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Abstract 27 

Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust resilience to 28 

environmental stresses. However, our knowledge regarding how precipitation changes affect 29 

switchgrass photosynthesis and its responses to light and CO2 remains limited. To address this 30 

knowledge gap, we conducted a field precipitation experiment with five different treatments, 31 

including -50%, -33%, 0%, +33%, and +50% of ambient precipitation. To determine the 32 

responses of leaf photosynthesis to CO2 concentration and light, we measured leaf net 33 

photosynthesis of switchgrass under different CO2 concentrations and light levels in 2020 and 34 

2021 for each of the five precipitation treatments. We first evaluated four light and CO2 response 35 

models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, 36 

and the modified rectangular hyperbola model) using the measurements in the ambient 37 

precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola 38 

model as the optimal model and applied it to all precipitation treatments, and estimated model 39 

parameters. Overall, the model fit field measurements well for the light and CO2 response 40 
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curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but 41 

influenced other model parameters including quantum yield (α), convexity (θ), dark respiration 42 

(Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the mean 43 

Pmax of five precipitation treatments was 17.6 μmol CO2 m
-2s-1, and the ambient treatment 44 

tended to have a higher Pmax. The +33% treatment had the highest α, and the ambient treatment 45 

had lower θ and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation 46 

significantly influenced all model parameters of CO2 response. The ambient treatment had the 47 

highest Pmax, largest α, and lowest θ, Rd, and CO2 compensation point LCP. Overall, this study 48 

improved our understanding of how switchgrass leaf photosynthesis responds to diverse 49 

environmental factors, providing valuable insights for accurately modeling switchgrass 50 

ecophysiology and productivity. 51 

KEYWORDS 52 

switchgrass, bioenergy crop, precipitation change, nonrectangular hyperbola model, light-53 

response curve, CO2-response curve 54 

 55 

1  |  INTRODUCTION 56 

Climate change is escalating due to continued greenhouse gas emissions. These emissions 57 

primarily result from human activities such as deforestation, burning of fossil fuels, and 58 

agricultural practices (Mann & Kump 2015; Ritchie et al. 2020). The global average surface 59 

temperature has increased, with projections indicating an additional 0.5˚C rise by 2050 (Fawzy et 60 

al. 2020: Stein 2022). Consequently, the water cycle is expected to accelerate. Heightened 61 

atmospheric moisture from a warmer planet is anticipated to lead to more frequent and intense 62 
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extreme precipitation events, such as severe drought and flooding (Trenberth, 2011; Vanaja et al. 63 

2011; Pfahl et al. 2017; Douville et al. 2021; Pörtner et al. 2022). These altered precipitation 64 

patterns could significantly impact the structure and functioning of ecosystems (Hajek & Knapp 65 

2022). Despite this, the specific effects of climate change, including changes in precipitation, on 66 

bioenergy crops like switchgrass (Panicum virgatum L.), remain insufficiently explored (Parrish 67 

and Fike 2005; Tulbure et al. 2012; O’Keefe et al. 2013; Deng et al. 2017).  68 

Switchgrass (Panicum virgatum L.) is a C4 perennial warm-season grass native to North 69 

America, originally spanning most of North America. Its habitat extends from southern Canada 70 

to Central Mexico (Lemus et al. 2008; Vogel et al. 2011). Remarkably productive, switchgrass 71 

thrives in a wide range of abiotic conditions and flourishes in soils with pH ranging from 3.9 to 72 

7.6 (Rinehart 2006). Notably, it possesses favorable attributes, including lower nutrient demands 73 

and high below-ground carbon sequestration, making it a model bioenergy crop (Parrish and Fike 74 

2005; Adler, et al. 2006; Rinehart 2006; Albaugh et al. 2014; Liu et al. 2022; Ricketts et al. 75 

2023). Extensive research has explored the effects of agricultural practices like nutrient 76 

applications, irrigation, and cutting systems, on switchgrass productivity (Alder et al. 2006; 77 

Lemus et al. 2008; Wullschleger et al. 2010; Miesel et al. 2017; Hui et al. 2018; Keyser et al. 78 

2022; Kieffer et al. 2023). However, there have been limited studies focused on understanding 79 

the impacts of climate change, such as changes in precipitation, on switchgrass, particularly in 80 

field conditions (Hartman et al. 2012; Hartman and Nippert 2013; O’Keefe et al. 2013; Deng et 81 

al. 2017).   82 

In addition, there is an incomplete understanding of switchgrass leaf photosynthesis 83 

responses to variations in light and carbon dioxide (CO2) levels. Photosynthesis, a fundamental 84 

biological process, plays a pivotal role in plant growth, development, biomass productivity, and 85 
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yield potential (Yang et al. 2010; Ma et al. 2021; Song et al. 2021). Enhancements in plant 86 

productivity are often correlated with increased photosynthesis (Fischer et al., 1998; Song et al. 87 

