

PROGRAM OF THE

93RD ANNUAL MEETING OF THE AMERICAN ASSOCIATION OF BIOLOGICAL ANTHROPOLOGISTS

MARCH 20-23, 2024

To be held at the

JW Marriott LA Live

900 W Olympic Blvd, Los Angeles, CA 90015

AABA Scientific Program Committee

Kristi L. Lewton, Chair Kevin Hatala, Associate Chair

Donovan Adams Francisca Alves-Cardoso Benjamin Auerbach Shara Bailey Miriam Belmaker Michele Bleuze Vanessa Campanacho Stephanie Canington Janine Chalk-Wilayto Carter Clinton Siobhán Cooke Maria Ana Correia Miguel Delgado Anthony Di Fiore Nathaniel Dominy Nicholas Ellwanger Kori Filipek

Rebecca George Halszka Glowacka Mark Grabowski Neysa Grider-Potter Elaine Guevara Angela Harden Amber Heard-Booth Megan Holmes Genevieve Housman Kent Johnson Saige Kelmelis Brittany Kenyon-Flatt Andrew Kim Krystiana Krupa Myra Laird Ellis Locke Christopher Lynn

Heli Maijanen Hannah Marsh Lumila Menéndez **Emily Middleton** Christina Nicholas Heather Norton Robert O'Malley Marin Pilloud Stephanie Poindexter Luca Pozzi Sean Prall Kathryn Reusch Michael Rivera Gwen Robbins Schua Joshua Robinson Caroline Rowe Sarah Schrader

Amy Schreier
Maja Šešelj
Michelle Singleton
Katie Starkweather
Sean Tallman
Christina Torres
Nicole Torres-Tamayo
Catalina Villamil
Amelia Villaseñor
Cara Wall-Scheffler
Kerryn Warren
Julie Wieczkowski
Amanda Williams
An-Di Yim
Chi Zhang

AABA Meetings Director

Lori Strong, Burk & Associates, Inc.

Contributed Sessions Planning Committee

Donovan Adams Miriam Belmaker Stephanie Canington Janine Chalk-Wilayto Siobhán Cooke Nathaniel Dominy Elaine Guevara Nicholas Ellwanger Kori Filipek Rebecca George Neysa Grider-Potter Genevieve Housman Saige Kelmelis Myra Laird

Christopher Lynn Robert O'Malley Stephanie Poindexter Kathryn Reusch Joshua Robinson Maja Šešelj Michelle Singleton Sean Tallman Nicole Torres-Tamayo Cara Wall-Scheffler An-Di Yim

ABSTRACTS

Epigenetic signatures of intergenerational exposure to violence

CONNIE J. MULLIGAN^{1,2}, EDWARD B. QUINN^{1,2}, DIMA HAMADMAD3, CHRISTOPHER L. DUTTON1.2.4, LISA NEVELL^{1,2}, ALEXANDRA M. BINDER^{5,6} CATHERINE PANTER-BRICK^{7,8} and RANA DAJANI⁹

¹Anthropology, University of Florida, ²Genetics Institute, University of Florida, 3Taghyeer Organizatino, Amman, Jordan, ⁴Biology, University of Florida. 5Population Sciences in the Pacific Program, University of Hawaii Cancer Center, ⁶Epidemiology, University of California, Los Angeles, ⁷Anthropology, Yale University, ⁸Jackson Institute of Global Affairs, Yale University, 9Biology and Biotechnology, The Hashemite University

Maternal trauma is known to impact fetal and adult health outcomes, possibly through epigenetic modifications such as DNA methylation (DNAm), In contrast to model organisms, research in humans on the intergenerational epigenetic transmission of maternal trauma effects is much more limited. In this study, we hypothesize that exposure to violence leaves intergenerational epigenetic marks. Thus, we assessed DNAm signatures of war-related violence, comparing germline, prenatal, and direct exposure to violence across three generations of Syrian refugees. We compared families in which the pregnant grandmother vs the pregnant mother was exposed to war violence and included a control group of Syrian refugees unexposed to war violence. We collected buccal swab samples and survey data from mothers and two children in each family (n=131 participants). Based on an epigenome-wide association study, we identified multiple DNAm marks that were associated with germline and direct exposure to violence. Identification of a germline epigenetic signature of violence in humans supports our hypothesis and highlights DNAm as a mechanism to preserve information about trauma exposures across generations. Most sites showed the same directionality in DNAm change across germline, prenatal, and direct exposures, suggesting a common epigenetic response to violence. Furthermore, in children, we identified epigenetic age acceleration in association with prenatal exposure to violence highlighting the critical period of in utero development. These results have profound implications for understanding how lived experiences become embedded in the genome and ongoing efforts to ameliorate multigenerational cycles of violence, abuse, and poverty.

Funding was provided by NSF Grant BCS 1849379 and from the Program on Refugees, Forced Displacement, and Humanitarian Responses at Yale University.

