

**PROGRAM OF THE
92ND ANNUAL MEETING OF THE
AMERICAN ASSOCIATION OF BIOLOGICAL
ANTHROPOLOGISTS
APRIL 3-5 & APRIL 19-22, 2023**

To be held

Online and in Reno, Nevada

AABA Scientific Program Committee

Kristi L. Lewton, Chair

Donovan Adams
Francisca Alves-Cardoso
C. Eduardo Amorim
Benjamin Auerbach
Karen Baab
Shara Bailey
Heather Battles
Jonathan Bethard
Vanessa Campanacho
Tara Cepon-Robins
Colleen Cheverko
Maria Ana Correia
Susanne Cote
Miguel Delgado
Nathaniel Dominy
Amanda Ellwanger
Nicholas Ellwanger
Kori Filipek

Rebecca George
Rebecca Gilmour
Halszka Glowacka
Jesse Goliath
Mark Grabowski
Elaine Guevara
Lauren Halenar-Price
Angela Harden
Kevin Hatala
Amber Heard-Booth
Megan Holmes
Jennifer Hotzman
Kent Johnson
Saige Kelmelis
Brittany Kenyon-Flatt
Andrew Kim
Krystiana Krupa
Myra Laird
Nathan Lents
Christopher Lynn
Heli Maijanen
Lumila Paula Menéndez
Christina Nicholas
Heather Norton
Megan Perry
Marin Pilloud
Stephanie Poindexter
Sean Prall
Kathryn Reusch
Terry Ritzman
Gwen Robbins Schug
Krithivasan Sankaranarayanan
Amy Schreier
Maja Šešelj

Eric Shattuck
Michelle Singleton
Elizabeth St Clair
Katie Starkweather
Sean Tallman
Catherine Taylor
Nicole Torres Tamayo
Bethany Usher
Caroline VanSickle
Catalina Villamil
Amelia Villaseñor
Cara Wall-Scheffler
Kerry Warren
Julie Wieczkowski
Scott Williams
An-Di Yim
Chi Zhang

AABA Meetings Director

Lori Strong, Burk & Associates, Inc.

Contributed Sessions Planning Committee

Francisca Alves-Cardoso
C. Eduardo Amorim
Karen Baab
Heather Battles
Jonathan Bethard
Tara Cepon-Robins
Amanda Ellwanger

Nicholas Ellwanger
Rebecca George
Mark Grabowski
Elaine Guevara
Kevin Hatala
Amber Heard-Booth
Saige Kelmelis
Krystiana Krupa
Myra Laird
Heli Maijanen
Marin Pilloud
Sean Prall
Gwen Robbins Schug
Krithivasan Sankaranarayanan

Eric Shattuck
Michelle Singleton
Nicole Torres Tamayo
Cara Wall-Scheffler
Kerry Warren
Chi Zhang

ABSTRACTS

Fisher-forager mortuary complexity during the African Humid Period: the view from Lothagam Lokam, Kenya

ELIZABETH SAWCHUK¹, STEVEN GOLDSTEIN², KENDRA CHIRITZ³, LESLEY HARRINGTON⁴, DEVYN CALDWELL⁴, EMMA BETZ⁵, CHRISTINE CHEPKORIR⁶, EVAN P. WILSON⁶, ANNEKE JANZEN⁷, EMMANUEL NDIEMA⁸, KATHERINE GRILLO⁹ and ELISABETH HILDEBRAND¹⁰

¹Department of Human Evolution, Cleveland Museum of Natural History, ²Department of Anthropology, University of Pittsburgh, ³Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, ⁴Department of Anthropology, University of Alberta, ⁵Human Evolutionary Biology, Turkana University College, ⁶Department of Anthropology, City University of New York Graduate Center, ⁷Department of Anthropology, University of Tennessee, Knoxville, ⁸Earth Sciences, National Museums of Kenya, ⁹Department of Anthropology, University of Florida, ¹⁰Department of Anthropology, Stony Brook University

