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I. INTRODUCTION

Traditional magnetic manipulation methods are severely
limited in what they can manipulate. They rely on an
object’s ferromagnetic properties, which are only present in
a limited set of materials. While many engineering materials
are not ferromagnetic, they are electrically conductive. It well
understood that electrically conductive material exposed to
a time-varying magnetic field results in eddy currents on
the surface of the material[1]. The induced flow of electrons
creates their own magnetic field, which in turn reacts with the
original magnetic field. The interaction between these two
fields induces force and torques on the conductive object.

We have recently begun investigating using eddy currents
to enable contact free manipulation to clean up space debris.
A recent study found that because of the current quantity
of objects in orbit, “even if no future launches occurred,
collisions between existing satellites would increase the 10-
cm and larger debris population faster than atmospheric drag
would remove objects” ([2]). These hazardous pieces of
debris are largely composed of aluminum ([3]), which is not
ferromagnetic, but is very conductive.

Towards this goal, in [4] and [5], we developed a model
of the force and torque induced from rotating a dipole
source near a solid conductive object. In [4] we showed
that, leveraging this model and an array of fixed-in-position
electromagnets producing rotating magnetic fields, it was
possible to perform full six-degree-of-freedom manipulation
of a conductive nonmagnetic sphere. Further, in [5] we
showed that adaptive control let us use the spherical object
model to control unknown spheres and even generalize to
some nonspherical objects.

In this paper, we apply ideas from [6] to view online
system identification as a variational inference problem.
We approximately solve this variational inference problem
using Stein Variational Gradient Descent [7], a recently
proposed non-parametric Bayesian inference algorithm. We
propose the following contributions to adaptive magnetic
manipulation of nonmagnetic objects
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• We propose an inverse dynamics controller to better take
advantage of online dynamic parameter estimation

• We propose fitting a non-parametric distribution over
possible object parameters instead of single best param-
eter

• We propose a controller that finds the best control in
expectation under the object parameter distribution

II. REVIEW OF MODEL
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Fig. 1: Figure reproduced from [5]. Spherical coordinate systems
describing the dipole rotation vector www with respect to the world
frame, and the conductive sphere with respect to www .

The force torque model from [4] models two specific con-
figurations of relative magnet rotation and object direction.
This model can be seen in Eq. 1 with coefficients from
Table. I to compute the nonzero elements of the force-torque
vector. Note in the q = 0 configuration there is only force
and torque in a single direction, and in q = 90� configuration
there is a force component in two axes and only a torque
component in the third. It is important to note the force-
torques are expressed in a spherical frame shown in Fig. 1
uniquely defined by ŵww and rrr .

• s : conductivity of the object in units S/m
• r: radius of the object in meters
• rrr: vector from the magnetic dipole source to the object

in meters. Which can be expressed as unit vector
direction r̂rr and distance r

• µ0 known permeability of free space
• m: dipole strength in units A· m2



• www: three vector rotational velocity of the dipole source
in units 1/s. Which can be expressed as unit vector
direction ŵww and frequency w

TABLE I: Coefficients from [4] for model in Eq. (1). These values
are the average of the FEA and physical values as suggested in [5]

Coefficients
q f , t c0 c1 c2 c3 c4 c5
0� fr 448.5 2.88 �0.0989 �9.505 7 4
0� tr 6870 3.175 �0.0988 �14.05 6 3

90� fr 274 2.90 �0.0995 �8.53 7 4
90� ff 5955 3.47 �0.0996 �14.45 7 4
90� tq 8050 3.50 �0.0957 �15.35 6 3
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In the world frame, the spherical frame is defined as

îiir =
rrr
r

(2)

îiif =
ŵww⇥rrr
kŵww⇥rrrk

îiiq = îiif ⇥ îiir

Further, arbitrary configurations can be computed using
trigonometric interpolation between our known configura-
tions as a function of q the angle between ŵww and rrr [5].
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fq (r,q)⇡ 0 (4)
ff (r,q) = ff (r,90�)sin(q) (5)
tr(r,q) = tr(r,0�)cos(q) (6)
tq (r,q) = tq (r,90�)sin(q) (7)
tf (r,q) = 0 (8)

We assume we have a workspace surrounded by electromag-
nets that can each produce a magnetic dipole in arbitrary
directions. Instead of reasoning about the direction of a
magnetic dipole we abstract away the current direction of
the dipole and consider dipoles rotating about an axis ŵ with
frequency w. As in [5] and [4] we select a fixed frequency
of 15 HZ and control the magnets by selecting m and ŵww .