Trends in NAGPRA Literature

ABIGAIL M. MUSCH and MARK HUBBE Anthropology, The Ohio State University Biological anthropology greatly contributed to the presence of Native American ancestral remains held in museum and university collections, and recently has been engaged in discussions about the ethical engagement with these collections. An important step in this discussion is to consider how the NAGPRA law, which has been in effect for over 30 years, has been incorporated in the discipline's primary literature. This study aims to understand the trends in the literature regarding mentions of NAGPRA. Keyword searches were conducted using Web of Science to generate a database of articles that referenced the law in any way. The search was restricted to journal articles published between 1990 and 2023, and returned only 103 articles with direct mention to NAGPRA. Title, authors, date of publication, publication title, and abstracts were collected. Journal descriptions were used to assign disciplines for each publication.

Results show that few journal articles discussed NAGPRA in the 1990s (N=15) and 2000s (N=22), and publications become more common in the 2010s (N=56). Museum Anthropology is the journal with the most articles (N=13), while the American Journal of Biological Anthropology only has 5 articles mentioning NAGPRA. The journals aimed at general anthropology disciplines contained 21 articles, archaeology journals had 14 articles, biological anthropology journals had 9 articles, and museum studies journals had 22 articles. This initial result demonstrates that, despite its importance, NAGPRA has not been significantly incorporated in bioanthropological literature, and that conversation is occurring primarily in museum and archaeology literature.

Semi-prehensile tail use in wild cercopithecid monkeys

LYDIA C. MYERS¹, JUDITH JANISCH², NICOLE M SCHAPKER^{2,3} ANTHONY CUNDARI¹ ASAS HUSAIN1, ALEX SILVA1, JESSE W. YOUNG2 and LIZA J. SHAPIRO1

¹Anthropology, University of Texas at Austin, ²Anatomy and Neurobiology, Northeast Ohio Medical University, 3School of Biomedical Sciences, Kent State University

Prehensile tails are found across the globe as an adaptation for stability in arboreal environments. Among primates, only some platyrrhines have prehensile tails, but evidence of some caudal prehensile ability has been documented in cercopithecids. To document wild primate locomotion, we collected videos of eight species of cercopithecid monkeys from Kibale National Park, Uganda. Preliminary review of the sample has identified 31 videos with tail behavior classified as "semi-prehensile", e.g. the tail is partially or fully wrapped around a substrate. This behavior was identified in adult Papio anubis, Cercopithecus mitis, Cercopithecus ascanius, Colobus guereza, Lophocebus albigena, and Chlorocebus aethiops (N videos=18). Juvenile and infant P. anubis, C. mitis, C. ascanius, and C. aethiops also displayed semi-prehensile tail behavior (N=13). In adults, this behavior was typically associated with foraging for leaves or tree gums (N=17), and/or utilizing an "unstable" stance, defined by support of three or fewer limbs (N=16). Juvenile P. anubis used its tail in a semi-prehensile way to stabilize locomotion on a precarious substrate (N=3). Infant C. mitis, C. ascanius, and C. aethiops wrapped their tail around their mother's tail or hindlimb while clinging ventrally (N=10). This is the first time semi-prehensile tail behavior has been described in detail in wild cercopithecid monkeys. Quantification of semi-prehensile tail use in non-platyrrhine primates will provide a better understanding of the evolution of platyrrhine tail prehensility. It will also increase our understanding of the ways in which the tail facilitates stability in an arboreal

Supported by NSF BCS-1921135 and BCS-1921314

Longevity is a special kind of endurance

MARCELLA J. MYERS1 and CARA M. WALL-SCHEFFLER^{2,3}

¹Biology, St Catherine University, ²Biology, Seattle Pacific University, 3Anthropology, University of Washington

Endurance can refer to an organism's capacity for physiological resilience in the face of environmental stressors. Research on the molecular basis of aging has elucidated ancient regulatory pathways that act as longevity circuits when properly stimulated including short periods of moderate physiological stress (a concept called hormesis).

Such stressors include moderate hyperthermia, exercise, or calorie restriction. In addition to the considerable energy females transfer to their offspring during gestation and breastfeeding, in many groups they must also effectively carry children, water, food, and fuel.

We believe the ability of females to cooperatively share energy likely allowed females across a wide age span to operate in a hormetic stress zone. enhancing their lifespans, although potentially at the cost of a slower preferred speed of walking due to habitual load carrying.

To learn whether older women had the physiological resiliency to walk faster again, in 27 women 55-88 years old we tested whether a novel mobility trainer - a 4-wheel, spring-loaded, upright pivoting frame designed to cue each step through timely proprioceptive feedback - could improve their preferred walking speed. After only nine 30-minute training sessions over three weeks, we found that the women who walked using the mobility trainer had increased their walking speed compared to their baseline values (p=0.03) and against a comparable group who walked the