Lothagam Lokam (formerly the Lothagam Harpoon Site) near Lake Turkana, Kenya records multiple episodes of human occupation between ~10,000–7,500 years before present (BP). First excavated in the 1960s, Lokam has also yielded one of the best-known assemblages of human remains from eastern Africa during the African Humid Period (AHP), a time of moist conditions, high lake levels, and long-distance hydrological connections. However, many questions remain about the site's context and scope, particularly because skeletons were recovered from surface erosional deposits. Excavations by the Later Prehistory of West Turkana project since 2017 have revealed a more complicated picture than previously reported: burials exist in many parts of the >100,000m² site, and individuals from different locations have yielded direct radiocarbon dates with calibrated ranges from 7426–7407, 7561–7540, 9535–9411, and 9537–9475 cal BP (95% CI, IntCal 20) indicating at least two periods of mortuary activity. These are among the oldest direct dates on human remains in eastern Africa. Recovery of 16 new individuals, most from primary interments, along with isolated remains brings the total number of individuals to ~45, providing insight on human morphological variation and lifeways during the AHP. Osteological analysis indicates that men and women ranging in age from young to old adulthood were interred in this beach. In 2022, we recovered the first remains of a child at the site, whose distinctive burial treatment raises new questions about mortuary practices.

Alongside emerging habitation and palaeoenvironmental data, bioarchaeological findings from Lokam challenge assumptions about stability within the AHP.

Funding provided by the Social Sciences and Humanities Research Council of Canada (SSHRC IDG 430-2020-00406), the Wenner-Gren Foundation (Gr. 9410) and the National Science Foundation (Collaborative Grant 2051515/2051486/2051494).

Associations between age, physical activity, and physical and cognitive function in Hadza foragers

KATIE SAYRE¹, GENE E. ALEXANDER^{2,3,4,5,6,7}, HERMAN PONTZER^{8,9}, BRIAN M. WOOD^{10,11} and DAVID A. RAICHLEN^{1,12}

¹Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, ²Departments of Psychology and Psychiatry, University of Arizona, ³Evelyn F. McKnight Brain Institute, University of Arizona, ⁴Neuroscience Graduate Interdisciplinary Program, University of Arizona, ⁵Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, ⁶BIO5 Institute, University of Arizona, ⁷Arizona Alzheimer's Consortium, ⁸Department of Anthropology, Duke University, ⁹Duke Global Health Institute, Duke University, ¹⁰Department of Anthropology, University of California Los Angeles, ¹¹Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, ¹²Department of Anthropology, University of Southern California

Physical and cognitive function are key components to quality of life during older adulthood, and finding ways to prevent or slow age-related declines in both is an important public health concern. Engaging in a physically active lifestyle appears to improve physical and cognitive function during aging. Our understanding of the role that physical activity (PA) plays in functional aging, however, comes from work with mostly sedentary populations. In this study, we examine the relationship between age, physical activity, and physical and cognitive function in a population known for exhibiting high levels of PA throughout life: the Hadza foragers in Tanzania. We recruited 122 Hadza adults ($n_{\text{female}}=66$, $n_{\text{male}}=56$; ages 19–87 years) to participate in this study. We used wrist-worn accelerometers to evaluate levels of PA, and asked participants to complete tests of physical and cognitive function. Participants in this study displayed high levels of moderate-to-vigorous physical activity (MVPA), even at older ages. We found that age was negatively associated with grip strength ($p<0.001$), gait speed ($p<0.001$), and performance on a test of processing speed ($p<0.001$), but not associated with performance on a test of spatial working memory ($p=0.17$). We also found that time in MVPA was significantly associated with gait speed—participants with the lowest amounts of MVPA displayed slower gait speeds ($p<0.01$)—a relationship also seen in industrialized populations. In addition to

characterizing age-related differences in physical and cognitive function, we believe this study offers insight into the relationship between PA and function in a highly physically active population.

National Science Foundation [NSF-BCS 2051519 (MKS), NSF-BCS 1440867 (DAR), NSF-BCS 1440671 (BMW)], National Institute on Aging [AG019610 (GEA), AG067200 (GEA,DAR), AG072445 (DAR,GEA)], Max Planck Institute for Evolutionary Anthropology (BMW).

