kens together for challenge C1, we divide trajectories
into distinct sub-trajectories based on their geographi-
cal features. With a learnable sorting and ranking tech-
nique, we then identify correlations between these sub-
trajectories. Sub-trajectories with stronger connections
receive higher ranking scores. This sorting system en-
ables us to filter out unnecessary attention computa-
tions, yielding a sparse attention map, thereby address-
ing challenge C2. Our MeTA mechanism is depicted
in Fig. 2, comparing it with both the state-of-the-art
memory-efficient attention mechanism and the full at-
tention approach.

4.1 MeTA: Trajectory Partitioning. To en-
hance memory efficiency while preserving the valuable
insights contained within the HSTD trajectory data, we
introduce a novel approach by partitioning a complete
HSTD trajectory into variable-length sub-trajectories
for further sorting.

Conventional methods applied in transformers [2,
3,10,18,23] often segment sequences into equal lengths,
which overlook critical information embedded in specific
features such as the speed and driving patterns of taxi
drivers. These features are valuable for understanding
traffic patterns and driver decision-making.

To address this limitation, we adopt a dynamic
approach where sub-trajectories are of varying lengths
based on their geographic features. This enables us to
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capture the inherent information present in the original
features. By breaking down trajectories in this man-
ner, we facilitate more comprehensive segmentation that
takes into account the diversity of real-world HSTD tra-
jectories (e.g., vehicle trajectories, air quality dynam-
ics), thereby enhancing its ability to efficiently process
and analyze HSTD trajectory data preserving the rich-
ness of valuable features. The transformation can be
expressed as follows:

(4.1) [Tgy - ,T]/VB] = Yp(7).

In this equation, the function 1 p(-) represents the
segmentation operation that maps a trajectory 7 into
a list of Np sub-trajectories. Each sub-trajectory T
with b = 1,--- , Np corresponds to a specific length
l,. It is important to note that the lengths of these
sub-trajectories, i.e., I, are not uniform; they can
vary. This variability is influenced by factors such
as the underlying characteristics of the trajectories,
the inherent diversity in the data, and the need to
capture detailed information for different portions of
a trajectory. As a result, [r{,---,Tp,] represents
a transformed representation of the original variable-
length trajectory 7 to adapt to the complexity and
richness of the underlying data.

4.2 MeTA: Sub-trajectory Sorting. This step is
inspired by Sinkhorn ranking operation [17,18], as one
can learn a differentiable ranking that can be optimized
while training the attention model. Therefore, we aim
to learn the relationships between sub-trajectories using
Sinkhorn ranking. It includes learning an adaptive
relation vector for each sub-trajectory, followed by
normalizing and assembling them into a sorting matrix.
Adaptive relation learning. When calculating the
relationships between sub-trajectories, we first follow
the traditional transformer and transform each trajec-
tory into an embedding Z. The sub-trajectories in the
embedding form can then be denoted as [Z7,--- , Z},_].
We represent each sub-trajectory by the sum of its to-
kens, i.e., Zj = Y7 (Z; ;) with b=1,--- ,Np. The
trainable sorting network is defined as,

Rb = P(Zl/))7

where b denotes the sub-trajectory index, and P(-)
represents an arbitrary parameterized function that
takes an input sub-trajectory representation Z{) and
returns a relation vector of Np dimensions. Each output
dimension indicates the correspondence of the input
sub-trajectory to one of the other sub-trajectories. One
possible parameterization of P (Zb) involves using a two-
layered feed-forward network with ReLU activations:

P(Z,) = o(Wpo(WpZy, + bp) + bp),
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where Wp and Wp are weight matrices for the two
linear layers. Essentially, each sub-trajectory undergoes
a learning process to establish a connection with up to
Np other sub-trajectories, effectively determining the
relationship to other sub-trajectories.