2021). Environmental factors such as cultivar, light, CO2, humidity, temperature, and nutrient 88 

availability, have the potential to significantly influence leaf photosynthesis (Ma et al. 2021). For 89 

example, Barney et al. (2009) observed a variation in leaf photosynthesis ranging from 16 to 22 90 

μmol CO2 m
-2s-1 among six switchgrass cultivars. In a mesocosm study, Hui et al. (2018) found 91 

that increased precipitation enhanced leaf photosynthesis, while reduced precipitation did not 92 

induce changes in leaf photosynthesis. However, there is a limited understanding of how 93 

photosynthesis responds to different precipitation intensities. Few studies have examined how 94 

changes in precipitation alter the interplay of photosynthesis with light availability and CO2 95 

concentration. The efficiency of light and CO2 use in photosynthesis is critical to switchgrass 96 

biomass production and environmental adaptation (Hui et al. 2001; Song et al. 2021) and is key 97 

to parameterizing photosynthesis in plant growth and ecosystem-scale models (Harley and 98 

Baldocchi 1995, Yang et al. 2010; Lobo et al. 2013; Herrmann et al. 2020) 99 

Photosynthetic light response curves (Pn-I) and photosynthetic-CO2 response curves (Pn-100 

CO2) are important for understanding how plants respond to climate change (Leverenz 1988; 101 

Bukhov et al. 1995; Lobo et al. 2013; Xu et al. 2019; Ma et al. 2021). Pn-I response curves 102 

depict the relationship between the net photosynthetic rate (Pn) of plants and the photon flux 103 

density (Irradiance, I), while Pn-CO2 response curves describe the relationship between Pn and 104 

CO2 concentration (Song et al. 2021). These response curves enable the description of essential 105 

physiological parameters in plants (Lobo et al. 2013; Herrmann et al. 2020; Song et al. 2021; Ma 106 

et al. 2021; Liu et al. 2022), including the maximum net photosynthetic rate (Pmax), apparent 107 

quantum yield (α), convexity (θ), dark respiration rate (Rd), light or CO2 compensation point 108 
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(LCP), and light or CO2 saturation point (LSP) (Ye 2010; Lang et al., 2013; Ma et al. 2021). The 109 

construction of Pn-I or Pn-CO2 response curves involves measuring leaf photosynthesis at 110 

varying light or CO2 levels, ranging from zero to saturating levels (1500 or 2000 μmol photon m-111 

2s-1 for light, 1200 ppm for CO2). Various mathematical models can be employed to derive 112 

parameters from these response curves (Lobo et al. 2013; Lang et al. 2013; Song et al. 2021). 113 

Accurately estimating the parameters of Pn-I or Pn-CO2 response curve under diverse 114 

environmental conditions is crucial for revealing the physiological changes that occur under 115 

these conditions (Song et al. 2021). 116 

In this study, we conducted a field precipitation experiment in Nashville, TN, simulating 117 

a range of precipitation intensities spanning from -50% to +50% of the ambient precipitation 118 

levels. These treatments were chosen based on the assessment of the region’s interannual 119 

precipitation variability, encompassing 80% of the total observed variation in precipitation 120 

amount over the past 50 years (Deng et al. 2017). Our aim was to investigate how switchgrass 121 

photosynthesis responds to varying levels of light intensity and CO2 concentration under distinct 122 

precipitation scenarios. The main objectives of this study included: 1) Determining the most 123 

appropriate model for characterizing leaf photosynthetic responses of switchgrass plants to 124 

variations in light and CO2 concentrations; 2) Quantifying the impact of precipitation intensity 125 

on leaf photosynthetic parameters under varying light and CO2 conditions. Our results will be 126 

instrumental in improving model simulations that address the responses of switchgrass 127 

photosynthesis under different environmental conditions. Additionally, this research will 128 

enhance our understanding of the photo-physiological characteristics of switchgrass in the 129 

context of future climate change conditions.  130 

 131 
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2  |  MATERIALS AND METHODS 132 

2.1  |  Experimental facility and design 133 

In 2015, the Precipitation Experimental Facility was established on pre-existing field switchgrass 134 

stands at the Tennessee State University Agricultural Research and Education Center, Nashville, 135 

