The Maginot Line: Attacking the Boundary of DNS Caching Protection

Xiang Li*, Chaoyi Lu*, Baojun Liu**", Qifan Zhang*
Zhou Li', Haixin Duan*"¥, and Qi Li*¥*

*Tsinghua University, ' University of California, Irvine
QI-ANXIN Technology Research Institute, S Zhongguancun Laboratory

{x-119}@mails.tsinghua.edu.cn, {luchaoyi}@mail.tsinghua.edu.cn
{1bj, duanhx, qliOl}@tsinghua.edu.cn, {qifan.zhang, zhou.li}@uci.edu

Abstract

In this paper, we report MAGINOTDNS, a powerful cache
poisoning attack against DNS servers that simultaneously act
as recursive resolvers and forwarders (termed as CDNS). The
attack is made possible through exploiting vulnerabilities in
the bailiwick checking algorithms, one of the cornerstones of
DNS security since the 1990s, and affects multiple versions of
popular DNS software, including BIND and Microsoft DNS.
Through field tests, we find that the attack is potent, allowing
attackers to take over entire DNS zones, even including Top-
Level Domains (e.g., .com and .net). Through a large-scale
measurement study, we also confirm the extensive usage of
CDNSes in real-world networks (up to 41.8% of our probed
open DNS servers) and find that at least 35.5% of all CDNSes
are vulnerable to MAGINOTDNS. After interviews with ISPs,
we show a wide range of CDNS use cases and real-world
attacks. We have reported all the discovered vulnerabilities to
DNS software vendors and received acknowledgments from
all of them. 3 CVE-ids have been published, and 2 vendors
have fixed their software. Our study brings attention to the
implementation inconsistency of security checking logic in
different DNS software and server modes (i.e., recursive re-
solvers and forwarders), and we call for standardization and
agreements among software vendors.

1 Introduction

The Domain Name System (DNS) provides translation be-
tween human-readable domain names and numerical ad-
dresses and is relied on by many fundamental Internet se-
curity mechanisms such as certificate issuance [95], email
authentication [84,92], and malicious domain takedown [5].
Unfortunately, almost all DNS messages are designed to be
sent unencrypted, which are vulnerable to manipulation [63].

Among the reported attacks against DNS, cache poisoning
is considered one of the most dangerous. For the earliest ver-
sion of DNS, malicious authoritative servers can respond with

= Corresponding authors.

DNS data for arbitrary zones that are outside of their authority
to poison any domain [34, 83,86]. To reject such “unsolicited”
responses, the bailiwick rule [85] has been implemented by
DNS software (e.g., BIND [12] and Unbound [91]), which
serves as a fundamental defense against DNS cache poisoning.
However, till the writing of this paper, DNS standards [42,70]
have not defined concrete cache algorithms, leaving software
developers to implement. This implementation-to-standard
gap results in various DNS attacks.

Prior attacks. Previous cache poisoning attacks focused on
tricking DNS servers into accepting rogue in-bailiwick re-
sponses rather than breaking the bailiwick rule. Proposed
delicate methods include UDP source port brute-forcing [46],
birthday attacks [85,86], IP fragmentation [39,96], and ICMP-
based side channels [65, 66]. A major problem with these
in-bailiwick attacks is the attack efficiency: the attacker can
only poison victim domains (usually Second-Level Domains
like example.com) one by one. A few works choose to attack
devices that do not perform bailiwick checks [34, 81], but
only a small fraction of DNS software ignore bailiwick check.
Some studies looked into what DNS data could be stuffed in
rogue DNS responses without being rejected under the baili-
wick rule [55, 85]. In the end, the prior studies suggest that
breaking bailiwick is hard, and the attack should focus on the
settings that do not violate bailiwick checks.

Our study. In this paper, we revisit the status of bailiwick
checking and demonstrate that its logic in DNS software
(BIND [12], Knot [77], Microsoft DNS [87], and Techni-
tium [89]) has vulnerabilities that enable new cache poison-
ing attacks (Section 4), which we termed as MAGINOTDNS.
Since MAGINOTDNS breaks the bailiwick checking, it is
powerful in that it can poison delegation data and hijack ar-
bitrary DNS zones in its entirety, even including Top-Level
Domains (e.g., .com and .net).

The key to the discovery of MAGINOTDNS is the inconsis-
tent bailiwick implementations between different DNS modes.
In particular, we found new bailiwick vulnerabilities in the
forwarder mode of DNS software. The vulnerabilities do not
harm the regular forwarders as they do not perform recursive

https://netsec.ccert.edu.cn/people/lx19
https://netsec.ccert.edu.cn/eng/people/lcy17
https://netsec.ccert.edu.cn/people/lbj20
https://faculty.sites.uci.edu/zhouli/research/
https://faculty.sites.uci.edu/zhouli/
https://netsec.ccert.edu.cn/people/duanhx/
https://netsec.ccert.edu.cn/people/qli/
https://www.tsinghua.edu.cn/en/
https://uci.edu/
https://research.qianxin.com/
mailto:x-l19@mails.tsinghua.edu.cn
mailto:luchaoyi@mail.tsinghua.edu.cn
mailto:lbj@tsinghua.edu.cn
mailto:duanhx@tsinghua.edu.cn
mailto:qli01@tsinghua.edu.cn
mailto:qifan.zhang@uci.edu
mailto:zhou.li@uci.edu

domain resolutions, but for conditional DNS servers (CDNS),
severe consequences can be caused. CDNS is a prevalent type
of DNS server but not yet systematically studied. It is config-
ured to act as recursive resolver and forwarder simultaneously,
and the different server modes share the same global cache.
As a result, attackers can exploit the forwarder vulnerabili-
ties and “cross the boundary” — attack recursive resolvers on
the same server. Under this general idea, we propose an on-
path attack and an off-path attack, and demonstrate effective
attacks against the latest versions of DNS software, by com-
bining two extra vulnerabilities in source port randomization
and CNAME chasing discovered by us (Section 5).

After testing the DNS software, we try to assess how many
deployed DNS servers are impacted. We encounter a chal-
lenge in identifying the target of the attack, CDNS, as no
DNS server directly tells if it is CDNS. We propose a novel
methodology to find them at a large scale in both open net-
works and enterprise networks (Section 6). Our measurement
results confirm that CDNSes are prevalent servers in the wild
(up to 41.8% of all probed open DNS servers), and a large
number of them (at least 35.5% of all CDNSes) are vulner-
able to the attacks. After interviews with ISPs, we show a
wide range of CDNS use cases and real-world attacks. We
have reported all vulnerabilities to the affected DNS software
vendors (Section 7) and have received acknowledgements
from all of them. So far, 3 CVE-ids have been published, and
2 vendors have patched their software [9].

In the end, our study uncovers the implementation incon-
sistency of DNS security checking logic, both in different
software and server modes (i.e., recursive resolvers and for-
warders). The root cause of the vulnerabilities stems from
the missing of a rigorous definition of the bailiwick checking
logic in the standard and the confusion about the position
and functionalities of DNS forwarders. As a result, we rec-
ommend that the stakeholders, including the standardization
parties, DNS software vendors, and DNS server owners, ad-
dress the vulnerabilities.

Contributions. We make the following contributions:

New threat model. We present a new threat model against
CDNS, a new type of server extensively deployed in the DNS
infrastructure that has not been studied.

New attack surface. We review source code and dynami-
cally debug bailiwick checking algorithms in 9 types of DNS
software. This yields new vulnerabilities that allow powerful
cache poisoning attacks and hijacking of entire DNS zones.
We validated the attacks in a controlled environment, and we
present attack demos and details at [9].

New methodology and results. We propose a new method-
ology to identify the new type of server, CDNS, at a large
scale in real networks. We also find that a large number of
them are vulnerable to our attack.

DNS namespace

m

/. Delegate

{‘ © Query example.com = 7 T
= a
Referral to SLD NS @

© Query example.com

[

Referral to TLD NS @

o 2]
5B

DNS Recursive %
Forwarder resolver Authoritative \ Delegate
servers Y

| @ Query example.com — ¢ 5
= -
= example

Authoritative answer @

client

Figure 1: A standard DNS resolution process for domain
example.com under the DNS namespace.

2 Background

In this part, we provide background on DNS concepts, condi-
tional DNS servers, and caching mechanisms [69, 70].

2.1 DNS Concepts and Infrastructure

DNS namespace and domain resolution. As shown in Fig-
ure 1, the DNS namespace is a hierarchical structure compris-
ing multiple layers of DNS zones, including Root (denoted by
“.”), Top-Level Domains (TLDs, e.g., . com), Second-Level
Domains (SLDs, e.g., example. com), etc. In each DNS zone,
authoritative data is organized by domain labels and types
in the form of resource record sets (RRSets), which are dis-
tributed by authoritative servers (also nameservers or NS for
short). Common RRSet types include A that stores IPv4 ad-
dresses, CNAME that stores domain aliases, and NS that stores
delegation data (nameserver) of child DNS zones.

To resolve a DNS query, servers operating in recursive
mode (called recursive resolvers) contact authoritative servers
starting from root (steps © to ® in Figure 1). During do-
main resolution, authoritative servers without local data about
the query provide referrals that contain information to other
servers “closer” to the final answer (e.g., a child DNS zone).
DNS referral messages include a type NS RRSet pointing to
the next servers (in the authority section) and glue records
which are type A (or AAARA) RRSets specifying the next server
addresses' (in the additional section). The resolution termi-
nates upon getting an authoritative answer (indicated by AA
flag in the DNS header) from the server whose local DNS
zone can provide answers to the query. Figure 2 shows the
simplified referral message and authoritative answer to DNS
queries for example.com.

