
Approximate Distance Oracles for Planar Graphs with

Subpolynomial Error Dependency

Hung Le1

1University of Massachusetts at Amherst

Abstract

Thorup [FOCS’01, JACM’04] and Klein [SODA’01] independently showed that there exists
a (1 + ϵ)-approximate distance oracle for planar graphs with O(n(logn)ϵ−1) space and O(ϵ−1)
query time. While the dependency on n is nearly linear, the space-query product of their oracles
depend quadratically on 1/ϵ. Many follow-up results either improved the space or the query
time of the oracles while having the same, sometimes worst, dependency on 1/ϵ. Kawarabayashi,
Sommer, and Thorup [SODA’13] were the first to improve the dependency on 1/ϵ from quadratic
to nearly linear (at the cost of log∗(n) factors). It is plausible to conjecture that the linear
dependency on 1/ϵ is optimal: for many known distance-related problems in planar graphs, it
was proved that the dependency on 1/ϵ is at least linear.

In this work, we disprove this conjecture by reducing the dependency of the space-query
product on 1/ϵ from linear all the way down to subpolynomial (1/ϵ)o(1). More precisely, we

construct an oracle with O(n log(n)(ϵ−o(1) + log∗ n)) space and log2+o(1)(1/ϵ) query time. Our
construction is the culmination of several different ideas developed over the past two decades.

1

Contents

1 Introduction 1
1.1 Previous and Our Techniques . 3
1.2 Related Work . 6

2 Preliminaries 6

3 Distance Oracles with Additive Stretch 8
3.1 Approximate Patterns . 8
3.2 Computing Distances from Approximate Distance Encodings 11
3.3 Approximate Pattern Composition . 14
3.4 A Weaker Oracle: Proof of Theorem 4 . 16
3.5 Reducing Space and Query Time: Proof of Theorem 2 . 26

4 Distance Oracles with Multiplicative Stretch: Proof of Theorem 1 27

2

1 Introduction

Computing distances is one of the most fundamental primitives in graph algorithms. Approximate
distance oracle is a data structure invented specifically for this purpose. A t-approximate distance
oracle of an edge-weighted and undirected1 graph G = (V,E,w) is a data structure that given
any two vertices u and v, return an approximate distance d̂(u, v) such that dG(u, v) ≤ d̂(u, v) ≤
t ⋅ dG(u, v). The breakthrough result of Thorup and Zwick [TZ05] gives a (2k − 1)-approximate
distance oracle for undirected n-vertex graphs with O(kn1+1/k) space and O(k) query time for any
k ≥ 1. However, reducing the distance error to smaller than a factor of 3 requires Ω(n2) [TZ05]
space for dense graphs. In many practical applications, it is desirable to have the distance error as
close to 1 as possible. Constructing an approximate distance oracle with such an error guarantee
requires exploiting specific structures of input graphs. Planarity is a natural structure that has been
extensively studied for decades; it is used to model road networks on which querying distances is a
central problem.

Thorup [Tho04] and Klein [Kle02] independently constructed a (1 + ϵ)-approximate distance
oracle with O(n log(n)ϵ−1) space and O(ϵ−1) query time for any ϵ ∈ (0,1); the construction time of
their oracle is O(n log3(n)/ϵ2) (see Theorem 3.19 in [Tho04]). Their results triggered many follow-
up papers over the past two decades; we can generally divide them into two directions. One direction
assumes that ϵ is a fixed constant and aims to improve the dependency on n [WN16, LWN21],
which culminated in a distance oracle with O(n) space and O(1) query time by Le and Wulff-
Nilsen [LWN21]. However, the dependency on 1/ϵ of their oracle’s space-query product is O(ϵ−4).

Another direction focuses on reducing the quadratic dependency on 1/ϵ of the space-query
product. In practical applications such as logistics and planning, a reduction of 1% distance error
could lead to a huge economic saving. In such scenarios, ϵ is very small and potentially depends
on n. In an extreme regime, such as ϵ ∈ [1/√n,1/n], the quadratic dependency on 1/ϵ implies
a quadratic dependency on n, making the oracle trivial. Even in a moderately small regime, for
example, ϵ = 1/poly(logn), the dependency on 1/ϵ remains a dominating factor. Therefore, it is of
both theoretical and practical interest to reduce the quadratic dependency on 1/ϵ.

Kawarabayashi, Klein, and Sommer [KKS11] argued that “a very low space requirement is
essential”, and gave a (1 + ϵ)-approximate oracle with truly linear space O(n) and query time
O(ϵ−2 log(n)). While the space is information-theoretically optimal, the query time is blown up
by a factor O(ϵ−1 logn), making the space-query product worst than that of Thorup [Tho04] and
Klein [Kle02]. The first real improvement was achieved by Kawarabayashi, Sommer, and Tho-
rup [KST13] who constructed a (1+ ϵ)-approximate oracle with O(n logn log log(1/ϵ) log∗ n) space
and O(ϵ−1 log2(1/ϵ) log log(1/ϵ) log∗ n) query time. Ignoring log∗(n) and polylog(1/ϵ) factors, the
space bound is O(n logn) while the query time is O(1/ϵ), giving a quadratic improvement in 1/ϵ
dependency in the space-query product. And yet a decade has passed, and the improvement of
Kawarabayashi, Sommer, and Thorup [KST13] remains state-of-the-art.

Recent works instead focus on improving the dependency on 1/ϵ of the query time at the
cost of a larger space bound. Gu and Xu [GX19] constructed an oracle with O(1) query time
and O(n log(n)(log(n/ϵ) + 2O(1/ϵ))) space; their space bound is exponential in 1/ϵ. Chan and
Skrepetos [CS19], using the Voronoi diam technique of Cabello [Cab18], improved the space of the
oracle of Gu and Xu [GX19] to a (large) polynomial in 1/ϵ at the cost of a slightly worst query
time O(log(1/ϵ)). However, the construction of Chan and Skrepetos [CS19] is randomized. Li and

1All oracles in this paper are for undirected and edge-weighted graphs unless mentioned otherwise.

1

Space Query time Reference

O(n log(n)/ϵ) O(1/ϵ) [Tho04, Kle02]

O(n) O(log(n)/ϵ2) [KKS11]

O(n logn log log(1/ϵ) log∗ n) O((1/ϵ) log2(1/ϵ) log log(1/ϵ) log∗ n) [KST13]

O(n log(n)(log(n/ϵ) + 2O(1/ϵ))) O(1) [GX19]

O(n log2(n)ϵ−1 + n log(n)ϵ−(4+δ))
any fixed δ > 0 O(log(1/ϵ)) [CS19]

O(n log2(n)(1/ϵ)c)++
for some constant c ≥ 6 O(1)++ [LP19]

O(n log(n)((1/ϵ)o(1) + log∗ n)) log2+o(1)(1/ϵ) Theorem 1

O(n log(n)(log2+o(1)(1/ϵ) + log∗ n)) (1/ϵ)o(1) Theorem 1

Table 1: Space and query time of known (1+ ϵ)-approximate distance oracles for undirected planar
graphs. The bounds marked ++ are our own estimation following the description in [LP19]; these
bounds are not explicitly computed in [LP19]. The last two rows are our results.

Parter [LP19] devised the VC-dimension technique to reduce the space of the oracle by Gu and
Xu [GX19]; the space of their oracle is not explicitly computed but remains polynomial in 1/ϵ, and
the query time, while is not explicitly mentioned, is O(1). See Table 1 for a summary.

On the other hand, it is plausible to conjecture that the linear dependency on 1/ϵ of the space-
query product is optimal. For some distance-based problems in planar graphs where one seeks to
have structures that preserve distances approximately with an error parameter ϵ, such as light (1+ϵ)-
spanners [ADD+93] or treewidth embedding with low (additive) distortion [FKS19, CFKL20, LF22]
or approximate planar emulators [CKT22], it was proved that the dependency on 1/ϵ of the output’s
quality (such as lightness or treewidth or the number of edges) is Ω(1/ϵ). Another related problem
is (1 + ϵ)-approximate distance labeling scheme where the best-known scheme [Tho04] has labels
of size O(log(n)/ϵ); again, the dependency on 1/ϵ is linear. For all problems seeking some kinds
of (1 + ϵ) approximation in planar graphs that we are aware of, none of them has a sublinear the
dependency on 1/ϵ (though there exist such problems for trees [GKK+01, FGNW17], which form a
very restricted subclass of planar graphs). Furthermore, the constructions of all known approximate
oracles rely on the same fundamental building block using shortest path separators pioneered by
Thorup [Tho04] and Klein [Kle02]. More precisely, for each shortest path in the separator, one
marks 1/ϵ vertices on the shortest path to serve as portals for computing approximate distances.
This 1/ϵ factor creeps into the space and/or the query time, which makes the linear dependency
seem unavoidable.

In this work, we break the long-standing linear dependency on 1/ϵ in space-query product of
approximate distance oracles for the first time. Indeed, we improve the dependency of the space-
query product on 1/ϵ from linear all the way down to subpolynomial (1/ϵ)o(1).

Theorem 1. Let ϵ ∈ (0,1) be positive parameter and G = (V,E,w) be an undirected, edge-weighted
planar graphs with n vertices. We can construct in O(npoly(log(n),1/ϵ)) time a (1+ϵ)-approximate
distance oracle that has:

(1) O(n log(n)((1/ϵ)o(1) + log∗ n)) space and log2+o(1)(1/ϵ) query time or

(2) O(n log(n)(log2+o(1)(1/ϵ) + log∗ n)) space and (1/ϵ)o(1) query time.

2

Given the aforementioned lower bounds for related problems, we find the result in Theorem 1
rather surprising. It opens the real possibility that the dependency on 1/ϵ could be sublinear or
even subpolynomial for distance-related problems where there is no currently-known linear lower
bound, such as computing (1 + ϵ)-approximate diameter [WY16, CS19] or (1 + ϵ)-approximate
distance labelings [Tho04]. For approximate distance labelings, by a reduction from exact dis-
tance labeling [GPPR04, Tho04], the lower bound dependency on 1/ϵ one can show is Ω((1/ϵ)1/3).
Furthermore, our technique described below might also be used to progress on these problems.

We remark that we do not attempt to minimize the poly(1/ϵ, log(n)) factor in the construction
time in Theorem 1. In the following section, we review previous techniques and give an overview
of our construction.

1.1 Previous and Our Techniques

A conceptual contribution of our work is to view approximate distance oracle constructions through
the lens of local portalization vs global portalization. This view explains why constructions developed
over the past two decades fail to break the linear, sometimes quadratic, dependency on 1/ϵ in
the space-query product. Through this view, we identify key strengths and weaknesses of each
construction, and the challenges in overcoming the linear 1/ϵ barrier. We then design a framework
that could exploit the strengths of all of them through which we obtain a sublinear bound (1/ϵ)o(1)
in the space-query product. First, we give a more detailed exposition of existing constructions.

All approximate distance oracles, including ours, use balanced shortest path separators. The
influential results of Lipton and Tarjan [LT79, LT80] showed that a triangulated planar graph of
n vertices has a separator C, called a balanced shortest path separator, which is a Jordan curve
consisting of two shortest paths and one edge connecting the two endpoints of the paths, such that
there are at most 2n

3 vertices in the interior and exterior of C, denoted by Int(C) and Ext(C),
respectively.

A key idea in the construction of Thorup [Tho04] and Klein [Kle02] is to use portals along each
shortest path of a shortest path separator. They showed that for every vertex v in one side of C,
say the interior, one can find a set Pv of 1/ϵ vertices, called portals, for v such that for every vertex
u ∈ Ext(C), there exists a portal p ∈ Pv where dG(v, p) + dG(u, p) ≤ (1 + ϵ)dG(u, v). This means
that for every vertex v ∈ V , we only need to store O(1/ϵ) distances to vertices in Pv such that
the distance between any two vertices u, v in two different sides of C can be approximated within
(1 + ϵ) factor by computing minp∈Pv ,q∈Pu{dG(v, p) + dG(u, q)} in time O(∣Pv ∣ + ∣Pu∣) = O(1/ϵ). The
distances between vertices in the same side of C can be handled recursively, at the cost of a log(n)
factor in the space bound since the depth of the recursion is O(log(n)).

We view the portalization of Thorup [Tho04] and Klein [Kle02] as a local portalization scheme
in the sense that each vertex needs its own set of portals. Evading O(1/ϵ2) factor in the space-query
product requires breaking the locality. The follow-up construction of Kawarabayashi, Klein, and
Sommer used r-division [Fed87] on top of the constructions by Thorup [Tho04] and Klein [Kle02];
their goal is to have an oracle with O(n) space and O(ϵ−2 log2 n) query time. Their construction
also followed local portalization and, hence, the space-query product remained the same.

Kawarabayashi, Sommer, and Thorup [KST13] (KST) improved the quadratic bound O(1/ϵ2)
in the space-query product by breaking the locality of portals entirely. Specifically, up to a factor
of polylog(1/ϵ, log∗ n), they improved the space to n log(n) while keeping the same query time
1/ϵ. Their approach reduced constructing oracles with multiplicative stretch (1+ ϵ) to constructing
oracles with additive stretch +ϵD where D is the diameter of the graph. (We say that an oracle has

3

an additive stretch +∆ if for every two vertices u and v, the distance returned by the oracle d̂(u, v)
satisfies: dG(u, v) ≤ d̂(u, v) ≤ dG(u, v) +∆.) The reduction introduces a small loss of an O(logn)
factor in the space and an O(1) factor in query time. A key advantage of additive stretch over
multiplicative stretch is that the portals become global: for every shortest path (of length at most
D) in a shortest path separator, we can place a set P of O(1/ϵ) portals (independent of the vertices)
such that for any two vertices u, v in different sides of C, minp∈P {dG(u, p)+dG(v, p)} ≤ dG(u, v)+ϵD.
Thus, vertices in the graph now share the same set of portals, which is the source of the space
improvement. To answer a query, they need to iterate over P , which takes O(∣P ∣ = O(1/ϵ)) time.

