Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4

Mila Anastasova', Reza Azarderakhsh', and Mehran Mozaffari Kermani?

1 Computer and Electrical Engineering and Computer Science Department and
I-SENSE at Florida Atlantic University, Boca Raton, FL, USA
(manastasova2017, razarderakhsh)@fau.edu
2 Computer Engineering and Science Department at University of South Florida,
Tampa, FL, USA,
mehran2Qusf . edu

Abstract. To provide safe communication across an unprotected medium
such as the internet, network protocols are being established. These
protocols employ public key techniques to perform key exchange and
authentication. Transport Layer Security (TLS) is a widely used net-
work protocol that enables secure communication between a server and
a client. TLS is employed in billions of transactions per second. Contem-
porary protocols depend on traditional methods that utilize the compu-
tational complexity of factorization or (elliptic curve) logarithm math-
ematics problems. The ongoing advancement in the processing power
of classical computers requires an ongoing increase in the security level
of the underlying cryptographic algorithms. This study focuses on the
analysis of Curve448 and Edwards curve Ed448, renowned for their su-
perior security features that offer a 224-bit level of security as part of the
TLSv1.3 protocol. The exponential advancement of quantum computers,
however, presents a substantial threat to secure network communication
that depends on classical crypto schemes, irrespective of their degree of
security. Quantum computers have the capability to resolve these chal-
lenges within a feasible timeframe. In order to successfully transition
to Post-Quantum secure network protocols, it is imperative to concur-
rently deploy both classical and post-quantum algorithms. This is done
to fulfill the requirements of both enterprises and governments, while
also instilling more assurance in the reliability of the post-quantum sys-
tems. This paper presents a detailed hybrid implementation architecture
of the TLSv1.3 network protocol. We showcase the first deployment of
Curve448 and Crystals-Kyber for the purpose of key exchanging, and
Ed448 and Crystals-Dilithium for verifying the authenticity of entities
and for X.509 Public Key Infrastructure (PKI). We rely upon the widely
used OpenSSL library and the specific wolfSSL library for embedded
devices to provide our results for server and client applications.

Keywords: Network Protocols, TLSv1.3, PKI, X.509, Elliptic Curve Cryp-
tography (ECC), Post-Quantum Cryptography (PQC), Cortex-M4
1 Introduction

In the era of digital technology, where information is easily transmitted world-
wide, the foundation of interconnected systems is formed by complex network

protocols ensuring reliability and interoperability of communication networks.
Security protocols, such as the most world wide SSL/TLS, relays on crypto-
graphical algorithms, to ensure data integrity, confidentiality, authentication and
non-repudiation. Public Key Cryptography (PKC) allows the secure communi-
cation establishment between entities through insecure channel, such as the In-
ternet, and is a fundamental component of security network protocols. Transport
Security Layer (TLS), also knows by the name of its predecessor Socket Security
Layer (SSL), integrates PKC algorithms for key exchange and digital signature
to allow secure data exchange across communication parties. It enables them to
transition their application data exchange to a Symmetric Key Cryptographic
scheme, which guarantees significantly improved computation time. Throughout
the years, the SSL/TLS protocol specification has been going through changes,
in order to eliminate vulnerabilities, improve timing and increase security of
the performed communication. In 2016, the latest version, TLSv1.3 [1], was re-
leased, included many revisions, along with the deprecation of weak algorithms
that were supported in earlier versions of TLS, as well as the addition of new
algorithms.

The Elliptic Curve Cryptography (ECC) family of algorithms is one of the
most widely deployed cryptographic PKC schemes, owing to their small key and
signature sizes, which allow them to be used in bandwidth-constrained scenar-
ios, as well as their relatively low computational cost, which allows them to be
used in both high- and low-end devices. Curve448, used for Elliptic Curve Diffie-
Hellman (ECDH) based key derivation, and its birationally equivalent Ed448,
forming Edwards curve Digital Signature Algorithm (EdDSA), have become of
interest among multiple ECC primitive instantiations, based on eliminating sev-
eral cryptographic security concerns inherent in NIST curves while offering high
security level.

The progressive development of Quantum Computers, marked by the con-
tinuous increase in g-bit quantities, presents a significant challenge to conven-
tional cryptographic methods that form the basis of network communication.
Shor [2] demonstrates that classical cryptographic primitives are vulnerable to
quantum computer attacks once a sufficiently powerful computer is constructed.
This would enable the solving of Factorization and Discrete Logarithm problems,
which form the core of classical cryptographic primitives.

In 2016, the National Institute of Standards and Technology [3] (NIST) began
evaluating the efficacy and efficiency of a list of recently submitted cryptographic
algorithms that are resistant to attacks by quantum computers. Following three
rounds of evaluation and enhancements, NIST has announced four algorithms
that will ultimately be standardized thereafter used in a broad variety of security
protocols. Among six families of post-quantum robust cryptographic algorithms,
lattice-based schemes show to be one of the most promising based on their rel-
atively compact key sizes and the extremely efficient computational cost. Based
on Module-Learning With Errors (M-LWE), Crystals-Kyber Key Encapsulation
Mechanism (KEM), based on Public Key Encryption (PKE) along with a varia-
tion of the Fujisaki-Okamoto (FO) transform to ensure IND — C'C A2-security,

is the only PQ key exchange finalists of the NIST PQ Standardization pro-
cess. Similarly, M-LWE-based Crystals-Dilithium Digital Signature Algorithms
(DSA) form part of the three PQ secure finalists for DSA along with Falcon and
SPHINCS+, showing on average (key generation -+ sign -+ verify) performance
advantage among its competitors and reasonably compact keys and signature
sizes.

Given that the PQ algorithms are relatively new, they fail to fulfill the se-
curity criteria set by the government and industry. Therefore, a hybrid instanti-
ation is necessary to provide a seamless transition to PQ network protocols. In
this work, we present, to the best of our knowledge, the first entirely hybrid in-
stantiation of the widely deployed TLSv1.3 protocols, integrating classical high
security Curve448 ECDH and Crystals-Kyber1024 PQ KEM algorithms for key
derivation among client and server and Edwards curve Ed448 traditional digital
signature algorithm along with Crystals-Dilithium5, in order to ensure data pri-
vacy, integrity, authentication, and non-repudiation in the presence of classical
and PQ adversary. We perform hybrid key derivation and enhance the Public
Key Infrastructure (PKI) defined by the X.509 certificate standard by integrat-
ing hybrid keys, certificate (signature) generation and signature verification.

Ensuring the deployment of cryptographic algorithms and security proto-
cols on resource-constrained devices and bandwidth-limited scenarios is crucial
due to the increasing integration of small embedded systems in everyday life,
driven by the Internet of Things (IoT) and the desire to enhance lifestyle and
comfort. This study aims to assess the performance of the hybrid TLSv1.3 pro-
tocol using Curve448 with Kyber1024 and Ed448 with Dilithium5 algorithms.
The evaluation is conducted on the NIST approved ARMvT7-based Cortex-M4
processor, specifically on the WiFi enabled STM32F413 Discovery Board. We
base our work on the widely deployed OpenSSL library in order to generate
the hybrid X.509 keys and signatures and wolfSSL embedded-focused library for
performance evaluation.