DNS forwarders. As the DNS infrastructure evolves, for-
warders are increasingly deployed as ingress servers [82]
that sit between DNS clients and upstream servers. They are
commonly installed on home routers [96] and can serve as
default local resolvers for DNS clients [10]. Unlike recursive
resolvers, forwarders do not perform recursive resolution but
pass DNS queries to upstream servers (e.g., public DNS ser-
vices like Cloudflare’s 1.1.1.1 [1] or authoritative servers).

! Glue records only appear in referrals if the next servers are in-bailiwick [42]
to the current zone.

Flags: QR RD; Flags: QR AA RD;

Question section:
example.com. A

Question section:
example.com. A

Answer section: Answer section:
(Empty) example.com. A 93.184.216.34

Authority section: Authority section:
com. NS a.gtld-servers.net. (Empty)

Additional section: Additional section:
a.gtld-servers.net. A 192.5.6.30 (Empty)

Figure 2: Referral to TLD NS (left) and authoritative answer
to type A queries for example. com (right).

options {
recursion yes;
/* Zp includes the entire namespace */

}i

/* Opt-out example.com and creates Zp */
zone "example.com" {

type forward;

forwarders { 1.1.1.1; };

/* Enables forwarding */
/* Specifies upstream */
a)(};
zone ”."” {
type forward;
forwarders { 1.1.1.1; };

/* Zp includes the entire namespace */
/* Enables forwarding */
/* Specifies upstream */

}i

/* Opt-out example.com and creates Zp */
zone "example.com” {
type forward;

forwarders {};
/* Triggers immediate fallback to recursive mode */

/* Enables forwarding */

b) | };

Figure 3: Example BIND configurations of (a) recursive-
default CDNS and (b) forwarding-default CDNS [62].

2.2 Conditional DNS Servers (CDNS)

DNS software usually implements multiple server modes
(i.e., forwarder, recursive resolver, and authoritative server)
to meet the needs of users, network operators, and DNS ser-
vice providers. Table | summarizes the modes available in
mainstream DNS software (list drawn from a survey on DNS
software and previous studies [44,57,58,65,96]). Multiple
modes in one software can be enabled simultaneously.

In this paper, we study DNS servers that act simultaneously
as recursive resolvers and forwarders (termed as conditional
DNS servers or CDNS). A CDNS is configured by its operator
to install lists of recursive DNS zones (termed as Zg) and
forwarding DNS zones (termed as Zr), such that the incoming
DNS queries can be served by different modes. All queries
for domains in Zg will be recursively resolved, while queries
for domains in Zr will be forwarded to the upstream servers.

To avoid confusion in serving queries, it is required that
ZrNZr = . To ensure DNS queries for any domain can
be served, together Zg and Zr should cover the entire DNS
namespace (Zg UZr = DNSRoot), which is usually achieved
through domain “opt-out” — operators either create Zg on
a regular forwarder or create Zr on a regular recursive re-
solver, such that the other list will automatically include the
remaining DNS namespace (i.e., becoming the default). Fig-
ure 3 shows two examples that configure recursive-default
and forwarding-default CDNS in BIND.

Usage of CDNS. We find that, although not being studied
by prior works systemically, CDNSes have been extensively
used in practice. Enterprises or ISPs may use them for access

control [7], speeding up domain resolution [90], and reduc-
ing operational cost (e.g., to reduce out-of-band traffic [63]).
In Section 6.3, we interviewed two ISPs to get an in-depth
understanding of how CDNS is used.

Forwarding fallback. Through code review and testing, we
find some DNS software provide a fallback option like reissu-
ing the query in recursive mode, if a forwarding query fails
(e.g., when the upstream server times out). Table | summa-
rizes the fallback options in DNS software. In BIND, the
fallback option is enabled by default with a type forward
keyword (see Figure 3, termed as forwarding-first mode) and
turned off by adding an extra line forward only (termed as
forwarding-only mode). By contrast, Unbound [91] disables
fallback unless forward-first is written in the configura-
tion file. Microsoft DNS also provides fallback but performs
incomplete recursive resolution [68] that only queries the up-
stream server for one round. Other tested software do not
provide fallback and returns DNS errors if forwarding queries
fail. Although forwarding fallback complicates our attack
against CDNS, we found it can be thwarted with new tech-
niques described in Section 5.

2.3 DNS Caching Mechanisms

Recursive resolvers and forwarders both use cache to enhance
lookup performance. In general, each cached RRSet is asso-
ciated with a Time-To-Live (TTL) and will be used to serve
clients’ queries until the TTL expires. Below we demonstrate
other specific rules and our observations about caching.
Bailiwick rule. Authoritative servers should not provide data
for DNS zones outside of their authority (i.e., out-of-bailiwick
data) [35], e.g., responses from .com authoritative servers
should not contain data for .net domains. Most DNS re-
solvers implement the bailiwick rule [85] to reject out-of-
bailiwick data from upstream servers (see Table 1). Though
DNS standard [70] requires that servers to discard such “un-
solicited” responses, no concrete algorithms are given, and
there exist various DNS software implementations. In Sec-
tion 4, we provide detailed analysis of their implementations
and describe a new class of vulnerabilities in several DNS
software that were never reported before.

Data trust levels and cache overwriting. When new DNS
responses contain RRSets that have been previously cached,
servers should determine which data to keep. To this end,
DNS data is ranked by trustworthiness (RFC 2181 [35] de-
fines 7 levels), and the data with a higher ranking will be
preferred when put into the DNS cache. In general, authori-
tative answers (with the AA flag set) have higher levels than
non-authoritative answers. Within the same DNS response,
data from the answer section ranks higher than data from
the authority or additional section. Through code review, we
confirm that most DNS software adopt this model for cache
overwriting, though some use different trust levels (shown in
Table 1 and Appendix A).

Table 1: DNS operational modes and functionalities available in mainstream implementations.

DNS software Server role Cache protection Cache poisoning
defense
Brand Version | Auth!| Recur?| Fwder?| cDNs | Fall- | Bailiwick | Trust | Shared | y\\yqqpe | gy
back | checking level cache

BIND [12] 9.18.0 v v v v v v v v v X
Knot Resolver [77] 5.5.2 X v v v X v v v v v
Unbound [91] 1.16.2 v v v v v v v v v v
PowerDNS Recursor [75] 4.7.1 X v v v X v v v v v
Microsoft DNS [87] 20224 v v v v v v v v 4 X
Technitium [89] 7.0 v v v v X v X v X v
Simple DNS Plus [73] 9.1.108 v v v v X v v v v v
MaraDNS [67] 3.5.0022 v v v v X v X v X v
CoreDNS [22] 1.9.3 v Ve v Ve e X -6 X v X
Dnsmasq [33] 2.86 X X v X - X X - v X
DNRD [26] 2.20.3 X X v X - X X - X X
YADIFA [94] 254 v X X X - - - v v
NSD [72] 4.6.0 v X X X - - v v

! Authoritative server. > Recursive resolver. > Forwarder. * OS build 20348.740. 3 Available only when compiled with extra Unbound extensions.

Global cache in CDNS. We find in most DNS software that,
when being configured as CDNS, the recursive resolver and
forwarder modes share a global cache (see Table 1). There-
fore, the DNS data about forwarding queries can overwrite the
cache created under recursive resolving. We will soon demon-
strate that this setting allows attackers to poison the global
DNS cache through a mode with weaker security (i.e., for-
warder) and attack other more secured modes (i.e., recursive
resolver).

3 Attack Overview

Previous studies reported that forwarders are more vulnerable
to cache poisoning attacks due to their simplified implemen-
tation of defense mechanisms. For example, older versions of
forwarders may use predictable UDP port numbers [50], skip
validation of port numbers and TXIDs [54], and lack baili-
wick checks [81]. By contrast, recursive resolvers are often
secured with defenses against cache poisoning attacks [82].
The imbalanced security measures on forwarders and re-
cursives inspire us to investigate the possibilities of attacking
the recursive resolver that co-locates with a forwarder on one
CDNS. Below we first describe the threat model. Then, we
overview the attack workflow. Finally, we compare our attack
MAGINOTDNS with other cache poisoning attacks.

3.1 Threat Model

Figure 4 overviews the threat model. We assume the target
CDNS is pre-configured with Zg and Zr by its operator. The
attacker leverages a domain dyqqr (Which falls in Zp, de-
noted as dyqcr € ZF) and chooses different attack strategies
based on which profile (i.e., recursive-default or forwarding-
default) is default on the target CDNS. For forwarding-default
CDNSes, because all unregistered domains are covered by
Zr, the attacker can register dgqc¢ and run its authoritative

6“2’ means not applicable.

server. For recursive-default CDNSes, any owner of domains
covered by Zr may weaponize his/her domain as d a0 We
find through large-scale experiments that domains with high
rankings (e.g., Alexa [3] Top 10K sites) are included in Zg
by a large number of CDNSes (in Section 6.2), making their
owners potential attackers. Sometimes, as discussed in Sec-
tion 6.3, ISPs might forward queries to third-party “authorita-
tive” nameservers, which can be also controlled by attackers.

