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Abstract

Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust resilience to
environmental stresses. However, our knowledge regarding how precipitation changes affect
switchgrass photosynthesis and its responses to light and CO> remains limited. To address this
knowledge gap, we conducted a field precipitation experiment with five different treatments,
including -50%, -33%, 0%, +33%, and +50% of ambient precipitation. To determine the
responses of leaf photosynthesis to CO> concentration and light, we measured leaf net
photosynthesis of switchgrass under different CO, concentrations and light levels in 2020 and
2021 for each of the five precipitation treatments. We first evaluated four light and CO> response
models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model,
and the modified rectangular hyperbola model) using the measurements in the ambient
precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola
model as the optimal model and applied it to all precipitation treatments, and estimated model

parameters. Overall, the model fit field measurements well for the light and CO; response
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curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmqx) but
influenced other model parameters including quantum yield («), convexity (), dark respiration
(Ra), light compensation point (LCP), and saturated light point (LSP). Specifically, the mean
Pmax of five precipitation treatments was 17.6 pmol CO, m™s™!, and the ambient treatment
tended to have a higher Py The +33% treatment had the highest @, and the ambient treatment
had lower 8 and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation
significantly influenced all model parameters of CO> response. The ambient treatment had the
highest Pmax, largest a, and lowest 8, R4, and CO> compensation point LCP. Overall, this study
improved our understanding of how switchgrass leaf photosynthesis responds to diverse
environmental factors, providing valuable insights for accurately modeling switchgrass

ecophysiology and productivity.
KEYWORDS

switchgrass, bioenergy crop, precipitation change, nonrectangular hyperbola model, light-

response curve, COz-response curve

1 | INTRODUCTION

Climate change is escalating due to continued greenhouse gas emissions. These emissions
primarily result from human activities such as deforestation, burning of fossil fuels, and
agricultural practices (Mann & Kump 2015; Ritchie et al. 2020). The global average surface
temperature has increased, with projections indicating an additional 0.5°C rise by 2050 (Fawzy et
al. 2020: Stein 2022). Consequently, the water cycle is expected to accelerate. Heightened

atmospheric moisture from a warmer planet is anticipated to lead to more frequent and intense
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extreme precipitation events, such as severe drought and flooding (Trenberth, 2011; Vanaja et al.
2011; Pfahl et al. 2017; Douville et al. 2021; Portner et al. 2022). These altered precipitation
patterns could significantly impact the structure and functioning of ecosystems (Hajek & Knapp
2022). Despite this, the specific effects of climate change, including changes in precipitation, on
bioenergy crops like switchgrass (Panicum virgatum L.), remain insufficiently explored (Parrish

and Fike 2005; Tulbure et al. 2012; O’Keefe et al. 2013; Deng et al. 2017).

Switchgrass (Panicum virgatum L.) is a C4 perennial warm-season grass native to North
America, originally spanning most of North America. Its habitat extends from southern Canada
to Central Mexico (Lemus et al. 2008; Vogel et al. 2011). Remarkably productive, switchgrass
thrives in a wide range of abiotic conditions and flourishes in soils with pH ranging from 3.9 to
7.6 (Rinehart 2006). Notably, it possesses favorable attributes, including lower nutrient demands
and high below-ground carbon sequestration, making it a model bioenergy crop (Parrish and Fike
2005; Adler, et al. 2006; Rinehart 2006; Albaugh et al. 2014; Liu et al. 2022; Ricketts et al.
2023). Extensive research has explored the effects of agricultural practices like nutrient
applications, irrigation, and cutting systems, on switchgrass productivity (Alder et al. 2006;
Lemus et al. 2008; Wullschleger et al. 2010; Miesel et al. 2017; Hui et al. 2018; Keyser et al.
2022; Kieffer et al. 2023). However, there have been limited studies focused on understanding
the impacts of climate change, such as changes in precipitation, on switchgrass, particularly in
field conditions (Hartman et al. 2012; Hartman and Nippert 2013; O’Keefe et al. 2013; Deng et

al. 2017).