Subsequent constructions [CS19, GX19, LP19] improved the query time of the KST oracle
to either O(1) [GX19, LP19] or O(log(1/ϵ)) [CS19] at the cost of a large dependency on 1/ϵ
in the space. Gu and Xu [GX19] employed the distance encoding argument of Weimann and
Yuster [WY16] that has a factor 2O(1/ϵ) in the space. Li and Parter [LP19] reduced the factor
2O(1/ϵ) to O(poly(1/ϵ)) using their VC-dimension technique. Chan and Skrepetos [CS19] employed
the Voronoi diagram technique of Cabello [Cab18]; their construction broke away from the global
portalization however: each vertex in the graph must store its own Voronoi diagram defined by its
distances to the portals. As a result of this locality, the space of their oracle has a factor (1/ϵ)4.
Thus, the Voronoi diagram technique, though a cornerstone of exact distance oracle constructions
(see Section 1.2), does not seem to be the right approach for breaking the linear factor 1/ϵ in the
space-query product achieved by KST oracle.

Viewing KST oracle through our global lens of portalization is particularly illuminating for
breaking the linear 1/ϵ bound. Specifically, we show that, for breaking the O(1/ϵ) bound, it suffices
to store poly(1/ϵ) machine words globally per shortest path separator. More precisely, each time
we apply the shortest path separator to separate a graph, we could store a global data structure of
up to poly(1/ϵ) words of space. Every vertex in the graph has a pointer to (a portion of) the data
structure; the pointer only costs O(log(1/ϵ)) bits of space. In retrospect, the KST construction
can be seen as storing only O(1/ϵ) words of space globally, one word for each portal of the paths in
the separator. The key difference of our construction over KST’s is that, in KST, each vertex needs
to compute distances to the (shared) portals during the query stage, then computing distances
between two vertices requires looping over the portals that takes O(1/ϵ) time. Our key idea to
remove the 1/ϵ factor completely in the query time is the following. We precompute a small set of
approximate distances in the global data structure. Then, given two vertices and their pointers to
the global data structure, we can look up their approximate distance in O(1) time.

In our construction, each vertex holds a pointer to an approximate distance pattern stored in the
global data structure in the graph. Our approximate distance pattern is an approximate version of
the exact distance pattern introduced by Fredslund-Hansen, Mozes, and Wulff-Nilsen [FHMWN21]
in their construction of exact distance oracles for unweighted planar graphs. (Other than using
distance patterns, their construction is different from ours and other approximate distance oracle
constructions, and it only works for unweighted graphs.) An approximate distance pattern encodes
the (approximate) distances from a vertex to the portals on a shortest path of the shortest path
separator. We pre-compute all approximate distance patterns and the distance between any two
approximate distance patterns, and store this information in the global data structure. The idea
is that, given access to two approximate distance pointers of two vertices u and v, we can access
their pre-computed distance in O(1) time in the global data structure. Our global data structure
has only poly(1/ϵ) space and, hence, the number of patterns must also be poly(1/ϵ); for this, we
employ the VC-dimension argument of Li and Parter [LP19].

4

A problem with using a global data structure of size poly(1/ϵ) for each subgraph of G aris-
ing in the construction is the space bound. Specifically, if we recursively decompose G using
balanced shortest path separators until each subgraph has O(1) size, we end up with a separa-
tion tree, denoted by T , with O(n) nodes. As each node of T is associated with a global data
structure of size poly(1/ϵ) (for the subgraph of that node), the total size of the data structure
is O(npoly(1/ϵ)). A possible solution to this problem is the following simple idea used by many
oracle constructions [KKS11, KST13, CS19]: stop separating a subgraph once it has size O(1/ϵc)
for some sufficiently big c. (For each subgraph of size O(1/ϵc), the standard approach is to use
an exact distance oracle [KKS11, KST13]; we will come back to this issue later.) The number of
nodes of the separation tree is O(n/ϵc), and hence the total size of all data structures associated
with its nodes is O((n/ϵc)poly(1/ϵ)) = O(n) for an appropriate choice of c. Then for each vertex
v, we store a pointer to its approximate pattern w.r.t. the boundary portals of the leaf subgraph
in T containing v.

Yet a new problem arises: for each vertex v in a leaf node α of T , we need to compute the
approximate pattern of v w.r.t. the portals of an ancestor node, say β. Following Fredslund-Hansen,
Mozes, and Wulff-Nilsen [FHMWN21], we can compute a pattern induced by the approximate
pattern of v for portals of α (see Definition 6 for a precise definition). The issue is that, since
distances are approximate, the induced pattern might not be in the set of approximate patterns
stored at β; therefore, we can no longer look up the distance stored at the global data structure
of β. (In the exact distance setting of [FHMWN21], this issue does not happen since the induced
pattern of an exact pattern is another exact pattern.) Our key idea to overcome this problem is
the following. We show that the induced pattern is close (in ℓ∞ norm) to an approximate distance
pattern stored at β. Then, for each induced pattern p between α and β, we store a pointer to the
approximate pattern in β close to p. Therefore, once the induced pattern is computed, we follow
the pointer to the closest approximate pattern stored at β.

We now go back to the subgraphs of size O(1/ϵc) associated with leaves of T . The standard
approach is to use an exact distance oracle for each subgraph [KKS11, KST13]. For breaking the
linear bound 1/ϵ in the space-query product, it suffices to use the oracle of Charalampopoulos et
al. [CGMW19]. Here we use the recent exact distance oracle by Long and Pettie [LP21] instead
to obtain a better dependency on 1/ϵ. Specifically, we apply the Long-Pettie oracle (for n-vertex
graphs) in two different regimes: (a) n1+o(1) space and log(n)2+o(1) query time and (b) n log2+o(1)(n)
space and no(1) query time. Two regimes lead to two different oracles with additive stretch +ϵD:
regime (a) gives an oracle with O(n(1/ϵ)o(1) log(n)) space and O(log2+o(1)(1/ϵ)) query time and
regime (b) gives an oracle with O(n log2+o(1)(1/ϵ) log(n)) space and O((1/ϵ)o(1)) query time.

Finally, with some additional ideas on top of our framework, we remove the log(n) factor in the
space of the additive oracle by recursion at the cost of an additive log∗(n) term in the space. We
note that, unlike KST, our oracle does not have the factor log∗(n) in the query time.

Theorem 2. Let ϵ > 0,D > 0 be a positive parameter and G = (V,E,w) be an undirected n-vertex
planar graph of diameter D. There is an approximate distance oracle of additive stretch +ϵD with
construction time O(npoly(logn, ϵ)) and:

(1) O(n((1/ϵ)o(1) + log∗(n))) space and log2+o(1)(1/ϵ) query time or

(2) O(n(log2+o(1)(1/ϵ) + log∗(n))) space and (1/ϵ)o(1) query time.

5

1.2 Related Work

A closely related data structure in planar graphs is exact distance oracles. (All exact oracles
mentioned in the following work for planar digraphs; thus, they are naturally applicable to pla-
nar undirected graphs.) There is a very long line of work on constructing exact distance oracles,
starting from the seminal papers of Lipton and Tarjan [LT79, LT80] who constructed an exact
oracle with O(n3/2) space and O(√n) query time. Subsequent results [ACC+96, Dji96, CX00,
FR01, Cab10, WN10, MS12] improved the result of Lipton and Tarjan in two ways: designing
new space-query time trade-offs [ACC+96, Dji96, CX00, WN10] or obtaining a truly subquadratic
space-query product [Dji96, CX00, Cab10, FR01, MS12]. However, none of these oracles has a
truly subquadratic space and polylogarithmic query time until the work of Cohen-Addad, Dahl-
gaard, and WulffNilsen [CADWN17]. Specifically, they constructed an oracle with O(n5/3) space
and O(logn) query time. The result of Cohen-Addad, Dahlgaard, and Wulff-Nilsen is the major
turning point for exact distance oracles: they were the first to use the Voronoi diagram technique
of Cabello [Cab18]. Follow-up results [GMWWN18, CGMW19, LP21], all based on the Voronoi
diagram technique, significantly improved the space-query time trade-off of Cohen-Addad, Dahl-
gaard, and Wulff-Nilsen [CADWN17], culminating in the oracles by Long and Pettie [LP21] that
have (i) O(n1+o(1)) space and O(log2+o(1) n) query time or (ii) O(n log2+o(1)) space and O(no(1))
query time. (For various other trade-offs, see Table 1 in [LP21] for details.) The no(1) factor,

while sublinear, is 2Ω(
√
logn). Therefore, though we have witnessed tremendous progress on exact

distance oracles, the dependency on n of spaces/query time of exact oracles remains far from that
of approximate oracles.

The exact oracle construction of Fredslund-Hansen, Mozes, and Wulff-Nilsen [FHMWN21] is
fundamentally different from the constructions mentioned above: the main tool is the VC-dimension
technique of Li and Parter [LP19]. Their main goal is to get an oracle with a constant query time;
the space bound is O(n5/3+δ) for any fixed constant δ > 0. The space-query product of their
oracle is not competitive with the Voronoi-diagram-based oracles [GMWWN18, CGMW19, LP21].
Furthermore, their construction only works for undirected and unweighted planar graphs.

2 Preliminaries

Given a graph G, we denoted by V (G) the vertex set of G and E(G) the edge set of G. We denote
an edge-weighted graph G with a vertex set V , edge set E, and non-negative edge-weight function
w ∶ E → R+ by G = (V,E,w). For any two vertices u, v ∈ V , we denote by dG(u, v) the distance
between u and v in G. We denote by SP (u, v,G) a shortest path from u to v in G. For a given
path P containing two vertices x and y, we denote by P [x, y] the x-to-y subpath of P .

Let G = (V,E,w) be an edge-weighted planar graph equipped with a planar embedding, called a
plane graph. A region R of G = (V,E,w) is a subgraph of G. A hole of R is a face of R that is not a
face of G. The boundary of R, denoted by ∂R, is the set of vertices of R that are on the boundaries
of the holes of R. Vertices in V (R) ∖ ∂R are called interior vertices. A vertex u ∈ V (G) ∖ V (R) is
inside a hole h if u is embedded inside the face h of R.

Next we define the notion of crossing between two simple paths, say P and Q, drawn on the
plane. We say that a path X is a proper subpath of P if X does not contain any endpoint of P .
Assume that there exists a maximal subpath X ⊆ P ∩Q that is proper. We orient P and Q such
that their orientations agree on X. Let Bϵ be a topological disk containing all points on the plane

6

of distance at most infinitesimal ϵ > 0 from points on X. P partitions Bϵ in two regions called the
left side and the right side of P . We say that Q crosses P if the edge entering X and the edge
leaving X of Q contain points in different sides of P (see Figure 1(a)). This crossing definition
generalizes naturally to the case where Q is a cycle instead of a path; in this case, any subpath of
Q is proper.

PQ

X
B

(a) (b)

𝜀

PQ

X
B𝜀

Figure 1: (a) P and Q cross.
(b) P and Q are non-crossing.

Distance preserving minors. Let P be a set of terminals in a
graph G = (V,E,w). Let K be the graph obtained by adding all
pairwise shortest paths in G between terminals in P , and contract-
ing degree-2 vertices that are not in P ; we assume that the shortest
paths are chosen in such a way that the intersection of any two
shortest paths is either empty or connected. The weight of an edge
in K is the shortest distance between its endpoints in G. K is a mi-
nor of G, and is called a distance preserving minor for P [KNZ14].
If G is planar, then K is also planar.

Lemma 1 (Theorem 2.1 [KNZ14]). Let P be a set of k terminal
in a graph G = (V,E,w), then its distance preserving minor K has
size O(k4).

Our construction uses Lemma 1 for the case where G is planar and P is on the outer face of G.

Exact distance oracles. Long and Pettie [LP21] constructed an exact distance oracle for planar
digraphs. In our paper, we use their results for undirected graphs.

Theorem 3 (Theorem 1.1 [LP21]). Let G = (V,E,w) be any given planar digraph with n vertices.
We can construct an exact distance oracle in time n3/2+o(1) that has:

(1) n1+o(1) space and log2+o(1) n query time or

(2) n log2+o(1) space and no(1) query time.

VC dimension. Let U be a ground set, and F be a family of subsets of U . We say that F
shatters a set X ⊆ U if for every subset Y ⊆X, there exists a set Z ∈ F such that Z∩X = Y . We say
that F has VC-dimension k if the largest set shattered by F has size k. The famous Sauer–Shelah
lemma [Sau72, She72] bounds the size of F when its VC-dimension is at most k.

Lemma 2 (Sauer–Shelah Lemma). Let F be a family of subsets of a ground set with n elements.
If VC-dimension of F is at most k, then ∣F∣ = O(nk).

We use [k] to denote the set {1,2 . . . , k}. If x is a k-dimensional vector, we denote by x[i ∶ j]
for given i ≤ j ≤ k the (j − i+ 1)-dimensional vector such that s-th entry of x[i ∶ j] is x[i+ s− 1] for
any s ∈ [j − i + 1]. We call vector x[i ∶ j] the (i, j)-restriction of x.

Let x,y ∈ Rk be two k-dimensional vectors. If ∥x,y∥∞ ≤ δ, we write x ≈δ y. (The same notation
applies to scalars since we can view them as 1-dimensional vectors.) Observe by the triangle
inequality that:

Observation 1. If x ≈δ1 y and y ≈δ2 z, then x ≈δ1+δ2 z.

7

We can show directly from the definition that:

Claim 1. If x1 ≈δ1 x2 and y1 ≈δ2 y2, then:

min
i∈[k]
{x1[i] + y1[i]} ≈δ1+δ2 min

i∈[k]
{x2[i] + y2[i]} .

where k is the dimension of these vectors.