Same as other cache poisoning attacks [39,46,65,96], we
assume the attacker can query the target CDNS and spoof
the IP address in the forged DNS responses. For an open
CDNS, querying from any source IP is allowed. For a closed
CDNS that only responds to queries in the same network (e.g.,
an enterprise CDNS), the attacker could leverage an insider
(e.g., enterprise employee) or a compromised machine in the
same network. To spoof the source IP, the attacker can choose
a bullet-proof hosting service [6], and studies showed that
over 25% of IPv4 ASes currently allow IP spoofing behav-
iors [15,64]. Meanwhile, integrity checks including DNSSEC
validation [8] and 0x20 encoding [27] defend against cache
poisoning attacks, and we do not consider CDNSes that en-
force them. In Section 6.2, we show that most of the CDNSes
in the wild are qualified under this condition.

3.2 Attack Workflow

The attack comprises two steps: (i) identifying a CDNS and
(if) poisoning its global DNS cache by exploiting forwarder
vulnerabilities. The first step poses a challenge that DNS
servers do not tell in their responses how a query is resolved
backstage. In Section 6 we propose a novel method to address
this challenge.

For the second step, the attacker follows the general cache
poisoning scheme as shown in Figure 4. First, the attacker
sends a query Q for d ek to the target CDNS (step @). Be-
cause dyqck € Zr (step @), Q triggers a subsequent query

Attacker DNS client C] Ordinary DNS client

© 0y Forward to attacker’s server

1,

@ Query 0 for domain d g, .1 l

Conditional DNS server (CDNS)

g \— n @ Match
Query . © Qj;: Forward to upstream < ------------------------ ‘
o

Zp: Forwarding
DNS zones

l © Query .com domains in Zg

=

=

nsl.rogue-tld-ns.org
(Rogue authoritative

E 0O Query all
I A
.com domains
Zp: Recursive
DNS zones

&€ Global DNS cache

Attacker’s
server that
provides data Upstream
DNS server
for dattack
| @ Forged response Ry that matches Qg or Oy, [I

com. NS nsl.rogue-tld-ns.org |

] server NS, uuck)

A\ Exploit bailiwick vulnerability C

Figure 4: Threat model and attack workflow of MAGINOTDNS.

(step ©): either a Qy, directly to the attacker’s server (e.g.,
the ISP DNS server example we raised in Section 3.1) or a
Oy to an upstream server (e.g., another recursive resolver).
The attacker then generates a rogue response Rqcr and sends
it directly back to the target CDNS (step @). Rqck contains
forged NS data (termed NSgsqck) Of out-of-bailiwick domains,
e.g., suggesting nsl.rogue-tld-ns.org as the nameserver
of . com, which will be cached by the CDNS and poison Zg.
Finally, when a victim client queries the CDNS for domains
in Zg (step @), the recursive resolver will query the rogue
authoritative server under the attacker’s control (step ®).
Noticeably, we consider both O, and Q4 in step ©. The
former case represents an off-path attacker (i.e., the attacker
cannot intercept the link between the upstream server and the
target CDNS) that has been well studied in cache poisoning.
The latter case represents an on-path attacker (i.e., the attacker
sees queries from the target CDNS) that has received much
less attention. Though the attacker needs to run two servers,
one provides authoritative data for dg, and the other is
NSuttack, they can be on the same physical machine.

3.3 Comparison with Related Works

MAGINOTDNS differs from previous DNS cache poisoning
attacks in the aspects described below. First, the target of
MAGINOTDNS is CDNS, a type of DNS server that has not
yet been studied [82]. Second, MAGINOTDNS aims to break
the bailiwick rules and can poison arbitrary DNS zones (even
TLDs) in its entirety. Prior to ours, some works [34,81] also
studied bailiwick rules, but they targeted DNS servers that
did not implement bailiwick checks. However, from our test
results in Table 1, most mainstream DNS software have fixed
this issue. Third, MAGINOTDNS exploits the vulnerabilities
of forwarders to attack the recursive resolvers. Although many
vulnerabilities about forwarders have been discovered [41,49—
54,81, 83,85, 86,96], none of them conducted a systematic
analysis of the bailiwick component.

The more common type of cache poisoning attacks focused
on injecting in-bailiwick responses, which did not break baili-
wick checks. As a result, they can only hijack one domain
(typically one SLD) at a time. Though the well-known Kamin-
sky attack in 2008 [46] can hijack entire zones by poisoning

referrals, it is still in-bailiwick and has to race against authen-
tic referrals coming from root and TLD nameservers that are
out of the attacker’s control. These authentic referrals are
often responded immediately due to the anycast servers de-
ployed worldwide [60], making the attack window very short.
By contrast, our attack is based on poisoning authoritative an-
swers, which can be supported by the attacker’s server. Hence,
the attacker has the full control of the attack window. A series
of works focused on methods to predict/eliminate randomized
UDP ports and TXIDs (e.g., port brute-forcing [46], birthday
attacks [85, 86], IP fragmentation [39,96], and ICMP-based
side channels [65,66]). When MAGINOTDNS is operated un-
der the off-path setting, we leverage the techniques proposed
by these prior works, but the new vulnerabilities discovered
by us make MAGINOTDNS more powerful (these prior works
cannot poison an arbitrary zone).

4 Systematic Analysis of Bailiwick Checking

In this section, we first present a systematic analysis of the
bailiwick checking implementations of popular DNS software.
Then we explain how they become vulnerable.

Specifically, we collected a list of DNS software that are
also analyzed by previous research [44,57,58, 65,96]. We
discard the software which is out-of-date, provides no down-
load links, or cannot function as CDNS (shown in Table 9 of
Appendix B). In the end, we narrow down the list to 9 DNS
software, as shown in Table 10. Each software has tens or
hundreds of thousands of SLOC (Source lines of code), and it
took about 3 weeks to analyze them all together. Among the
9 software, 7 have published source code, so we conducted
source code review on the files that are relevant to DNS res-
olution and caching. In addition to code analysis, we also
conducted dynamic analysis using CLion [21] and GDB [37],
and inspected the software’s runtime behaviors and logs. The
closed-source software are Microsoft DNS and Simple DNS
Plus, and we analyze them through experiments described in
Section 5, and by reading their official documents [73, 87].
Next, we describe the high-level logic of bailiwick checking
that is summarized from RFCs and DNS software and the
differences between their implementations.

4.1 Implementations of Bailiwick Checking

Basic algorithm. Bailiwick checking has been tightly inte-
grated into the DNS resolution process rather than work-
ing as a stand-alone component [69, 70]. In Section 2.3,
we summarize the high-level guideline offered by several
RFCs [35,43,69,70]. In Algorithm 1, we describe the basic
DNS resolution procedure and describe bailiwick checking
that is embedded in three functions. The detailed explanation
of each function and data structure of Algorithm 1 is given in
Table 11 and Table 12 from Appendix C.

(I) InitQuery. After receiving a DNS request from a client,
the DNS server transforms it into a query Q that will be is-
sued against the upstream servers and keep three key variables
about Q for the later bailiwick checking, including Q.name
(query name), Q.type (query type), and Q.zone (current query
zone that is owned by nameservers). Q.zone is used to mea-
sure how “close” the nameserver is to Q.name. According
to RFCs [69,70], resolvers are instructed to query the clos-
est server to get answers. Consequently, Q.zone is initial-
ized with the name of the closest NS record in cache. For
example, if Q.name were example.com, and NS records of
example.comand .com were cached, resolvers will ask name-
servers of example. com for answers and mark example.com
as Q.zone. If NS records of example.com expire, resolvers
request nameservers of .com and set Q.zone with .com. If
none of them exists, Q.zone will be the root “.”. However,
as we found through code analysis, forwarders measure the
closeness and modify Q.zone in various ways.

(1) SanitizeRecords. When the resolver receives a re-
sponse R matching Q, it will sanitize R with bailiwick rules
on every resource record (denoted RR) of each section. As
for a record in the answer section, if RR.name # Q.name or
RR.type # Q.type (except CNAME), the response will be ig-
nored. For a record in the authority section, if RR.name €
Q.zone and Q.name € RR.name (€ means same as or under),
it will be identified as a valid delegation record that is close to
the answer. Record from the additional section is trustworthy
only if RR.name € Q.zone and it is a glue record (explained
in Section Section 2.1) related to the authority section.

(III) U pdateQuery. After sanitization, the resolver clas-
sifies R into either an answer, a referral (explained in Sec-
tion 2.1), or a CNAME?. If R is a referral, the resolver will
update Q.zone to the name of NS records from the referral
and continue recursive queries that are sent to the referred
servers. If R is about CNAME records, the resolver chases the
CNAME chain [16] and validate their authenticity. Otherwise,
the resolver returns records from the answer section to clients.
Software implementations. We summarize the implementa-
tion differences related to bailiwick checking in Table 2 based
on our analysis of DNS software. In summary, we find that
bailiwick checking under the recursive mode is implemented
similarly and robustly. All DNS software carefully update

2 We only focus on basic query types: A, NS, and CNAME and ignore others.

Q.zone with name of the closest NS records in cache for Q,
consequently rejecting all out-of-bailiwick records whose
name ¢ Q.zone. Then authentic in-bailiwick records are
cached and shared between the recursive resolver and the
forwarder. However, there exist prominent differences under
the forwarding mode. First, when Q.zone is initialized in
InitQuery:

* BIND uses the closest NS name in the cache to initialize
Q.zone for the default forwarding-first mode while using
the closest forwarding zone in Zr for forwarding-only
mode (explained in Section 2.2). This design seems
reasonable at first glance, but in reality, the closest NS
often points to its parent zone or even the root when
there is no previous cache for Q.name.