In addition, there is an incomplete understanding of switchgrass leaf photosynthesis
responses to variations in light and carbon dioxide (CO.) levels. Photosynthesis, a fundamental

biological process, plays a pivotal role in plant growth, development, biomass productivity, and
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yield potential (Yang et al. 2010; Ma et al. 2021; Song et al. 2021). Enhancements in plant
productivity are often correlated with increased photosynthesis (Fischer et al., 1998; Song et al.
2021). Environmental factors such as cultivar, light, CO», humidity, temperature, and nutrient
availability, have the potential to significantly influence leaf photosynthesis (Ma et al. 2021). For
example, Barney et al. (2009) observed a variation in leaf photosynthesis ranging from 16 to 22
umol CO, m™s™! among six switchgrass cultivars. In a mesocosm study, Hui et al. (2018) found
that increased precipitation enhanced leaf photosynthesis, while reduced precipitation did not
induce changes in leaf photosynthesis. However, there is a limited understanding of how
photosynthesis responds to different precipitation intensities. Few studies have examined how
changes in precipitation alter the interplay of photosynthesis with light availability and CO»
concentration. The efficiency of light and CO> use in photosynthesis is critical to switchgrass
biomass production and environmental adaptation (Hui et al. 2001; Song et al. 2021) and is key
to parameterizing photosynthesis in plant growth and ecosystem-scale models (Harley and

Baldocchi 1995, Yang et al. 2010; Lobo et al. 2013; Herrmann et al. 2020)

Photosynthetic light response curves (Pn-I) and photosynthetic-CO> response curves (Pn-
CO») are important for understanding how plants respond to climate change (Leverenz 1988;
Bukhov et al. 1995; Lobo et al. 2013; Xu et al. 2019; Ma et al. 2021). Pn-I response curves
depict the relationship between the net photosynthetic rate (Pn) of plants and the photon flux
density (Irradiance, I), while Pn-CO; response curves describe the relationship between Pn and
CO; concentration (Song et al. 2021). These response curves enable the description of essential
physiological parameters in plants (Lobo et al. 2013; Herrmann et al. 2020; Song et al. 2021; Ma
et al. 2021; Liu et al. 2022), including the maximum net photosynthetic rate (Pax), apparent

quantum yield (a), convexity (), dark respiration rate (Rq), light or CO2 compensation point
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(LCP), and light or CO; saturation point (LSP) (Ye 2010; Lang et al., 2013; Ma et al. 2021). The
construction of Pn-I or Pn-CO- response curves involves measuring leaf photosynthesis at
varying light or CO; levels, ranging from zero to saturating levels (1500 or 2000 pmol photon m"
257! for light, 1200 ppm for CO2). Various mathematical models can be employed to derive
parameters from these response curves (Lobo et al. 2013; Lang et al. 2013; Song et al. 2021).
Accurately estimating the parameters of Pn-I or Pn-CO; response curve under diverse
environmental conditions is crucial for revealing the physiological changes that occur under

these conditions (Song et al. 2021).

In this study, we conducted a field precipitation experiment in Nashville, TN, simulating
a range of precipitation intensities spanning from -50% to +50% of the ambient precipitation
levels. These treatments were chosen based on the assessment of the region’s interannual
precipitation variability, encompassing 80% of the total observed variation in precipitation
amount over the past 50 years (Deng et al. 2017). Our aim was to investigate how switchgrass
photosynthesis responds to varying levels of light intensity and CO» concentration under distinct
precipitation scenarios. The main objectives of this study included: 1) Determining the most
appropriate model for characterizing leaf photosynthetic responses of switchgrass plants to
variations in light and CO, concentrations; 2) Quantifying the impact of precipitation intensity
on leaf photosynthetic parameters under varying light and CO> conditions. Our results will be
instrumental in improving model simulations that address the responses of switchgrass
photosynthesis under different environmental conditions. Additionally, this research will
enhance our understanding of the photo-physiological characteristics of switchgrass in the

context of future climate change conditions.
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2 | MATERIALS AND METHODS