Proof. Observe by definition that ∣x1[i] − x2[i]∣ ≤ δ1 and ∣y1[i] − y2[i]∣ ≤ δ2 for every i ∈ [k]. It
follows from the triangle inequality that x1[i] + y1[i] ≈δ1+δ2 x2[i] + y2[i] for every i ∈ [k]. Let
i∗ = argmini∈[k]{x2[i] + y2[i]}. Then:

min
i∈[k]
{x1[i] + y1[i]} ≤ x1[i∗] + y1[i∗]

≤ x2[i∗] + y2[i∗] + (δ1 + δ2)
=min

i∈[k]
{x2[i] + y2[i]} + (δ1 + δ2) .

By the same argument, mini∈[k]{x2[i] + y2[i]} ≤mini∈[k]{x1[i] + y1[i]} + (δ1 + δ2); this implies the
claim.

3 Distance Oracles with Additive Stretch

In this section, we construct an oracle with additive stretch for planar graphs as claimed in The-
orem 2. For a simpler presentation of the ideas, we first prove a weaker version of Theorem 2,
which is Theorem 4 below, where we allow a logo(1)(n) factor in the space and query time. We
then present a full proof of Theorem 2 in Section 3.5.

Theorem 4. Let ϵ > 0,D > 0 be a positive parameters and G = (V,E,w) be an undirected n-vertex
planar graph of diameter D. There is an approximate distance oracle with additive stretch +ϵD
that has O(npoly(logn, ϵ)) construction time and:

(1) n(1/ϵ)o(1) logo(1)(n) space and log2(1/ϵ) + (log log(n))2+o(1) query time or

(2) n(log2+o(1)(logn) + log2+o(1)(1/ϵ)) space and logo(1)(n)(1/ϵ)o(1) query time.

This section is organized as follows. In Section 3.1 we introduce the notion of approximate
patterns. In Section 3.2, we show how to compute an approximate distance of two vertices given
their approximate patterns to portals on a shortest path separator. In Section 3.3, we study
the composition of two approximate distance patterns, and show that the composition is close to
another approximate distance pattern in ℓ∞ norm. In Section 3.4 we prove Theorem 4 and in
Section 3.5, we extend the proof of Theorem 4 to Theorem 2.

3.1 Approximate Patterns

Let G = (V,E,w) be a planar graph and σ be a sequence of k vertices of G; the i-th vertex of σ is
denoted by σi. For a real number ∆ ∈ R, which could be negative, positive or zero, and an index
i ∈ [k − 1], we define:

A∆
i = {v ∈ V (G)∣dG(v, σi+1) − dG(v, σi) ≤∆} . (1)

We call the pair (i,∆) a distance index and A∆
i a vertex set associated with the distance index

(i,∆). See Figure 2. The following theorem is proved by Li and Parter [LP19].

8

Theorem 5 (Theorem 3.7, Li-Parter [LP19]). Let G = (V,E,w) be a planar graph and σ be a
sequence of k vertices in clockwise order on a face f of G. Let M be a set of real numbers. For
each vertex v ∈ G, let Xv = {(i,∆) ∶ i ∈ [k − 1],∆ ∈M,v ∈ A∆

i } be the set of distance indices whose
associated vertex sets contain v. Let F = {Xv}v∈V (G) be a family of sets of distance indices. Then
F has VC-dimension at most 3.

Remark 1. An intuitive interpretation of Theorem 5 is the following. The (typically finite) set
M tells us the difference between the distances from a vertex v to two consecutive vertices in the
sequence σ: if dG(v, σi+1)−dG(v, σi) ≤∆ for some ∆ ∈M , then (i,∆) ∈Xv. For each i, let ∆∗i ∈M
be the smallest such that (i,∆∗i) ∈ Xv. Then, given dG(v, σ1) and Xv, we can inductively recover
an upper bound on dG(v, σi+1) for any given i ∈ [1, k − 1] by unrolling the recursion dG(v, σi+1) ≤
dG(v, σi) +∆∗i . That is, we get dG(v, σi+1) ≤ dG(v, σ1) + ∑i

j=1∆
∗
j . Depending on the choice of M ,

this upper bound could be an exact or approximate estimation of the distance dG(v, σi+1). Thus,
Xv and M encode the distance information from v to vertices in σ; the notion of approximate
distance encoding below formalizes this intuition. From this point of view, the family F contains
the approximate distance encodings of all vertices of G to vertices in σ. By Lemma 2, Theorem 5
implies that there are only a polynomial number (in k and ∣M ∣) of approximate distance encodings;
the number of encodings does not depend on n!

G

v

u

1

k

k-1

𝜎2

ii+1

𝜎

𝜎 𝜎

𝜎

𝜎

Figure 2: G is unweighted and σ is on
the outer face. Both u and v are in A0

i .

We note that Theorem 3.7 in [LP19] is only stated for
∆ ∈ {−1,0}; however, as noted by Li and Parter [LP19]
in the proof of Theorem 3.7, it holds for any set of real
numbers. They used the general version to approximate
weighted diameters of planar graphs.

Our construction relies on the notion of approximate
patterns. For a given positive real number δ, we define
[a]δ to be the closest integer multiple of δ that is at least
a. Specifically,

[a]δ = ⌈
a

δ
⌉ ⋅ δ ∀a ∈ R . (2)

Next, we define approximate pattern and approx-
imate distance decoding. Our approximate pattern
is the approximate version of (exact) patterns in-
troduced by Fredslund-Hansen, Mozes, and Wulff-
Nilsen [FHMWN21].

Definition 1 (Approximate Pattern and Distance Encoding). Let σ be a sequence of vertices
in a graph G. Let u be a vertex in G. A δ-approximate pattern of u w.r.t. σ in G for some
parameter δ > 0 is a (k − 1)-dimensional vector p such that p[i] = [dG(u,σi+1) − dG(u,σi)]δ for
every i ∈ [k − 1].
A δ-approximate distance encoding of u w.r.t. σ in G is a k-dimensional vector d such that
d[1] = [dG(u,σ1)]δ and d[2 ∶ k] = p. That is, d[i] = p[i − 1] = [dG(u,σi) − dG(u,σi−1)]δ for all
2 ≤ i ≤ k.

Given the distance encoding d of a vertex u, we can decode d to get a k-dimensional distance
vector a from u to vertices in σ by computing a[i] = ∑i

j=1 d[j] for every i ∈ [k]. (In Lemma 3

9

below, we show that a[i] is close to dG(u,σi).) We can generalize the decoding procedure for any
k-dimensional vector x even if it does not correspond to a distance encoding of any vertex in the
graph. We will use this generalization in our distance oracle construction.

Definition 2 (Distance Decoding). Let x be a k-dimensional vector. The distance decoding of x
is a k-dimensional vector, denoted by x≤, such that x≤[i] = ∑i

j=1 x[j].

Next, we show that the distance decoding of a δ-approximate distance encoding of a vertex u
in the graph gives approximate distances from u to vertices in σ.

Lemma 3. Let d be a δ-approximate distance encoding of u w.r.t. a sequence σ of k vertices in
graph G. For any i ∈ [k], we define d̃G(u,σi) = d≤[i]. Then, it holds that

dG(u,σi) ≤ d̃G(u,σi) ≤ dG(u,σi) + i ⋅ δ. (3)

Proof. Let p be the δ-approximate pattern of u w.r.t. σ. Observe by the definition of [⋅]δ and
Definition 1 that for any j ∈ [k − 1]:

dG(u,σj+1) − dG(u,σj) ≤ p[j] ≤ dG(u,σj+1) − dG(u,σj) + δ (4)

By summing both sides of Equation (4) when j = 1, . . . , i − 1, it follows that:

dG(u,σi) − dG(u,σ1) ≤
i−1
∑
j=1

p[j] ≤ dG(u,σi) − dG(u,σ1) + (i − 1)δ .

Thus, we have:

dG(u,σi) ≤ dG(u,σ1) +
i−1
∑
j=1

p[j] ≤ dG(u,σi) + (i − 1)δ . (5)

By definition of [⋅]δ, dG(u,σ1) ≤ [dG(u,σ1)]δ ≤ dG(u,σ1) + δ. Thus, Equation (5) implies:

dG(u,σi) ≤ [dG(u,σ1)]δ +
i−1
∑
j=1

p[j] ≤ dG(u,σi) + iδ . (6)

By Definition 1, [dG(u,σ1)]δ + ∑i−1
j=1 p[j] = ∑i

j=1 d[j] = d≤[i]. The lemma now follows from Equa-
tion (6).

We note that by the definition of d̃G in Lemma 3,

Remark 2. d̃G(u,σ1) = [dG(u,σ1)]δ.

The following lemma bounds the number of patterns when ∣dG(u,σi+1) − d(u,σi)∣ is not much
larger than δ.

Lemma 4. Let G = (V,E,w) be a planar graph and σ be a sequence of k vertices in clockwise order
on a face f of G. Let g be a non-negative integer such that:

− gδ ≤ dG(u,σi+1) − d(u,σi) ≤ gδ ∀i ∈ [k − 1] (7)

For every vertex u ∈ V , let pu be the δ-approximate pattern of u w.r.t. σ. Let P = {pu ∶ u ∈ V } be
the set of all δ-approximate patterns w.r.t. σ. Then ∣P∣ = O((kg)3).

10

Proof. Let M = {−gδ, (−g + 1)δ, . . . ,−δ,0, δ, . . . , gδ} be a set of (2g + 1) real numbers. Recall that
Xu = {(i,∆)} is the set of distance indices associated with a vertex u, where ∆ ∈M . By Theorem 5,
F = {Xv}v∈V (G) has VC-dimension at most 3. Since the ground set {(i,∆)}i∈[k−1],∆∈M has size at
most k(2g + 1), by Lemma 2, ∣F∣ = O((k(2g + 1))3) = O((kg)3).

We show below that the map φ that maps pu to Xu is a bijection from P to F , which would
imply the claimed bound on ∣P∣. By definition, φ is surjective. Next, we show that φ is injective.

Let u /= v be two vertices such that pu /= pv. Then there exists some i ∈ [k − 1] such that
[dG(u,σi+1) − dG(u,σi)]δ /= [dG(v, σi+1) − dG(v, σi)]δ. Let ∆u = [dG(u,σi+1) − dG(u,σi)]δ and ∆v =
[dG(v, σi+1) − dG(v, σi)]δ. Since ∆u /= ∆v, w.l.o.g, we assume that ∆u < ∆v. By the definition of
[⋅]δ, dG(u,σi+1) − dG(u,σi) ≤∆u. Thus, u ∈ A∆u

i , and that (i,∆u) ∈Xu.

Similarly, v ∈ A∆v
i . Furthermore, by the definition of [⋅]δ that ∆v is the least multiple of δ

that is at least dG(v, σi+1) − dG(v, σi). Thus, there is no other ∆′ ∈ M such that ∆′ < ∆v and
v ∈ A∆′

i . Since ∆u < ∆v, v /∈ A∆u
i . That is, (i,∆u) /∈ Xv. It follows that Xu /= Xv. Therefore, φ is

injective.

We conclude this section by defining the distance between an approximate pattern and a ver-
tex. Recall that d̃G(u,σi) is the approximate distance from u to vertex σi computed from the
δ-approximate distance encoding of u w.r.t. σ (see Lemma 3).

Definition 3 (Pattern-Vertex Distance). Let v be a vertex and p be an approximate pattern (of
some vertex) w.r.t. a sequence σ in G = (V,E,w). Then, the distance between p and v is defined
as d̃G(v,p) =min1≤i≤k{d̃G(v, σi) +∑i−1

j=1 p[j]}.

3.2 Computing Distances from Approximate Distance Encodings

A basic building block in our distance oracle is to query the distance between two vertices separated
by a cycle C given their approximate patterns to a sequence of vertices on the cycle. In the work
of Fredslund-Hansen, Mozes, and Wulff-Nilsen [FHMWN21], (exact) patterns are defined w.r.t. all
vertices on C. Using this fact, they can show that, to query the distance between a vertex u outside
a cycle C to a vertex v, it suffices to compute the distance from u to a fixed vertex σ1 ∈ C, and
compute the distance from v to the pattern of u w.r.t. C. Cycle C does not have to have any
special structure for the distance query to work, and this follows from the fact that their exact
patterns encode exact distances. However, this property no longer holds in our setting, as pattern
are approximate and defined w.r.t. a subset of vertices on C.

We introduce a property, call the single-crossing property, and we show that if the separating
cycle C is single-crossing, one can retrieve the approximate distance between u and v in different
sides of C based on their approximate patterns to the boundary.

Definition 4 (Single-Crossing Property). Let C be a simple cycle in a plane graph G = (V,E,w).
We say that C is single-crossing if for any two vertices u, v such that u ∈ Int(C) and v ∈ Ext(C),
then there exists a shortest path from u to v crossing C at most once.

Let σ be a sequence of vertices ordered clockwise on C. We say that σ is a τ -cover of C for
some τ ≥ 0 if for every u ∈ C, dC(σi, u) ≤ τ where i ∈ [k] is the index such that u ∈ C[σi, σi+1]; here
σk+1 = σ1. In this section, we show the following.

Lemma 5. Let δ > 0, τ ≥ 0 be parameters. Let C be single-crossing simple cycle of a plane graph
G = (V,E,w), and σ be a sequence of k vertices ordered clockwise on C that τ -covers C. Let Gin

11

u

vb

𝜎1
𝜎r

𝜎r+1𝜎k

G in G out

e

Q2 Q1

C

u v
a

b

(a) (b)

Figure 3: (a) The solid path from u to v is SP (u, v,G); this path crosses the shortest path separator
(dashed cycle) once. (b) The dashed path is a shortest path from u to v that crosses the path Q1

in a shortest path separator at least twice. The red-highlighted path is a new shortest path from
u to v that crosses Q1 only once.