* Knot Resolver, Microsoft DNS, and Technitium sim-
ply initialize Q.zone with the root “.”.

¢ Unbound, PowerDNS Recursor, and Simple DNS
Plus assign the closest forwarding zone in Zr to Q.zone
and just trust answers from that zone. When falling back
to recursive queries (fallback is explained in Section 2.2),
Q.zone of Unbound is again updated to the closest NS
name in the cache.

* MaraDNS takes a different approach to check the re-
sponse instead of following bailiwick rules, thus Q.zone
is not considered.

e CoreDNS does not perform bailiwick checking and
Q.zone is not implemented.

Second, after SanitizeRecords, Knot Resolver does not
stash the additional records when running in forwarding mode.
MaraDNS only stores the authority section from a referral.
Technitium keeps the authority and additional sections only
if they are from a referral. The other software cache all in-
bailiwick records.

Third, we also found that the resolver can select a CNAME
record from all the CNAME records embedded in R (during
U pdateQuery) and query the closest server in the cache, but
the implementations differ. BIND, Unbound, MaraDNS, and
Simple DNS Plus use the first CNAME record to issue the fol-
lowing query Q, while Knot Resolver and PowerDNS Re-
cursor use the last CNAME record. Microsoft DNS selects
a random CNAME record to lookup. Querying the server re-
ferred by CNAME leads to another vulnerability described
in Section 5.1. Noticeably, a CNAME chain should be veri-
fied (explained in [35,93,96]) to prune the forged CNAME
relations that might be embedded in R. We found the latest
versions of the analyzed DNS software all have the correct im-
plementations, which foil previous attacks targeting CNAME
chain [96]. Our attack exploits a different issue related to the
CNAME chasing.

Table 2: Implementation differences of bailiwick checking by mainstream DNS software.

. . Knot PowerDNS Microsoft 0pe Simple DNS
Key functionality BIND Resolver Unbound Recursor DNS Technitium Plus MaraDNS
Qry.zone (recursive) ‘ closest NS name ‘ 2
. closest forwarding | forwarding forwarding
Qry.zone (forwarding) NS name root Jone Jone root root Jone -
Chase CNAME chains ‘ first ‘ last ‘ first ‘ last ‘ random one ‘ first ‘ first ‘ first
Remove out-of-bailiwick RRs v v v v v v v -
Cache AN matching query v v v v v v v v
Cache NS from a referral v v v v v v v v
Cache NS from an answer v v v v v X v X
Cache AR from a referral v /! v v v v v X
Cache AR from an answer v /1 v v v X v X
Send NS or AR to clients X X X X X X X X
Vulnerable | v | v | X | X | v | v/ | X | X

AN: answer section. NS: authority section. AR: additional section. ! Not cache if forwarding. 2 ‘- means not applicable.
CoreDNS behaves same with Unbound for recursive while no bailiwick checking and caching records by packet for forwarding.

4.2 Vulnerability in Query Zone Initialization

As described above, when BIND, Knot Resolver, Microsoft
DNS, and Technitium act in the forwarding mode, they mis-
takenly initialize Q.zone with the ancestor zone of Q.name
(for BIND it is when a record is not cached) or even the root
“.” (Knot Resolver, Microsoft DNS, and Technitium). Such
behavior seems to manifest in DNS software from a long time
ago: we analyzed the first version of BIND9 (BIND 9.0.0 [2])
released in 2000 and found the same issue.

This leads to a vulnerability (denoted V' 1) that records of
any domain name in the authority or additional section from
R will be considered to be “in-bailiwick” (i.e., satisfying
RR.name € Q.zone during SanitizeRecords) and cacheable.
According to RFCs [42], delegation (explained in Section 2.1)
is allowed only when a parent zone provides nameservers for
its child domains. However, leveraging V 1, we could inject
delegation records of any domain name into the authority sec-
tion of R, compromise any domain’s NS records, and poison
CDNS'’ global cache. As such, even TLDs like . com and .net,
and all subdomains under them can be hijacked. For example,
provided d 4k € ZF (e.g., attacker.com), if a vulnerable
CDNS receives a response like Figure 5(a) when querying
dartack, 1t will use NSy qcr (nsl.rogue-tld-ns.org) to re-
solve all subdomains under . com in the future.

5 End-to-End Attacks under MAGINOTDNS

In this section, we develop end-to-end cache poisoning at-
tacks exploiting V1 against the 4 vulnerable DNS software
(BIND, Knot Resolver, Microsoft DNS, and Technitium) and
evaluate them in a controlled environment. We first describe
the concrete steps for our cache poisoning attack and 2 other
vulnerabilities (V2 and V3) that we discover about the for-
warder mode. Then, we elaborate on our attack methodology
and evaluation results under the on-path and off-path settings.
We present attack demos and details at [9].

Experiments setup. We install BIND, Knot Resolver, and
Technitium on a machine with Ubuntu 20.04 as the host
OS and Microsoft DNS on another machine with Windows
Server 2022 as the host OS. All software are configured as
CDNSes. Then we configure dsqck (€.8., attacker. com for
anonymity) as a forwarding zone in Zr pointed to our authori-
tative server (outside the LAN) for these CDNSes and leave all
other domains under Zg. There is one attacker machine and an-
other machine holding NSy qck (nsl.rogue-tld-ns.org),
and they are in the same LAN as the victim CDNSes. Then
we run 3-5 clients from other machines to use the CDNSes
simultaneously. Since we assign a public IP address to our
CDNS machine, it is sometimes accessed by unknown DNS
clients, which makes our setting more realistic.

5.1 Attack Design

In Section 3.1, we give a high-level overview of the attack
workflow. Below we describe the concrete steps, which are
illustrated in Figure 6.

Before the actual attack, the attacker needs to collect in-
formation, including CDNS’ egress IP addresses (termed
IP;) and upstream DNS server’s ingress IP addresses (termed
IP,)’. When the attacker uses the CDNS to query his/her
owned domain®, IP, and IP, can be learned on the authorita-
tive server. If IP, NIP, # 0, the attacker launches an on-path
attack. Otherwise, the attacker launches an off-path attack.

The actual attack starts by asking the resolver to issue a Q
(Qyq or Qpy) for dyack (steps @ & @ & ©). Under the on-path
setting, the attacker generates a Ryq01 in Figure 5 and sends it
back directly (step @). Otherwise, under the off-path setting,
the attacker needs to guess the source port and TXID of Qf,
to create a valid R, because the upstream resolver will
ignore any out-of-bailiwick responses. Since Ryqc has to

3 We consider a simple upstream DNS server model with the same ingress
and egress IP address because it is pre-configured into the profile.
4 dysrack in Zp and another registered domain in Zg.

Flags: QR AA RD;

Flags: QR AA RD;

Flags: QR AA RD;

Flags: QR AA RD;

Flags: QR AA RD;

Question section:
attacker.com. A

Question section:
attacker.com. NS

Question section:
com. NS

Question section:
attacker.com. A

Question section:
attacker.com. A

Answer section:
attacker.com. A a.t.k.r

Answer section:
attacker.com. CNAME com.

Answer section:
com. NS nsl.rogue-tld-ns.org.

Answer section:
(Empty)

Answer section:
attacker.com. A a.t.k

.r

Authority section:
com. NS nsl.rogue-tld-ns.org.

Authority section:
(Empty)

Authority section:
(Empty)

Authority section:
com. NS nsl.rogue-tld-ns.org.

Authority section:
(Empty)

Additional section:
nsl.rogue-tld-ns.org. A a.t.k.r

Additional section:
(Empty)

Additional section:
nsl.rogue-tld-ns.org. A a.t.k.r

Additional section:
nsl.rogue-tld-ns.org. A a.t.k.r

Additional section:
(Empty)

(a)

(®)

(©)

Figure 5: DNS responses used for poisoning the delegation data of . com.

®
Attacker Conditional Upstream
DNS Server DNS Server
@ Q: attacker.com

© Match Z; |© Qyq: attacker.com

Authoritative Server
(attacker.com)

©Return Ryieack
directly

com. NS
nsl.rogue-tld-ns.org.

-
& Cached

@ Q: attacker.com

Fwding : sport=x, txid=y

@ Match Z; |® Qp,: attacker.com

© Guess dport & txid
$ to inject Rurrack

dport=x, txid=y

Q: attacker.com

-
= Cached
Control the
reply time
R

com. NS
nsl.rogue-tld-ns.org.

Ricgal

R
Figure 6: Cache poisoning steps of on-/off-path settings.

compete with the original response Rjg,;, the attacker needs
to control the reply time to make R, arrive earlier than
Rjegqr and uses a spoofed IP from /P, (step @). Another extra
step under the off-path setting is to send a valid packet before
the resolver timeouts on Q, when bruteforcing the ports and
TXID to avoid forwarding fallback (see Section 2.2). The
successful attack will force the target resolver to cache R1qck-
Other vulnerabilities. In addition to the bailiwick vulnera-
bility V1, we also found 2 new vulnerabilities that facilitate
our cache poisoning attacks, denoted as V2 and V3.