2.1 | Experimental facility and design

In 2015, the Precipitation Experimental Facility was established on pre-existing field switchgrass
stands at the Tennessee State University Agricultural Research and Education Center, Nashville,
TN (latitude 36.12°N, longitude 86.89°W at an elevation of 127.6 m) (Deng et al. 2017). The
seeds of Alamo switchgrass were initially planted in April 2012 in a no-tillage field, and
switchgrass stands were already well-established by the time the precipitation facility was built.
The area where the precipitation facility is located experiences a warm humid temperate climate,
with mean annual precipitation of 1,200 mm and a mean annual temperature of 15.1°C. The soil,

classified as Talbott silt clay loam, is slightly acidic.

The detailed experimental design and implementation were provided in Deng et al.
(2017). In brief, the experiment included five precipitation treatments: a 50% reduction in
precipitation from ambient conditions (-50%), a 33% reduction (-33%), the ambient level (0%), a
33% increase (+33%), and a 50% increase from ambient conditions (+50%). A total of 20 plots
were constructed with 4 replicate plots for each treatment. Each plot measured 3 m x 2 m.
Precipitation was manipulated using a combined modified rainfall-interception-redistribution
(RIR) system (Deng et al. 2017) following the design of Yahdjian and Sala (2002). For drought
treatments, precipitation was intercepted using transparent PVC half-tubes. The treatments were
validated by collecting precipitation in the treatment plots. The rainwater collected from these
PVC half-tubes in the drought plots was subsequently redistributed to the wet treatment plots

(Deng et al. 2017).

2.2 | Leaf gas exchange measurements
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Leaf photosynthesis measurements were conducted during the peak growing seasons of 2020 and
2021. Field measurements were primarily taken in the morning on sunny days to ensure
consistent environmental conditions. For each treatment, two to three healthy and young fully
expanded switchgrass leaves were randomly selected and measured using a Li-Cor Portable
Photosynthesis System (Li—6800, Li-Cor Inc., Lincoln, NE) connected with LED chamber. The
measurements were conducted directly on leaves attached to the plants and completed in two
days each time. The Pn-I and Pn-CO> response curves were constructed using the preset
programs in the LI-6800. For Pn-CO- response curves, photosynthesis measurements were taken
at CO» concentrations descending from near ambient: 400, 300, 200,100, 50, and 0 ppm, then
ascending to saturation: 400, 400, 600, 800, 1000, and 1200 ppm. The light level was set at 1500
pmol photon m2s™! during CO» response curve measurements. For Pn-I response curves,
photosynthesis measurements were taken at descending light levels: 1500, 1200, 900, 600, 300,
150, 50, and 0 pmol photon m™s™!, while CO, concentration was set at 400 ppm. Temperature
was not controlled during the measurements. In total, 5 to 12 light response curves and 7 to 10
CO> response curves were generated for each precipitation treatment over the two-year period.

Totally, 38 light response curves and 45 CO; response curves were measured.

2.3 | Data analysis

2.3.1 | Light and CO: response curves modeling

Four models have been commonly fitted to light- or COz-response curves: the rectangular
hyperbola model, the nonrectangular hyperbola model, the exponential model, and the modified
rectangular hyperbola model (Fang et al. 2015; Ma et al. 2021). We applied these four models to

the ambient plot response curves measurements and used a model selection approach to identify
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the best-fitting model. The selected model was then applied uniformly across all treatments to
estimate the physiological parameters at each precipitation treatment. A concise description of

each model tested is provided below (Fang et al. 2015; Liu et al. 2019; Lee et al. 2022).
Rectangular hyperbola model
The equation of the rectangular hyperbola model is shown below:

al Pyox

p,= — ™% _p
" al + Py d

where P, is the net photosynthetic rate (umol CO, m?s™!), a is the initial quantum efficiency at
lower light or CO» condition, Py is the maximum net photosynthetic rate (umol CO> m?s™), Ry
is the dark respiration rate (umol CO> m? s™), and / is photosynthetic active radiation (umol

photonm?s™!) (Ma et al. 2021).
Nonrectangular hyperbola model

The equation of the nonrectangular hyperbola model is shown below:

I +Ppgx— (@I +Prgy) 2—4a01 Py g

where 6 represents convexity (curvature or rate of bending) of the response curve, and P, o,
Prax, Ra, and I have been defined above (Thornley 1998; Ma et al. 2021). To calculated light- or
COz- LSP, we set P,=80% of Pax and 90% of P..x and calculated LSP (0.8) and LSP (0.9),

respectively.