For simplicity let w(xxx,lll ,{i,m,y,x}), be the force-torque
in the world frame given object pose xxx, object properties lll
(radius and conductivity), and control parameters (magnet id,
dipole strength and two angles to parameterize ŵww). In [5] and
[4] we proposed solving a constrained optimization problem
to find the control actions that are closest to a desired force-
torque, as the model has no closed form inverse. Importantly,
as the model is only accurate for a single rotating dipole
source and a manipulation environment requires multiple
dipole sources around the workspace, this optimization also
searches over which of the available sources to use.
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s.t. i 2 {1, · · · ,n}
m 2 [0,mmax]

y 2 [0,p]
x 2 [�p,p]

fff ,ttt = w(xxx,lll ,{i,m,y,x})

This mixed integer optimization problem is solved with
parallelized Newton’s method solver, with two initializations
for each of the n magnets.

III. STEIN VARIATIONAL GRADIENT DESCENT

Variational inference attempts to approximate unknown
distributions p(z) [8]. This is done by selecting a family of
distributions Q and finding the member q

⇤(z) that closest
matches the target distribution p(z). Formally, this is ex-
pressed as

q
⇤(z) = argmin

q(z)2Q

f (q(z), p(z)) (10)

Where f (q, p) is some statistical divergence between two
distributions, often Kullback-Leibler (KL) divergence [9]
[10] [11]. We use p(z) as shorthand for p(z|O) where we
have a set O of observations.

p(z|O) =
1
K

p (11)

p(z) = p0(z) ’
o2O

p(o|z) (12)

K =
Z

p(z)dz (13)

The main strength of the variational approach is that gradient
based optimization scales to the large number of observations
that are necessary to compute p(z) in practice. One main
weakness is that it depends upon a good choice of Q, if you
pick a family of distributions with too much capacity you will
have difficulty solving the optimization and a family with too
little capacity won’t approximate the true distribution well.

Stein Variational Gradient Descent(SVGD) uses a set of
particles as an implicit distribution q. Instead of updating
the underlying parameters of q with the gradient of the KL
divergence, SVGD updates the particles directly. It defines a
one-to-one distribution transformation Te such that Te(x) =
x+ eg(x) [7]. This transform is a single step in the iterative
algorithm. The goal then is to find a transform that will bring
q closer to p, and thus minimizes KL

�
q[T ]||p

�
.

Note, by definition, a transformation on q and an inverse
transformation on p has the same effect on KL divergence.

KL
�
q[T ]||p
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By taking the gradient of KL divergence with respect to
epsilon, we have a function for finding how transformation



directions will affect KL divergence.
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If we evaluate this gradient at e = 0 we get
�Ez⇠q
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⇤
. It follows if we

search for g in some functional family G that maximizes
this quantity it will be the steepest descent direction, within
G, to improve the KL divergence.

g
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Liu et al. [12] shows if we select the family G to be functions
within the unit ball of the reproducing kernel Hilbert Space,
for a kernel function k, this optimization has a closed form
solution.

g
⇤ = Ez⇠q [k(z)—z log p(z)+—zk(z)] (16)

SVGD approximates this expectation using a finite set of
particles and updates them incrementally using the functional
gradient g

⇤. This non-parametric form provides more capac-
ity and flexibility than a fixed family of analytic distributions.
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There is an intuitive explanation for the terms in the update
equation, the first term is the weighted average of the gradient
of nearby particles and the second term is a repulsive term
pushing particles away from each other.

IV. ADAPTIVE CONTROL

In [5] we demonstrated an adaptive controller able to
manipulate unknown metal spheres. This controller can also
generalize to nonspherical objects by approximating them
online as a sphere with changing size and conductivity. The
adaptive controller attempts to solve the following system
identification optimization problem using a minibatch of the
25 most recent timesteps ([13]).
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lll ⇤ = argmin
lll

B

Â
b=1

La(lll ,b) (20)

Where M is the mass matrix of a sphere based on current
object parameters and a fixed density (that of copper). Each
timestep the adaptive controller took a single momentum
step, with backtracking line search, enforcing the parameters
smoothly varied over time. In [5], we used the control opti-
mization in Eq. 9 with the most up-to-date object parameters.

In this paper, we replace this force-torque optimization
with an inverse dynamics control optimization. This con-
troller uses the inverse of the object’s mass matrix to solve
for control actions given desired accelerations from some
feedback controller, but otherwise using the same constraints
and numerical techniques as Eq. 9:

argmin
i,m,y,x
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s.t. i 2 {1, · · · ,n}, m 2 [0,mmax],

y 2 [0,p], x 2 [�p,p],
fff ,ttt = w(xxx,lll ,{i,m,y,x})

This improved Adaptive controller will serve as our base-
line method.

V. METHODS

In this section, we will present our updated control
method. First, we will explain how we use SVGD to fit
a distribution of possible object parameters instead of only
trusting a single estimate. Second, we will show how we
use the object parameter distribution to find the best control
action in expectation.