V2: Flawed CNAME chasing. As described in Section 4.1,
a resolver selects a CNAME record in the CNAME chain to
issue the next query, which can be exploited against Knot
Resolver. Under CNAME chasing, most resolvers issue a new
query for the alias name targeting the closest nameservers
in the cache. However, under forwarding mode, Knot Re-
solver issues queries for the alias name to the same upstream
server (as in the previous forwarding query), even when the
CNAME record points to a different domain. For example, given
dutack € Zrp and dyjcrim € Zg, and server .. is attacker’s
authoritative server for dy;qx. If Knot Resolver receives a
CNAME response pointing dysqck tO dyictim, it will launch a new
query for records of dyjqiy, towards serveryy ek, instead of
other name servers close to dy;in. Attackers holding dgyqck
could poison any domain just by pointing d;qcx to them and
return a rogue response on his/her authoritative server.

V3: Insufficient source port randomization. We observe
that Microsoft DNS uses a small source port list (only 2,500
ports) to issue forwarding/recursive DNS queries by inspect-
ing Windows Server’s Resource Monitor and conducting traf-

(d) (©)
[LLLLLE]
& 65000 |
E |||||||||I|I||III
£ 60000 """""""I
= 55000 IIII|||I i
o
& 5000011111 vl
0 10 20 30 40 500 10
Round Round

Figure 7: Microsoft DNS source port distribution. We test
all 65,535 ports for 60 rounds and show the opened ports.
The rounds are sorted by the lowest port. Windows server
(and DNS server) restarts in the beginning of each round.
We encounter two types of distribution: (i) one consecutive
range (51 rounds on the left) and (ii) two disjoint ranges (the
remaining 9 rounds on the right) with an upper-bound of
65534 and lower-bound of 49152.

fic analysis (we send 65,535 different queries in each round).
The distribution of ports are shown in Figure 7. Both IPv4
and IPv6 share the same implementation, but the used port
lists are different. Surprisingly, once Microsoft DNS starts,
the port list becomes constant, which means that attackers
could scan ports in advance to determine which port range is
in use. Furthermore, scanning the port range from 49152 to
65534 with a global ICMP error rate limit of 200 [65] can be
finished in several minutes or, at worst several hours. Besides,
if the Windows Server’s firewall is shut down, Microsoft DNS
does not check the source IP address of a response provided
that the source port and TXID match the query.

5.2 On-path Attack

We assume the CDNS issues Qg for dyqex directly to at-
tacker’s authoritative server. We test whether the cached . com
NS record can be poisoned.
Attacking BIND and Microsoft DNS. Figure 5 shows exam-
ples of the rogue response R qcr. To overwrite cached . com
NS record, we need to inject some records with a higher rank in
data trust levels. According to BIND (Table 7 in Appendix),
cached NS records obtained from recursive queries have a
rank of dns_trust_glue=4. Rogue NS records of Ruyack
in Figure 5(a) with an AA flag in DNS header (explained in
Section 2.1) has a rank of dns_trust_authauthority=6,
which can overwrite the TLD cache.

For Microsoft DNS, R 4cr in Figure 5(a) could overwrite
any cached NS records, including those from NS queries.

Attacking Knot Resolver. Attacking Knot is more challeng-
ing, as NS records in the authority section are always delegated
with a trust level of KR_RANK_TRY=2 (Table 8 in Appendix),
which rejects the cache overwriting attempt from the response
of Figure 5(a). Hence, we leverage V2 to inject rogue DNS
data. Specifically, we query the NS records of dyqq1 and re-
turn a CNAME response in Figure 5(b). Then Knot will follow
the CNAME chain and query .com’s NS records towards our
authoritative server. Eventually, records in Figure 5(c) with
an AR flag of a trust level KR_RANK_AUTH=16 will be cached.
Attacking Technitium. Technitium only cache rogue NS
records from a referral. Thus, to attack Technitium, we re-
move the answer section and use R qc in Figure 5(d).
Result summary. All the tested resolvers can be poisoned
successfully and use the rogue nameserver NS 4ck to resolve
any domain under .com. Different from the off-path attack
that needs to guess the random numbers like port and TXID,
the consequences of our on-path attack are deterministic.

5.3 Off-path Attack

We forward the dg 40 zone on the resolvers to a public DNS
resolver 1.1.1.1 for the off-path attack. Then we leverage
two different methods to attack Microsoft DNS and BIND
separately. We did not attack Knot Resolver and Technitium
because they are configured with 0x20 protection [77, 89] by
default (see Table 1). In addition, a mismatch on any field
causes Knot Resolver to ignore incoming UDP responses and
re-query over TCP, which makes port and TXID guessing
impractical. We also try to poison the cached . com NS record.
The attack payload is similar to Figure 5(a).

Attacking Microsoft DNS with brute-force guessing. Be-
fore the attack, we scan the ports of the Microsoft DNS re-
solver to locate the possible in-use DNS ports. Due to V3,
there is no need to scan all 65,535 ports. But still, because
Microsoft DNS listens to all the opened 2,500 ports, scanning
all of them is inefficient. Therefore, we choose to guess a
small port range, e.g., 20 ports based on the port distribu-
tion (see Figure 7), and bruteforce 65,536 TXIDs on these
ports. Though in each attack round, the success rate is only
20/2,500, we could attempt many times to increase the suc-
cess rate by exploiting “birthday paradox” [85]. For example,
the success rate could rise to 99.7% after 720 attack rounds
(see the equation below).

1— (2,500 —20)/2,500]* = 99.7% (1)

What makes the attack conditions more favored to us is
that Microsoft DNS has a default forwarding timeout of 5s,
which leaves a sufficiently large time window for attacks.

e Attack process. In each round (in total 5s), (i) we send a
query asking for A records of {nonce}.attacker.com where
nonce is a random value used to bypass caching. (ii) Our
authoritative server returns a valid response in Figure 5(e) at
the end of timeout to extend the attack window. (iii) We inject

Table 3: Microsoft DNS and BIND off-path attack results.

Software Time of Avg time Max Success
each round taken traffic rate rate
MS DNS \ 5s \ 802s \ 216Mbps \ 20/20
BIND | 12s | 790s | 54Mbps | 20/20

20 % 65,536 forged packets to enumerate the combinations
of 20 ports and 65,536 TXIDs against the target resolver.
Specially, we remove the additional section from responses
in Figure 5(a) to reduce the packet size. (iv) Finally, we issue
a new query to check whether the rogue NS records of . com
are cached or not.

o Attack results. We run the experiment 20 times. As shown

in Table 3, we achieved a 100% success rate with an average
of 802s to succeed. Among the runs, the maximum time
till success is 2,475s, and the minimum is only 10s. During
attack, the target resolver received < 216 Mbps inbound attack
traffic. To further reduce the attack traffic bandwidth, we can
decrease the number of guessed ports in each round, which
leads to more attack rounds and longer time costs.
Attack BIND with SAD DNS [65]. Through source code
review, we find that BIND has a forwarding timeout of /.2s
and an initial recursion timeout of 0.8s. In addition, BIND
uses the default port range of the host OS, e.g., from 32768 to
60999 with a total number of 28,232 ports in Linux [61]. As
such, direct brute-forcing is not a feasible option. We solve
this challenge by adjusting SAD DNS to attack BIND. Be-
cause BIND uses connect () on the UDP socket, we leverage
the private source port scan method from [65] and assign 16
IP addresses using the DHCP strategy to our attack machine.
Besides, Appendix D describes the mechanisms of SAD DNS
in details.

e Attack process. In each round, (i) We choose to guess
only 50 ports at a round because the attack window is just 1.2s.
(i) We reply with a valid response in Figure 5(e) at the end
of a timeout to prevent fallback queries. If fallback queries
occur, BIND will cache the NS records of dg 4k, and then
the attacker needs to wait for the cache timeout or leverage
another domain to launch attacks. (iii) After identifying a
candidate in-use port, we bruteforce 65,536 TXIDs targeting
the port. (iv) We test whether the rogue .com NS records
are cached. Under the birthday paradox, the success rate
increases after many rounds: e.g., 99.8% after 3,600 rounds
(see the equation below).

1—[(28,232 —50)/28,232]*% = 99 8% 2)

e Attack results. We run the attack 20 times and achieved
100% success rate, with an average runtime of 790s (ranging
from 50s to 2,269s). The maximum traffic volume to the
resolver is about 54Mbps during attack. We list the result in
Table 3.

6 Finding Vulnerable CDNSes at Large

In this section, we propose a methodology that finds CDNSes
vulnerable to MAGINOTDNS in open networks. We also
conduct interviews with several ISP operators to gain better
understanding of CDNSes.

6.1 CDNS Probing Methodology

Technical challenges. CDNSes differ from the regular for-
warders and recursive resolvers in that both Zr and Zg are
non-empty. Leveraging this observation, we can confirm a tar-
get server is a CDNS, if we find it forwards queries for some
domains and recursively resolves some other domains. How-
ever, neither CDNSes nor regular DNS servers tell in their
responses about how the corresponding queries are resolved
backstage, plus only operators know the pre-configured lists
of Zr and Zg. An attacker may observe from authoritative
servers how his/her domain d ;. is resolved, but lacks van-
tage points over other domains to confirm that the target server
is a CDNS. As a result, identifying CDNSes poses a signifi-
cant challenge.

Identifying CDNSes with cache probing. We find solving
the challenge is possible through a side-channel analysis from
DNS clients: DNS servers cache “intermediate” data in refer-
rals during recursive resolution of domains, but not so during
forwarding because no referrals are ever provided. After the
resolution of a domain, we can use cache probing methods
(i.e., non-recursive DNS queries that ask the server only to
find answers locally [38]) to reveal whether the data is cached.