Exponential model

The equation of the exponential model is shown below:
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—al
Py = Bnax - (1 - erax> — Ry
where Py, &, Pnax, Ra, and I have already been defined above (Ma et al., 2021) and e represents
the base of natural logarithm.
Modified rectangular hyperbola model

The equation of the modified rectangular hyperbola model is shown below:

1-pI
1+yl

P,= a X I-Ry

where f is the photoinhibition and vy is light saturation and Py, a, R4, and I have already been

defined above (Ma et al. 2021).

2.3.2 | Model fitting and validation

To determine the optimal model for switchgrass light and CO, response curves, we calculated
mean square errors (MSE), Akaike Information Criterion Corrected (AICc), Bayesian
Information Criterion (BIC), and the coefficient of determination (R?) (Brewer et al. 2016; Ma et
al. 2021). The optimal fit of the model is determined through the minimization of MSE, AICc,

and BIC values, alongside the maximization of R? (Brewer et al. 2016).

The data from the eight Pn-I response curves collected in the ambient precipitation
treatment were averaged and used to fit the four models. The same was done for Pn-COa.
Following an evaluation of how well the models fitted to the light and CO> response curves
derived from ambient conditions, and taking into consideration the biological significance of the

model parameters, the nonrectangular hyperbola model was selected as the best performance

10



214 model for both light response (Pn-I) and CO: response (Pn-CO2) curves. Consequently, the

215  nonrectangular hyperbola model was applied to the Pn-I and Pn-CO> measurements across the
216  rest of the precipitation treatments and estimate the photosynthetic physiological parameters. To
217  assess the impact of varying precipitation on these parameters, an analysis of variance (ANOVA)
218  with PROC GLM was conducted, accounting for the imbalance in the measured data. Multiple
219  comparison was conducted using Least Significant Difference (LSD) method when a significant

220  effect was detected.

221 All statistical analyses were conducted using the SAS software (SAS 9.4, SAS Institute
222 Inc., Cary, NC). Model fitting and parameter estimations were conducted using the Proc NLIN.
223 Curves and graphs were constructed using the graphical program GraphPad Prism (GraphPad

224 Software, San Diego, CA USA).

225

226 3 | RESULTS

227 3.1 | Model comparison and selection

228  Four models were used to fit Pn with increasing light levels and increasing CO; levels from the
229  ambient/control plots. The modified rectangular hyperbola model demonstrated suboptimal fit
230  for the Pn-I, contrasting with the superior performance of the nonrectangular hyperbolic model
231  among the four models considered (Fig. 1, Table 1). The nonrectangular hyperbolic model had
232 the lowest BIC and root MSE, highest R?, and intermediate AICc, establishing it as the best

233 model for capturing the Pn-I response. In the case of Pn-COz, both the rectangular hyperbolic
234 and exponential models did not fit the data (Fig. 2; Table 1). In contrast, both the modified

235  rectangular hyperbolic and the nonrectangular hyperbolic models exhibited the best fit based on
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AICc, BIC, and R? (Table 1). Given the more biologically meaningful values of certain
parameters, such as Pmax and a, produced by the nonrectangular hyperbolic model, this model

was chosen for fitting both Pn-I and Pn-CO; responses across all precipitation treatments.

3.2 | Impact of precipitation on model parameters

3.2.1 | Light response

The observed Pn exhibited a typical response curve to light intensity. Initially negative at zero
light intensity, Pn increased progressively, reaching saturation as light intensity increased. The
highest Pn values ranged from 15 to 20 umol CO>» m™s™!, depending on the specific precipitation

treatment (Fig. 3).