1.1 Related Work

The widespread use of Internet of Things (IoT) devices, embedded systems,
and various other low-end computer platforms has brought about an epoch of
remarkable connectivity via the deployment of network protocols. Yet, the inher-
ent characteristics of these devices, featuring restricted processing capabilities
and limitations in power and energy supply, provide a significant obstacle in the
implementation of resilient cryptographic protocols. Elliptic Curve Cryptogra-
phy is considered a fundamental aspect of secure communication because of its
simplicity and robust security promises. Nevertheless, the use of this technology
on low-end devices requires a careful and sophisticated strategy to overcome the
underlying constraints.

Curved48, introduced by Hamburg in [4], is meticulously designed to strike a
balance between strength and computational efficiency, making it a compelling
choice for secure key exchange and digital signatures. The high security level,
in comparison to other NIST curves or Curve2551 and Ed25519 proposed in [5]

and [6], comes at the cost of computational overhead based on the larger length
of the field arithmetics. This challenge is significantly important when it comes
to IoT devices with limited computational resources and bounded battery life.
This is the reason for exhaustive effort in the optimal implementation of the
cryptographic schemes aiming at optimal execution on embedded devices. The
nature of ECC allows optimizations on the field arithmetic layer, where different
research teams have shown efficient implementation for Curve448 and Ed448
targeting 8-bit AVR and 16-bit MSP, and 32-bit Cortex-M4 devices [7], [8], [9],
[10], [11], [12]. The higher-layer group operation may also introduce implemen-
tation optimizations based on applying optimal strategies for point addition and
multiplication, the core of ECC schemes. Several works have been performed,
applying different point multiplication architectures, such as low execution la-
tency (Sliding Window [13] method, Signed Comb [14] method), compact code
side (Double-and-Add [15]) or constant time performance (Double-and-Always-
Add, Montgomery Ladder [16]). The optimal implementation of Curve448 and
Ed448 is further being evaluated as part of network protocols [17].

Deploying post-quantum cryptography primitives on low-end devices is par-
ticularly problematic because to the increased resources needed for its implemen-
tation. Lattice-based post-quantum primitives, such as Kyber and Dilithium,
rely on computationally easy problems and do not need intricate multi-precision
field arithmetic due to the tiny modulus used in operations. Both methods rely on
two computationally intensive algorithms: the Secure Hash Algorithm 3 (SHA-
3) and the Number Theoretic Transform (NTT), which is essentially equivalent
to the Fast Fourier Transform (FFT) function applied over finite fields. Vari-
ous studies in the literature have offered distinct approaches, demonstrating the
most effective techniques for executing certain procedures.

Several researchers focus on optimizing the design of ARMv8-based devices
to demonstrate the effectiveness of NTT transform function and modular re-
duction in enabling the use of NEON-specific Single Instruction Multiple Data
(SIMD) instructions. This optimization leads to significant improvements in the
runtime performance of the lattice-based Kyber and Dilithium PQ primitives
[18,19,20,21,22]. Targeting Advanced Vector Extension (AVX) ISA (AVX2 and
AVX-512) was presented in [23,24]. Other writers focus on exploiting the compu-
tational capabilities of more advanced devices, such as GPUs, which are known
for their high processing power [25,26,27]. Botros et al. have provided an imple-
mentation design for low-end IoT devices that focuses on optimizing the RAM
use of Kyber while enhancing its speed performance [28]. Alkim et al. [29] demon-
strate superior outcomes of NTT calculations by utilizing an improved modular
reduction architecture, which enables the adoption of an efficient Instruction Set
Architecture (ISA) in combination with lazy-reduction deployment. Abdulrah-
man et al. present several ways for implementing NTT, enhancing register use
management, and achieving vector-matrix accumulation outcomes in their study
[30].

The extensively improved classical and post-quantum public-key cryptogra-
phy (PKC) primitives serve as the fundamental mathematical components of

security network protocols, particularly the SSL/TLS network protocol, which
is the most extensively utilized. It employed several cryptographic techniques to
provide safe and dependable communication between server and client entities
within the Internet network. While extensive research has been conducted on
the performance outcomes of cryptographic primitives, there has been a lack of
sufficient research on the complete integration of classical and hybrid systems
into network protocols, which is the focus of this study.

The incorporation of post-quantum (PQ) and hybrid operating modes into
the TLSv1.3 network protocol necessitates substantial effort due to the utiliza-
tion of numerous cryptographic methods. Several studies in the literature have
explored the development of a PQ operational mode for the TLSv1.3 proto-
col and its predecessor, TLSv1.2, as well as other network protocols [31], [32].
Kampanakis et al. [33] examine the utilization of PQ signatures inside X.509
PKI certificates, specifically in relation to the package fragmentation mecha-
nism. Crockett et al. [31] present a study of hybrid key exchange within the
context of TLS and SSH network protocols. They examine several classical and
post-quantum cryptographic primitives and explore ways for deploying hybrid
authentication and X.509 PKI. Campagna et al. [34] describes the inclusion of
hybrid key exchange in the TLSv1.2 network protocol, which incorporates SIKE
and BIKE post-quantum key encapsulation mechanisms (PQ KEMs) in addition
to elliptic curve Diffie-Hellman (ECDH) methods. Sikeridis et al. [35] improve
the OQS and OpenSSL library by incorporating a PQ-standalone message signa-
ture and modifying the X.509 PKI with post-quantum capabilities. The authors
also evaluate the impact of the PQ message signature CertificateVerify ex-
ecution cost in TLSv1.3. [36]. Marchsreiter et al. [37] present an assessment of
the post-quantum and hybrid operating mode of TLSv1.3, utilizing a hybrid key
agreement and hybrid digital signature technique for server authentication via
message signature CertificateVerify. Nevertheless, the authors provide their
findings derived from the deployment of PQ-standalone X.509 PKI. Further-
more, the assessment solely relies on NIST curves, neglecting the assessment of
TLSv1.3 integrated Curve448 and Ed448.

In our research, we focus on the deficiencies in the existing literature by
conducting an assessment of hybrid TLSv1.3. Specifically, we provide the first
evaluation of a fully hybrid TLSv1.3 implementation that utilizes Curve448 with
Kyber1024 as classical and post-quantum key exchange methods, and Ed448
with Dilithiumb as classical and post-quantum digital signature algorithms, re-
spectively.

1.2 Contributions

In this work, we present, to the best of our knowledge, the first fully hybrid
TLSv1.3 based on Curve448 and Crystals-Kyber1024 for key exchange and Ed448
and Crystals-Dilithiumb for authentication and certificate verification. Our con-
tributions include the following:

1. We provide the entirely hybrid version of the TLSv1.3 network protocol,
including Curve448 and Ed448 to guarantee resilience against classical com-

puter adversaries, as well as Crystals-Kyber1024 and Crystals-Dilithium5 to
provide protection against quantum computer attacks.

2. We enhance the widely deployed OpenSSL library by including the capability
to generate the X.509 hybrid Ed448_Dilithium5-based keys and certificates
in PEM file format, where the certificate hybrid key and signature are both
based on classical Ed448 and PQ Dilithiumb algorithms.