As shown in Figure 8, our controlled DNS client first issues
a query for the address (type 2) of an SLD d to the target server
(steps @ and @). During recursive resolution (steps @ to @),
the authoritative server data (type NS) of d will be returned
through referrals and cached (steps ® and ©). By contrast,
if the query is forwarded (steps @ to ®), only type A RRSets
of d are returned from upstream servers and no authoritative
server data is cached. Finally, the DNS client issues a non-
recursive cache probing query for the authoritative server data
(type NS) of d (steps ® and @). If the response is empty (step
@) then the previous query for d was forwarded and d € Zp,
otherwise (step @) recursively resolved and d € Zg.

Though the pre-configured DNS zones are not known to
us, we only need to probe a subset of Zg and Zz to confirm
a CDNS (the probed subsets are termed as Pr and Pg). To
this end, we select the domains from Alexa Top 10K sites [3]
and keep 9,429 SLDs with both type NS and type A RRSets
(they are both required by our probing methodology). We also
test a newly-registered domain d_;50p, in order to distinguish
between the recursive-default CDNSes (if d.,50m € Pr) and
the forwarding-default CDNSes (if d.ysr0m € Pr), because we
expect that ds0m falls in the default list of DNS zones.
Finding vulnerable CDNSes with software versions. For
all discovered CDNSes, we first leverage the version.bind

=3
- =
2 - - =3
Upstream Forwarder DNS Client Recursive Authoritative
server resolver servers
DNS query @ | € DNS query
Forward (2) | example.com? A| example.com? A

@ Query root server
Referral to TLD NS @
—_—0 Y

com. NS
TLD Ns Cached £ | a.gtld-servers.net

@ Query TLD NS
Referral to SLD NS @
—ta s 9

L Response .,
a.iana-servers.net

example.com A

93.184.216.34 | |E SLD a Cached @ Query SLD NS

(5 Response @ | Authoritative answer @

93.184.216.34 example.com A
93.184.216.34

example.com? A

Query
® authoritative or
answer from
local zones SLD NS

not cached

SLD Ns cached
by resolver

(w

93.184.216.34
SLD A Cached &
Cache probe(® | @ Cache probe

example.com? | example.com?
NS +norecurse| NS +norecurse

@ Response Response @

(Empty) a.iana-servers.net

Figure 8: Inferring backstage DNS resolution from cache.

DNS probing method [11] to reveal their software versions.
If the responses show nothing, we further use fpdns [32], a
community-sponsored tool that identifies software informa-
tion from fingerprints in DNS responses. The tool is built
with fingerprints for a wide range of DNS software, including
BIND (versions 9, 8, and older) and Microsoft DNS (versions
NT to 2008). For BIND servers, because the off-path type
of MAGINOTDNS relies on SAD DNS and requires specific
OSes, we also probe their OS fingerprints with Nmap [71].
Practical considerations. Our probing methodology works
under three requirements:

(i) Upstream servers do not stuff type NS RRSets in re-
sponses to type A queries (step @, creating a side channel).

(i) DNS servers follow non-recursive flags in cache prob-
ing queries (step ® and @) and only find answers locally.

(iii) The initial DNS query (steps @ and @) and the cache
probing request (step ® and @) hit the same piece of DNS
cache. This is not true if a server IP has multiple backend
servers for load balancing, e.g., large public DNS services.

To evaluate whether (i) is fulfilled, we perform field tests
on all DNS software in Table | and public DNS services in
Table 13 in Appendix E, which commonly serve as upstream
servers. We find that all tested DNS software and most (13 of
16) public DNS services follow this requirement.

For servers that do not satisfy (i) and (iii), we identify and
remove them from the later analysis. Specifically, we register
adomain d,,50n, and set up its authoritative server. For a target
DNS server, we first issue non-recursive queries for deysom
and remove it if our authoritative server receives subsequent
queries (i.e., not satisfying (i7)). We then send the server 5
identical DNS queries for d,0m at 1 QPS consecutively and
remove it if TTLs in the responses do not decrease by one
(i.e., not satisfying (ii7)).

Limitations. We acknowledge that we may underestimate
the population of vulnerable CDNSes in the wild, due to lim-
itations of software fingerprinting tools (e.g., DNS servers
may ignore version.bind probes and fpdns lacks finger-
prints for Knot Resolver) and cache-probing method (e.g., we

Table 4: Open DNS servers and CDNS statistics.

| | % of

DNS S #1P
erver Type | | Probed | CDNS | Vuln.

DNS servers on Feb. 14, 2022 1,499,110 - - -
DNS servers alive on Mar. 14, 2022 | 1,215,918 - - -
— Not following non-recursive 839,017 - - -
— Using multiple caches 401,186 -
— Supports cache-probing 370,512 | 100% - -
— Version identifiable 237,835 | 64.2% - -
— DNSSEC validation 86,955 | 23.5% - -
— 0x20 encoding 1,619 0.4% - -

CDNSes identified by probing 154,955 | 41.8% | 100% -
— Version identifiable (in CDNS) 117,306 | 31.7% | 75.7% -
—by version.bind 59,419 | 16.0% |38.3% -
— by fpdns 57,887 | 15.6% |37.4% | -
— OS identified for BIND (in CDNS) | 19,995 | 54% |12.9%| -
— DNSSEC validation (in CDNS) 34424 | 93% |222%| -

- 0x20 encoding (in CDNS) 1,119 0.3% | 0.7% -
Vulnerable CDNSes 54,949 | 14.8% |35.5% | 100%
- On-path attack possible” 54,949 | 14.8% [35.5% | 100 %
- BIND 24287 | 6.6% |15.7% |44.2%
— Microsoft DNS 30,662 | 83% |19.8% |55.8%
- Off-path attack possible” 48,539 |13.1% [31.3% |88.3%
— BIND (OS exploitable) 17,877 | 4.8% |11.5% |32.5%
— Microsoft DNS 30,662 | 83% |19.8% |55.8%
— Recursive-default 10,445 | 5.0% |11.9% |33.4%
— Forwarding-default 36,581 | 9.9% |23.6% | 66.6%

* On-/Off-path attack possible: CDNSes equipped with non-empty Z and vulnerable
software versions/OSes. Because we lack vantage between CDNSes and upstream
servers, we can only confirm they are vulnerable to on-/off-path attacks, but cannot
further identify which domains in Zr can be actually exploited by each type of attack.

cannot probe servers that do not follow non-recursive flags).
However, as shown in the following sections, we are still
able to discover over 54,949 open CDNSes vulnerable to
MAGINOTDNS, and our results reflect the lower bound.

6.2 CDNS Probing Results

Open CDNSes. Studies have reported significant churn of
open DNS server IPs because most operate on home-owned
equipment [19]. We do not expect them to be configured
as CDNS and focus on servers that are more stable. To this
end, we scanned the entire IPv4 address space for open DNS
servers on Feb. 14 and Mar. 14, 2022 using XMap [59]. We
consider 1,215,918 open DNS servers that appear in both
scans (i.e., servers that are up for at least one month).

Our probing of open DNS resolvers for CDNSes started
from Mar. 14 to Apr. 13, 2022 (one month). Table 4 shows
the statistics of all tested open DNS servers. Using the cache-
probing method, we probed 370,512 DNS servers (in 224
countries and 14,212 ASes”) satisfying the requirement (i)-
(iii) and confirm 154,955 CDNSes (41.8% of probed, in 211
countries and 8,900 ASes). As CDNSes can defend against
MAGINOTDNS by DNSSEC validation and 0x20 encoding,
we filter the CDNSes that these defenses are enabled. To

5 Identified using free GeolP databases [28].

27,767 CDNSes
: (51%)

10,445 CDNSes
(19%)

0 2000 4000 0w 10000
Pl

Figure 9: Vulnerable open CDNSes associated with their |Pr|

and | Pg|. Each dot represents one CDNS.

identify servers that enable DNSSEC validation, we follow
practices in [20] and deliberately attach bogus signatures to
RRSets of our test domain dys0m, and query each CDNS for
this domain. If the response shows a SERVFAIL error, which
suggests the server validates the DNSSEC signatures and finds
it to be bogus, the server is not vulnerable to MAGINOTDNS.
Meanwhile, if the query to our authoritative server carries
mixed-case domains, the server enables 0x20 encoding and is
not vulnerable to the off-path type of MAGINOTDNS.

In the end, we identify 54,949 vulnerable CDNSes (14.8%
of all probed DNS servers and 35.5% of all CDNSes, in 198
countries and 5,839 ASes). All of them are vulnerable to
the on-path attack (because they have non-empty Z¢), and
88.3% are also vulnerable to the off-path attack. Due to limita-
tions of software fingerprinting tools, we only find vulnerable
CDNSes that use BIND and Microsoft DNS.

Recall that attackers may leverage domains in Zr to hi-

jack Zg, and here we show the domain distribution between
both sets in vulnerable CDNSes. In Figure 9, we associate
vulnerable open CDNSes with their Pr and Pg. We find that
for 19% of vulnerable CDNSes (plotted at the bottom-right
corner), over 80% of Alexa Top 10K domains falls in Pg,
which can become victims. Interestingly, thousands of vulner-
able CDNSes have Pr and Pg of similar sizes (plotted in the
middle), which seems surprising because putting thousands
of domains in configuration files is a cumbersome task for
CDNS operators. However, through interviews with network
operators (see Section 6.3), we confirm that the configuration
process can be automated and prevalent.
Closed CDNSes in the enterprise networks. Enterprise
CDNSes are often deployed to split the resolution of private
and public namespaces. For example, operators put the public
DNS root in Zr and private domains in Zg, such that queries
for public names can be forwarded (e.g., public DNS ser-
vices like Google [31]), while private names are recursively
resolved by querying internal authoritative servers.