The photosynthetic parameters, including Ppax, 0, 6, and Ry, estimated by the
nonrectangular hyperbole model and the calculated LCP and LSP at 80% and 90% of Pmax were
compared across precipitation treatments (Table 2). ANOVA found no significant differences
among the precipitation treatments for Pmax (Table 2; Figs. 3 and 4). The mean Pnmax across all
precipitation treatments was 21.97+0.95 umol CO2 m™s™'. There was a slight variation in
among the five treatments, with the smallest observed in the ambient treatment and the largest in
the -50% treatment. These variations were not statistically different from the other treatments.
For the a values, the +50% treatment had the lowest (0.030+0.02), while the +33% treatment had
the highest (0.053+0.003). No significant differences were found among the ambient, -33%, and
-50% treatments. Regarding R4, the +50% treatment had the lowest, and the ambient treatment
had the highest, with no significant differences from other treatments. For the calculated

parameters, the +33% treatment showed the lowest LCP. Light saturation point (LSP (0.9))

12
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ranged from 895.2+142.89 umol photon m™s™! in the -33% treatment to a maximum of

2243.2+596.71 umol photon m?s in the +33% treatments.

3.2.2 | CO; response

The observed Pn also exhibited a typical response curve to CO> concentration. Pn was negative
when CO; concentration was very low and increased progressively. The highest Pn values

ranged from 27 to 33 umol CO>» m%s™!, depending on the specific precipitation treatment (Fig. 5).

Similarly, we employed the nonrectangular hyperbola model across the precipitation
treatments to fit the CO; response curves. Then we compared the estimated and calculated
photosynthetic parameters across treatments. Overall, all model parameters associated with CO-
response curves exhibited statistical significance across the precipitation treatments (Table 3;
Figs. 5,6). The Pmax reached its peak in the ambient treatment at 36.1+2.75 pmol CO> m™s™),
significantly higher than the rates estimated in the +50% and -50% treatments and exciding those
in the +33% and -33% treatments. Notably, the ambient treatment displayed the lowest & among
all treatments, while the -33% and +33% treatments exhibited the largest 6. The largest a was
observed in the ambient treatment, surpassing those in the +50% and -50% treatments, and
exceeding the values in the +33% and -33% treatments. The ambient treatment had the lowest Rq
at 0.08+0.04 umol CO> m™s™!, but no significant difference was observed when compared to the
+50% and -50% treatments. The CO> compensation point was highest in the -33% treatment
(7.1743.49 ppm) and lowest in the ambient treatment (0.63+0.36 ppm). Slight but significant
variations in LSP (0.9) were observed across ambient and +33 and-33. +50 and -50 treatments
had no significant differences among treatments. Values ranging from 618.5+57.09 ppm in the -

33% treatment to 864.2+138.0 ppm in the ambient treatment.
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4 | DISCUSSION

4.1 | Model determination

We first evaluated four commonly used models for fitting photosynthesis with light and CO»
response curves. The rectangular hyperbola model assumes a hyperbolic relationship between
photosynthetic rate and either light intensity or CO> concentration (Farquhar, 1989; Hui et al.
2001; Ma et al. 2021). Although this model is simple and widely used, its ability to accurately
represent complex physiological responses might be limited (Ma et al. 2001). The nonrectangular
hyperbola model is similar to the rectangular hyperbola model but provides a more flexible fit
because it contains an additional parameter related to the curvature of the response curve
(Tornley, 1998; Ma et al. 2021). The exponential model can effectively capture exponential
growth or decline in photosynthetic rate but may not fit well with more intricate patterns in the
data (Chen et al. 2011; Song et al. 2020). The modified rectangular hyperbola model is a
variation of the rectangular hyperbola model with additional parameters to account for various
factors influencing photosynthetic response. However, its application requires careful
consideration of parameter interpretation and the potential for overfitting (Ye 2007; Song et al.
2020). In this study, all four models could fit the photosynthetic light and CO> response curves.
However, based on Root MSE, R?, AICc, and BIC metrics and considering biological relevance,
the nonrectangular hyperbola model was the best at characterizing switchgrass photosynthesis.
Similar results were reported in previous studies. For example, Song et al. (2020) compared six
photosynthesis light response models for four different mulching treatments of spring wheat and