(Gout) be the subgraph of G induced by vertices inside (outside) or on C. Let u ∈ V (Gin) and
v ∈ V (Gout) be any two vertices. Let pu and du (pv and dv) be the δ-approximate pattern and
δ-approximate distance encoding, respectively, of u (v) w.r.t. σ in Gin (Gout). Let

d̃G(u, v)
def.= min

1≤i≤k
{d̃Gin(u,σi) + d̃Gout(v, σi)} (8)

where d̃Gin(u,σi) = d≤u[i] and d̃Gout(v, σi) = d≤v[i]. Then, the followings hold:

(1) dG(u, v) ≤ d̃G(u, v) ≤ dG(u, v) + 2kδ + 2τ .

(2) d̃G(u, v) = d̃Gout(pu, v) + d̃Gin(u,σ1).

Proof. See Figure 3(a) for an illustration. Note that G is undirected. By Lemma 3, we have that
d̃Gin(u,σi) ≥ dGin(u,σi) and that d̃Gout(v, σi) ≥ dGout(v, σi). By the triangle inequality, we have
that d̃Gin(u,σi) + d̃Gout(v, σi) ≥ dG(u, v) for any i ∈ [k]. It follows that

d̃G(u, v) =min
i∈[k]
{dGin(u,σi) + dGout(v, σi)} ≥ dG(u, v) .

This implies the left inequality in Item (1).
To show the right inequality in Item (1), we observe that, since C is simple-crossing, there is

a shortest path SP (u, v,G) from u to v cross C at most once. Thus, there exists a vertex b ∈ C
such that SP (u, v,G) = SP (u, b,Gin) ○ SP (b, v,Gout), where SP (u, b,Gin) (SP (b, v,Gout)) is the
shortest u-to-b (b-to-v) path in Gin (Gout). Let r ∈ [k] be such that dC[σr, b] ≤ τ ; r exists since σ
is a τ -cover of C.By the triangle inequality we have:

dGin(u,σr) + dGout(σr, v) ≤ dG(u, v) + 2dC[σr, b] ≤ dG(u, v) + 2τ (9)

12

Furthermore, by Lemma 3, the RHS of Equation (8) is at most

min
i∈[k]
{dGin(u,σi) + dGout(v, σi) + 2iδ} ≤ dGin(u,σr) + dGout(v, σr) + 2kδ

≤ dG(u, v) + 2kδ + 2τ

by Equation (9).
Next, we prove Item (2). Note by Remark 2 that d̃Gin(u,σ1) = [dGin(u,σ1)]δ. By Definition 1

and Definition 2, we have:

d̃Gin(u,σi) = d≤u[i] = [dGin(u,σ1)]δ +
i−1
∑
j=1

pu[j] (10)

By Definition 3, we have:

d̃Gout(pu, v) + d̃Gin(u,σ1) = min
1≤i≤k
{d̃Gout(v, σi) +

i−1
∑
j=1

pu[j]} + d̃Gin(u,σ1)

= min
1≤i≤k
{d̃Gout(v, σi) +

i−1
∑
j=1

pu[j] + [dGin(u,σ1)]δ}

= min
1≤i≤k
{d̃Gout(v, σi) + d̃Gin(u,σi)} (by Equation (10))

= d̃G(u, v) ,

(11)

as desired.

By Lemma 5, to obtain an approximate distance between u and v, it suffices to know the
δ-approximate distance encodings of u and v w.r.t. σ in Gin and Gout, respectively. We show
later that, by choosing δ appropriately, the size of the set of all approximate distance encodings
{du}u∈V (Gin) of Gin is polynomial in 1/ϵ. Thus, we can store all these distance encodings in a

table, say T1. Then for each vertex u ∈ Gin, we only store a pointer to the corresponding entry
in the table, which costs only O(1) machine words (instead of O(1/ϵ) machine words to store the
actual distance encoding of u). The same holds for v in graph Gout. Furthermore, we precompute
distances d̃ from every pair of distance encodings, one from Gin and the other from Gout, and store
the result in a lookup table, say T2, which costs only O(poly(1/ϵ)) space. To retrieve the distance
from u to v, we simply follow the pointers to access their approximate distance encodings in T1

and then access the d̃G(u, v) in table T2 in O(1) time. The total space is O(n + poly(1/ϵ)). Note
that this is only for querying distances from a vertex in Gin to a vertex in Gout; we need to recurse
to construct a data structure for all pairs of vertices. Furthermore, we want the space bound to be
Õ(n(1/ϵ)o(1)) rather than O(n + poly(1/ϵ)), and for this, we need additional ideas. Nevertheless,
the fact that the space dependency on 1/ϵ is additive instead of multiplicative is the key to our
construction later.

In our oracle construction, sometimes for a given vertex u ∈ Gin and v ∈ Gout, we can only
obtain approximate distance encodings that are sufficiently close to the true approximate distance
encodings of u and v. We show below that we can still recover the approximate distance between
u and v. To formally state our result, we need some notation. Given two approximate distance
encodings d1 and d2 of dimension k, we say that:

d1 ≈δ1,δ2 d2 if d1[1] ≈δ1 d2[1] and d1[2 ∶ k] ≈δ2 d[2 ∶ k] (12)

13

Definition 5 (Approximate Distance from Approximate Distance Encodings). Let d1 and d1 be
two approximate distance encodings of dimension k. We define their distance, denoted by, ∥d1,d2∥,
as follows:

∥d1,d2∥ = min
1≤i≤k
{d≤1[i] + d≤2[i]} (13)

If du and dv are two δ-approximate distance encodings as in Lemma 5, then ∥du,dv∥ = d̃G(u, v)
by definition (Equation (8)). We show below that we can recover the approximate distance from u
to v from the approximations of their approximate distance encodings.

Lemma 6. Let d1 and d2 be two approximate distance encodings of dimension k, and u ∈ Gin and
v ∈ Gout be two vertices of G where Gin and Gout are as defined in Lemma 5. Let du (dv) be the
δ-approximate distance encoding of u (v) w.r.t. σ in Gin (Gout). Suppose that:

d1 ≈δ1,δ2 du and d2 ≈δ1,δ2 dv

Then, ∥d1,d2∥ ≈2δ1+2(k−1)δ2 d̃G(u, v).
Proof. By Observation 1, ∑i

j=2 d1[j] ≈(i−1)δ2 ∑
i
j=2 du[j] for any i ∈ [k]. Thus, by Definition 2 and

Observation 1, d≤1[i] ≈δ1+(i−1)δ2 d≤u[i] = d̃Gin(u,σi). It follows that d≤1 ≈δ1+(k−1)δ2 d̃Gin(u, ⋅); here

d̃Gin(u, ⋅) is the k-dimensional vector whose i-th component is d̃Gin(u,σi). By the same argument,
we have that d≤2 ≈δ1+(k−1)δ2 d̃Gout(v, ⋅). The lemma then follows from Claim 1 and Equation (8).

We close this section by showing that shortest path separators in planar graphs are single-
crossing cycles. We rely on the well-known property that each shortest path separator cycle consists
of two shortest paths and a single edge.

Lemma 7. If a simple cycle C of a plane graph G(V,E,w) is composed of two shortest paths and
a single edge, then C is single-crossing.

Proof. Suppose that C = Q1 ○ e ○Q2 where Q1,Q2 are shortest paths of G, and e is a single edge.
Let u ∈ Gin and v ∈ Gout be two vertices separated by C, where Gin (Gout) be the subgraph of G
induced by vertices inside (outside) or on C. Let SP (u, v,G) be a shortest path from u to v in G
that crosses C a minimum number of times. (If u and v are both on C, we regard u as inside C and
v as outside C.) By Jordan curve theorem, SP (u, v,G) must cross C by an odd number of times.
If SP (u, v,G) crosses C at least 3 times, then SP (u, v,G) must cross, say Q1, at least twice. See
Figure 3(b) for an illustration. Let a and b be the first and the last crossing points on the path
SP (u, v,G) oriented from u to v. By replacing the subpath SP (u, v,G)[a, b] by Q1[a, b], we obtain
another path from u to v while the number of crossing is reduced by at least one, contradicting
that SP (u, v,G) has a minimum number of crossings. Thus, C is single-crossing.

3.3 Approximate Pattern Composition

We define patterns induced by approximate patterns. This definition is similar to the patterns
induced by patterns of [FHMWN21]. Recall the distance between a pattern and a vertex is defined
in Definition 3.

Definition 6 (Pattern Induced by an Approximate Distance). Let σ be a sequence of k vertices on
the boundary of a face f of a plane graph G. Let p be an approximate pattern (w.r.t. some sequence
of vertices that may be different from σ). The pattern induced by p w.r.t. σ is a (k−1)-dimensional
vector p̂ where p̂[i] = d̃G(p, σi+1) − d̃G(p, σi) for every i ∈ [k − 1].

14

u f

𝜎1
𝜎k

G in

G out

𝜎2

𝜎1

𝜎2

𝜎k

'

'

''

C

p'

p

Figure 4: Two patterns p′ and p of u w.r.t. two sequences σ′ and σ in Gin and G, respectively.
Lemma 8 implies that the pattern induced by p′ in Gout is a kδ-approximation of p.

In the following lemma, we show that, given a face f of a plane graph, and a simple-separating
cycle C such that f lies outside C, for any vertex u inside C, we can construct a new pattern from
u w.r.t. some vertex sequence σ in f by composing two patterns: a pattern from u w.r.t. some
vertex sequence σ′ on C, and the pattern w.r.t. σ induced by a pattern w.r.t. σ′. The new pattern
is may not be the same as the approximate pattern p of u w.r.t. σ in G as defined in Definition 1,
but it is close to p. See Figure 4 for an illustration.

Lemma 8 (Pattern Composition). Let σ be a sequence of k vertices on the boundary of a face f of
a plane graph G, and σ′ be a sequence of k′ vertices on a single-crossing simple cycle C such that
f ⊆ Ext(C). Let Gin (Gout) be the subgraph of G induced by vertices inside (outside) or on C. Let
u be a vertex in Gin, p′ be a pattern of u in Gin w.r.t. σ′, and p be a pattern of u in G w.r.t. σ.
Let p̂′ be the pattern induced by p′ in Gout. Then, it holds that p̂′ ≈kδ p.

Proof. By Definition 6, for any i ∈ [k − 1], we have:

p̂′[i] = d̃Gout(p′, σi+1) − d̃Gout(p′, σi)
= (d̃G(u,σi+1) − d̃Gin(u,σ′1)) − (d̃G(u,σi) − d̃Gin(u,σ′1)) (by Item (2) in Lemma 5)

= d̃G(u,σi+1) − d̃G(u,σi).

By Equation (3), we have:

d̃G(u,σi+1) − d̃G(u,σi) ≤ [dG(u,σi+1) − dG(u,σi)]δ + (i + 1)δ
d̃G(u,σi+1) − d̃G(u,σi) ≥ [dG(u,σi+1) − dG(u,σi)]δ − (i + 1)δ .

(14)

Thus, p̂′[i] ≈(i+1)δ p[i], which implies the lemma, since i ≤ k − 1.

15

3.4 A Weaker Oracle: Proof of Theorem 4

In this section, we construct an oracle as claimed in Theorem 4. The construction is described in
Section 3.4.1, ignoring implementation issues. The analysis of query time and space is presented
in Section 3.4.2 and Section 3.4.3. Finally, in Section 3.4.4, we discuss the implementation.

3.4.1 The Construction

First, we review the standard recursive decomposition using shortest path separators. Let T be
a shortest path tree of G rooted at a chosen vertex r. We assume w.l.o.g that G is triangulated.
A shortest path separator is a fundamental cycle C of T that comprises of two shortest paths
rooted at r and an edge e connecting two other endpoints of the two paths. By Lemma 7, C is
single-crossing. It was known that, for any given non-negative weight function wV ∶ V → R+, there
is a shortest path separator such that the total weight of vertices strictly inside or outside C is at

most
2wV (G)

3 where wV (G) = ∑u∈V wV (u).
We use the shortest path separators to recursively separate G into regions as follows. Initially

every vertex of G is marked. Starting from G, we construct a shortest path separator C such that
the total number of vertices strictly inside/outside C is at most 2n

3 , obtaining two regions sharing
the same boundary C. We then distribute marked vertices on C evenly to the two regions, so that
each region gets at most 2n/3 marked vertices. Some vertices on C in one region get unmarked
because they are marked vertices in the other region. Next, pick any region R that has at least
λ > 0 marked vertices for some parameter λ (defined in the algorithm below), we separate R using
the shortest path separator CR into two smaller regions R1,R2. The separator CR is chosen to
balance the number of holes or the number of marked vertices inside child regions. In particular, if
R has exactly 5 holes, we choose CR such that child regions R1,R2 each has at most ⌊2⋅53 ⌋ + 1 = 4
holes; this can be done by assigning weights to vertices on the hole appropriately. Otherwise, we
choose CR such that the number of marked vertices of each child region is at most 2/3 the number
of marked vertices of R; again, we distribute marked vertices on CR evenly to both sides. It follows
from the construction that each region has at most 5 holes.

Let T be the recursion tree induced by the recursive decomposition of G. Each node of T is
associated with a region resulting from the decomposition. It is well known that:

Lemma 9. T has depth O(log(n)) and O(nλ) nodes that can be constructed in O(n logn) time.

By construction, the internal vertices of a region are all marked. Unmarked vertices are on the
boundaries of the holes. We say that a region A is an ancestor of a region R if A is associated
with an ancestor node of R’s node in T . Clearly, R ⊆ A. Each region R, except G, has a special
hole h whose boundary is the separating cycle CP of its parent region P . We call h the parental
hole of R (see Figure 6(a)). (The parental hole of R could be the infinite face of R in the planar
embedding inherited from G.) The boundary of h is called the parental boundary of R. In the
following, we construct our distance oracle in four steps. Figure 5 and Figure 6 illustrates each step
of the construction.