TN (latitude 36.12’N, longitude 86.89’W at an elevation of 127.6 m) (Deng et al. 2017). The 136 

seeds of Alamo switchgrass were initially planted in April 2012 in a no-tillage field, and 137 

switchgrass stands were already well-established by the time the precipitation facility was built. 138 

The area where the precipitation facility is located experiences a warm humid temperate climate, 139 

with mean annual precipitation of 1,200 mm and a mean annual temperature of 15.1˚C. The soil, 140 

classified as Talbott silt clay loam, is slightly acidic.  141 

The detailed experimental design and implementation were provided in Deng et al. 142 

(2017). In brief, the experiment included five precipitation treatments: a 50% reduction in 143 

precipitation from ambient conditions (-50%), a 33% reduction (-33%), the ambient level (0%), a 144 

33% increase (+33%), and a 50% increase from ambient conditions (+50%). A total of 20 plots 145 

were constructed with 4 replicate plots for each treatment. Each plot measured 3 m x 2 m. 146 

Precipitation was manipulated using a combined modified rainfall-interception-redistribution 147 

(RIR) system (Deng et al. 2017) following the design of Yahdjian and Sala (2002). For drought 148 

treatments, precipitation was intercepted using transparent PVC half-tubes. The treatments were 149 

validated by collecting precipitation in the treatment plots.  The rainwater collected from these 150 

PVC half-tubes in the drought plots was subsequently redistributed to the wet treatment plots 151 

(Deng et al. 2017).  152 

2.2  |  Leaf gas exchange measurements 153 
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Leaf photosynthesis measurements were conducted during the peak growing seasons of 2020 and 154 

2021. Field measurements were primarily taken in the morning on sunny days to ensure 155 

consistent environmental conditions. For each treatment, two to three healthy and young fully 156 

expanded switchgrass leaves were randomly selected and measured using a Li-Cor Portable 157 

Photosynthesis System (Li–6800, Li-Cor Inc., Lincoln, NE) connected with LED chamber. The 158 

measurements were conducted directly on leaves attached to the plants and completed in two 159 

days each time. The Pn-I and Pn-CO2 response curves were constructed using the preset 160 

programs in the LI-6800. For Pn-CO2 response curves, photosynthesis measurements were taken 161 

at CO2 concentrations descending from near ambient: 400, 300, 200,100, 50, and 0 ppm, then 162 

ascending to saturation: 400, 400, 600, 800, 1000, and 1200 ppm. The light level was set at 1500 163 

µmol photon m⁻²s⁻¹ during CO2 response curve measurements. For Pn-I response curves, 164 

photosynthesis measurements were taken at descending light levels: 1500, 1200, 900, 600, 300, 165 

150, 50, and 0 µmol photon m-2s-1, while CO2 concentration was set at 400 ppm. Temperature 166 

was not controlled during the measurements. In total, 5 to 12 light response curves and 7 to 10 167 

CO2 response curves were generated for each precipitation treatment over the two-year period. 168 

Totally, 38 light response curves and 45 CO2 response curves were measured.     169 

2.3  |  Data analysis 170 

2.3.1  |  Light and CO2 response curves modeling 171 

Four models have been commonly fitted to light- or CO2-response curves: the rectangular 172 

hyperbola model, the nonrectangular hyperbola model, the exponential model, and the modified 173 

rectangular hyperbola model (Fang et al. 2015; Ma et al. 2021). We applied these four models to 174 

the ambient plot response curves measurements and used a model selection approach to identify 175 
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the best-fitting model. The selected model was then applied uniformly across all treatments to 176 

estimate the physiological parameters at each precipitation treatment. A concise description of 177 

each model tested is provided below (Fang et al. 2015; Liu et al. 2019; Lee et al. 2022). 178 

Rectangular hyperbola model 179 

The equation of the rectangular hyperbola model is shown below: 180 

𝑃𝑛 =  
𝛼𝐼𝑃𝑚𝑎𝑥

𝛼𝐼 + 𝑃𝑚𝑎𝑥
− 𝑅𝑑     181 

where Pn is the net photosynthetic rate (μmol CO2 m
-2 s-1), α is the initial quantum efficiency at 182 

lower light or CO2 condition, Pmax is the maximum net photosynthetic rate (μmol CO2 m
-2s-1), Rd 183 

is the dark respiration rate (μmol CO2 m
-2 s-1), and I is photosynthetic active radiation (μmol 184 

photon m
-2s-1) (Ma et al. 2021). 185 

Nonrectangular hyperbola model 186 

The equation of the nonrectangular hyperbola model is shown below: 187 

𝑃𝑛 =  
𝛼𝐼+𝑃𝑚𝑎𝑥−√(𝛼𝐼+𝑃𝑚𝑎𝑥) 2−4𝛼𝜃𝐼𝑃𝑚𝑎𝑥      

2𝜃
 −𝑅𝑑 188 

where θ represents convexity (curvature or rate of bending) of the response curve, and Pn, α, 189 