Sinkhorn sub-trajectory normalization. Stacking
the relation vectors R; for the Np sub-trajectories leads
to the relation matrix R. The matrix R can be viewed
as a form of a permutation matrix when it becomes
doubly stochastic, signifying that the matrix is non-
negative, and both its rows and columns sum to 1. To
provide further clarity, a relation matrix R represents
a specialized instance of a doubly stochastic matrix,
where all elements are exclusively 0 or 1. It is important
to note that any permutation matrix can be considered
a convex combination of doubly stochastic matrices.
Therefore, it involves the training of matrices that
approximate the characteristics of permutation matrices
while allowing for a degree of relaxation, which we refer
to as relaxed permutation matrices.

The Sinkhorn normalization approach refines the
sorting matrix R through iterative row and column
operations to approximate a doubly stochastic matrix
[1]. This procedure unfolds as follows,

SO(R) = exp(R),
Sk(R) = FC(FT(Skil(R)))a
S(R) = lim Si(R).

Here, F,. and F, are matrices that affect row and column
normalization on R, and k represent the iteration
number. Specifically,

FNZ)=F"'(2)0 (21.1Y)),
F¥2Z)=FF'(2)0 (11%2).

In this context, ©® denotes the element-wise division
operator, and N corresponds to the length of the input
matrix. For numerical precision, these transformations
can be applied in the log domain. It has been observed
that after k iterations, the resulting S(R) comes close
to being doubly stochastic.

4.3 MeTA: Memory-efficient Trajectory Atten-
tion. Given the partitioned sub-trajectories and the
learned Sinkhorn sorting matrix, we can coordinate
them in one attention mechanism and introduce our
MeTA in this section. MeTA plays a crucial role in
addressing the memory demands associated with pro-
cessing HSTD trajectories. It is an innovative approach
that focuses on operating with variable-length sub-
trajectories, departing from the conventional method
of applying full attention across all steps within each
trajectory.
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4.3.1 MeTA Attention on Sub-trajectories. Af-
ter partitioning the trajectory into sub-trajectories us-
ing Eq. (4.1), we obtain the query matrix for each sub-
trajectory @; and calculate attention scores concerning
selected sub-trajectory keys K; and corresponding value
matrices V;. Then the revised computation for the at-
tention mechanism can be expressed as follows:

QiK]
SV

Here, Aij represents the attention scores for query
vector ); to the block keys K;. Subsequently, the
computation of the attention matrix for block 7 entails
the utilization of the attention scores A;; in conjunction
with the value matrix V;. The attention scores are
intelligently weighted by the values of R;;, which serve
as indicators of the extent to which a given block
should allocate its attention to other blocks within the
trajectory,

Yij = R;; - Softmax(A;;) - V;.

Here, Y;; represents the attention-weighted values for
block @; with the block keys K; and V;. The signifi-
cance of R;; lies in its capacity to determine the extent
to which each block j contributes its attention to block
1. This, in turn, exerts a notable influence on the overar-
ching attention dynamics and the overall sparsity of the
attention mechanism. To better understand the local-
ized context, we also add local attention for each block
Q;, Y;; = softmax(A;;) - V; which makes the attention
mechanism more adaptive to both global and nearby
context. So the final output attention matrix for the
block Q); is:

Np

Yi=) Yy+Y.
j=1

So the final attention matrix for the original input is:
Y = Concat(Y1,Ys, ..., YNy ).

which provides a flexible and adaptive attention mech-
anism for variable-length sequences.

4.3.2 Diverse Multi-head Sinkhorn Attention.
To further enhance the capacity of our model, we also
incorporate a multi-head attention mechanism. Unlike
traditional multi-head attention where all heads share
the same parameters, in our framework, each head
employs a unique sorting network. The multi-head
Sparse Sinkhorn Attention computes multiple sets of
attention values, one for each attention head, using
the custom sorting networks. These attention values
are then collectively used to form the final output,
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Figure 3: Variation of the R matrix w.r.t. temperature.

enhancing the model’s capability to capture various
facets of the input trajectories. For each of the mjeqq
heads, we have dedicated query, key, and value matrices.
The distinctions for head h are represented with the
superscript (P):

Vi

Y"” = Ry; - Softmax(4{") - v\

(h) _
AP =

Upon incorporating the outputs from multiple heads,
the aggregated output for each sub-trajectory becomes:

Mhead
}/’L_multi — Concat (Z Y;gh) + }/’Lgh)) .
h=1

This multi-head formulation ensures that our model
captures a more comprehensive representation of the
input trajectories.