To find closed CDNSes, we selected 5 leading Internet
companies (see Table 6, company names are anonymized)
and contacted their network security department. We asked
the operators to run a measurement script that probes the
default DNS server from their working computers. For ethical
reasons, we reduce the domain list to only 2 public domains
and 2 private domains (selected by the operators), and we

Table 5: Interview results of CDNS use cases in ISP networks.

Alias Purpose Policy Operation
ISP | DSP | CDNS | | Usage | Upstream server type | Zptype | |Zp| | Config | Query volume
B ‘ D1 ‘ C1 ‘ Access control ‘ Shared ‘ Private authoritative server ‘ Private domain ‘ 20+ ‘ Manual ‘ -
| D2 | €2 | Query fall-backing | Individual | Public DNS service (Google) | Public domain | 2 | Manual |

12 | D3 | C3 | Contentcaching | Shared

| Third-party “authoritative” servers | Public domain | 7k+ | API |

2.5k+ QPS

!« means the data is not disclosed.

Table 6: Closed CDNSes in enterprise networks.

. Private Public
Enterprise | # Employee domain | domain CDNS
El 100k+ Zg Zr v
E2 15k+ Zr Zr v
E3 Sk+ Zg Zr v
E4 200k+ Zr Zr X
E5 80K+ Zr Zr X

report our findings to their DNS operators if vulnerabilities
are identified. We also tried to identify their software versions
but were unsuccessful. In the end, we find that CDNSes in 3
enterprises are potentially vulnerable to MAGINOTDNS, and
their operators confirmed the threat model.

6.3 In-Depth Understanding of CDNS

Though our cache probing method reveals the potentially vul-
nerable CDNSes, we still lack a good understanding about
why CDNS is set up and how it chooses to forward queries.
One may argue that the on-path attack has small impact be-
cause it might be uncommon that CDNSes forward queries
directly to authoritative servers. To gain an in-depth under-
standing about CDNS, we conducted interviews with 2 major
ISPs. Our interviews consist of 3 major questions:

Q1: (Purpose) “For what purpose do you deploy
CDNSes in your network?”

Q2: (Policy) “What policies/configurations are en-
forced by your CDNSes?” CDNS policies include types
of domains in Zg (i.e., potential dg k), destination of for-
warded queries (i.e., upstream servers), and whether multiple
CDNSes in one ISP network share the same configurations.

Q3: (Operation) “What are the operational statuses of
CDNSes?”” Considerations include the DNS query volume
and how to change configuration files.

Network operators of 2 leading ISPs (/1 and /2, names
anonymized) accepted our interview through online meetings
during March and May 2022. The 2 ISPs serve a total of 700
million subscribers. The ISPs outsource their DNS services
to 6 DNS service providers (e.g., vendors of DNS services,
called DSPs for short), and we also interviewed all DSPs.
Results of interviews. Below we summarize answers from
ISPs and DSPs to our questions. In Table 5, we also provide
information of 3 typical CDNSes (C1, C2, and C3 supported
by 3 DSPs D1, D2, and D3) deployed in their networks. D4,

D5, and D6 did not describe their specific CDNS use cases.

Q1: Purpose. Both ISPs I1 and I2 reported a wide range
of CDNS use cases in their regional networks. Purposes of
deploying CDNSes include: (i) access control (e.g., C1 splits
resolution of private domains and public domains); (ii) query
fallback (e.g., C2 forwards failed queries to public DNS ser-
vices); (iii) content caching (e.g., C3 forwards queries about
video streaming domains to third-party servers, which claim
authority for the domains and resolve them to local cache
servers to enhance performance); (iv) others, including load-
balancing and sinkholing (forwarding queries about malicious
domains to sinkhole servers).

Q2: Policy. CDNS policies in one ISP network can be
shared among servers (C1 and C3) or customized for one
server only (C2). Queries for domains in Zg are usually for-
warded to 3 types of upstream servers: (i) closed authoritative
nameservers that resolve private domain names (C1); (if) pub-
lic DNS services (C2); (iii) third-party servers that claim
authority for certain types of domains (C3).

Q3: Operation. C1 forwards 20+ private domains to their

internal nameservers, and C2 forwards queries of 2 public
domains to Google Public DNS (8.8.8.8) due to DNS reso-
lution failure. Because Zr is small, the configuration files
of C1 and C2 are edited manually by their network operators
(similar to Figure 3). By contrast, C3 forwards queries for 7k+
public domains directly to third-party “authoritative” servers.
Its configuration file is compiled automatically via APIs and
can be changed dynamically according to different network
conditions. DNS query volumes for domains in Zr of C3 can
reach 2.5k+ QPS.
Real-world attacks and impacts. After the interviews, we
also discussed the possibility of launching MAGINOTDNS
attacks with the ISPs and DSPs. Surprisingly, operators of
C3 reported evidence of on-path attacks in their networks.
From the DNS traffic, they observe “Third-party authorita-
tive nameservers return rogue NS records in DNS responses
and trick ISP recursive resolvers (C3) into accepting fake
nameservers of domains not forwarded to them”. The web-
sites hosted on those non-forwarded domains are manipulated
to insert advertisement pages by them.

Though both C1 and C2 accept out-of-bailiwick responses
on their forwarding modes, C1 is less likely to be exploited
because private authoritative servers are owned by /1 itself.
C2 is exploitable by off-path attackers targeting forwarded
public domains.

7 Discussion

Ethical considerations. All vulnerability analysis and end-to-
end validation of MAGINOTDNS are performed in controlled
environments. To find vulnerable CDNSes in open networks,
we only perform cache probing and collect software version
information, and do not launch real cache poisoning attacks
against them. And we follow the ethical principles of Menlo
Report [47] and common practices of measurement studies
about DNS servers [19,56]. When probing Alexa Top 10K
domains, we strictly limit our DNS query rate (at below 1 QPS
per server) to avoid interrupting their normal services. We also
configure reverse DNS records for our client IP addresses with
our cache probing experiment information and did not receive
any complaints during the measurement period. For all of our
interviewed ISPs and enterprises, we receive their consent to
report our survey results using anonymized information.
Lessons learned. The vulnerabilities reported in this paper
uncover two layers of implementation inconsistency: the se-
curity checking logic in different DNS software and different
server types (i.e., recursive resolvers and forwarders). While
bailiwick rules have been documented since 90s®, no concrete
algorithms are ever given by DNS standards. The lack of spe-
cific guidelines for such important security measures results
in various implementations by different DNS software.

The standards are also unclear about forwarders due to
their unique position in the DNS infrastructure, which cre-
ates confusion about whether and how to implement the same
functionalities as recursive resolvers. For example, V'1 shows
the forwarder mode of some software initializes Q.zone as
root “.”, possibly because they rely on the security checks of
upstream servers [96]. In addition, forwarding only involves
one round of message exchange, so forwarders lack sufficient
information to update Q.zone because upstream servers pro-
vide no context of the domain resolution (e.g., referrals). This
might also explain why V'1 is manifested. As a result, we call
for the standardization of bailiwick checking algorithms and
implementation agreements upon DNS forwarders.
Mitigation. For vendors of vulnerable DNS software, we
recommend updating implementations of InitQuery (V1). A
possible solution is to follow the implementation of software
like Unbound, which initializes Q.zone with the closest for-
warding zone in Zr (see Section 4.1). We also recommend
DNS software expand the range of source port randomization
(V2) and fix the flawed CNAME chasing algorithms (V3).

For resolver operators and domain holders, DNSSEC [8]
is recommended, which attaches cryptographic signatures to
records resolvers can validate. Responses failing DNSSEC
validation are discarded, effectively eliminating all types of
cache poisoning attacks, including ours. However, DNSSEC
deployment remains unsatisfactory: as we show in Table 4,
only 23.5% of probed resolvers enable DNSSEC validation.

6 Through code review, we confirm that BIND proposed bailiwick checks
from version 4.9.2 in 1993 and implemented it in version 4.9.6 in 1997.

Responsible disclosure. We have reported all the discovered
vulnerabilities to DNS software vendors, and all of them have
confirmed. We received 3 CVE-ids for BIND [23], Techni-
tium [24], and Knot Resolver [25], and were awarded $1,000
by Microsoft Security Response Center. BIND fixed this issue
in 9.18.1 [13] (initializing Q.zone with the closest forwarding
zone in Zr), and Technitium fixed it in 7.1 [88] (ignoring NS
and glue records for forwarding queries). Microsoft DNS will
adopt “defense in depth” in its next major release. Knot Re-
solver proposes to rewrite its internal modules and published
a warning of this risk as a temporary solution [79, 80].

8 Other Related Work

DNS cache poisoning attacks. In Section 3.3, we have com-
pared MAGINOTDNS with most related DNS cache poisoning
attacks. Here, we provide additional details and other related
works. Back in 90s, [34] exploited recursive resolvers that did
not perform bailiwick checks, while [§1] found many home
routers did not validate DNS responses in 2014. After that, the
bailiwick rule is well implemented, and DNS cache poisoning
attacks aim to inject in-bailiwick records. [40] proposed a
method to de-randomize the source port of a resolver behind
NAT, and [4] achieved a similar goal by leveraging malware to
exhaust the local port on a client machine. Most recently, [48]
presented a cross-layer attack by exploring the weakness of
the pseudo-random number generator in the Linux kernel. By
contrast, IP fragmentation was developed to eliminate the
requirements of guessing the source port number [39]. In ad-
dition, a number of other approaches are leveraged for DNS
cache poisoning attacks, including cache inconsistency [45],
domain misinterpretation [44], and domain collision [17, 18].
Bailiwick rule analysis. The existing RFCs only provide a
high-level description of bailiwick rules [35,43,69,70]. Until
2010, [85] developed a formal model of the bailiwick rule and
the record overwriting mechanism for modern DNS resolvers.
They analyzed different types of well-known cache poison-
ing attacks and tested the attacks against implementations.
However, they did not find new vulnerabilities.

