PP33D-1547 Characterizing the spatial distribution and chemistry of geologic carbon input to the Eastern Tropical North Pacific before and after the last ice age

Patrick A Rafter
Mathis Hain
William Robert Gray
Ryan A. Green
James William Buchanan Rae
Kaustubh Thirumalai
Elsa Arellano Torres
John Richard Southon

Abstract

The observation of extremely low radiocarbon content / old radiocarbon ages (>4000 years old) in the intermediate-depth ocean during the last ice age draws attention to our incomplete understanding of ocean carbon cycling. For example, glacial-interglacial seawater 14 C anomalies near the Gulf of California have been explained by both the advection from a 14 C-depleted abyssal source and local geologic carbon flux.

To provide insight to this the origin of the seawater 14 C anomalies, we have produced several new records of glacial-interglacial intermediate water (i.e., 14 C, δ^{11} B, δ^{18} O, and δ^{13} C) in waters that are "upstream" and "downstream" of the Gulf of California. These observations plus geochemical modeling allow us to: (1) Answer whether the old seawater 14 C ages are advected or produced locally; (2) Identify the approximate chemical make-up of this carbon; and (3) Consider the role of known sedimentary processes in this carbon flux to the ocean. (Note that several sites have age model controls based on terrestrial plant 14 C ages, providing more confidence in our results.) Our new measurements and modeling indicate that the well-established >4000-year-old seawater 14C anomalies observed near known seafloor volcanism in the Gulf of California are not present "upstream," indicating that this carbon flux results from a "local" geologic carbon. Furthermore, based on our new benthic foraminifera δ^{11} B measurements, this local carbon flux does not appear to affect seawater pH. Finally, we suggest several potential geologic carbon source(s) that could explain the anomalously old seawater 14 Cages, the relatively unremarkable changes in seawater δ^{13} C, and the essentially negligible change in seawater pH.

https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1349753