found that the nonrectangular hyperbolic model provided better fit.
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Ye (2007) and Ye and Yu (2008) proposed the modified rectangular hyperbola model
could fit the light-response curves and main model parameters more accurately than other
models (Lang et al. 2013; Ma et al. 2021). However, while in our study the modified rectangular
hyperbola model was the best fitting model for the CO, response curve, it was the poorest model
for the light response curve. Lobo et al. (2013) reported that the maximum photosynthetic rate
and saturated light intensity produced by the modified rectangular hyperbola model can
occasionally exceed expected physiological ranges. Our study corroborated these issues,
suggesting that the modified rectangular hyperbole model cannot be applied to both Pn-I and Pn-
COz curves under all situations (Lobo et al. 2013). So, like in Lobo et al., (2013) the non-

rectangular hyperbola model was the best fitting model.

4.2 | Impact of precipitation intensity on leaf photosynthesis and physiological parameters

The response patterns of leaf photosynthesis to light and CO, were similar to the reported
patterns in previous studies (Barney et al. 2009; Dohleman et al. 2009; Hartman et al. 2012; Gao
et al. 2017). Leaf net photosynthesis was negative when light intensity and CO» concentration
was set at 0 or very low levels and increased with increase of light and CO; concentration. It
leveled off at high light intensity or CO; concentration. Only a few measurements during the late
growing seasons showed a decline in leaf photosynthesis when light and CO; concentration were

high, perhaps due to the potential damage to the leaf at the late stages of the measurements.

Our results showed significant differences in the majority of model parameters for both
light and CO> response curves across the various precipitation treatments. Precipitation changes
significantly influenced all model parameters except for Pmax in light response curves. Only a
few studies have investigated the photosynthetic response to light in switchgrass. Our results

were comparable to these previous studies. For example, Albaugh et al. (2014) estimated Pn-I

15
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model parameters for switchgrass observing Pmax at 28.7 umol CO, ms™!, a at 0.059, 0 at 0.74,
and Rq at 3.4 pumol CO, m™s™!. In addition, they found that different cropping systems or
measurement dates did not influence parameter estimates. Similarly, Gao et al. (2015) estimated
switchgrass photosynthesis responses to spacing over three years and found that o remains stable
over time, ranging between 0.0328 and 0.0424. Neither spacing nor time influenced LCP,
ranging from 36 to 51, and LSP, ranging from 1399 to 1442. Their findings reported a
substantially higher LSP than observed in our study. It is worth noting that LSP estimated in our
study showed large variations within and among precipitation treatments (Fig. 4). Overall, LSP
decreased from the +50% to -50% precipitation treatments. The main reason could be that in the
drought treatments, plants may experience water stress, affecting their ability to photosynthesize
efficiently. Their mean maximum photosynthesis was about 18.4 pmol CO> ms™!. Mulching
treatments in Song et al. (2020) impacted maximum net photosynthetic rates. Our results fell
within the range of these studies reported values. Regarding photosynthesis and CO> response in
switchgrass, Albaugh et al. (2014) estimated the maximum photosynthetic rate at 27.6 umol CO»
ms™!, with no other study, to our knowledge, reporting the response of switchgrass

photosynthesis to COa.