Body by Colonialism: Interrogating the False Binary in Bioarchaeology

BENJAMIN J. SCHAEFER

Anthropology, Field Museum of Natural History

Feminist and Queer theorists have made a profound impact on (bio)archaeological research that reimagines 'the opposition to the normative' as not mutually exclusive to the categories of sex and gender (Blackmore 2011; Geller 2016; Voss 2000). The word 'queer' derives from the German word 'quer' and can be translated in different ways depending on the context; for example, it can translate to 'askew', 'crosswise', and 'transverse'. In this sense, queer contends against the normalized, legitimized, and legible aspects of analysis. As noted by other archaeologists that engage with feminist and queer theory (Arden 2008; Blackmore 2011; Geller 2008; Hollimon 2011), the inclusion of a queer analysis is not predicated on excavating or uncovering ancient 'homosexuality'; rather it centers those that are typically at the margin, or completely left out in academic inquiry.

Bioarchaeologists and Skeletal Biologists typically rely on the remaining bony elements to make to make scientific inferences about ancient peoples. Our analyses follow standardised practice following Buikstra and Ubelaker (1990), however, many of the methods in the bioarchaeologist's toolkit do not adhere to a strict binary. This paper critically interrogates this growing awareness by specifically focusing on how queer theory changes and transforms scientific knowledge about the human body and experience within biological anthropology. Approaching the body as a fully realised blueprint prevents a deeper investigation into human behaviour and physiology outside the binary. Challenging hegemonic categories does not erase biology, rather by critically engaging with biology it refuses the false binary that haunts bioarchaeological research.

None:

Effects of height in the canopy on gait mechanics in wild lemurs

NICOLE M. SCHAPKER^{1,2}, AMMON HOTTENSMITH¹, JUDITH JANISCH¹, LYDIA C. MYERS³, TAYLOR PHELPS¹, IAN BARRY³, LIZA J. SHAPIRO³ and JESSE W. YOUNG¹

¹Department of Anatomy and Neurobiology, Northeast Ohio Medical University, ²School of Biomedical Sciences, Kent State University,

ABSTRACTS

³Department of Anthropology, University of Texas at Austin

Arboreal locomotion is thought to be particularly precarious. Branch diameter and orientation can impose certain biomechanical challenges to maintaining a desired trajectory. Branch discontinuity and height above ground also mean that failure to compensate for precarious branch morphology can lead to risky falls. Using high-speed cameras, we recorded the quadrupedal locomotion of four wild lemur species – *Eulemur rubriventer*, *Eulemur rufifrons*, and *Hapalemur aureus* at Ranomafana National Park and *Lemur catta* at the Anja Community Reserve. We quantified branch diameter, orientation, and height using remote sensors and tested their effects on gait kinematics (N = 60). Preliminary data indicate lemurs primarily use diagonal sequence gaits. Only *E. rubriventer* changes gait type with branch height, increasing the use of lateral sequence gaits higher in the canopy. Lemurs tend to increase duty factors as branch height increases, though variation is inconsistent between hindlimbs and forelimbs. Furthermore, *E. rubriventer* increases the mean number of limbs used to support the body during a stride on higher substrates. In contrast, *L. catta*, unlike the other lemurs, tends to increase duty factors and the mean number of supporting limbs as substrate diameter decreases. This may be due to differing locomotor environments as *L. catta* generally walked on substrates lower to the ground. Overall, these results suggest that lemurs change their gait in response to varying substrate properties and that adjustments vary among species. The results also underscore the importance of including branch height alongside more typically measured substrate characteristics like diameter and orientation.

Supported by NSF BCS-1921135 and BCS-1921314.

Organizing anatomical 3D data for long-term storage and frequent reuse

STEFAN SCHLAGER^{1,2} and FELIX ENGEL¹

¹Biological Anthropology, Freiburg University,
²Dept. of Oral and Maxillofacial Surgery, Freiburg University

Sharing and reusing basic research data are currently challenges to researchers in many scientific disciplines. Their benefits, including synergy effects and transparency of research, are only realized if data are well annotated and the connection between basic data and research outcome conclusively demonstrated. RDFBones is a domain ontology within the Resource Description Framework (RDF). It has been successfully applied to document research objects, processes and outcomes as semantic data models. These can be implemented into all kinds of databases but are also a perfect medium for long-term storage of research data.