A. Stein Variational

Similar to [6], we construct a likelihood function of our
dynamic parameters conditioned on our observed motion.
However, instead of using the previous timesteps distribution
as a prior and only a single observation as the likelihood, we
use a minibatch of the most recent B observations with a con-
tinuous uniform prior over the object properties. Let O1:B be
the B most recent observed accelerations and control actions.
Because we can not actually sample object parameters, we
map values for lll into accelerations space using our dynamic
equation and control parameters. We assume the observations
for each timestep are only dependent on the object properties
and that the true underlying dynamics function has additive
Gaussian noise with zero mean.

l(lll |O1:B) =
B

’
b=1

p(Ob|lll ) (22)

=
1
Z

B

’
b=1

expLa(lll ,b) (23)

Where QQQ is the precision of the observation noise and Z is
a normalization constant to keep the total probability mass
equal to one. Note, if we attempted to find the MAP (Maxi-
mum A Posteriori) estimate for l by minimizing the negative
log likelihood, we recover exactly our system identifica-
tion loss plus a constant, log(l(lll )|O1:B) = ÂB

b=1 La(lll ,b)�
log(Z). The constant is unimportant for the optimization.

Within the region of our continuous uniform prior
p(lll |O1:B) = l(lll |O1:B)/a where 1/a is the prior density. We
use SVGD to approximate this entire distribution. We never
need to actually create p explicitly, as we only need the
gradient of La. We use k as the RBF kernel with the median



heuristic as chosen by [7].
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We sample our initial distribution from the continuous
uniform prior distribution and use projection based bound
constraints to keep every particle within the support of p.

B. Control in Expectation

We select the control action that is the best in expectation
with respect to our distribution of object parameters.

argmin
i,m,y,x
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s.t. i 2 {1, · · · ,n}, m 2 [0,mmax],

y 2 [0,p], x 2 [�p,p],
fff ,ttt = w(xxx,lll ,{i,m,y,x})

Which given J particles in q we can approximate as
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s.t. i 2 {1, · · · ,n}, m 2 [0,mmax],

y 2 [0,p], x 2 [�p,p],
fff ,ttt = w(xxx,lll j,{i,m,y,x})

VI. EXPERIMENTS

To test our method compared to the baseline adaptive con-
trol method, we constructed a six DOF numerical simulator
with a manipulation workspace surrounded by four magnets.
We compared both methods’ performance on a regulation
task where a time parameterized cubic polynomial generated
position targets, smoothly moving the target object from
the initial pose to the origin. We use a PD controller to
convert position and velocity errors in six DOF to desired
accelerations.

Our baseline method uses Eq. 19 to iteratively find the
single best object parameter to fit the 5 most recent obser-
vations, and Eq. 21 to solve for optimal control actions.

Our proposed method uses SVGD to iteratively find a
distribution of object parameters to iteratively fit the 5
most recent observations and Eq. 21 to solve for optimal
control actions in expectation under the object parameter
distribution.

For both controllers, we take a single momentum step,
with backtracking line search, using identical parameters to
fit the object parameters every timestep. For the SVGD pa-
rameter adaptation, the backtracking cost is the sum over the
negative log likelihood for all particles. For both controller’s
parameter adaptation, we project onto the bound constraints
r 2 [0.001,0.1] meters, s 2 [2e6,1.2e8]S/m.

While we can not truly simulate manipulation of non-
spherical objects, our goal is to test the robustness of our
methods against tasks that are reflective of what we might

Adaptive Control

Object Parameter Distribution Expectation Control

Fig. 2: Errors from six DOF regression task moving object from ar-
bitrary pose to origin with stochastic dynamics. We see the adaptive
control baseline loses control over the object at approximately 160
seconds into the trajectory while the proposed method still achieves
the task.

expect when applying our spherical object dynamics model
to nonspherical objects. We expect nonspherical objects can
not be globally modeled by our model. However, because the
force-torques produced are coupled, we expect the wrench
for a given timestep to map well onto our model for some
unknown object properties. To test our methods’ robustness
to time varying object properties, our simulator samples its
internal radius and conductivity from independent Gaussian
distributions with means 0.05m and 4e7S/m and standard
deviations 0.009m and 9e6S/m respectively.

The baseline adaptive controller is initialized with the true
mean of the simulator’s object property distribution, while
the SVGD adaptive controller is initialized uniformly over
the possible parameter space.

VII. RESULTS AND CONCLUSIONS

We see in Fig. 2 that having a distribution of control pa-
rameters is much more robust to extreme stochastic dynamics
functions. We believe the improved robustness to wildly
changing dynamic parameters in simulation will extend to
improved generalization to unmodeled objects in the future.
It is also encouraging for the baseline method because we had
to make the simulator distribution impressively large before
the baseline was unstable. With a deterministic simulator
or a much tighter simulator distribution, the results were
indistinguishable.
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