Pmax, Rd, and I have been defined above (Thornley 1998; Ma et al. 2021).  To calculated light- or 190 

CO2- LSP, we set Pn=80% of Pmax and 90% of Pmax and calculated LSP (0.8) and LSP (0.9), 191 

respectively.  192 

Exponential model 193 

The equation of the exponential model is shown below: 194 



10 
 

𝑃𝑛 = 𝑃𝑚𝑎𝑥  ∙ (1 − 𝑒
−𝛼𝐼

𝑃𝑚𝑎𝑥 ) − 𝑅𝑑    195 

where Pn, α, Pmax, Rd, and I have already been defined above (Ma et al., 2021) and e represents 196 

the base of natural logarithm.    197 

Modified rectangular hyperbola model 198 

The equation of the modified rectangular hyperbola model is shown below: 199 

 𝑃𝑛 =  𝛼 ×  
1 − 𝛽𝐼

1 + 𝛾𝐼
 𝐼 − 𝑅𝑑     200 

where β is the photoinhibition and γ is light saturation and Pn, α, Rd, and I have already been 201 

defined above (Ma et al. 2021).   202 

2.3.2  |  Model fitting and validation 203 

To determine the optimal model for switchgrass light and CO2 response curves, we calculated 204 

mean square errors (MSE), Akaike Information Criterion Corrected (AICC), Bayesian 205 

Information Criterion (BIC), and the coefficient of determination (R2) (Brewer et al. 2016; Ma et 206 

al. 2021). The optimal fit of the model is determined through the minimization of MSE, AICc, 207 

and BIC values, alongside the maximization of R2 (Brewer et al. 2016).  208 

The data from the eight Pn-I response curves collected in the ambient precipitation 209 

treatment were averaged and used to fit the four models.  The same was done for Pn-CO2. 210 

Following an evaluation of how well the models fitted to the light and CO2 response curves 211 

derived from ambient conditions, and taking into consideration the biological significance of the 212 

model parameters, the nonrectangular hyperbola model was selected as the best performance 213 
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model for both light response (Pn-I) and CO2 response (Pn-CO2) curves. Consequently, the 214 

nonrectangular hyperbola model was applied to the Pn-I and Pn-CO2 measurements across the 215 

rest of the precipitation treatments and estimate the photosynthetic physiological parameters. To 216 

assess the impact of varying precipitation on these parameters, an analysis of variance (ANOVA) 217 

with PROC GLM was conducted, accounting for the imbalance in the measured data. Multiple 218 

comparison was conducted using Least Significant Difference (LSD) method when a significant 219 

effect was detected.  220 

All statistical analyses were conducted using the SAS software (SAS 9.4, SAS Institute 221 

Inc., Cary, NC).  Model fitting and parameter estimations were conducted using the Proc NLIN.  222 

Curves and graphs were constructed using the graphical program GraphPad Prism (GraphPad 223 

Software, San Diego, CA USA). 224 

 225 

3  |  RESULTS 226 

3.1  |  Model comparison and selection 227 

Four models were used to fit Pn with increasing light levels and increasing CO2 levels from the 228 

ambient/control plots. The modified rectangular hyperbola model demonstrated suboptimal fit 229 

for the Pn-I, contrasting with the superior performance of the nonrectangular hyperbolic model 230 

among the four models considered (Fig. 1, Table 1). The nonrectangular hyperbolic model had 231 

the lowest BIC and root MSE, highest R2, and intermediate AICc, establishing it as the best 232 

model for capturing the Pn-I response. In the case of Pn-CO2, both the rectangular hyperbolic 233 

and exponential models did not fit the data (Fig. 2; Table 1). In contrast, both the modified 234 

rectangular hyperbolic and the nonrectangular hyperbolic models exhibited the best fit based on 235 
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AICc, BIC, and R2 (Table 1). Given the more biologically meaningful values of certain 236 

parameters, such as Pmax and α, produced by the nonrectangular hyperbolic model, this model 237 

was chosen for fitting both Pn-I and Pn-CO2 responses across all precipitation treatments.  238 