Despite the significant influence of precipitation on model parameters such as Pmax and a,
variations were limited to narrow ranges. Switchgrass exhibited a remarkable tolerance to
changes in precipitation, and performed well under the various precipitation conditions in
Nashville, TN. This adaptability may be attributed to inherent adaptive mechanisms within
switchgrass, enabling it to thrive across a wide range of environmental conditions in its extensive

native range.
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While switchgrass has been the subject of relatively few studies, numerous prior studies
have investigated the responses of photosynthesis to light and CO> for various species (Muraoka
et al. 2010; Ali et al. 2015; Miner and Bauerle 2017: Zhao et al. 2020). These studies confirmed
that model parameter often differ among different studies (Zhao et al. 2020). For example, Lobo
et al. (2013) reported a Ppax range of 42 to 59 umol CO, m2s™! for Cs species and 57 to 75 umol
CO> m?s™! for C4 species, significantly exceeding the estimated switchgrass Pumax in this study
and other previous studies (Barney et al. 2009; Gao et al. 2017). The measured maximum
photosynthetic rate of switchgrass leaves typically falls between 14 to 30 pmol CO> m?s!
(Hartman et al. 2012; Wagle and Kakani 2014; Gao et al. 2015; Hui et al. 2018). In contrast,
Lobo et al. (2013) reported Pmax for Vochysia divergens ranging from 14.4 to 15.7 umol CO, m’
2571, depending on different models, while Ma et al. (2021) found a Puax of around 8 pmol CO:

m2s™! for larch (Larix principis-rupprechtii Mayr (Larch)).

Quantum yield, as reported by Lobo et al (2013), ranges from 0.0266 to 0.0800 umol
'umol photon™, a range within which our estimates also fall. In our study, the parameter 6,
representing the ratio of physical to total resistances of CO» diffusion and signifying the
sharpness of the transition from light limitation to light saturation (Lobo et al. 2013) varied from
0.912 to 0.969 under different precipitation treatments. This range aligns with the observed norm
0f 0.70 to 0.99 (Ogren 1993; Lobo et al. 2013). In our study LCP, ranging from 49.69 to 71.12
umol photon m™s™!, was higher than that of Vochysia divergens (20.2 to 23.4. In addition, Ma et
al. (2021) demonstrated substantial variations in model parameters estimated by different
models. For example, quantum yield may vary from 0.55 to 0.95 and LSP can fluctuate from 300

to 1000 umol photon m™s!. Because of these variations, it is evident that more studies on
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switchgrass ecophysiology responses to environmental changes are needed, encompassing

different cultivars and at diverse geographical locations.

5 | CONCLUSIONS

In this study, we evaluated the response models used for characterizing photosynthesis in
relation to light and CO» and estimated the model parameters for switchgrass across five
different precipitation treatments, employing the optimal model we selected. Among the four
models tested (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential
model, and the modified rectangular hyperbola model), we found they all fitted the
measurements obtained from the ambient precipitation treatment. However, the nonrectangular
hyperbola model emerged as the optimal choice based on both fitting criteria and the biological

significance of its parameters.

This optimal model was then applied across all precipitation treatments, revealing that
alterations in precipitation did not exert influence on Pmax, but influenced other model
parameters, including a, 6, and Rq4. In addition, precipitation significantly influenced all model
parameters of CO; response. While the ambient treatment had the highest Pmax in the Pn-CO»
response, it also had greater o and Rq. Interestingly, the fluctuations in model parameters for «, 6,

and Pmax were relatively small.

Overall, this study improved our understanding of how switchgrass leaf photosynthesis
responds to varying precipitation conditions, providing valuable insights for the accurately
modeling of switchgrass ecophysiology and productivity. Switchgrass demonstrates extensive
tolerance to precipitation variations, thriving under the diverse precipitation conditions in

Nashville, TN. This adaptability likely stems from inherent adaptive mechanism, allowing
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switchgrass to excel amidst the considerable environmental variations within its vast native
range. However, improved parameter estimations could enhance our understanding and
predictive accuracy regarding switchgrass ecophysiology and biomass productivity in future

climate conditions.
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TABLE 1. Comparison of modeling fitting of four commonly used photosynthesis-Light (Pn-I)
and photosynthesis-CO> (Pn-COz) models of the net photosynthesis with light in the ambient
plots: rectangular hyperbolic model, nonrectangular hyperbola model, exponential model, and
modified rectangular hyperbola model. AICc, BIC, R?, and Root MSE were used to determine

the fitting accuracy for the response models.