4.3.3 Memory-Efficient Attention Using Gum-
bel Softmax. To realize the sparsity of the trajec-
tory attention mechanism and accomplish the memory-
efficiency trajectory attention, we utilize the Gumbel
noise [8] as below:

S(T)zs(T;E),

where € denotes the injected Gumbel Softmax, and T is
the temperature. As the temperature T is lowered, the
function S(7) increasingly approximates a permutation
matrix, characterized by distinct 1s and 0s. This process
transforms the continuous values in S(7) into discrete
binary values, reflecting a more distinct, sparser selec-
tion in the attention mechanism. As a result, within the
MeTA framework, memory efficiency is significantly en-
hanced by eliminating the necessity for each block @; to
attend to every key and query block. Conversely, as the
temperature T approaches 1, the sorting matrix R be-
comes increasingly dense. This indicates that each block
Q; retains attention across all key and query blocks.
Fig. 3 illustrates these variations in the matrix R as a
function of the changing temperature parameter 7'
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Figure 4: Map gridding demonstration.

5 Experiments

In this section, we evaluate the performances of our
approach MeTA using the taxi GPS dataset collected in
Shenzhen, China in July 2016. We juxtapose our model
against various baselines to underscore its proficiency as
a memory-efficient attention mechanism.

5.1 Data and Experiment Description. Our
work takes two urban data sources as input, includ-
ing (1) taxi GPS trajectory data and (2) road map
data. Both datasets were collected in Shenzhen, China
in 2016. Taxi trajectory data is gathered from 17,877
taxis in Shenzhen, China, spanning from July 1 to
September 30, 2016. Each of these trajectories com-
prises multiple GPS records associated with a single
taxi. A given GPS record encompasses six attributes:
the taxi’s plate ID, longitude, latitude, timestamp, driv-
ing speed during the trip, and a driving status mode,
which is a binary value indicating whether a passenger
is currently on board.

Road map data provides the layout of Shenzhen,
covering the area between 22.44° to 22.87° latitude and
113.75° to 114.63° longitude. The data is sourced from
OpenStreetMap [15], comprising approximately 21,000
roads across six levels.

Map gridding and time quantization. In our effort to
protect data anonymity and minimize re-identification
risks, we utilize data anonymization techniques to dis-
cretize trajectories. This involves dividing the Shenzhen
area into grid cells, each with uniform side lengths of
0.01° for latitude and longitude, as previously detailed
in studies [11]. After eliminating ocean-based and irrel-
evant cells, we have 1,934 valid cells as shown in Fig. 4.
We further partition each day into 288 five-minute in-
tervals denoted as I = {fk}, where 1 < k < 288. A
spatial-temporal region r comprises a grid cell g, a time
interval ty, status sta, and speed v. Each GPS record,
represented as p = (lat,Ing,t, sta,v), can be mapped
to an aggregated state S = <g,t~k,sta,v>. This trans-
formation results in agent trajectories represented as
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Figure 5: Self-supervised sub-trajectory similarity
learning for generic spatial-temporal trajectory repre-
sentations.
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Experiment Setups. We implement our work us-
ing Python 3.10.9 and PyTorch version 1.13.1. Our
experiments are conducted on a virtual machine run-
ning Linux Ubuntu 20.04-x86_64 with NVIDIA A100-
SXM4-80GB GPU. We use standard backpropagation
with the Adam optimization method using hyperparam-
eters B = 0.9 and [z = 0.999. We use a mini-batch size
of 8, a fixed learning rate of 0.0001, two-layer Trans-
former for all models for comparison.