With three-dimensional craniofacial data sets, RDFBones can be used to describe the processes involved in their production. It can address specific elements within these data objects and define them as input to further data processing. Semantic data modeling provides a thorough and transparent account of how basic data are used in investigations to the effect that research results can be traced back to the originally acquired data. Moreover, RDFBones semantic data models can serve as a translation layer to bridge several independent data sources and combine information from all of them.

We present the worked example of a semantic data model representing a three-dimensional landmark configuration derived from a CT scan, including the entire process chain, and employed in a geometric morphometric analysis. We also provide examples complex queries across this model as a basis for additional research. These resources include expressive in-line documentation which makes them highly appropriate for long-term storage and reuse in later, unrelated investigations.

Funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

How has Keith's multi-stage model performed in light of experimental data on locomotor mechanics in monkeys and apes?

DANIEL SCHMITT¹, ROSHNA E. WUNDERLICH², KEVIN G. HATALA³ and ANGEL ZEININGER¹

¹Evolutionary Anthropology, Duke University,
²Department of Biology, James Madison University,
³Department of Biology, Chatham University

When Sir Arthur Keith first formulated his multi-stage model of human evolution, he did so with little information on fossils or experimental comparative anatomy, an approach that Washburn would call for 30 years later. Since then, kinematic and kinetic data have been collected on Old and New World monkeys and all the apes, providing robust tests of several prescient ideas Keith presented. Keith proposed that human evolution proceeded through pronograde, orthograde "hylobatian", large-bodied ape "troglodytian", and then to a "planitigrade" phase with erect limbs. Keith described significant changes in the hindlimb and fewer in the forelimb, which retained suspensory features and he explicitly connected human hindlimb and foot development with gorillas. Experimental data on Old World monkeys, suspensory New World monkeys, and apes have supported the idea of a functional shift from pronograde to antipronograde postures with forelimbs used in tension during normal and inverted quadrupedalism and climbing. Regarding hindlimb function, we know a lot about *Pan*, including pedal mechanics and pressures, less about *Gorilla* and far less about *Pongo*. Our latest experiments show that *Gorilla*

hindlimb and foot mechanics are deeply reflective of humans. Chimpanzees show some of the same patterns, while orangutans and suspensory New World monkeys form an essential mechanical bridge between "hylobatian" and "troglodytian" stages. Our collective years of data on forelimb and hindlimb mechanics, especially our latest results, provide new opportunities to interrogate these key transitions. Keith's models provided explicit hypotheses to be tested and fare fairly well in light of these novel data.

Stronger maternal social bonds and higher rank are associated with accelerated infant maturation in Kinda baboons

INDIA A. SCHNEIDER-CREASE^{1,2}, ANNA H. WEYHER³, BENJAMIN MUBEMBA⁴, JASON M. KAMILAR^{3,5}, MEGAN PETERSDORF^{6,7} and KENNETH L. CHIOU²

¹School of Human Evolution and Social Change, Arizona State University, ²Center for Evolution and Medicine, Arizona State University, ³Department of Anthropology, University of Massachusetts, ⁴Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, ⁵Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, ⁶Department of Anthropology, New York University, ⁷Evolutionary Anthropology Research Group, Department of Anthropology, Durham University

Social relationships are critical components of health and fitness for humans and other animals. For female-philopatric species, affiliative relationships among females (kin and non-kin alike) can influence components of fitness that include individual survival, interbirth interval, and offspring survival. Affiliative relationships with males have attracted somewhat less attention, with most studies focusing on female-male relationships as adaptations for infanticide avoidance. Here, we use eight years of behavioral data on Kinda baboons (*Papio kindae*) to assess whether maternal social relationships—both among females and between females and males—affect infant survival, interbirth interval, and the pace of infant development. Kinda baboons are an ideal system for these analyses because males and females form strong relationships outside of the periovulatory period and in the absence of obvious infanticide threat. We calculated social metrics that reflected dominance status, total social integration, and social bond strength and paired these metrics with data on offspring survival, interbirth interval (IBI) duration, and infant behavioral maturation. Neither dominance rank nor sociality had a significant effect on interbirth interval or survival, but higher rank and the stronger affiliative relationships between a female and her top female and top male social partners predicted more rapid infant behavioral maturation. These results suggest that maternal dominance and sociality may confer advantages related to infant development and independence that ultimately