16

Step 1

T ,LCAT

∣V (T)∣ = O(n/λ)
λ = log(n)/ϵc, c = 24

Step 2

T21 stores SR,PR

Key Value
.

u [dR+(u,σ1)]δ , ID(pu)
.

T22 stores D+R

Key Value

.

s, ID(p) ID([s,p]⊺)
.

Step 3

R

R1 R2

T3

Key Value
.

ID(d1), ID(d2) ∥d1,d2∥
.

d1 ∈D+R1
,d2 ∈D+R2

Step 4

PA ∶ pattern set of A

PR ∶ pattern set of R

P̂R,A ∶ patterns induced by patterns in PR

A
σA

R
Rout

T41a

Key Value

.

ID(p) d̃Rout(p, σA
1), ID(p̂)

.

p ∈ PR, p̂ ∈ P̂R,A

T41b

Key Value

.

ID(p̂) ID(p′)
.

p̂ ∈ P̂R,A,p
′ ∈ PA, ∥p̂ − p′∥∞ minimum

Figure 5: Tables and data structures used in each step of the oracle construction.

17

Distance Oracle Construction:

Step 1. Construct a recursive decomposition T of G with λ = logn
ϵc

for c = 24, and a lowest common ancestor data
structure LCAT for T . For each shortest path separator C in T , we designate O(1/ϵ) portals such that the distance
between any consecutive portals is ϵD; if there is an edge of length more than ϵD, we will subdivide the edge using
portals. For each region R associated with a node of T , let M(R) be the set of marked vertices of R.

Step 2. Let δ = ϵ3D. For each region R associated with a non-root node of T , let R+ be obtained from R by filling
all the holes of R, except the parental hole of R. That is, for each non-parental hole h, we add the edges and vertices
of G inside h to R. We form a sequence σ of the portals on the parental boundary of R by ordering the portals
clockwise order. (See Figure 6(b).) For each vertex u ∈M(R), let pu be the δ-approximate pattern of u w.r.t. σ in
graph R+. Let PR = {pu ∶ u ∈M(R)} and SR = {[dR+(u,σ1) ∶ u ∈M(R)]δ}. Let D+R = SR ×PR be a set k-dimensional
vectors whose first coordinates are scalars in SR; here k = ∣σ∣. We assign unique IDs to vectors in PR and D+R. At
node R, we store S and PR in a table T21 and D+R in a table T22. Given u, we can query [dR+(u,σ1)]δ and the ID of
pu in T21 in O(1) time. Given a scalar s ∈ SR and an ID of a vector p ∈ PR, we can query the ID of the corresponding
vector [s,p]⊺ ∈D+R in T22 in O(1) time.

Step 3. For each non-leaf node R with two child regions R1 and R2. Observe that R+1 ∪ R+2 = G by definition,
and that R+1 ∩ R+2 = CR where CR is the shared parental boundary of R1 and R2. (See Figure 6(a).) Let σ be the
sequence of portal vertices on CR. For each pair of distance encodings d1 ∈D+R1

and d2 ∈D+R2
, we compute ∥d1,d2∥

using Definition 5, and store it in a lookup table T3, indexed by the IDs of d1 and d2. Thus, given the IDs of d1 and
d2, we can look up the distance ∥d1,d2∥ in T3 in O(1) time.

Step 4. For each leaf region R, we store the following information at the node of R.

(4.1) For each ancestor region A of R, let Rout be the graph induced by the edge set (E(A+) ∖E(R+)) ∪ ∂R+. Let
σA be the sequence of portals of the parental boundary of A; see Figure 6(c). Let P̂R,A be the set of patterns
w.r.t. σA induced by δ-approximate patterns in PR in graph Rout.

(a) We store in a table T41a for each pattern p ∈ PR the distance d̃Rout(p, σA
1), and the ID of the pattern

p̂ ∈ P̂R,A induced by p. Given the ID of p, we can access the corresponding entry of T41a in O(1) time.

(b) Recall that PA is the set of δ-approximate patterns of A computed in Step 2. For each induced pattern
p̂ ∈ P̂R,A, we store in a table T41b the ID of the pattern p′ ∈ PA closest to p̂. That is, p′ minimize
∥∣p̂ − p′∥∞ over all patterns in PA. We can access entries of T41b in O(1) time given the ID of p̂.

(4.2) We construct a graph R′, called a contracted filled graph, from R as follows. (See Figure 6(d).) For each hole h
of R, let Ph be the set of portals on the boundary of h constructed in Step 1. Let Gh be the graph induced by
edges of G inside and on the boundary of h. Let Kh be the distance preserving minor of Ph in Gh. Next, let R
be obtained from R by contracting each unmarked vertices on the boundaries of the holes of R to the nearest
portal. The weight of new edges between two portals on the boundary of R is their distance in R. For every
set of parallel edges whose one endpoint is non-portal, we keep the minimum-weight edge. Let:

R′ = R⋃(∪h is a hole of R
Kh). (15)

Observe that R′ is planar. We apply Theorem 3 to construct an exact distance oracle ER for R′ with:

(a) ∣V (R′)∣1+o(1) space and log2+o(1)(∣V (R′)∣) query time or

(b) ∣V (R′)∣ log2+o(1)(∣V (R′)∣) space and ∣V (R′)∣o(1) query time.

18

R

R R
1 2

CR

h

R
h

R
h

+

A

R

Rout

𝜎R

𝜎A

R

R'

h

hK

(a) (b) (c) (d)

Figure 6: (a) A recursive decomposition tree T ; h is the parental hole of R and the boundary of h
is the parental boundary of R; separator CR separates R into two children R1 and R2. (b) R has
two holes, where h is the parental hole; R+ is obtained from R by filling up the non-parental hole;
σR is the sequence of vertices on the boundary of h. (c) A region R and its parent A (top) and
the subgraph Rout induced by the edge set (E(A+) ∖E(R+)) ∪ ∂R+ (bottom). (d) The contracted
filled graph R′ of R is obtained by first contracting some edges on the boundary of R to obtain R
and then filling each hole h in R by a graph Kh.

Here we briefly describe the idea of each step in the construction. Step 1 constructs the recursive
decomposition T and a basic data structure to navigate T . Step 2 stores the set of approximate
patterns of each region PR and an extended set of approximate distance decodings D+R. The set
of approximate distance decodings of R is DR = {du ∶ u ∈ M(R)}, which is a subset of D+R. The
reason we store the extended set is that we could not query the approximate distance decoding du

of u from the information stored at the leaf region containing u due to the pattern composition
step. The pattern composition only gives an approximate distance decoding d̃u that is close to du

(in ℓ∞ norm) and d̃u ∈D+R. Step 3 precomputes the distance of every pair of approximate distance
decodings in a table so that we can look up the distance in O(1) time during the query stage.
Step 4(1) implements the pattern composition discussed in Section 3.3, and Step 4(2) constructs
an exact distance oracle for each leaf region.

A

R

R

u

u

u

R1 2

Rv

v𝜎'

𝜎 𝜎

𝜎'
1

𝜎k 𝜎2

Answering a query. Let u and v be two given vertices
in the query. First, we find two leaf regions Ru and Rv

containing u and v such that u ∈M(Ru) and v ∈M(Rv).
If Ru = Rv = R, we query the distance between u and v in
ER, denoted by ER(u, v). We then return ER(u, v) + 2ϵD
as the approximate distance. (We add +2ϵD to ER(u, v)
because of the contraction in the construction of R.)

We now assume that Ru /= Rv. Let A = LCAT (Ru,Rv)
be the lowest common ancestor region of Ru and Rv. Let
R1 and R2 be two child regions of A where R1 (R2) is an
ancestor of Ru (Rv). Let σ be the sequence of vertices on
the parental boundary of R1 and R2. By construction,
R1 and R2 share the same parental boundary. Next, we

19

use the following lemma, whose proof is deferred to the end of this section.

Lemma 10. Given u ∈ Ru, we can query the ID of a vector d̃u ∈ D+R1
in O(1) time such that

d̃u ≈0,2kδ du where du is the approximate distance encoding of u w.r.t. σ in R+1 .

We apply Lemma 10 to query the IDs of approximate distance encodings d̃u ∈D+R1
and d̃v ∈D+R2

of u and v, respectively. Given the two approximate distance encoding IDs, we query table T3 of
A in O(1) time to obtain ∥d̃u, d̃v∥. Finally, we return:

∥d̃u, d̃v∥ + c0ϵD for some constant c0 chosen later (16)

as an approximate distance between u and v of our oracle.

Proof of Lemma 10. Let Rout
u be the graph induced by the edge set (E(R+1)∖E(R+u))∪∂R+u. (Rout

u

is exactly the graph in Step 4(1) obtained from the ancestor region R1 and the leaf region Ru.)

u
Ru

R1

Rout

𝜎

𝜎'

1

𝜎k

𝜎2

Recall each vector d̃u ∈ D+R1
can be written as d̃u = [[dR+1 (u,σ1)]δ ,p]

⊺
for some approximate

pattern p ∈ PR1 . (Pattern p might be different from pu, the approximate pattern of u in PR1 .)
Furthermore, we can query the ID of d̃u from table
T2 stored at R1 constructed in Step 2. To do so, we
need to know the value of [dR+1 (u,σ1)]δ and the ID
of p.

Recall by Remark 2, [dR+1 (u,σ1)]δ = d̃R+1 (u,σ1).
We query d̃R+1 (u,σ1) as follows. Let σ′ be the se-
quence of portals in the parental hole of Ru. We use
u to query table T2 of Ru (constructed in Step 2) to
get [dR+u(u,σ′1)]δ and the approximate pattern of u
in graph R+u, denoted by p′u. (We reserve pu notation for the approximate pattern of u in R+1 .)
Next, we use the ID of p′u to query d̃Rout(p′u, σ1) in table T41a (stored at Ru) constructed in Step
4(1a). The total query time is O(1). Observe that:

[dR+u(u,σ
′
1)]δ + d̃Rout(p′u, σ1)

= d̃R+u(u,σ
′
1) + d̃Rout(p′u, σ1) (by Remark 2)

= d̃R+1 (u,σ1) (by Item (2) of Lemma 5)

which will give us the value of [dR+1 (u,σ1)]δ.
Next, we query the ID of p as follows. First, we query the ID of p′u stored in table T2 of Ru as

above. Then, we use the ID of p′u to query the ID of an approximate pattern p in table T41b for
ancestor R1 of Ru constructed in Step 4(1b) in O(1) time.

Now using [dR+1 (u,σ1)]δ and the ID of p, we query the ID of d̃u ∈D+R1
from table T2 stored at

R1 constructed in Step 2. Note that d̃u[1] = [dR+1 (u,σ1)]δ = d̃R+1 (u,σ1) and d̃u[2 ∶ k] = p.
To complete the proof of the lemma, we show that d̃u ≈0,2kδ du. Observe that d̃u[1] =

[dR+1 (u,σ1)]δ = du[1]. Thus, by Equation (12), it remains to show that d̃u[2 ∶ k] ≈2kδ du[2 ∶ k]
which is equivalent to showing that p ≈2kδ pu.

20

By construction in Step 4(1b), p is the closest pattern of the pattern, say p̂′u ∈ P̂Ru,R1 , induced
by p′u. By Lemma 8, p̂′u ≈kδ pu; that is, ∥p̂′u,pu∥∞ ≤ kδ. Since p is closest to p̂′u in ℓ∞ norm, we
have:

∥p, p̂′u∥∞ ≤ ∥p̂′u,pu∥∞ ≤ kδ (17)

Since p ≈kδ p̂′u and p̂′u ≈kδ pu, it follows from Observation 1 that p ≈2kδ pu, as desired.

3.4.2 Query time and stretch analysis

Query time analysis. Let u and v be two querying vertices. If Ru = Rv = R, the algorithm
queries ER in time:

⎧⎪⎪⎨⎪⎪⎩

log2+o(1)(∣V (Ru)∣) = log2+o(1)(1/ϵ) + log2+o(1) log(n) in Regime 4(2a)

∣V (Ru)∣o(1) = logo(1)(n)(1/ϵ)o(1) in Regime 4(2b)
(18)

We now consider the case Ru /= Rv. The time to compute A = LCAT (Ru,Rv) is O(1). Let
R1 and R2 be two child regions of A where R1 (R2) is an ancestor of Ru (Rv). By Lemma 10,
the time to query the IDs of approximate distance encodings d̃u ∈ D+R1

and d̃v ∈ D+R2
of u and v,

respectively, is O(1). Next, we query table T3 of A in O(1) time to obtain ∥d̃u, d̃v∥. Finally, we
return the approximate distance in Equation (16) in O(1) time.

In summary, the total query time is dominated by the query time in Equation (18), which
implies the query time claimed in Theorem 4.

Stretch analysis and choosing c0 in Equation (16). If u and v are in the same leaf region
R, then the exact distance query in ER will return the exact distance between u to v in R′. We
show in the following that this distance approximates the true distance in G.

Lemma 11. dG(u, v) − 2ϵD ≤ dR′(u, v) ≤ dG(u, v) + 10ϵD.

Proof. We reuse the notation in Step 4(2) here. As the distance of each unmarked vertex to the
nearest portal is at most ϵD, by the triangle inequality, for any two marked vertices u and v, it
holds that:

dR(u, v) − 2ϵD ≤ dR(u, v) ≤ dR(u, v) (19)

Let G be obtained from R̄ by filling each hole exactly. That is:

G = R⋃(∪h is a hole of RG
h).

It follows from Equation (19) that:

dG(u, v) − 2ϵD ≤ dG(u, v) ≤ dG(u, v) (20)

Since R′ is obtained from R by approximately filling 5 holes through portals, and since the dis-
tance between any two consecutive portals is ϵD, by the triangle inequality, dG(u, v) ≤ dR′(u, v) ≤
dG(u, v)+10ϵD. Combined with Equation (20), we have dG(u, v)−2ϵD ≤ dR′(u, v) ≤ dG(u, v)+10ϵD
as claimed.