Experiment Description. We align our approach
with the methodology employed in recent research by
Hu et al. [7] on self-supervised pre-training for sub-
trajectory similarity learning in the context of generic
spatial-temporal trajectory representations, as illus-
trated in Fig. 5). In our study, we randomly select
500 drivers from the dataset, covering a 3-month pe-
riod from July 1 to September 30, 2016. Within this
chosen subset, we generate a total of 50,000 pairs of
unique driver trajectories for training. For validation
and testing, we independently select two additional sub-
sets, each comprising 100 different drivers, and create
10,000 distinct driver trajectory pairs for each phase.
To obtain the meaningful sub-trajectories illustrated in
Eq. 4.1, we extract sub-trajectories based on speed. We
set a threshold to segment the trajectories at 30 km/h,
which efficiently differentiates between stop-and-go traf-
fic and free-flowing conditions, ensuring the representa-
tion of diverse driving behaviors in our data.

5.2 Baseline Methods

e Transformer [21] introduces an architecture lever-
aging self-attention mechanisms, which effectively
captures dependencies among elements of input se-
quences. Transformers excel at modeling long-range
dependencies and have consistently achieved state-of-
the-art performance in sequential data tasks. No-
tably, it employs full attention, which can be com-
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putationally demanding.

e Sinkhorn Transformer [18] is a attention mecha-
nism that focuses on reducing the memory complexity
of dot-product attention, it lies a Sinkhorn ranking
operation [1] that is used for learning differentiable
rankings over internal representations. It is based on
differentiable Sinkhorn balancing and is successfully
applied to differentiable sorting on large-scale tasks.

e Local Attention [13] is a memory-efficient attention
mechanism suitable for sequential data. It selects a
small subset of source positions to focus on for each
target element, i.e., a single element in the sequence
only attends to a neighboring window of source posi-
tion, which offers the advantage of avoiding compu-
tationally expensive operations seen in soft attention.

¢ Fixed Sparse Transformer [4] introduces a fixed
attention pattern that summarizes information from
previous positions and shares it with future positions,
allowing distant elements to communicate efficiently.
When using a stride of 128 and a chunk size of 8,
positions greater than 128 can attend to positions
120-128, and so on. This fixed attention pattern
ensures that even though attention is sparse, all
sequence positions still access a global context.

5.3 Evaluation Results In this section, we present
the outcomes of our experimental study, where we evalu-
ated the proposed MeTA model against several baseline
models in the context of generic spatio-temporal trajec-
tory representations. In particular, we evaluated MeTA
and baseline models using test data to assess its mem-
ory usage with a batch size of 16, which highlights its
practical applicability for real-world, trajectory-focused
applications. We employ a threshold of 0.001 for the R;;
values. This strategic threshold step is applied after the
Sinkhorn normalization iteration, a step necessary be-
cause extremely small values may emerge even with a
small temperature 7', as shown in Fig. 6. This deci-
sion aims to exclude these insignificant values from the
sub-trajectory segmented attention mechanism, thereby
enhancing memory efficiency.

We partitioned our trajectory into four sub-
trajectories, i.e., Ng = 4, based on the speed and set
temperature 7' = 0.01. Table 2 presents a performance
evaluation, model parameter comparison, and memory
usage between MeTA and various baselines. Notably,
our MeTA model achieved the lowest memory usage
among the compared methods. This highlights the spar-
sity of the R;; matrix achieved with a low temperature
and underscores its efficiency in resource utilization.
Although there may be a minor trade-off in accuracy,
it effectively demonstrates a memory-efficient attention
mechanism.
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Table 2: Performance evaluation, model parameter, and
memory usage comparison between MeTA vs. baselines.

Methods # Params Accuracy Memory(GB)
MeTA 1.22M 0.8342 1.60
Transformer 1.22M 0.8433 3.99
Sinkhorn 1.22M 0.8444 2.28
Local 1.18M 0.8390 2.69
Fixed Sparse 1.22M 0.8356 2.96
5.0000e-01 | 0.0000e+00 | 5.0000e-01 | 0.0000e+00
0.0000e+00 | 9.8623e-26 | 0.0000e+00 | 1.0000e+00
6.3640e-21 | 1.0000e+00 9.1112e¢-27 | 0.0000e+00
0.0000e+00 | 5.0000e-01 @ 0.0000e+00 | 5.0000e-01
0.0000e+00 | 1.0370e-43 | 1.0000e+00 0.0000e+00
3.7859¢-38 | 5.0224e-21 | 0.0000e+00 | 1.0000e+00
0.0000e+00 | 1.0000e+00 @ 7.3759¢-08 | 2.4787¢-09
9.0000e-01 = 1.0000e-01 | 0.0000e+00 | 1.0988e-35

Figure 6: Real R-value matrix of MeTA sorting.