3. We implement hybrid key exchange based on emerging high-security level
Curved48 and the PQ Kyber1024 algorithms, where both communication
parties issue a symmetric key value based on a classical and PQ shared
secret derivation.

4. We upgrade the embedded-specific wolfSSL cryptographic library to sign
a message using both classical and PQ signature algorithms and to verify
hybrid signatures based on Ed448_Dilithiumb.

5. We deploy functions to process hybrid certificates Ed448_Dilithiumb certifi-
cates, including classical Ed448 and PQ Dilithiumb public key and signature
values. We also enable verification of Ed448_Dilithiumb hybrid certificate
signatures.

6. We evaluate the proposed hybrid TLSv1.3 based on Curve448_Kyber1024
for key agreement and Ed448_Dilithium5 for authentication and certifi-
cate validation on the NIST recommended ARMv7 Cortex-M4 STM32F413
WiFi equipped microcontroller and report the execution timing for the en-
tire TLSv1.3 transmitting a 15B short message both directions, and for the
pure TLSv1.3 handshake, neglecting the AEAD scheme overhead.

The subsequent sections of the paper are structured in the following manner. In
Section 2 we provide a comprehensive explanation of the mathematical principles
that form the foundation of Curve448 and Ed448 ECC algorithms. Additionally,
we analyze the distinctive features of Crystals-Kyber and Crystals-Dilithium PQ
algorithms. Section 3 provides an introduction to the TLS1.3 network protocol
and the X.509 PKI architecture. It also emphasizes the improvements made
in the design to achieve a completely hybrid TLSv1.3. In Section 4 we present
an evaluation of the execution latency of the TLSv1.3 protocol, as part of the
wolfSSL embedded cryptographic library. Ultimately, we bring our effort to a
close in Section 5.

2 Preliminaries

This section offers a concise explanation of the mathematical concepts that form
the foundation of the classical Curve448 and Ed448 key exchange and digital
signature algorithms. We discuss the mathematical base of PQ Crystals-Kyber
and Crystals-Dilithium algorithms. Finally, we present the X.509 PKI structure
denoting the required changes for hybrid PQ transition.

2.1 ECC Mathematical Background

Elliptic Curve cryptography stands as one of the most optimal asymmetric key
encryption scheme due to the compact key sizes and minimal computation la-

g %) . [§ sk €Er Z/Fp § skp €r Z/]Fp
<5 ﬂ>) L) (1] X pka = [ska] - G phapks | X pkp = [skp]- G
g QL E g £ —> |2

fo— 8 '5 T) § ss4 = [ska] - pkp E: ssp = [skg] - pka
= W T 2 ss4 = [skal - skp-G 2 ssp = [skgp| - ska- G
Q 3 3

Fig.1. X448 algorithm. G represents the value of the base point

tency, converting it in suitable scheme in scenarios of limited bandwidth or
processing power, which is often the case of low-end embedded devices.
Ed448-Goldilocks Edwards curve is denoted by the equation:

Ega/F, : ax® +y* = 1 + da’y?

Given that d = —39081 and a = 1 the curve operations for cryptographic
purposes are defined over a finite field denoted as F, where p is equal to 2448 —
2224 _ 1. The curve elements of Curve448 are represented by coordinate pairs
(z,y) € F, x Fp,. A birational map exists to project a point from Edwards curve
representation to the Montgomery curve representation.

(z,y) = (sqrt(156324) * u/v, (1 +u)/(1 — u))

The use of Montgomery curves representation often guarantees an ideal de-
sign for implementation, since it allows for efficient execution of group operations.
The fundamental operation of ECC involves performing integer-point multipli-
cations such that P = k - @ results in point @) being added to itself k times.
Among the various point multiplication techniques is the so-called Montgomery
Ladder, which ensures execution latency benefits based on the unified point dou-
bling and addition formula, in addition to the constant time execution ensuring
Simple Power Analysis (SPA) resistance, and the well-defined Differential Power
Analysis countermeasure integration techniques. Furthermore, Montgomery lad-
der provides X —only coordinate operations when curve elements are presented in
projective representation with three coordinates (X, Y, Z). The affine coordinates
are retrieved at the end the of Montgomery Ladder execution as (z,y) = (&, 2).

ECC provides resilience against classic computer adversaries because to the
challenging nature of solving the Elliptic Curve Discrete Logarithm problem. It is
employed for both key exchange and authentication, making it a desirable choice
in cryptographic network protocols like TLSv1.3, which is the main subject of
this study.

2.2 X448

The implementation of key agreement with Curve448 is achieved by the Elliptic
Curve Diffie-Hellman-like algorithm (ECDH). Similar to other techniques based

::J" Input: seed
E 1G] Output: (p, s), pk
G>J 3 5 sky €35° ZF,
] : (p,s) « H(ska) < -
Is © E ~ g pk4 < encode([s] - G) “g Input: pkA’.M’RHS
occdg 3 return (p, s),pka N Output: T/ F
0w =WV LI otk | @ | B HBlIpka|| M) (modL)
2 .(7) el a) —— v PRa> | R A + decode(pk 4
e 0T| |- nput: pk 4, (p, s), I |return[S]-G==R+[K A
© T Ow g Output: sign = R||S 2
ST |a r < (H(p||M))(modL)
S O] R <+ encode([r] - G
S § | k< (HER|pkal M) (modL)
(a] © | S« encode((r + k * s)(modL))
w return R||S

Fig. 2. Ed448 algorithm [38]. H denotes SHAKE256. L represents the order
of Ed448 curve. GG represents the value of the base point

on elliptic curve cryptography (ECC), Curve448 depends on performing scalar-
point multiplication.

During the execution of the Elliptic Curve Diffie-Hellman (ECDH) protocol,
both parties involved generate a scalar secret key sk. They then perform a scalar-
point multiplication operation, known as X448 for Curve448, using a parameter
base point GG. This operation results in a new point on the curve, which is used
as their public key information pk as pk = sk - G. The parties exchange the
calculated public keys. Both parties currently possess their own private keys
as well as the public key of the other party. By utilizing the obtained public
key and their own secret key, each participant engages in an additional scalar-
point multiplication operation X448. As a consequence, a shared secret value ss is
obtained, which is denoted by a point on the elliptic curve. The ECDH technique
based on Curved48 is visually represented in Figure 1, with the subindex value
A, B indicating the computation parties as Alice and Bob.

Alice and Bob apply a Key Derivation Function (KDF) to extract a sym-
metric key value from their shared secret. This enables them to transition to a
computationally efficient symmetric encryption method, guaranteeing that their
data flow is secured and safeguarded from eavesdropping.

2.3 Ed448

The Digital Signature Algorithm (DSA) enables the recipient of a message
to verify the sender’s identity (authentication), guarantees the integrity of the
data by preventing any unauthorized modifications during transmission (data
integrity), and eliminates the sender’s ability to deny delivering the message
(non-repudiation). In order to uphold these cryptographic principles, one can
employ ECC techniques, which rely on either EC Digital Signature Algorithms
(ECDSA) or Edwards Curve Digital Signature Algorithms (EADSA), depending
on the specific elliptic curve being deployed.