21

The distance that the oracle returns is ER(u, v)+2ϵD = dR′(u, v)+2ϵD, which is at least dG(u, v)
and at most dG(u, v) + 12ϵD by Lemma 11.

It remains to consider the case Ru /= Rv. Observe that for every region R in T , the sequence σ of
vertices forming from the portals of the parental boundary of R is a ϵD-cover of the boundary. Thus,
τ = ϵD. Since every shortest path has length at most D, there are at most k = O(D/τ) = O(1/ϵ)
vertices in σ.

In Equation (16), the oracle computes and returns ∥d̃u, d̃v∥+c0ϵD. The following lemma, whose
proof is deferred to the end of this section, will help us bound the stretch.

Lemma 12. ∥d̃u, d̃v∥ ≈(4k2−2k)δ+2τ dG(u, v). In particular, when k = O(1/ϵ), δ = ϵ3D and τ = ϵD,

then ∥d̃u, d̃v∥ ≈c0ϵD dG(u, v) for some constant c0.

We choose c0 in Equation (16) to be the value in Lemma 12. It follows that:

dG(u, v) ≤ ∥d̃u, d̃v∥ + c0ϵD ≤ dG(u, v) + 2c0ϵD .

That is, the additive stretch of our oracle is +O(ϵD). We can get back additive stretch +ϵD by
scaling ϵ.

Proof of Lemma 12. By construction, R+1 ∪ R+2 = G. We denote Gin = R+1 and Gout = R+2 . The
cycle separating Gin and Gout is single-crossing by Lemma 7. Recall that σ is the sequence of at
most k portals on the (shared) parental boundary of R1 and R2. Let pu (du) and pv (dv) be the
δ-approximate patterns (distance encodings) of u and v w.r.t. σ in Gin and Gout, respectively. By
Lemma 10, we have:

d̃u ≈0,2kδ du and d̃v ≈0,2kδ= dv

By applying Lemma 6 with δ1 = 0 and δ2 = 2kδ, ∥d̃u, d̃v∥ ≈4(k−1)kδ d̃G(u, v). By Item (1) in
Lemma 5, d̃G(u, v) ≈2kδ+2τ dG(u, v). It follows from Observation 1 that ∥d̃u, d̃v∥ ≈(4k2−2k)δ+2τ dG(u, v)
as desired.

3.4.3 Space analysis

First, we bound the number of δ-approximate patterns w.r.t. sequence σH of at most k = O(1/ϵ)
vertices in a graph H arising during the construction of the oracle; H could be R+ in Step 2, or
Rout in Step 4(1). Recall that we set δ = ϵ3D in Step 2. Since the distance between σi+1 and
σi is at most ϵD by construction for every i ∈ [k − 1], it follows from the triangle inequality that
−ϵD ≤ dG(u,σi+1) − dG(u,σi) ≤ ϵD. That is, the constant g in Lemma 4 satisfies g ≤ ϵD

δ ≤ 1/ϵ
2. Let

PH be the set of all approximate patterns of H. By Lemma 4, we have:

∣PH ∣ = O((kg)3) = O(1/ϵ9) . (21)

In the next four lemmas, we bound the space of each step of the oracle construction. (See
Figure 5 for an illustration.) Recall that c = 24 specified in Step 1.

Lemma 13. The total space of Step 1 is O(nϵc−1logn).

Proof. Since λ = log(n)
ϵc , T has O(nϵc

logn) nodes by Lemma 9. Thus, the total space to store all portals

in Step 1 is O(nϵc

logn ⋅ (1/ϵ)) = O(nϵc−1logn). The LCA data structure LCAT (see, e.g., [BFC00]) has

space O(∣V (T)∣) = O(nϵc

logn), which implies the lemma.

22

Lemma 14. The total space of Step 2 is O(nϵc−13logn).

Proof. Observe that there are 2D
δ = O(1/ϵ

3) different values of [dR+1 (u,σ1)]δ considered in Step 2.
This is because the subgraph associated every node of T has a diameter at most 2D due to the
special structure of regions separated by shortest path separators: the shortest path trees of these
subgraphs are subtrees of T , the shortest path tree of G rooted at r. Since the total number of
patterns for each region is O(1/ϵ9) by Equation (21), the total number of approximate distance
encodings is O(1/ϵ12). Since each distance encoding has size O(1/ϵ), the space of table T12 and T22

in Step 2 is O(1/ϵ13). It follows that the total space in Step 2 is O(nϵc

logn(1/ϵ
13)) = O(nϵc−13logn).

Lemma 15. The total space of Step 3 is O(nϵc−24logn).
Proof. The analysis of Step 2 in Lemma 14 shows that the number of approximate distance encod-
ings of each region is O(1/ϵ12). Thus, the space of table T3 is O((1/ϵ12)2) = O(1/ϵ24). It follows

that the total space of Step 3 is O(nϵc

logn(1/ϵ
24)) = O(nϵc−24logn).

In Step 4, we have two different regimes, namely Regime 4(2a) and Regime 4(2b), for the choice
of the exact distance oracle ER in Step 4(2). Our analysis considers each regime separately.

Lemma 16. The total space of Step 4 is n(log(n)1/ϵ)o(1) for Regime 4(2a) and n(log2+o(1)(logn)+
log2+o(1)(1/ϵ)) for Regime 4(2b).

Proof. We consider each substep separately. We assume that 1/ϵ = nO(1); otherwise, applying the
exact oracle in Theorem 3 gives the desired bounds in Theorem 1. Thus, a value of size poly(1/ϵ)
costs O(1) words of space to store.

Step 4(1) We observe by Equation (21) that ∣PR∣ = O(1/ϵ9) and ∣P̂R,A∣ = O(1/ϵ9). Thus the ID of
each pattern in PR and P̂R,A only costs O(1) words. Storing P̂R,A requires O(1/ϵ10) words of space
since each pattern has size O(1/ϵ). In Step 4(1a), the total space of T41a is O(∣PR∣) = O(1/ϵ9). In
Step 4(1b), the total space of T41b is also O(∣P̂R,A∣) = O(1/ϵ9). Since each leaf region R has O(logn)
ancestors by Lemma 9, the total space of Step 4(1) is O(nϵc

logn(1/ϵ
9) log(n)) = O(nϵc−9) = O(n).

Step 4(2) Observe that ∣M(R)∣ = Θ(λ) = Θ(log(n)/ϵc). Since R has at most 5 holes and each
hole we add O(1/ϵ4) in the construction of R′, it follows that:

∣V (R′)∣ = O(log(n)/ϵc + 1/ϵ4) = O(log(n)/ϵc) . (22)

There are two different regimes for the choice of ER:
(a) the space of ER is log1+o(1)(n)/ϵc+o(1). Then the total space of Step 4(2) is:

O(nϵc

log(n)) ⋅
log1+o(1)(n)

ϵc+o(1)
= n(log(n)1/ϵ)o(1). (23)

(b) the space of ER is
log(n)

ϵc (log
2+o(1)(log(n))+ log2+o(1)(1/ϵ)). Then the total space of Step 4(2)

is:

O(nϵc

log(n)) ⋅
log(n)
ϵc

(log2+o(1)(log(n)) + log2+o(1)(1/ϵ))

= n(log2+o(1)(logn) + log2+o(1)(1/ϵ))
(24)

23

Proving the space bound in Theorem 4. Since c = 24, by Lemmas 13 to 15, the total space of the
oracle in Steps 1-3 is :

O(nϵ
c−1

logn
+ nϵc−13

logn
+ nϵc−24

logn
) = O(n) (25)

which is dominated by the total space of Step 4. Thus, the space bound of the oracle as claimed in
Theorem 4 follows from Lemma 16.

3.4.4 Preprocessing

By Lemma 9, T can be constructed in O(n logn) time. The most time-consuming step is to compute
R+ for each region R associated with a node of T defined in Step 2. Recall that R+ is obtained from
R by filling in the non-parental holes. Note that T only has O(n/ log(n)ϵc) = O(n/ log(n)) nodes.
However, R+ could have Ω(n) vertices, resulting in the total size of Ω(n2/ log(n)). A standard
technique [Tho04, KST13, WY16, CS19] to reduce the size of R+ is to approximately fill the holes
of R such that ∣V (R+)∖V (R)∣ = poly(log(n),1/ϵ) and for every u, v ∈M(R), dR(u, v) ≤ dR+(u, v) ≤
dR(u, v)+ϵD. We will show that the total size of all regions {R+}R∈T is O(npoly(log(n))). (Indeed,
we can reduce the total size of all regions to O(n lognpoly(1/ϵ)) using a more complicated adaptive
filling technique of Chan and Skrepetos [CS19].) Next, we describe the filling procedure in detail
using dense portals, following Weimann and Yuster [WY16].

T

R1

R1

R2

TR2
Rt

TG

R

CR

R R
1 2

(a) (b)

Figure 7: (a) A region R with two holes; two child regions R1 and R2; distance preserving minors
H1 (associated with R1) and H2 (associated with R2) compose of red vertices and edges. (b)
An illustration for the proof of Theorem 2; the highlighted subtree is the tree resulting from the
recursive decomposition of a leaf region R1 of the tree TG; the highlighted subtree corresponds to
a node at the second level in the hierarchy of oracles H.

24

The filling process is top-down. The root of T is associated with G. Let R be a region associated
with a node of T , and R1,R2 be its two child regions. Let GR be the approximately filled graph of
R where every hole was approximately filled. (Think of GR as an approximation of G where the
distances between marked vertices of R are approximately preserved.) GR is given by induction;
at the root, GR = G.

Let CR be the shortest path separator that separates R into R1,R2. We place O(ϵ/ log(n))
portals, called dense portals, on CR such that the distance between any two nearby dense portals is
c1ϵD/ log(n) for some constant c1 ≥ 1. Next, we construct two distance preserving minors H1,H2

for the dense portals of CR as in Step 4(2) of the oracle construction, one for the subgraph of GR

inside CR (and include CR), and the other for the subgraph of GR outside CR (and include CR).
See Figure 7(a) for an illustration. Assume that R1 is outside CR and R2 is inside CR. Then H1

and the subgraphs of GR outside CR form the approximately filled region of R1, and similarly, H2

and the subgraphs of GR outside CR form the approximately filled region of R2. Observe that
∣V (H1)∣ = O(log4(n)/ϵ4) and ∣V (H2)∣ = O(log4(n)/ϵ4) by Lemma 1. This means the total size of
GR1 is M(R1) + O(log4(n)/ϵ4) (as R1 has only 5 holes). The same holds for R2. We called the
vertices in (V (GR1) ∪ V (GR2)) ∖ (V (R1) ∪ V (R2)) Steiner vertices.

Since ∣V (T)∣ = O(nϵc/ log(n)) and c = 24, the total number of Steiner vertices is O(nϵc/ log(n))⋅
O(log4(n)/ϵ4) = O(n log3(n)). Thus the total size of all approximately filled regions is O(n log3 n).
For each graph GR, computing H1 and H2 takes O(log2(n)/ϵ2∣V (GR)∣) time, as it boils down to
computing all-pairs shortest paths between dense portals of a hole that can be done O(∣V (GR)∣)
time per shortest path [HKRS97]. (A more efficient way to compute H1 and H2 in O(n log(n) +
n log4(n)ϵc−4) is to use the multiple-source shortest path algorithm of Klein [Kle05]; see Theorem
6 in [CS19].) The total time to compute all approximately filled regions is:

O((∑
R

∣V (GR)∣) log2(n)/ϵ2) = O(n log3 nϵc log2(n)/ϵ2) = O(n log5(n)) ,

since c = 24.
For each region R, and its approximately filled graph GR, we can extract the approximate graph

R+ by removing all the Steiner vertices in the parental hole of R.
Next we compute the patterns of R+ w.r.t. the sequence of portals σ on the parental boundary

of R. This can be done in O(V (R+)1/ϵ) time by computing a shortest tree from each vertex in σ;
there are only O(1/ϵ) vertices in the sequence σ. Given the patterns, all tables T2, T41a, T41b can
be computed in O(poly(1/ϵ)) time per node. Thus, the total running time is O(npoly(1/ϵ)) since
the number of nodes of T is O(nϵc/ log(n)) = O(n).

Finally, by Theorem 3, the exact distance oracle for each leaf region ER can be computed in
time ∣V (R′)∣3/2+o(1) = poly(logn,1/ϵ) since ∣V (R′)∣ = O(log(n)/ϵc). Thus, the total running time
to compute all the exact distance oracles is O(npoly(logn,1/ϵ))

In summary, the total construction time of the oracle in Theorem 4 is O(npoly(logn,1/ϵ)).
We now show that the additive distortion due to approximate filling is ϵD. Let u, v be any

two marked vertices in R1 (a child region of R). Since the distance between any two nearby dense
portals is at most c1ϵD/ log(n), by the triangle inequality, dGR

(u, v) ≤ dGR1
(u, v) ≤ dGR

(u, v) +
2c1ϵD/ log(n). Since the depth of T is O(logn), by induction, it holds that dGR1

(u, v) ≤ dG(u, v)+
O(logn)2c1ϵD/ log(n) = dG(u, v) + ϵD for an appropriate choice of constant c1.

Since the approximate filling incurs an additive distortion ϵD, the distance returned by the
oracle is at most:

(dG(u, v) + ϵD) + ϵD = dG(u, v) + 2ϵD

25

By scaling, we can get back additive distortion +ϵD.