3.2  |  Impact of precipitation on model parameters 239 

3.2.1  |  Light response  240 

The observed Pn exhibited a typical response curve to light intensity. Initially negative at zero 241 

light intensity, Pn increased progressively, reaching saturation as light intensity increased. The 242 

highest Pn values ranged from 15 to 20 μmol CO2 m
-2s-1, depending on the specific precipitation 243 

treatment (Fig. 3).  244 

The photosynthetic parameters, including Pmax, α, θ, and Rd, estimated by the 245 

nonrectangular hyperbole model and the calculated LCP and LSP at 80% and 90% of Pmax were 246 

compared across precipitation treatments (Table 2). ANOVA found no significant differences 247 

among the precipitation treatments for Pmax (Table 2; Figs. 3 and 4). The mean Pmax across all 248 

precipitation treatments was 21.97±0.95 µmol CO2 m
-2s-1. There was a slight variation in θ 249 

among the five treatments, with the smallest observed in the ambient treatment and the largest in 250 

the -50% treatment. These variations were not statistically different from the other treatments. 251 

For the α values, the +50% treatment had the lowest (0.030±0.02), while the +33% treatment had 252 

the highest (0.053±0.003). No significant differences were found among the ambient, -33%, and 253 

-50% treatments. Regarding Rd, the +50% treatment had the lowest, and the ambient treatment 254 

had the highest, with no significant differences from other treatments. For the calculated 255 

parameters, the +33% treatment showed the lowest LCP. Light saturation point (LSP (0.9)) 256 
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ranged from 895.2±142.89 µmol photon m-2s-1 in the -33% treatment to a maximum of 257 

2243.2±596.71 µmol photon m-2s-1 in the +33% treatments.  258 

3.2.2  |  CO2 response  259 

The observed Pn also exhibited a typical response curve to CO2 concentration. Pn was negative 260 

when CO2 concentration was very low and increased progressively. The highest Pn values 261 

ranged from 27 to 33 μmol CO2 m
-2s-1, depending on the specific precipitation treatment (Fig. 5).  262 

Similarly, we employed the nonrectangular hyperbola model across the precipitation 263 

treatments to fit the CO2 response curves. Then we compared the estimated and calculated 264 

photosynthetic parameters across treatments. Overall, all model parameters associated with CO2 265 

response curves exhibited statistical significance across the precipitation treatments (Table 3; 266 

Figs. 5,6). The Pmax reached its peak in the ambient treatment at 36.1±2.75 µmol CO2 m
-2s-1), 267 

significantly higher than the rates estimated in the +50% and -50% treatments and exciding those 268 

in the +33% and -33% treatments. Notably, the ambient treatment displayed the lowest θ among 269 

all treatments, while the -33% and +33% treatments exhibited the largest θ. The largest α was 270 

observed in the ambient treatment, surpassing those in the +50% and -50% treatments, and 271 

exceeding the values in the +33% and -33% treatments. The ambient treatment had the lowest Rd 272 

at 0.08±0.04 µmol CO2 m
-2s-1, but no significant difference was observed when compared to the 273 

+50% and -50% treatments. The CO2 compensation point was highest in the -33% treatment 274 

(7.17±3.49 ppm) and lowest in the ambient treatment (0.63±0.36 ppm). Slight but significant 275 

variations in LSP (0.9) were observed across ambient and +33 and-33. +50 and -50 treatments 276 

had no significant differences among treatments. Values ranging from 618.5±57.09 ppm in the -277 

33% treatment to 864.2±138.0 ppm in the ambient treatment. 278 
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 279 

4  |  DISCUSSION 280 

4.1  |  Model determination  281 

We first evaluated four commonly used models for fitting photosynthesis with light and CO2 282 

response curves. The rectangular hyperbola model assumes a hyperbolic relationship between 283 

photosynthetic rate and either light intensity or CO2 concentration (Farquhar, 1989; Hui et al. 284 

2001; Ma et al. 2021). Although this model is simple and widely used, its ability to accurately 285 

represent complex physiological responses might be limited (Ma et al. 2001). The nonrectangular 286 

hyperbola model is similar to the rectangular hyperbola model but provides a more flexible fit 287 

because it contains an additional parameter related to the curvature of the response curve 288 

(Tornley, 1998; Ma et al. 2021). The exponential model can effectively capture exponential 289 

growth or decline in photosynthetic rate but may not fit well with more intricate patterns in the 290 

data (Chen et al. 2011; Song et al. 2020). The modified rectangular hyperbola model is a 291 

variation of the rectangular hyperbola model with additional parameters to account for various 292 

factors influencing photosynthetic response. However, its application requires careful 293 

consideration of parameter interpretation and the potential for overfitting (Ye 2007; Song et al. 294 