Ed448 is an EADSA method that utilizes the scalar-point multiplication op-
eration X448, similar to the ECDH algorithm based on Curve448. In order to
deal with the arbitrary length of messages conveyed across the Internet, extra
hashing methods are employed to create a fixed and concise message digest.
Ed448 utilizes the recently developed Secure Hash Algorithms 3 (SHA-3) hash-
ing algorithm, specifically employing the eXtendable Output algorithm (XOF)
SHAKE256 instantiation.

Output: sk € B1>*n/8 pk ¢ B12#n/8+32
d+ B* Inout: 12:kn/8+32 32 32
put: pk € B ,me B* recB
g) (;\)f = G(d) Output: ¢ € Bhwkn/8+dvn/8
- forizO;ok—ldo ' =0
& forj=0tok—1do) —tpi iefg(%k)n/s
L < | Alillj) = P —Parsef(XOF(p,], 0)) fori=0tok—1do
g g zzgfg: 7for]—0tokfldo
w g fori = 0tok —1do AT[i][j] == Pa?‘fffXOF(p, i,5))$
X j| := CBD,,(PRF(o, N —————end for
G>J.g ¥ ! N ;:mz£7+ 1 (:0) § —end for
v >°: ——end for & —fori =0tok—1do
oY g fori =0tok — 1 do ™) r[i] :== CBD,,(PRF(r, N))
= (> eli] :== CBD,,(PRF(o, N)) Q N:=N+1
a nix N:=N+1 5 —end for
3™ l—————end for 2 —fori =0tok —1do
o ‘I-h, 5 := NTT(s) g e := %BDngVgPRiF("'v N))
=N+
> = NTT(e) .
EZ f=A-5+ kf((& mod*q)) oo
30 5+eép encyz(t mod™q)||p ey := CBD,,(PRF(r,N))
=) sk := enci2(8 mod*q) e NTT
c return (pk, sk) 7= NTT(r)
© u:=NTT (AT -#) + &
3 v:= NTT (" - #) + e2 + Dy(d1(m), 1)
o c1 := ency(Cy(u,d,))
- = Input: sk € B1>kn/8 ¢ ¢ pduhn/Std.n/8 cg 1= ency(Cq(v, dy))
[7)] e Output: m € B¥ return ¢ = (cl Il c2)
[«] uQ_, u := Dy(decq,(c),dy)
o |x = Dy(decq,(c+dy - k- n/8),dy)
5 8 :=decy2(sk
2| m:=enci(Cy(v — NTT (3 - NTT(u)), 1))
x returnm

Fig. 3. Crystals-Kyber algorithm [39]. Each variable represents (the coefficients
of) a polynomial, bold text style denotes vector of polynomials, capital letter
notation denotes a matrix. enc and dec represents encode/decode, C and D
present Compress/Decompress, respectively

The signature entity performs key generation and signing functions using the
two fundamental operations of point multiplication and hashing, as illustrated
in Figure 2. Like Curve448 ECDH, a key pair (sk,pk) is created, where the
secret key value is then utilized to acquire the signature of the message M, R||S.
After receiving the message and the signature, the recipient can authenticate
the sender’s identity by utilizing the public key value. The verification function
determines whether to accept or reject the signature on the message value.

¢« {0,1}%6
(5) € 01505 -
81,82) € S
Ac R’”l E:I:pandA(p)
t = As; + s
(1, t0) := Power2Round,(t, d)
tr € {0,1}°% := CRH(p H t;)
return (pk = (p, t1), sk = (p, K, tr, 81, 82, t0))

Dilithium.KeyGen()

ture Algorithm

A € R¥! := ExpandA(p)
p € {0,1}** := CRH(CRH(p || t1) || M)
¢ := SampleInBall(¢)
wh := UseHint,(h, Az — ct; - 2%, 27,)
return [zT|°o< 71 — B] and
[é=H(u || w})] and
Ml11’s]| in h < w]

A € R¥! := EzpandA(p)
w€0,1% := CRH(tr | M)
K= 0,(Jh) =1
pr € {0,1}* := CRH (K [l &)

while (z,h) =1 d
€ S'fn = E‘wpandMask(p’,n)

igna

Dilithium.Verify()

tal S
Crystals-Dilithium

Dilithium.Sign()

igi

w:= Ay
w; := HighBits,(w, 27y)
2 € {0,115 = H{u | wy)
¢ € B, := SampleInBall(c)
z:=y+cs
1o := LowBits(w — csa,272)
if]| 2 lw> 71— Bor| 10 |> 72— B
then (z,h) :=1
else h := MakeHintq(—cto, w — csa + cto, 274)
if|| cto ||co=> Y2 Or ||1's]| inh > w
then (z,h) :==1lk :=Kk+1
returno = (z, h, ¢)

Post-Quantum D

Fig.4. CRYSTALS-Dilithium algorithm [40]. Each variable represents a poly-
nomial, bold text style denotes vector of polynomials, capital letter notation
denotes a matrix

Within the realm of network protocols, digital signature algorithms play a
vital role in verifying the identity of communication parties and are an integral
component of the Public Key Infrastructure, namely in certificate verification
procedures. The integration of elliptic curve algorithms into TLSv1.3 is gaining
popularity, although it is vulnerable to attacks in the age of quantum computing.
This necessitates the switch to post-quantum key agreement and digital signature
techniques.

2.4 Lattices Mathematical Background

Post Quantum Cryptographic Algorithms promise resistance against an ad-
versary with a quantum computing power. Based on complex mathematical
problems, PQ schemes promise to upgrade the cryptographic strength of the
security network protocols. Among different families of PQ primitives, such as
Code-, Hash-, Multivariate-, and Isogeny-based schemes, Lattice-based crypto-
graphic primitive ensure relatively compact key sizes, compared to other PQ
schemes, with the main advantage the limited computational requirements. Lat-
tices are used to define both - public key encryption schemes and digital signa-
ture algorithms, relying on the Shortest Vector Problem (SVP), Closest Vector
Problem (CVP) and Learning With Errors (LWE) (and it variations such as

Ring-Learning With Errors (RLWE), Module-Learning With Errors (MLWE),
Learning with Rounding (LWR), etc.), believed to be resistant against quantum
adversary.

In 2022 NIST has announced the finalists of the PQ standardization pro-
cess, where the only Key Encapsulation Mechanics to-be-standardized is the
lattice-based Crystals-Kyber and among three PQ DSA finalists, two (Crystals-
Dilithium and Falcon) are lattice-based. CRYSTALS-{Kyber, Dilithium} CRYp-
tographic SuiTe for Algebraic LatticeS (CRYSTALS) schemes rely on the diffi-
culty (MLWE problem) differentiating (A, As; + s2) with A € Z;‘Xl, 51 € Zé,
and sy € Z from (A, b) with uniformly chosen value b. Along with the Shortest
Integer Solution (SIS) that lattices pose, consisting of finding a non-trivial value
x such that A -z = 0, the PQ KEM Kyber and PQ DSA Dilithium are created.

Government and industry security standards do not support the inclusion of
standalone PQ primitives into network protocols, considering their widespread
usage by billions of users every day. Therefore, a hybrid mode of operation is
necessary for a smooth transition to post-quantum robustness.