3.5 Reducing Space and Query Time: Proof of Theorem 2

We employ the bootstrapping idea of Kawarabayashi, Sommer, and Thorup to replace logo(1)(n)
factor in the space and query time of the oracle in Theorem 4 with a log∗(n) factor. With more
careful analysis and using an LCA data structure to navigate the hierarchy in the construction
below, we save a log∗(n) factor in the query time and make the log∗(n) factor in the space additive
instead of multiplicative. We restate Theorem 2 below for convenience.

Theorem 2. Let ϵ > 0,D > 0 be a positive parameter and G = (V,E,w) be an undirected n-vertex
planar graph of diameter D. There is an approximate distance oracle of additive stretch +ϵD with
construction time O(npoly(logn, ϵ)) and:

(1) O(n((1/ϵ)o(1) + log∗(n))) space and log2+o(1)(1/ϵ) query time or

(2) O(n(log2+o(1)(1/ϵ) + log∗(n))) space and (1/ϵ)o(1) query time.

Proof. Starting from G, we apply all steps from 1-4 of the construction in Section 3.4 to G, creating
a recursive decomposition tree TG, except that in Step 4(2), we do not construct an exact distance
oracle ER1 for each leaf region R1. Instead, we recurse on R1, creating a second-level recursive
decomposition tree TR1 . That is, we apply all steps from 1-4 to R1, except Step 4(2). See Figure 7(b)
for an illustration of the construction. Note that ∣M(R1)∣ = Θ(log(n)/ϵc) for c = 24. Let TR1

be the recursion tree induced by the recursive decomposition of R1; leaves of TR1 correspond to
regions, say R2, of R1 that have ∣M(R2)∣ = Θ(log log(n)/ϵc). We then continue to recurse on R2.
Generally, at step j of the recursion, the number of marked vertices in the region associated with

each leaf Rj of the recursive decomposition tree, denoted by TRj−1 , is O(
log(j) n

ϵc) where log(j)(n) =
log(log(⋯ log(n)⋯)); the logarithm is applied j times. We stop the recursion when a leaf region,
say Rt, at some step t of the recursion, has ∣M(Rt)∣ = Θ(1/ϵc). We apply Theorem 3 to construct
an exact distance oracle ERt for the contracted filled graph R′t of Rt with:

� Regime 4(2a). ∣V (R′t)∣1+o(1) = ∣V (R′t)∣(1/ϵ)o(1) space andO(log2+o(1)(∣V (R′t)∣)) = log2+o(1)(1/ϵ)
query time or

� Regime 4(2b). ∣V (R′t)∣ log2+o(1)(∣V (R′t)∣) = ∣V (R′t)∣ log2+o(1)(1/ϵ) space and ∣V (R′t)∣o(1) =
(1/ϵ)o(1) query time.

Note that ∣V (R′t)∣ = poly(1/ϵ) since ∣M(Rt)∣ = Θ(1/ϵc).
This construction gives us a hierarchy H of oracles: each recursion step corresponds to a level

in H. Each internal node τ of the hierarchy at level j corresponds to the oracle, say ORj−1 , for a
leaf region Rj−1 at level j − 1 (when j = 1, we denote R0 = G). The oracle ORj−1 allows us to query
distances between marked vertices that are not in the same leaf of the recursive decomposition tree
TRj−1 in O(1) time, following the analysis in Section 3.4.2. Each leaf of H corresponds to an exact
distance oracle for a region Rt.

Clearly, the recursion depth, which is also the depth of the hierarchy H, is t = O(log∗ n) since
each time we recurse, the size of the region is reduced from O(log

(j−1)(n)
ϵc) to O(log

(j) n
ϵc) for some

j ∈ {2,3, . . . , t}; in the first level (j = 1), the size is reduced from n to O(log(n)/ϵc).

26

By the analysis in Section 3.4.3, in particular Equation (25), the total space of each non-leaf
level of H is O(n). Thus, the total space of H associated with non-leaf nodes is O(n log∗ n). On
the other hand, by the same analysis in Equations (23) and (24), the total space of the oracles at
leaves of H is:

� ∑Rt is a leaf of H ∣V (R′t)∣(1/ϵ)o(1) = nϵo(1) space in Regime 4(2a) or

� ∑Rt is a leaf of H ∣V (R′t)∣ log2+o(1)(1/ϵ) = n log2+o(1)(1/ϵ) in Regime 4(2b).

Thus, the total space of the oracle is O(n(ϵo(1)+log∗ n)) in Regime 4(2a) and is O(n(log2+o(1)(1/ϵ)+
log∗ n)) in Regime 4(2b), as claimed.

To answer a query quickly, we augment H with the following: for each vertex v ∈ G, we
store a pointer to a leaf node of H whose corresponding region Rt contains v as a marked vertex.
Furthermore, we construct an LCA data structure for H. Note that H has O(n) nodes as it is a
binary tree with at most n leaves, the total space augmented to H is O(n).

Now given two vertices u and v, let Rt(u) and Rt(v) be two leaf regions of H containing u
and v. If Rt(u) /= Rt(v), we query the lowest common ancestor, denoted by Ruv, of Rt(u) and
Rt(v) in O(1) time. Then, the approximate distance query can be done in O(1) by querying ORuv .
If Rt(u) = Rt(v) = R, we query the exact distance oracle ER to obtain an approximate distance
between u and v in time log2+o(1)(1/ϵ) in Regime 4(2a) and in time (1/ϵ)o(1) in Regime 4(2b).
Following the stretch analysis in Section 3.4.2, the additive stretch is +O(ϵ)D.

For the construction time, by Theorem 4, each level ofH can be constructed in time npoly(logn, ϵ)
time. Since the depth of H is O(log∗ n), the running time to construct H is npoly(logn, ϵ) ⋅ log∗ n =
npoly(logn, ϵ), as desired.

4 Distance Oracles with Multiplicative Stretch: Proof of Theo-
rem 1

The construction relies on sparse covers as defined below. For a graph G, we denote by diam(G)
the diameter of G. For a vertex v ∈ V (G) and a parameter r > 0, we denote by BG(v, r) = {u ∈
V (G) ∶ dG(u, v) ≤ r} the ball of radius r centered at v.

Definition 7 (Sparse Cover). A (β, s,∆)-sparse cover of an edge-weighted graph G = (V,E,w) is
a collection of induced subgraphs C = {C1, . . . ,Ck}, called clusters such that:

(1) diam(Ci) ≤∆ for every i ∈ [k].
(2) For every v ∈ V , there exists i ∈ [k] such that BG(v,∆/β) ⊆ V (Ci).
(3) Every vertex v is contained in at most s clusters in C.

If for any given ∆ > 0, G has a (β, s,∆)-sparse cover, we say that G admits a (β, s)-sparse
covering scheme.

The notion of sparse covers was introduced by Awerbuch and Peleg [AP90]. Busch, LaFortune,
and Tirthapura [BLT07] showed that planar graphs admit an (O(1),O(1))-sparse covering scheme.
Abraham, Gavoille, Malkhi, and Wieder [AGMW10] extended the result of Busch, LaFortune, and
Tirthapura [BLT07] to minor-free graphs. Le and Wulff-Nilsen [LWN21] showed that a sparse cover
of planar graphs can be constructed in linear time.

27

Lemma 17 (Lemma 1 in the full version of [LWN21]). Given a planar graph G = (V,E,w) with n
vertices and any parameter ∆ > 0, then one can construct an (O(1),O(1),∆)-sparse cover of G in
O(n) time.

Lemma 18. Let ϵ ∈ (0,1), r > 0 be positive parameters and G = (V,E,w) be an n-vertex planar
graph. We can construct in O(npoly(log(n),1/ϵ)) time an oracle OG such that:

dG(u, v) ≤ OG(u, v) for all u, v ∈ V
OG(u, v) ≤ (1 + ϵ)dG(u, v) for u, v ∈ V s.t. dG(u, v) ∈ [r,2r]

(26)

Here OG(u, v) is the distance returned by OG. Furthermore, OG has

(1) O(n((1/ϵ)o(1) + log∗(n))) space and log2+o(1)(1/ϵ) query time or

(2) O(n(log2+o(1)(1/ϵ) + log∗(n))) space and (1/ϵ)o(1) query time.

Proof. We construct a (β, s, β ⋅ (2r))-sparse cover C for G with β = O(1) and s = O(1) using
Lemma 17. Since s = O(1), by property (3) of Definition 7, we have:

∑
C∈C
∣V (C)∣ ≤ s∣V ∣ = O(n) (27)

For each cluster C ∈ C, we apply Theorem 2 to construct an additive distance oracle OC with
additive stretch +ϵdiam(C). The oracle for G consists of the oracles for all clusters in C. In addition,
for each vertex u, we will store O(1) pointers to each cluster C ∈ C that contains u. If we let Cuv ⊆ C
be the set of O(1) clusters containing both u and v, then the approximate distance between u and
v is:

OG(u, v) = min
C∈Cuv

OC(u, v) (28)

where OC(u, v) is the distance returned by the oracle OC . (If Cu,v = ∅, we simply set OG(u, v) =
+∞.)

Clearly, OG(u, v) ≥ dG(u, v) for any u, v ∈ V since dC(u, v) ≤ dG(u, v) for any subgraph C of G.
Next, we consider the case where dG(u, v) ∈ [r,2r]. By property (2) in Definition 7, there is a

cluster X ∈ C such that BG(v, (β2r)/β) = BG(v,2r) ⊆ V (X). Since X is an induced subgraph of
G, it holds that dX(u, v) = dG(u, v). Furthermore, since the additive stretch of OX is :

ϵdiam(X) ≤ ϵ(2βr) = O(ϵ)r = O(ϵ)dG(u, v) ,

it follows that:
OX(u, v) ≤ dX(u, v) +O(ϵ)dG(u, v) = (1 +O(ϵ))dG(u, v) .

This and Equation (28) imply that O(u, v) ≤ (1+O(ϵ))dG(u, v). By scaling ϵ, we get that O(u, v) ≤
(1 + ϵ)dG(u, v), as claimed.

We now analyze the space and query time of O.
If we use Regime (1) in Theorem 2 to construct OC , then the query time is log2+o(1)(1/ϵ) and

the total space is:

∑
C∈C

O(∣V (C)∣)((1/ϵ)o(1) + log∗(∣V (C)∣)) = O(n((1/ϵ)o(1) + log∗(n)))

by Equation (27).

28

If we use Regime (2) in Theorem 2 to construct OC , then the query time is (1/ϵ)o(1) and the
total space is:

∑
C∈C

O(∣V (C)∣)(log2+o(1)(1/ϵ) + log∗(∣V (C)∣)) = O(n(log2+o(1)(1/ϵ) + log∗(n)))

by Equation (27).
For the construction time, by Lemma 17, C can be constructed in O(n) time. By Theorem 2,

OC can be constructed in ∣V (C)∣poly(log(∣V (C)∣), ϵ) = ∣V (C)∣poly(log(n), ϵ) time. Thus, by Equa-
tion (27), the total running time to construct all oracles OC is O(npoly(log(n), ϵ)) as claimed.

We are now ready to prove Theorem 1 that we restate below for convenience.

Theorem 1. Let ϵ ∈ (0,1) be positive parameter and G = (V,E,w) be an undirected, edge-weighted
planar graphs with n vertices. We can construct in O(npoly(log(n),1/ϵ)) time a (1+ϵ)-approximate
distance oracle that has:

(1) O(n log(n)((1/ϵ)o(1) + log∗ n)) space and log2+o(1)(1/ϵ) query time or

(2) O(n log(n)(log2+o(1)(1/ϵ) + log∗ n)) space and (1/ϵ)o(1) query time.

Proof. By scaling edge weights, we assume that the minimum distance is 1. For each i = 0,1,2, . . .,
we denote ri = 2i. Let Gi be obtained from G by contracting every edge of weight at most (riϵ)/n.
Observe that, for every pair (u, v) such that dG(u, v) ∈ [ri,2ri], we have:

dG(u, v) − ϵri ≤ dGi(u, v) ≤ dG(u, v). (29)

This is because we contract at most n edges of weight at most ri/(ϵn) each and, hence, the distance
loss due to the contraction is at most n ⋅ (riϵ)/n ≤ ϵri. Furthermore, by construction, each edge
e ∈ G belongs to at most O(logn) graphs Gi; it follows that:

∑
i≥0
∣E(Gi)∣ = O(n logn) (30)

For each subgraph Gi, we apply Lemma 18 to construct a distance oracle OGi .
Next, we construct a 2-approximate distance oracle O2 with O(n logn) space and O(1) query

time; such an oracle can be constructed in O(n log3(n)) time by applying the construction of
Thorup [Tho04] and Klein [Kle02] with ϵ = 1.

Our final oracle, denoted by O, consists of O2 and all oracles {OGi}i≥0.
To query O given two vertices u and v, first we query O2 to get a 2-approximation of dG(u, v),

denoted by O(u, v). Then we compute a set of 3 indices Iuv = {i0 − 2, i0 − 1, i0} with i0 =
⌊log2(O2(u, v))⌋. Finally, for each index j ∈ Iuv, we query the oracle OGj and return:

O(u, v) = min
j∈Iuv
{OGj(u, v) + ϵrj} (31)

We now bound the stretch of O. Let iuv be such that dG(u, v) ∈ [riuv ,2riuv). This means that
if we query the oracle OGiuv

, by Lemma 18, the returned distance OGiuv
(u, v) satisfies:

dGiuv
(u, v) ≤ OGiuv

(u, v) ≤ (1 + ϵ)dGiuv
(u, v)

29

Thus, from Equation (29) and the fact that dG(u, v) ≥ riuv , we have:

dG(u, v) ≤ dGiuv
(u, v) + ϵruv ≤ OGiuv

(u, v) + ϵruv
OGiuv

(u, v) + ϵruv ≤ (1 + ϵ)dGiuv
(u, v) + ϵruv ≤ (1 + 2ϵ)dG(u, v),

implying that the (multiplicative) stretch of O is (1+ 2ϵ); by scaling ϵ, we get back stretch (1+ ϵ).
We now bound the space and query time of O; we consider two regimes in Lemma 18 that we

use to construct Oi.