2020). In this study, all four models could fit the photosynthetic light and CO2 response curves. 295 

However, based on Root MSE, R2, AICc, and BIC metrics and considering biological relevance, 296 

the nonrectangular hyperbola model was the best at characterizing switchgrass photosynthesis. 297 

Similar results were reported in previous studies. For example, Song et al. (2020) compared six 298 

photosynthesis light response models for four different mulching treatments of spring wheat and 299 

found that the nonrectangular hyperbolic model provided better fit.  300 
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Ye (2007) and Ye and Yu (2008) proposed the modified rectangular hyperbola model 301 

could fit the light-response curves and main model parameters more accurately than other 302 

models (Lang et al. 2013; Ma et al. 2021).  However, while in our study the modified rectangular 303 

hyperbola model was the best fitting model for the CO2 response curve, it was the poorest model 304 

for the light response curve. Lobo et al. (2013) reported that the maximum photosynthetic rate 305 

and saturated light intensity produced by the modified rectangular hyperbola model can 306 

occasionally exceed expected physiological ranges. Our study corroborated these issues, 307 

suggesting that the modified rectangular hyperbole model cannot be applied to both Pn-I and Pn-308 

CO2 curves under all situations (Lobo et al. 2013). So, like in Lobo et al., (2013) the non-309 

rectangular hyperbola model was the best fitting model.  310 

4.2  |  Impact of precipitation intensity on leaf photosynthesis and physiological parameters 311 

The response patterns of leaf photosynthesis to light and CO2 were similar to the reported 312 

patterns in previous studies (Barney et al. 2009; Dohleman et al. 2009; Hartman et al. 2012; Gao 313 

et al. 2017). Leaf net photosynthesis was negative when light intensity and CO2 concentration 314 

was set at 0 or very low levels and increased with increase of light and CO2 concentration. It 315 

leveled off at high light intensity or CO2 concentration. Only a few measurements during the late 316 

growing seasons showed a decline in leaf photosynthesis when light and CO2 concentration were 317 

high, perhaps due to the potential damage to the leaf at the late stages of the measurements.  318 

Our results showed significant differences in the majority of model parameters for both 319 

light and CO2 response curves across the various precipitation treatments. Precipitation changes 320 

significantly influenced all model parameters except for Pmax in light response curves. Only a 321 

few studies have investigated the photosynthetic response to light in switchgrass. Our results 322 

were comparable to these previous studies. For example, Albaugh et al. (2014) estimated Pn-I 323 
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model parameters for switchgrass observing Pmax at 28.7 μmol CO2 m
-2s-1, α at 0.059, θ at 0.74, 324 

and Rd at 3.4 μmol CO2 m
-2s-1.  In addition, they found that different cropping systems or 325 

measurement dates did not influence parameter estimates. Similarly, Gao et al. (2015) estimated 326 

switchgrass photosynthesis responses to spacing over three years and found that α remains stable 327 

over time, ranging between 0.0328 and 0.0424. Neither spacing nor time influenced LCP, 328 

ranging from 36 to 51, and LSP, ranging from 1399 to 1442. Their findings reported a 329 

substantially higher LSP than observed in our study. It is worth noting that LSP estimated in our 330 

study showed large variations within and among precipitation treatments (Fig. 4). Overall, LSP 331 

decreased from the +50% to -50% precipitation treatments. The main reason could be that in the 332 

drought treatments, plants may experience water stress, affecting their ability to photosynthesize 333 

efficiently. Their mean maximum photosynthesis was about 18.4 μmol CO2 m
-2s-1. Mulching 334 

treatments in Song et al. (2020) impacted maximum net photosynthetic rates. Our results fell 335 

within the range of these studies reported values. Regarding photosynthesis and CO2 response in 336 

switchgrass, Albaugh et al. (2014) estimated the maximum photosynthetic rate at 27.6 μmol CO2 337 

m-2s-1, with no other study, to our knowledge, reporting the response of switchgrass 338 

photosynthesis to CO2.  339 

Despite the significant influence of precipitation on model parameters such as Pmax and α, 340 

variations were limited to narrow ranges. Switchgrass exhibited a remarkable tolerance to 341 

changes in precipitation, and performed well under the various precipitation conditions in 342 