2.5 Crystals-Kyber

Crystals-Kyber Key Encapsulation Mechanism was presented in 2018 in [39].
As the rest of PQ KEMs Kyber relies on INC' — CPA Public Key Encryp-
tion (PKE) scheme wrapped by the (variant of the) Fujisaki-Okamoto (FO)
transform. The Kyber.PKE method consists of key generation, encryption and
decryption, represented as Kyber. PKE.KeyGen(), Kyber.PKE.En(), and Ky-
ber.PKE.Dec() in Figure 3, respectively. The Key Encapsulation Mechanism
(KEM) algorithm wraps this functions in key generation, encapsulation and
decapsulation, via some additional hash and XOF functions, in order to provide
IND — CC A2 security of the underlying scheme.

Crystals-Kyber is instantiated with different set of parameters to offer dis-
tinct levels of security. Specifically, Kyber512, Kyber768, and Kyber1024 corre-
spond to NIST Security Level 2, 3, and 5, respectively. Based on the security
level of Curved448 and Ed448, providing 224-bit security, and the nature of the
PQ primitives lacking trust, we consider the highest security level, in particu-
lar, Kyber1024, to integrate in the TLSv1.3 protocol in the scope of this work.
We should note that Crystals-Kyber768 is the recommended security level to be
used. The least recommended security level to be utilized is Crystals-Kyber768.
Despite its high security level, Kyber1024 remains appealing due to its low la-
tency, which is equivalent to that provided by traditional cryptographic public
key methods.

2.6 Crystals-Dilithium

The Crystals-Dilithium lattice-based DSA method is derived from the math-
ematical issue of Module Learning With Error (MLWE), similar to the Crystals-
Kyber algorithm. It was suggested in the publication by Ducas et al. [40] and
has been selected as one of the three DSA finalists for the NIST PQ standard-
ization process. Like Kyber, this system provides many levels of security. In our
study, we specifically concentrate on Dilithium5, which guarantees a high level

o Entity ID Info

_I
I
I
I
I
I
I
I
I
I

CA

Sig;;C [Sigzg

1 1
' I
| o CA Secret Key 2 o Entity Secret Key !
ECC Secret Key + k=H ECC Secret Key +,
l= 5 PQ Secret Key I ! -u‘:,,: PQ Secret Key !
| g o Certificate > cA X.509 :>.| SKERt || sgEnt !
|S ECC Public Key + o I'l SKrq Sign —1@1 ECC PQ !
2 pQ Public Key X Request 1%} :
I 9 cA cA Q o CA Public Key -8 ! o Entity Public Key '
<I% PKgoe || PKg ® ECC Public Key +| ‘31 ECC Public Key +1
|u W © CA Certificate Signatureyg PQ Public Key :><: PQ Public Key
q,l" ECC Secret Key + cA v 1 pgEst || pgEn 1
< PKice || PKpg L ECC PQ 1
|8 O PQ Secret Key Q 2 ' .
><' I 3 - Classical DSA ca o X.509 Hybrid Cert Sign
8 Ed448.Sign(Cert , SKicc) I
I & -PQDSA e .
IS Dilithium.Sign(Cert™, %) | lo Certificate '
| @ - Certificate Signature ! 1 ECC Public Key + !
I: ECC Signature + |:>: PQ Public Key '
| 2 PQ Signature :_: - :
n . CA . ca e ECC PQ .
|>< Siggee |1 Sigy, |'|'l-|I .
L — —\— — — — — — _— __ l'g,°CAcertificate Signature !
X.509 Hybrid Cert Verify 3b 'Ii" ECC Secret Key + '
'0 PQ Secret Key !
3a X500 Hybrid Cert Verify %= ! ” 1
5. - Classical DSA Ent ol !
e NG T iG1 Ed448.Sign(Cert™SKii.) .
: (] Classical Certificate Verii . :U I - PQ DsA Ent ., CA :
. o 1 ATH i cA . . 3 : : CA
= - T > Ed448.Verify(CertE“,fIsKEcGC) : :gI Dll}Phlum._Slgn(Cert » 5Kz):
o¥f g LxE o PQ Certificate Verify ca in' - Certificate Signature '
3 E RET Dilithium.Verify(Cert™? PK g) ! ECC Signature + 1
g XE> s 71 PQ Signature |
;z o PQ Verify Vo !
[1
1 1

Fig.5. The Public Key Infrastructure (PKI) built using classical (Ed448) and
post-quantum (Dilithium5) Digital Signature Algorithm (DSA) techniques. The
gray data refers to the information fields found in the X.509 files. Superscript
indicates the owner of the data, while subscript indicates the type of information

of security comparable to Ed448. The specifics of the PQ signature algorithm
are presented in Figure 4, where the details about the three underlying functions
Dilithium.KeyGen(), Dilithium.Sign(), and Dilithium.Verify() are presented.

The application of DSA in the scope of TLSv1.3 involves the signing of a
TLSv1.3 handshake message for server authentication and its incorporation into
the PKI framework, where trusted authorities issue signatures to verify the au-
thenticity of information for a specific entity. This work specifically addresses
both aspects.

3 Hybrid Network Protocol Deployment

This section provides a comprehensive explanation of the TLSv1.3 network
protocols and the underlying X.509 Public Key Infrastructure architecture. We

represent the primary execution points using graphical representation, highlight-
ing the changes that were made to enhance the protocol’s execution mode. These
modifications involve incorporating Curve448 and Kyber1024 for key exchange,
as well as Ed448 and Dilithium5 for message signature and PKI certificate vali-
dation.

3.1 PQ X.509

The Public Key Infrastructure (PKI) architecture is employed to guarantee
the authentication of communication participants in the network through a re-
liable organization known as a Certificate Authority (CA). Public certificates
are issued and confirmed using X.509 standards via digital signature algorithms.
Typically, CA signatures rely on classical DSA algorithms. In the era of quantum
computing, the verification of an entity’s identification by a trusted third party
can be easily forged in the presence of a quantum adversary.

The entirely hybrid TLSv1.3 model offers security based on both classical
and post quantum algorithms. Making an abrupt move to PQ-only protocol
implementation would jeopardize network security due to the relatively recent
application of the PQ algorithms in technology. The continued employment of
traditional cryptographic techniques poses a concern due to the rapid advance-
ments in quantum computing technology and the expanding computational capa-
bilities of these machines. Thus, a hybrid model, secures network traffic relaying
on two independent categories of cryptographic algorithms, offering robustness
against different adversaries. Among other works, [31], go into the details of the
security and performance implications of the hybrid execution model of widely
deployed network protocols, and define the motivation behind hybrid operation
mode as guaranteeing the security of the system as long as one of the underlying
cryptographic algorithms remains uncompromised.

As shown in Figure 5, a Certificate Authority (CA) , denoted as X.509 CA,
owns a key file that contains both secret and public key values. By employing the
confidential key data, the CA generates a signature, first, for its own certificate.
The certificate includes the public key information of the CA for the purpose
of validating issued signatures. It is important to note that real-world scenarios
frequently involve a chain of CA certificates, which is not addressed in this study.
After obtaining its own key and certificate files, the CA proceeds to distribute
the certificate to third-parties for further verification reasons.