1. Regime (1) . Since the query time of O2 is O(1), Iuv can be computed in O(1) time. Since
∣Iuv ∣ = 3 and the query time of each OGi is log

2+o(1)(1/ϵ), the total query time is log2+o(1)(1/ϵ).
The space of O2 = O(n logn) and the total space of all {OGi}i≥0, by Lemma 18, is:

∑
i≥0

O(∣V (Gi)∣((1/ϵ)o(1) + log∗(∣V (Gi)∣))) = O(n log(n)((1/ϵ)o(1) + log∗ n))

by Equation (30). This implies the claimed space bound.

2. Regime (2) . In this regime, the query time of each OGi is (1/ϵ)o(1) which is also the total
query time. The total space of all {OGi}i≥0, by Lemma 18 is:

∑
i≥0

O(∣V (Gi)∣(log2+o(1)(1/ϵ) + log∗(∣V (Gi)∣))) = O(n log(n)(log2+o(1)(1/ϵ) + log∗ n))

by Equation (30), as desired.

For the construction time, recall that the construction time of O2 is O(n log3(n)). The con-
struction time of each OGi is ∣V (Gi)∣poly(log(∣V (Gi)∣),1/ϵ) = ∣V (Gi)∣poly(log(n),1/ϵ). By Equa-
tion (30), the total construction time of O is npoly(log(n),1/ϵ).

Acknowledgement. This work is supported by the National Science Foundation under Grant
No. CCF-2121952. We thank ChristianWulff-Nilsen for many helpful conversations.

References

[ACC+96] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane. In
European Symposium on Algorithms, ESA’96, pages 514–528, 1996, doi:10.1007/
3-540-61680-2_79. 6

[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete Computational Geometry, 9(1):81–100, 1993, doi:
10.1007/BF02189308. 2

[AGMW10] I. Abraham, C. Gavoille, D. Malkhi, and U. Wieder. Strong-diameter decompositions
of minor free graphs. Theory of Computing Systems, 47(4):837–855, 2010, doi:
10.1007/s00224-010-9283-6. 27

30

http://dx.doi.org/10.1007/3-540-61680-2_79
http://dx.doi.org/10.1007/3-540-61680-2_79
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1007/s00224-010-9283-6
http://dx.doi.org/10.1007/s00224-010-9283-6

[AP90] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings the 31st Annual
Symposium on Foundations of Computer Science, FOCS ‘90, 1990, doi:10.1109/
fscs.1990.89571. 27

[BFC00] M. A. Bender and M. Farach-Colton. The lca problem revisited. In Latin American
Symposium on Theoretical Informatics (LATIN ’00), pages 88–94, 2000, doi:10.
1007/10719839_9. 22

[BLT07] C. Busch, R. LaFortune, and S. Tirthapura. Improved sparse covers for graphs
excluding a fixed minor. In Proceedings of the 26th annual ACM symposium on
Principles of Distributed Computing, PODC ‘07, 2007, doi:10.1145/1281100.

1281112. 27

[Cab10] S. Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2010.
Announced at SODA ‘06, doi:10.1007/s00453-010-9459-0. 6

[Cab18] S. Cabello. Subquadratic algorithms for the diameter and the sum of pairwise dis-
tances in planar graphs. ACM Transactions on Algorithms, 15(2), 2018. Announced
at SODA’17, doi:10.1145/3218821. 1, 4, 6

[CADWN17] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen. Fast and compact exact dis-
tance oracle for planar graphs. In IEEE 58th Annual Symposium on Foundations of
Computer Science, FOCS ‘17, pages 962–973, 2017, doi:10.1109/FOCS.2017.93.
6

[CFKL20] V. Cohen-Addad, A. Filtser, P. N. Klein, and H. Le. On light spanners, low-treewidth
embeddings and efficient traversing in minor-free graphs. In 61th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ‘21, pages 589–600, 2020.
See: conference version, arXiv version,. 2

[CGMW19] P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann. Almost op-
timal distance oracles for planar graphs. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC ‘19, pages 138–151, 2019,
doi:10.1145/3313276.3316316. 5, 6

[CKT22] H. Chang, R. Krauthgamer, and Z. Tan. Almost-linear ϵ-emulators for planar
graphs. In The 54th Annual ACM Symposium on Theory of Computing, STOC
‘22, pages 1311–1324, 2022. 2

[CS19] T. M. Chan and D. Skrepetos. Faster approximate diameter and distance oracles
in planar graphs. Algorithmica, 81(8):3075–3098, 2019. Announced at ESA ‘17,
doi:10.1007/s00453-019-00570-z. 1, 2, 3, 4, 5, 24, 25

[CX00] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. In Proceedings of the
32nd annual ACM symposium on Theory of computing, STOC ‘00, pages 469—-478,
2000, doi:10.1145/335305.335359. 6

[Dji96] H. N. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In
International Workshop on Graph-Theoretic Concepts in Computer Science, WG’96,
pages 151–165, 1996, doi:10.1007/3-540-62559-3_14. 6

31

http://dx.doi.org/10.1109/fscs.1990.89571
http://dx.doi.org/10.1109/fscs.1990.89571
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1145/1281100.1281112
http://dx.doi.org/10.1145/1281100.1281112
http://dx.doi.org/10.1007/s00453-010-9459-0
http://dx.doi.org/10.1145/3218821
http://dx.doi.org/10.1109/FOCS.2017.93
http://ieee-focs.org/FOCS-2020-Papers/pdfs/FOCS2020-SFPLmbQgSLgOwZlanGgzq/962100a589/962100a589.pdf
https://arxiv.org/abs/2009.05039
http://dx.doi.org/10.1145/3313276.3316316
http://dx.doi.org/10.1007/s00453-019-00570-z
http://dx.doi.org/10.1145/335305.335359
http://dx.doi.org/10.1007/3-540-62559-3_14

[Fed87] G. N. Federickson. Fast algorithms for shortest paths in planar graphs, with applica-
tions. SIAM Journal on Computing, 16(6):1004–1022, 1987, doi:10.1137/0216064.
3

[FGNW17] O. Freedman, P. Gawrychowski, P. K. Nicholson, and O. Weimann. Optimal distance
labeling schemes for trees. In Proceedings of the 36th ACM Symposium on Principles
of Distributed Computing, PODC ‘17, 2017, doi:10.1145/3087801.3087804. 2

[FHMWN21] V. Fredslund-Hansen, S. Mozes, and C. Wulff-Nilsen. Truly Subquadratic Exact Dis-
tance Oracles with Constant Query Time for Planar Graphs. In 32nd International
Symposium on Algorithms and Computation, ISAAC ‘21, pages 25:1–25:12, 2021.
https://arxiv.org/abs/2009.14716, doi:10.4230/LIPIcs.ISAAC.2021.25. 4,
5, 6, 9, 11, 14

[FKS19] E. Fox-Epstein, P. N. Klein, and A. Schild. Embedding planar graphs into low-
treewidth graphs with applications to efficient approximation schemes for metric
problems. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ‘19, page 1069–1088, 2019, doi:10.1137/1.9781611975482.66.
2

[FR01] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, FOCS ‘01, 2001, doi:10.1109/sfcs.2001.959897. 6

[GKK+01] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg. Approximate distance
labeling schemes. In Proceedings of the 9th Annual European Symposium on Algo-
rithms, pages 476–487. 2001, doi:10.1007/3-540-44676-1_40. 2

[GMWWN18] P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen. Better tradeoffs for
exact distance oracles in planar graphs. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ‘18, pages 515–529, 2018, doi:
10.1137/1.9781611975031.34. 6

[GPPR04] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. Journal
of Algorithms, 53(1):85–112, 2004, doi:10.1016/j.jalgor.2004.05.002. 3

[GX19] Q. Gu and G. Xu. Constant query time (1+ϵ)-approximate distance oracle for planar
graphs. Theoretical Computer Science, 761:78–88, 2019. Annouced at ISAAC ‘15,
doi:10.1016/j.tcs.2018.08.024. 1, 2, 4

[HKRS97] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path al-
gorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,
1997. 25

[KKS11] K. Kawarabayashi, P. N. Klein, and C. Sommer. Linear-space approximate distance
oracles for planar, bounded-genus and minor-free graphs. In The 38th International
Colloquium on Automata, Languages and Programming, ICALP ‘11, pages 135–146,
2011, doi:10.1007/978-3-642-22006-7_12. 1, 2, 5

32

http://dx.doi.org/10.1137/0216064
http://dx.doi.org/10.1145/3087801.3087804
https://arxiv.org/abs/2009.14716
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2021.25
http://dx.doi.org/10.1137/1.9781611975482.66
http://dx.doi.org/10.1109/sfcs.2001.959897
http://dx.doi.org/10.1007/3-540-44676-1_40
http://dx.doi.org/10.1137/1.9781611975031.34
http://dx.doi.org/10.1137/1.9781611975031.34
http://dx.doi.org/10.1016/j.jalgor.2004.05.002
http://dx.doi.org/10.1016/j.tcs.2018.08.024
http://dx.doi.org/10.1007/978-3-642-22006-7_12

[Kle02] P. Klein. Peprocessing an undirected planar network to enable fast approximate dis-
tance queries. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ‘02, pages 820—-827, 2002, doi:10.5555/545381.545488. 1, 2,
3, 29

[Kle05] P. N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, page
146–155, 2005. 25

[KNZ14] R. Krauthgamer, H. L. Nguyen, and T. Zondiner. Preserving terminal distances us-
ing minors. SIAM J. Discrete Math., 28(1):127–141, 2014, doi:10.1137/120888843.
7

[KST13] K. Kawarabayashi, C. Sommer, and M. Thorup. More compact oracles for ap-
proximate distances in undirected planar graphs. In Proceedings of the 24th An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘13, 2013, doi:

10.1137/1.9781611973105.40. 1, 2, 3, 5, 24

[LF22] H. Le and A. Filtser. Low treewidth embeddings of planar and minor-free metrics.
In to appear in 63rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS ‘22, 2022. https://arxiv.org/pdf/2203.15627.pdf. 2

[LP19] J. Li and M. Parter. Planar diameter via metric compression. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page
152–163, 2019, doi:10.1145/3313276.3316358. 2, 4, 6, 8, 9

[LP21] Y. Long and S. Pettie. Planar distance oracles with better time-space tradeoffs. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA’21,
pages 2517–2537, 2021. 5, 6, 7

[LT79] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal on
Applied Mathematics, 36(2):177–189, 1979. 3, 6

[LT80] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM
Journal on Computing, 9(3):615–627, 1980, doi:10.1137/0209046. 3, 6

[LWN21] H. Le and C. Wulff-Nilsen. Optimal approximate distance oracle for planar graphs.
In Proceedings the 62nd Annual Symposium on Foundations of Computer Science,
FOCS ‘21, pages 363–374, 2021. https://arxiv.org/abs/2111.03560, doi:10.
1109/focs52979.2021.00044. 1, 27, 28

[MS12] S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proceedings of
the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA‘12, pages
209–222, 2012, doi:10.1137/1.9781611973099.19. 6

[Sau72] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series
A, 13(1):145–147, 1972, doi:10.1016/0097-3165(72)90019-2. 7

[She72] S. Shelah. A combinatorial problem; stability and order for models and theories
in infinitary languages. Pacific Journal of Mathematics, 41(1):247 – 261, 1972,
doi:pjm/1102968432. 7

33

http://dx.doi.org/10.5555/545381.545488
http://dx.doi.org/10.1137/120888843
http://dx.doi.org/10.1137/1.9781611973105.40
http://dx.doi.org/10.1137/1.9781611973105.40
https://arxiv.org/pdf/2203.15627.pdf
http://dx.doi.org/10.1145/3313276.3316358
http://dx.doi.org/10.1137/0209046
https://arxiv.org/abs/2111.03560
http://dx.doi.org/10.1109/focs52979.2021.00044
http://dx.doi.org/10.1109/focs52979.2021.00044
http://dx.doi.org/10.1137/1.9781611973099.19
http://dx.doi.org/10.1016/0097-3165(72)90019-2
http://dx.doi.org/pjm/1102968432

[Tho04] M. Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM, 51(6):993–1024, 2004. Announced at FOCS’ 01,
doi:10.1145/1039488.1039493. 1, 2, 3, 24, 29

[TZ05] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM,
52(1):1–24, 2005, doi:10.1145/1044731.1044732. 1

[WN10] C. Wulff-Nilsen. Algorithms for planar graphs and graphs in metric spaces. PhD
thesis, University of Copenhagen, 2010. 6

[WN16] C. Wulff-Nilsen. Approximate distance oracles for planar graphs with improved
query time-space tradeoff. In Proceedings of the 27th Annual ACM-SIAM Sym-
posium on Discrete Algorithm, SODA ‘16, page 351–362, 2016, doi:10.1137/1.
9781611974331.ch26. 1

[WY16] O. Weimann and R. Yuster. Approximating the diameter of planar graphs in near
linear time. ACM Transactions on Algorithms, 12(1):1–13, 2016, doi:10.1145/
2764910. 3, 4, 24

34

http://dx.doi.org/10.1145/1039488.1039493
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1137/1.9781611974331.ch26
http://dx.doi.org/10.1137/1.9781611974331.ch26
http://dx.doi.org/10.1145/2764910
http://dx.doi.org/10.1145/2764910

	Introduction
	Previous and Our Techniques
	Related Work

	Preliminaries
	Distance Oracles with Additive Stretch
	Approximate Patterns
	Computing Distances from Approximate Distance Encodings
	Approximate Pattern Composition
	A Weaker Oracle: Proof of thm:additiveOracleEasy
	Reducing Space and Query Time: Proof of thm:additiveOracle

	Distance Oracles with Multiplicative Stretch: Proof of thm:main