Modified
o Rectangular Nonrectangular .
Fitting . . Exponential Rectangular
Response Hyperbolic Hyperbolic .
Accuracy Model Hyperbolic
Model Model
Model
Light AICc 37.0 36.4 259 48.3
BIC 24.0 6.8 12.9 18.7
R? 0.99 1.00 0.99 0.82
Root MSE 0.98 0.38 0.66 1.87
CO; AICc 53.2 43.8 47.2 39.6
BIC 46.4 30.3 40.4 26.1
R’ 0.96 0.96 0.96 0.96
Root MSE 2.67 2.84 2.46 2.33
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TABLE 2. The ANOVA results, with the significant levels, for the effects of precipitation

treatment on light response curves using the nonrectangular hyperbola model. The model

parameters include 6, a, Puax, Ri, LCP, and LSP. N is the number of measurements.

ﬁ‘;‘;‘ie o T50% +33% Ambient -33% -50%

0 0.966+0.02ab 0.955+0.02ab 0.9120.02a 0.957+0.01ab 0.9690.02b

a 0.030£0.006¢ 0.053+0.003b 0.0490.002ab 0.047+0.003ab ~ 0.040::0.005ac
Poax 15.32242.09a 17.245+1.09a 20.253+2.33a 20.229+2.34a 14.829+2.22a

R, 2.214+0.42a 2.6020.20ab 3.144+0.28b 2.872+0.25ab 2.3600.24ab
Lcp 65.63149.27a 53.761+5.78¢ 65.06243.75a 61.667£5.22ab  59.163+6.81bc
LSP(0.9) 2,237.524585.18a  2,243.21£596.71a  1,330.35+228.36b  895.16£142.89c  1,451.72+406.41b
LSP(0.8) 1,142.17+230.70a  1,082.47+245.44a  741.10£101.31b 557.76£70.12¢c  770.60+166.05b
n 5 5 8 12 8
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using the nonrectangular hyperbola model. Significant levels are indicated.

TABLE 3. ANOVA results for the effects of precipitation treatment on CO, response curves

ol e 0% +33% Ambient 33% -50%

0 0.93%0.04ab 0.99+0.007a 0.89:£0.06b 1.00£0.004a 0.95+0.02ab

a 0.06+0.006ab 0.046+0.003b 0.073+0.01a 0.0420.006b 0.05+0.007b
Poax 32.40+1.16ab 28.94+1.45b 36.08+2.75a 28.32+2.97b 30.92+1.98ab
R, 0.16+0.06b 0.47+0.12a 0.08+0.04b 0.47+0.21a 0.10+0.05b
Lcp 1.23+0.45bc 5.31%1.47ab 0.63+0.36¢ 7.17+3.49a 1.10+£0.47bc
LSP(0.9) 824.55£116.39ab  639.74+41.96b 864.25£138.00a  618.54+57.09b 785.69+126.16ab
LSP(0.8) 597.39+40.66a 539.0123145a 579.37+46.36a 543.81+50.25a 586.21+56.38a

n 10 11 8 7 8
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Figure legends

FIGURE 1. Graphical representation of the model comparison for light irradiance. Data points

with standard error bars are the mean values of measurements in the ambient treatment plots.

FIGURE 2. Graphical representation of the model comparison for CO2 concentration. Data

points with standard error bars are mean values of measurements in the ambient treatment plots.

FIGURE 3. Light response curve using the nonrectangular hyperbola model for each

precipitation treatment. Points are observed values and the lines are the modeled curves.

FIGURE 4. The distribution of data is show for each of the model parameter values including the
average, median, minimum value, maximum value, first quartile and third quartile values. The

data are from the nonrectangular hyperbola model for light response results.

FIGURE 5. Effects of precipitation treatment on the CO» response curve using the
nonrectangular hyperbola model. Points are observed values and the lines are the modeled

curves.

FIGURE 6. The distribution of data is show for each of the model parameter values including the
average, median, minimum value, maximum value, first quartile and third quartile values. The

data are from the nonrectangular hyperbola model for CO: response results.
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