We outline, in Figure 5, the sequential steps involved in acquiring a validated
entity certificate. After an entity creates a key file, it sends identifying informa-
tion and the public key as a Signature Request to the CA for validation (1.
X.509 Sign Request in Figure 5) and verification of its identity. The CA veri-
fies the data of the entity and affixes its signature to the information, therefore
generating a certificate for the specified entity (2. X.509 (Hybrid) Cert Sign in
Figure 5).

Finally, when any communication network party initializes a connection with
the given entity, the certificate information is used (3.a X.509 (Hybrid) Cert

o Classical DSA
Ed448.KeyGen()

o PQ DSA
Dilithium.KeyGen()

o Secret Key

X.509 Key Server

, ECC Secret Key +
y
TLSv1.3.Client PQ Secret Key TLSv1.3.Server
™| SKee |1 SKpq
H
X e \
v |05 |0 classical KEX [«
> |3 Curved48.X448() S -
() §<-’ o PQ KEX 3 |© Supported Groups
= |[3| Kyber.KEM.KeyGen() L ECC + PQ KEX list
oM, Key Share 4 < 0 Slgnature Algorithms | Q p Classical KEX
== y kS
| ECC || PQ Public Key 8! + PQ Auth Dl | Curvedas. xa48(PEsce)
Si ' b PQ KEX
2lla , g Jsat 11D Kyber.Kem. Enc(PEry)
> | pxC. || pk¢ o ;0 Key Share i |IX b Key Share
== ECC PQ HE ECC + PQ Public Key: S ECC Public Key +
> i Yy
a @ Il pkC | ;| P CipherText
: }.! C PQ :
Q Lo U : > kS| s
() Kﬂ PXEce cty
. | Key=KDF (SS§ c\ ISS5)
o
>
(1]
‘-l_, i % p Classical DSA
o 19 lo Key Share Q| Ed448.Sign(M, SK3eo)
o Q ;(DE ECC Public Key + 1+ p PQDSA
o ﬁ lo Classical KEX S ‘"':35: PQ Ciphertext 8 nuithium.Sign(M,SKDJ
o> Curve448.X448(pk ;) i © 1o Extensionso Certificate||) b CertificateVerify
¢ O P PQ KEX :331 ECC + PQ Server ™M | ECC Signature +
X | Kyber.KEM.Dec(ct 'y Certificate v | PQ Signature
0 (| [on o Key Share ? 192 ‘o Certificate Verify > gn
||| "Ecc Public Key + i ° “ECC + PQ message ||@ . s _—
=l - & - Sigpec || Sig
PQ CipherText : S ! Signature - ECC PQ
G 6 c c ,9 io Finished
. | Key=KDF (SS gccl |SSp) =g3
- W
= ||
Q-
> qt_) o Classical Certificate genfy
I||(O| Ed448.Verify(Cert] PK FM)
o M o PQ Certificate Verify
= | Dilithium.Verify(CertS PKPU
E '; o Certificate Verication
ECC Verify +
= "_’,' PQ Verify
=
= w
B[S | crassical psa
3|(|2 | Eaads.verify (v, PK5o) 3
Q’||§ b PeDsa S
1 Q Dilithium.Verify(M, PK»p c) >3
& (| |0 b CertificateVerify {r
W|d | ECC Verify + o3
Oll|la PQ Verify <
a||l= @
]
-
<

Fig. 6. TLSv1.3 execution flow graphical representation. Gray data refers to
the information fields included in X.509 files, where superscript indicates the
owner of the data and subscript indicates the type of information. The compute
stages are represented by solid box lines, the message flow is represented by
discontinuous lines, and the certificate file is represented by scattered box lines

Verify in Figure 5). To verify the identity of the entity, the public key, part of

the CA certificate, is being used (3.b X.509 (Hybrid) Cert Verify in Figure 5).
The implementation of Public Key Infrastructure (PKI) includes the use of

Digital Signature Algorithm (DSA) processes, which are susceptible to attacks

from adversaries with quantum computing capabilities. This study proposes a
way of applying a PQ DSA algorithm, in addition to the conventional approach,
to guarantee the system’s reliability.

This paper introduces a novel hybrid Public Key Infrastructure (PKI) archi-
tecture that combines the use of Ed448 with Dilithium5 DSA. We utilized the
OpenSSL cryptography library to generate hybrid PEM key files. We combined
the secret and private key values by concatenating them. While several meth-
ods exist for representing data in the information fields, our primary focus was
on the functional aspects and effectiveness of the system. Implementing more
modifications to the data field placements may be effortlessly done, yet, it falls
outside the scope of this project.

The entity owner of a key PEM file, which consists of a classical and PQ secret
keys followed by a classical and a PQ key public keys, uses its information fields
to generate digital signatures. In the context of a Certification Authority (CA),
the confidential key value is utilized to authorize the issuance of certificates for
other participants within the network. In the event of another entity, the secret
key values are utilized to generate hybrid signatures. This includes both classical
and PQ signatures of, for instance, the TLSv1.3 message CertificateVerify,
as explained in the subsequent section.

The public key information is stored within the certificate PEM files. In this
context, a certificate includes both classical and PQ public key values. These
values are then utilized by a recipient party that is interested in verifying the
authenticity of the transmitting entity. The verification procedure relies on both
classical and PQ signature systems, analogous to the signature generation. Both
signatures of the message are being transmitted simultaneously, with the lower
bytes representing the classical signature and the upper bytes representing the
PQ signature value.

Lastly, in the certificate signature field, two separate signatures are generated
and saved by a trusted third party (CA). The CA utilizes classic secret key data
to produce a classical signature value. Subsequently, the PQ key value is em-
ployed to generate a PQ signature. By utilizing the CA certificate’s keys, which
are often integrated into the communication parties’ systems, the authenticity
of both signatures on any certificate, issued by the specified CA, is confirmed,
therefore confirming the identities of the communication parties.

Implementing a hybrid architecture mode for the PKI is a complex task
due to the large number of files being created and the diverse functionalities
required to process these files and extract their value. This work introduces
the first version of hybrid Ed448 and Dilithiumb5 PEM keys and certificates.
The creation and processing of these keys and certificates are performed using
the OpenSSL general crypto library and the wolfSSL embedded device-specific
library.

3.2 PQ TLSv1.3

TLSv1.3 guarantees a secure connection setup with a single roundtrip com-
munications. The client and server establish a shared secret using key agreement

Table 1. Performance of the entirely hybrid TLSv1.3 handshake and the overall
TLSv1.3 protocol when a short 15B message is delivered between communication
parties. The values are expressed in terms of clock cycles [CC]

Work KEX Auth Cert Verify , LLS1L3 = TL3L3 with
wolfSSL a1 X448 Ed448 Ed448 - 44,358,855
Anastasova et al. (17) X448 Ed448 Ed448 - 46,310,749

X448 & Kyber1024 Ed448 & Dils - 97,624,103 106,735,300
This work

X448 & Kyberl024 Ed448 & Dil5 Ed448 & Dil5 114,017,313 123,139,034

cryptographic mechanisms like ECDH or PQ KEMs. Both communication par-
ties utilize a key derivation function (KDF) to create a symmetric key value.
This key value is then utilized to encrypt their application data traffic using an
Authenticated Encryption with Additional Data (AEAD) cipher.