6 Related Work

6.1 Memory-Efficient Attention Mechanisms.
Transformers-based [21], exemplified by BERT [5], have
had a profound impact on the Natural Language Pro-
cessing (NLP) domain due to their exceptional perfor-
mance. However, their reliance on full attention mech-
anisms, leading to a quadratic dependency on sequence
length, poses computational challenges and memory in-
efficiencies. To address computational challenges posed
by full attention, researchers have explored the con-
cept of employing a fixed window size, known as lo-
cal attention [13]. While this approach intuitively han-
dles longer sequences, its limited window restricts to-
kens from accessing broader context, hindering the cap-
ture of long-term dependencies. Nevertheless, research
on block-based local attention has thrived with signifi-
cant contributions in recent literature [4,10,13,16,19].
Building upon the foundation of local attention win-
dows, the Sparse Transformer [4] introduced an innova-
tive approach that factorizes attention computation into
both local and strided operations. It empowers differ-
ent attention heads to focus on various sparse patterns,
which has demonstrated promising results. Addition-
ally, models like Longformer [3] and Big Bird [23] have
embraced sparse attention mechanisms, effectively mit-
igating the quadratic dependency issue. Furthermore,
sparse Sinkhorn Attention [18] introduces a learning-
based sorting network for efficient sequence permuta-
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tions, enabling quasi-global attention in localized win-
dows and significantly boosting memory efficiency.

6.2 Transformer-Based Spatial-Temporal Data
Mining. Transformer-based spatial-temporal data
mining represents a vital intersection of transforma-
tive deep learning techniques and the exploration of
spatial-temporal patterns within HSTD. The prowess
of transformer-based architectures becomes evident
when applied to prevalent challenges within the
spatial-temporal domain, such as traffic forecasting,
next-location prediction, and driver identification.
Notable works, including those by Zhang et al. [24]
and Xu et al. [22], focus on passenger and traffic flow
forecasting, harnessing spatial-temporal transformer-
based architectures to exploit dynamic spatial and
temporal dependencies, consequently enhancing the
accuracy of traffic forecasting with remarkable efficacy.
Furthermore, transformer-based pre-training models
have demonstrated remarkable effectiveness in this
realm. Lin et al. [12] introduce a pre-training model
meticulously crafted for learning representations tai-
lored to individual locations, with a primary focus on
location-related tasks like next location prediction.
Meanwhile, Hu et al. [7] devise a self-supervised
learning task that utilizes transformer-based models to
bolster the performance of various downstream tasks.
These advancements highlight the transformative
impact that transformer-based methods are having
in revolutionizing the field of spatio-temporal data
mining.

7 Conclusion

In this work, we address the challenges of handling
extensive trajectories within the spatial-temporal do-
main, specifically focusing on enhancing memory ef-
ficiency. Our primary achievement lies in the intro-
duction of an innovative partition strategy, transform-
ing elongated trajectories into more manageable sub-
trajectories. This streamlines the trajectory analysis
process and ensures data integrity by leveraging the in-
trinsic spatial correlation and significant geographical
attributes. Our learnable sorting mechanism efficiently
prioritizes correlated sub-trajectories, reducing unnec-
essary query-key computations and improving memory
efficiency. The effectiveness of our approach is further
validated by its performance on real-world data.
Future Direction. To enhance our model’s perfor-
mance, future research will focus on optimizing algorith-
mic efficiency and expanding the model’s adaptability to
various spatial-temporal datasets. However, our MeTA
model initiates an exciting area in spatial-temporal tra-
jectory attention.
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