Nashville, TN. This adaptability may be attributed to inherent adaptive mechanisms within 343 

switchgrass, enabling it to thrive across a wide range of environmental conditions in its extensive 344 

native range.  345 
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While switchgrass has been the subject of relatively few studies, numerous prior studies 346 

have investigated the responses of photosynthesis to light and CO2 for various species (Muraoka 347 

et al. 2010; Ali et al. 2015; Miner and Bauerle 2017: Zhao et al. 2020). These studies confirmed 348 

that model parameter often differ among different studies (Zhao et al. 2020). For example, Lobo 349 

et al. (2013) reported a Pmax range of 42 to 59 µmol CO2 m
-2s-1 for C3 species and 57 to 75 µmol 350 

CO2 m
-2s-1 for C4 species, significantly exceeding the estimated switchgrass Pmax in this study 351 

and other previous studies (Barney et al. 2009; Gao et al. 2017). The measured maximum 352 

photosynthetic rate of switchgrass leaves typically falls between 14 to 30 μmol CO2 m
-2s-1 353 

(Hartman et al. 2012; Wagle and Kakani 2014; Gao et al. 2015; Hui et al. 2018). In contrast, 354 

Lobo et al. (2013) reported Pmax for Vochysia divergens ranging from 14.4 to 15.7 µmol CO2 m
-355 

2s-1, depending on different models, while Ma et al. (2021) found a Pmax of around 8 µmol CO2 356 

m-2s-1 for larch (Larix principis-rupprechtii Mayr (Larch)).   357 

Quantum yield, as reported by Lobo et al (2013), ranges from 0.0266 to 0.0800 µmol-358 

1µmol photon-1, a range within which our estimates also fall. In our study, the parameter θ, 359 

representing the ratio of physical to total resistances of CO2 diffusion and signifying the 360 

sharpness of the transition from light limitation to light saturation (Lobo et al. 2013) varied from 361 

0.912 to 0.969 under different precipitation treatments. This range aligns with the observed norm 362 

of 0.70 to 0.99 (Ogren 1993; Lobo et al. 2013). In our study LCP, ranging from 49.69 to 71.12 363 

µmol photon m-2s-1, was higher than that of Vochysia divergens (20.2 to 23.4. In addition, Ma et 364 

al. (2021) demonstrated substantial variations in model parameters estimated by different 365 

models. For example, quantum yield may vary from 0.55 to 0.95 and LSP can fluctuate from 300 366 

to 1000 µmol photon m-2s-1. Because of these variations, it is evident that more studies on 367 
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switchgrass ecophysiology responses to environmental changes are needed, encompassing 368 

different cultivars and at diverse geographical locations.    369 

5  |  CONCLUSIONS 370 

In this study, we evaluated the response models used for characterizing photosynthesis in 371 

relation to light and CO2 and estimated the model parameters for switchgrass across five 372 

different precipitation treatments, employing the optimal model we selected. Among the four 373 

models tested (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential 374 

model, and the modified rectangular hyperbola model), we found they all fitted the 375 

measurements obtained from the ambient precipitation treatment. However, the nonrectangular 376 

hyperbola model emerged as the optimal choice based on both fitting criteria and the biological 377 

significance of its parameters.  378 

This optimal model was then applied across all precipitation treatments, revealing that 379 

alterations in precipitation did not exert influence on Pmax, but influenced other model 380 

parameters, including α, θ, and Rd. In addition, precipitation significantly influenced all model 381 

parameters of CO2 response. While the ambient treatment had the highest Pmax in the Pn-CO2 382 

response, it also had greater α and Rd. Interestingly, the fluctuations in model parameters for α, θ, 383 

and Pmax were relatively small.  384 

Overall, this study improved our understanding of how switchgrass leaf photosynthesis 385 

responds to varying precipitation conditions, providing valuable insights for the accurately 386 

modeling of switchgrass ecophysiology and productivity. Switchgrass demonstrates extensive 387 

tolerance to precipitation variations, thriving under the diverse precipitation conditions in 388 

Nashville, TN. This adaptability likely stems from inherent adaptive mechanism, allowing 389 
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switchgrass to excel amidst the considerable environmental variations within its vast native 390 

range. However, improved parameter estimations could enhance our understanding and 391 

predictive accuracy regarding switchgrass ecophysiology and biomass productivity in future 392 

climate conditions. 393 
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TABLE 1. Comparison of modeling fitting of four commonly used photosynthesis-Light (Pn-I) 582 

and photosynthesis-CO2 (Pn-CO2) models of the net photosynthesis with light in the ambient 583 

plots: rectangular hyperbolic model, nonrectangular hyperbola model, exponential model, and 584 

modified rectangular hyperbola model. AICc, BIC, R2, and Root MSE were used to determine 585 