The simplified graphical representation of TLSv1.3 is depicted in Figure 6.
The server and client exchange their respective certificate files, which contain a
signature created by a trusted third party (CA) to authenticate the certificate’s
legitimacy. After obtaining the certificate, the client confirms its genuineness by
verifying the signature using the public key information of the CA, which is in-
corporated on the client’s side. The server’s authentication step entails creating
a signature of the message. After receiving the message, the user authenticates
the signature by utilizing the server’s public key value acquired from the server’s
certificate. Ultimately, the server sends an HMAC (Hash-based Message Au-
thentication Code) of the entire message using the predetermined symmetric
key value. Upon the successful completion of the TLSv1.3 protocol handshake,
both communicating entities have the ability to securely transmit data across
the established channel.

Within the present work, we enhance the design of the TLSv1.3 network
protocol by integrating fully hybrid version of the protocol. For key exchange, we
use the Curve448 ECDH method in conjunction with the Kyber1024 PQ scheme.
Specifically, as indicated in Figure 6, the cipher key for TLSv1.3 is obtained by
utilizing the shared secret information from both Curve448 and Kyber1024. The
session data is produced by combining the classical and PQ values and utilizing
them as input to a Key Derivation Function (KDF).

In order to carry out message signature, we utilize a hybrid technique by using
both Ed448 and Dilithiumb. Like the Key Exchange (KEX) methods, both the
traditional and PQ DSA are performed simultaneously. The server’s PEM key
file has a classical secret key value, which is stored at the most significant bytes
of the secret key field. This value is utilized to generate a classical signature. The
PQ signature is generated using the least significant bytes from the secret key
field, which contains the PQ secret key data. After generating both the classical
and PQ signatures, they are combined and sent as a component of the Certificate
Verify message.

The hybrid Public Key Infrastructure (PKI), which is a component of TLSv1.3,
is also included in this project. In this work, the PEM key and certificate fields
have been altered to include the classical and Post-Quantum (PQ) values, as ex-
plained in the previous section. Our hybrid TLSv1.3 architecture now includes
the complete integration of the hybrid PKI.

4 Performance Evaluation

The next section examines the obtained results in relation to performance.
We provide information on the latency of our design when it is run on the
STM32F413 discovery board. This board is equipped with a Cortex-M4 CPU
and is built on the ARMv7 architecture, which has been selected by NIST for
evaluating post-quantum primitives on low-end embedded devices. We execute
our experiments at a frequency of 76.6MHz, simulating a real-world scenario. The
findings are presented in terms of clock cycles. Multiple scenarios are considered
in relation to verification processes. We provide the complete implementation
of the TLSv1.3 protocol, including the exchange of brief messages between the
client and server. Additionally, we demonstrate the independent execution of the
TLSv1.3 handshake, showcasing the modifications made throughout this project.

The generation of the X.509 key and certificate files is based on modifica-
tion deployed on the OpenSSL cryptographic library. Since keys and certificates
are being generated outside the scope of the TLSv1.3 protocol, we do not re-
port performance results. However, it is important to note, that for the X.509
key generation and certificate verification (signature), again a hybrid approach
involving Ed448 and Dilithium5 was used.

We report the performance of TLSv1.3 protocol after integrating Curve448
and Crystal-Kyber, and Ed448 and Crystals-Dilithium for key generation, entity
authentication and certificate verification. The client computes ECC key gener-
ation and PQ KEM key generation and decapsulation routines in order to derive
a session key with the server. On the server side, the X.509 hybrid certificate is
being transmitted to the client along with a signature over the entire footprint
of the TLSv1.3 message value. The client uses the CA public key value to verify
the validity of the server certificate, thus executes hybrid signature verification.

The communication parties transmit data through a UART serial connection
based on 115200bps transmission speed. It is important to note that, based on
the large sizes of the transmitted certificate values, the performance results show
significant drop. However, the communication latency forms a large part of the
protocol execution time in a real-world scenario where data is transmitted all
over the worlds and should not be neglected when evaluating the impact of PQ
protocol transition.

We report around 114 million clock cycles for the execution of the fully
hybrid TLSv1.3 handshake based on Curve448 and Kyber1024 and Ed4448 and
Dilithiumb cryptographic primitives. The implementation of the whole TLSv1.3
protocol, including the transmission of a brief message encrypted using an AEAD
cipher, leads to an additional computational cost of around 20.3 million clock
cycles. By excluding the verification of the server certificate, which is based

on the CA signature, we observe an approximate improvement of 17.5% and
16% for the TLSv1.3 handshake and the fully hybrid TLSv1.3 handshake with
AEAD encrypted message transmission, respectively. However, it is important
to note that this scenario is not typical in real-world network communication.
Therefore, our focus is on the statistics related to the complete execution of
the TLSv1.3 protocol on the STM32F413 board. Enabling TLSv1.3 in entirely
hybrid mode leads to a x2.77 the execution of the original wolfSSL classical-only
implementation and x2.67 the latency of the optimal and side-channel robust
Curve448 and Ed448 design as part of wolfSSL [17].

5 Conclusion

This work introduces the initial fully hybrid operating mode of the widely
used TLSv1.3 network security protocol. The mode is based on Curve448 and
Crystals-Kyber for key exchange, and Ed448 and Crystals-Dilithium for the dig-
ital signature method. Within our approach, the client and server engage in
the exchange of information, encompassing public key data for both classical
and post-quantum (PQ) primitives. Our solution offers an architectural frame-
work where the involved parties engage in message signing and verification using
a combination of traditional and post-quantum methods. In addition, we offer
hybrid Public Key Infrastructure (PKI) by making changes to the commonly
used OpenSSL software. This allows us to create hybrid keys and certificates
that comply with the X.509 standard. We add the ability to process the hybrid
data within these keys and certificates, transforming the Certification Authority
(CA) into a hybrid entity that possesses both classical and Post-Quantum (PQ)
key values. To present performance results on the full hybrid TLSv1.3 protocol,
we utilize the wolfSSL cryptography library specifically designed for embedded
devices.

6 Acknowledgements

The authors would like to thank the reviewers for their comments. This work is
supported by NSF 214796 grant.

References

1. E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.” RFC
8446, Aug. 2018.

2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303-332, 1999.

3. T. N. L. of Standards and T. (NIST)., “Post-quantum cryptography standardiza-
tion, 2017-2018..” Last accessed on May 20, 2021.

4. M. Hamburg, “Ed448-Goldilocks, a new elliptic curve,” Cryptology ePrint Archive,
2015.

5. D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in International
Workshop on Public Key Cryptography, pp. 207-228, Springer, 2006.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed
high-security signatures,” in International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 124—142, Springer, 2011.

H. Seo, “Compact implementations of Curve Ed448 on low-end IoT platforms,”
ETRI Journal, vol. 41, no. 6, pp. 863-872, 2019.

A. Faz-Hernandez, J. Lopez, and R. Dahab, “High-performance implementation
of elliptic curve cryptography using vector instructions,” ACM Transactions on
Mathematical Software (TOMS), vol. 45, no. 3, pp. 1-35, 2019.

. H. Seo and R. Azarderakhsh, “Curve448 on 32-bit ARM Cortex-M4,” in Interna-

tional Conference on Information Security and Cryptology, pp. 125-139, Springer,
2020.

M. Anastasova, M. Bisheh-Niasar, H. Seo, R. Azarderakhsh, and M. M. Kermani,
“Efficient and Side-Channel Resistant Design of High-Security Ed448 on ARM
Cortex-M4,” in 2022 IEEFE International Symposium on Hardware Oriented Secu-
rity and Trust (HOST), pp. 93-96, IEEE, 2022.

M. Anastasova, R. Azarderakhsh, M. M. Kermani, and L. Beshaj, “Time-Efficient
Finite Field Microarchitecture Design for Curve448 and Ed448 on Cortex-M4,” in
International Conference on Information Security and Cryptology, pp. 292-314,
Springer, 2022.

M. Bisheh-Niasar, M. Anastasova, A. Abdulgadir, H. Seo, and R. Azarder-
akhsh, “Side-Channel Analysis and Countermeasure Design for Implementation
of Curved48 on Cortex-M4,” in Proceedings of the 11th International Workshop on
Hardware and Architectural Support for Security and Privacy, pp. 10-17, 2022.

I. Blake, G. Seroussi, G. Seroussi, and N. Smart, FElliptic curves in cryptography,
vol. 265. Cambridge university press, 1999.

M. Hamburg, “Fast and compact elliptic-curve cryptography,” Cryptology ePrint
Archive, 2012.

N. Meloni, “New point addition formulae for ECC applications,” in International
Workshop on the Arithmetic of Finite Fields, pp. 189201, Springer, 2007.

P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-
tion,” Mathematics of computation, vol. 48, no. 177, pp. 243-264, 1987.

M. Anastasova, R. El Khatib, A. Laclaustra, R. Azarderakhsh, and M. M. Ker-
mani, “Highly Optimized Curve448 and Ed448 design in wolfSSL and Side-Channel
Evaluation on Cortex-M4,” in 2023 IEEE Conference on Dependable and Secure
Computing (DSC), pp. 1-8, IEEE, 2023.

H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang, “Neon ntt:
Faster dilithium, kyber, and saber on cortex-a72 and apple m1,” Cryptology ePrint
Archive, 2021.

D. T. Nguyen and K. Gaj, “Optimized software implementations of CRYSTALS-
Kyber, NTRU, and Saber using NEON-based special instructions of ARMv8,” in
Proceedings of the NIST 3rd PQC Standardization Conference (NIST PQC 2021),
2021.

L. Zhao, J. Zhang, J. Huang, Z. Liu, and G. Hancke, “Efficient implementation of
kyber on mobile devices,” in 2021 IEEE 27th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 506-513, IEEE, 2021.

Y. Kim, J. Song, T.-Y. Youn, S. C. Seo, et al., “Crystals-dilithium on armvs,”
Security and Communication Networks, vol. 2022, 2022.

J. Zheng, F. He, S. Shen, C. Xue, and Y. Zhao, “Parallel Small Polynomial Mul-
tiplication for Dilithium: A Faster Design and Implementation,” in Proceedings of
the 38th Annual Computer Security Applications Conference, pp. 304-317, 2022.

?

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography,” Cryptology ePrint Archive, 2018.

J. Zheng, H. Zhu, Z. Song, Z. Wang, and Y. Zhao, “Optimized Vectorization Im-
plementation of CRYSTALS-Dilithium,” arXiv preprint arXiv:2306.01989, 2023.
J. Wright, M. Gowanlock, C. Philabaum, and B. Cambou, “A crystals-dilithium
response-based cryptography engine using gpgpu,” in Proceedings of the Future
Technologies Conference, pp. 32—45, Springer, 2021.

X. Zhao, B. Wang, Z. Zhao, Q. Qu, and L. Wang, “Highly efficient parallel design
of Dilithium on GPUs,” 2022.

S. Shen, H. Yang, W. Dai, H. Zhang, Z. Liu, and Y. Zhao, “High-throughput
gpu implementation of dilithium post-quantum digital signature,” arXiv preprint
arXiw:2211.12265, 2022.

L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-speed im-
plementation of Kyber on Cortex-M4,” in Progress in Cryptology-AFRICACRYPT
2019: 11th International Conference on Cryptology in Africa, Rabat, Morocco, July
9-11, 2019, Proceedings 11, pp. 209-228, Springer, 2019.

E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-M4 optimizations for {R,
M} LWE schemes,” JACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 336-357, 2020.

A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels, “Faster kyber
and dilithium on the cortex-M4,” in International Conference on Applied Cryptog-
raphy and Network Security, pp. 853-871, Springer, 2022.

E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH,” Cryptology ePrint Archive, 2019.
M. Anastasova, P. Kampanakis, and J. Massimo, “PQ-HPKE: post-quantum hy-
brid public key encryption,” Cryptology ePrint Archive, 2022.

P. Kampanakis, P. Panburana, E. Daw, and D. Van Geest, “The viability of post-
quantum X. 509 certificates,” Cryptology ePrint Archive, 2018.

M. Campagna and E. Crockett, “Hybrid post-quantum key encapsulation methods
(PQ KEM) for transport layer security 1.2 (TLS),” Internet Engineering Task
Force, Internet-Draft draft-campagna-tis-bike-sike-hybrid, vol. 1, 2019.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-quantum authentication
in TLS 1.3: a performance study,” Cryptology ePrint Archive, 2020.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Assessing the overhead of
post-quantum cryptography in TLS 1.3 and SSH,” in Proceedings of the 16th In-
ternational Conference on emerging Networking EXperiments and Technologies,
pp- 149-156, 2020.

D. Marchsreiter and J. Sepulveda, “Hybrid Post-Quantum Enhanced TLS 1.3 on
Embedded Devices,” in 2022 25th Furomicro Conference on Digital System Design
(DSD), pp. 905-912, IEEE, 2022.

S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature Algorithm (Ed-
DSA).” RFC 8032, Jan. 2017.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-secure module-lattice-based
KEM,” in 2018 IEEE European Symposium on Security and Privacy (EuroS€P),
pp. 353-367, IEEE, 2018.

L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “Crystals-dilithium: A lattice-based digital signature scheme,” TACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 238-268,
2018.

wolfSSL, “wolfSSL.” Last accessed on Jan 23, 2023 from https: //www.wolfssl.com/.

	Fully Hybrid TLSv1.3 in WolfSSL on Cortex-M4
	Mila Anastasova, Reza Azarderakhsh, and Mehran Mozaffari Kermani
	Introduction
	Related Work
	Contributions

	Preliminaries
	ECC Mathematical Background
	X448
	Ed448
	Lattices Mathematical Background
	Crystals-Kyber
	Crystals-Dilithium

	Hybrid Network Protocol Deployment
	PQ X.509
	PQ TLSv1.3

	Performance Evaluation
	Conclusion
	Acknowledgements