the fitting accuracy for the response models.  586 

 587 

Response 
Fitting 

Accuracy 

Rectangular 

Hyperbolic 

Model 

Nonrectangular 

Hyperbolic 

Model 

Exponential 

Model 

Modified 

Rectangular 

Hyperbolic 

Model 

Light AICC 37.0 36.4 25.9 48.3 

  BIC 24.0 6.8 12.9 18.7 

  R2 0.99 1.00 0.99 0.82 

  Root MSE 0.98 0.38 0.66 1.87 

CO2 AICC 53.2 43.8 47.2 39.6 

  BIC 46.4 30.3 40.4 26.1 

  R2 0.96 0.96 0.96 0.96 

  Root MSE 2.67 2.84 2.46 2.33 

 588 

 589 

 590 

  591 
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TABLE 2. The ANOVA results, with the significant levels, for the effects of precipitation 592 

treatment on light response curves using the nonrectangular hyperbola model. The model 593 

parameters include θ, α, Pmax, Rd, LCP, and LSP. N is the number of measurements. 594 

Model 

Parameter 
+50% +33% Ambient -33% -50% 

θ 0.966±0.02ab 0.955±0.02ab 0.912±0.02a 0.957±0.01ab 0.969±0.02b 

α 0.030±0.006c 0.053±0.003b 0.049±0.002ab 0.047±0.003ab 0.040±0.005ac 

Pmax 15.322±2.09a 17.245±1.09a 20.253±2.33a 20.229±2.34a 14.829±2.22a 

Rd 2.214±0.42a 2.602±0.20ab 3.144±0.28b 2.872±0.25ab 2.360±0.24ab 

LCP 65.631±9.27a 53.761±5.78c 65.062±3.75a 61.667±5.22ab 59.163±6.81bc 

LSP(0.9) 2,237.52±585.18a 2,243.21±596.71a 1,330.35±228.36b 895.16±142.89c 1,451.72±406.41b 

LSP(0.8) 1,142.17±230.70a 1,082.47±245.44a 741.10±101.31b 557.76±70.12c 770.60±166.05b 

n 5 5 8 12 8 

 595 

 596 

 597 

  598 

 599 

  600 
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TABLE 3. ANOVA results for the effects of precipitation treatment on CO2 response curves 601 

using the nonrectangular hyperbola model. Significant levels are indicated. 602 

Model 

Parameter 
+50% +33% Ambient -33% -50% 

θ 0.93±0.04ab 0.99±0.007a 0.89±0.06b 1.00±0.004a 0.95±0.02ab 

α 0.06±0.006ab 0.046±0.003b 0.073±0.01a 0.04±0.006b 0.05±0.007b 

Pmax 32.40±1.16ab 28.94±1.45b 36.08±2.75a 28.32±2.97b 30.92±1.98ab 

Rd 0.16±0.06b 0.47±0.12a 0.08±0.04b 0.47±0.21a 0.10±0.05b 

LCP 1.23±0.45bc 5.31±1.47ab 0.63±0.36c 7.17±3.49a 1.10±0.47bc 

LSP(0.9) 824.55±116.39ab 639.74±41.96b 864.25±138.00a 618.54±57.09b 785.69±126.16ab 

LSP(0.8) 597.39±40.66a 539.01±3145a 579.37±46.36a 543.81±50.25a 586.21±56.38a 

n 10 11 8 7 8 

 603 

 604 

 605 

  606 
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Figure legends 607 

FIGURE 1. Graphical representation of the model comparison for light irradiance. Data points 608 

with standard error bars are the mean values of measurements in the ambient treatment plots.  609 

FIGURE 2. Graphical representation of the model comparison for CO2 concentration. Data 610 

points with standard error bars are mean values of measurements in the ambient treatment plots.  611 

FIGURE 3. Light response curve using the nonrectangular hyperbola model for each 612 

precipitation treatment. Points are observed values and the lines are the modeled curves. 613 

FIGURE 4. The distribution of data is show for each of the model parameter values including the 614 

average, median, minimum value, maximum value, first quartile and third quartile values. The 615 

data are from the nonrectangular hyperbola model for light response results. 616 

FIGURE 5. Effects of precipitation treatment on the CO2 response curve using the 617 

nonrectangular hyperbola model. Points are observed values and the lines are the modeled 618 

curves. 619 

FIGURE 6. The distribution of data is show for each of the model parameter values including the 620 

average, median, minimum value, maximum value, first quartile and third quartile values. The 621 

data are from the nonrectangular hyperbola model for CO2 response results.  622 
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