9 Conclusion

In this paper, we provide a systematic security analysis against
the implementation of bailiwick rules. Exploiting vulnera-
ble bailiwick checking implementations, we propose MAG-
INOTDNS against CDNS, a powerful cache poisoning attack
that allows an adversary to manipulate arbitrary DNS zones.
The vulnerability affects the latest version of several popular
DNS software, including BIND and Microsoft DNS. Exten-
sive Internet measurements and interviews were conducted
to demonstrate the real-world CDNS use cases and attack
impacts. Our research calls for an immediate review of the
implementation of DNS security principles.

Acknowledgement

We thank all the anonymous reviewers for their valuable com-
ments to improve this paper and all software vendors and our
industry partners for their discussion and support. The authors
from Tsinghua University were supported by the National Nat-
ural Science Foundation of China (U1836213, U19B2034,
62102218, and 62132011). The authors from University of
California, Irvine were supported by NSF CNS-2047476 and
gifts from Cisco and Microsoft.

References

[1] 1.1.1.1. https://1.1.1.1/dns/, 2022.

[2] BIND 9.0.0. https://ftp.ripe.net/mirrors/sit
es/ftp.isc.org/isc/bind9/9.0.0/, 2000.

[3] Alexa. https://www.alexa.com/topsites, 2022.

[4] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian,
Zhiyun Qian, and Nael B. Abu-Ghazaleh. Collabo-
rative Client-Side DNS Cache Poisoning Attack. In
INFOCOM ’19.

[5] Eihal Alowaisheq, Peng Wang, Sumayah Alrwais, Xi-
aojing Liao, XiaoFeng Wang, Tasneem Alowaisheq,
Xianghang Mi, Siyuan Tang, and Baojun Liu. Cracking
the Wall of Confinement: Understanding and Analyzing
Malicious Domain Take-downs. In NDSS ’19.

[6] Sumayah Alrwais, Xiaojing Liao, Xianghang Mi, Peng
Wang, XiaoFeng Wang, Feng Qian, Raheem Beyabh,
and Damon McCoy. Under the Shadow of Sunshine:
Understanding and Detecting Bulletproof Hosting on
Legitimate Service Provider Networks. In S&P ’17.

[7] Anthony E. Alvarez. DNS Forwarding and Conditional
Forwarding. https://medium.com/tech-jobs-aca
demy/dns-forwarding-and-conditional-forwar
ding-£3118bc93984, 2016.

[8] Roy Arends, Rob Austein, Matt Larson, Dan Massey,
and Scott Rose. RFC 4035: Protocol Modifications for
the DNS Security Extensions. RFC Proposed Standard.

[9] MAGINOTDNS. https://maginotdns.net/, 2022.

[10] Ray Bellis. RFC 5625: DNS Proxy Implementation
Guidelines. RFC Best Current Practice.

[11] BIND. How do I change the version that BIND reports
when queried for version.bind? https://kb.isc.org
/docs/aa-00359, 2021.

[12] BIND. https://www.isc.org/bind/, 2022.

[13] BIND. https://kb.isc.org/docs/cve-2021-252
20, 2022.

[14] BIND. Source Code Repository. https://gitlab
.1sc.org/isc-projects/bind9/-/blob/v9_18_0
/lib/dns/include/dns/types.h#L302, 2022.

[15] CAIDA. State of IP Spoofing. https://spoofer.ca
ida.org/summary.php.

[16] CNAME Chasing. https://cloud.google.com/dns
/docs/cnamechasing, 2022.

[17] Qi Alfred Chen, Eric Osterweil, Matthew Thomas, and
Z. Morley Mao. MitM Attack by Name Collision:
Cause Analysis and Vulnerability Assessment in the
New gTLD Era. In S&P '16.

[18] Qi Alfred Chen, Matthew Thomas, Eric Osterweil, Yu-
long Cao, Jie You, and Z Morley Mao. Client-side
Name Collision Vulnerability in the New gTLD Era: A
Systematic Study. In CCS ’17.

[19] Kenjiro Cho, Kensuke Fukuda, Vivek Pai, Neil Spring,
Marc Kiihrer, Thomas Hupperich, Jonas Bushart, Chris-
tian Rossow, and Thorsten Holz. Going Wild: Large-
Scale Classification of Open DNS Resolvers. In IMC
'15.

[20] Taejoong Chung, Roland Van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M. Maggs, Alan Mislove, and Christo Wilson. A
Longitudinal, End-to-End View of the DNSSEC Ecosys-
tem. In USENIX Security ’17.

[21] CLion. https://www. jetbrains.com/, 2022.
[22] CoreDNS. https://coredns.io/, 2022.

[23] CVE-2021-25220. https://cve.mitre.org/cgi-bi
n/cvename.cgi?name=CVE-2021-25220, 2021.

[24] CVE-2021-43105. https://cve.mitre.org/cgi-bi
n/cvename.cgi?name=CVE-2021-43105, 2021.

[25] CVE-2022-32983. https://cve.mitre.org/cgi-bi
n/cvename.cgi?name=CVE-2022-32983, 2022.

[26] Domain Name Relay Daemon. http://dnrd.sourc
eforge.net/, 2015.

[27] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya
Jinmei, and Wenke Lee. Increased DNS Forgery Re-
sistance through 0x20-bit Encoding: Security via Leet
Queries. In CCS ’08.

[28] MaxMind GeolP Databases. https://www.maxmind.
com/en/geoip2-services-and-databases, 2022.

[29] Dbndns.
2010.

https://dbpedia.org/page/Dbndns,

[30] djbdns. https://cr.yp.to/djbdns.html, 2009.

https://1.1.1.1/dns/
https://ftp.ripe.net/mirrors/sites/ftp.isc.org/isc/bind9/9.0.0/
https://ftp.ripe.net/mirrors/sites/ftp.isc.org/isc/bind9/9.0.0/
https://www.alexa.com/topsites
https://medium.com/tech-jobs-academy/dns-forwarding-and-conditional-forwarding-f3118bc93984
https://medium.com/tech-jobs-academy/dns-forwarding-and-conditional-forwarding-f3118bc93984
https://medium.com/tech-jobs-academy/dns-forwarding-and-conditional-forwarding-f3118bc93984
https://maginotdns.net/
https://kb.isc.org/docs/aa-00359
https://kb.isc.org/docs/aa-00359
https://www.isc.org/bind/
https://kb.isc.org/docs/cve-2021-25220
https://kb.isc.org/docs/cve-2021-25220
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_0/lib/dns/include/dns/types.h#L302
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_0/lib/dns/include/dns/types.h#L302
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9_18_0/lib/dns/include/dns/types.h#L302
https://spoofer.caida.org/summary.php
https://spoofer.caida.org/summary.php
https://cloud.google.com/dns/docs/cnamechasing
https://cloud.google.com/dns/docs/cnamechasing
https://www.jetbrains.com/
https://coredns.io/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25220
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25220
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32983
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32983
http://dnrd.sourceforge.net/
http://dnrd.sourceforge.net/
https://www.maxmind.com/en/geoip2-services-and-databases
https://www.maxmind.com/en/geoip2-services-and-databases
https://dbpedia.org/page/Dbndns
https://cr.yp.to/djbdns.html

[31] Google Public DNS. https://developers.google.
com/speed/public-dns, 2022.

[32] DNS-OARC. fpdns - DNS Fingerprinting Tool. https:
//www.dns-oarc.net/tools/fpdns, 2021.

[33] Dnsmasq. https://thekelleys.org.uk/dnsmasq/
doc.html, 2022.

[34] Michael Dooley and Timothy Rooney. DNS Security
Management. In John Wiley & Sons, Inc., Hoboken,
New Jersey, page 155.

[35] Robert Elz and Randy Bush. RFC 2181: Clarifications
to the DNS Specification. RFC Proposed Standard.

[36] FusionLayer. https://www.fusionlayer.com/prod
ucts/dns-server, 2022.

[37] GDB. https://www.sourceware.org/gdb/, 2022.

[38] Luis Grangeia. Cache snooping or snooping the cache
for fun and profit, 2004.

[39] Amir Herzberg and Haya Shulman. Fragmentation
Considered Poisonous, or: One-domain-to-rule-them-
all.org. In CNS ’13.

[40] Amir Herzberg and Haya Shulman. Security of Patched
DNS. In ESORICS ’12.

[41] Amir Herzberg and Haya Shulman. Vulnerable Delega-
tion of DNS Resolution. In ESORICS ’13.

[42] Paul Hoffman, Andrew Sullivan, and Kazunori Fujiwara.
RFC 8499: DNS Terminology. RFC Best Current
Practice.

[43] Bert Hubert and Remco van Mook. RFC 5452: Mea-
sures for Making DNS More Resilient against Forged
Answers. RFC Proposed Standard.

[44] Philipp Jeitner and Haya Shulman. Injection Attacks
Reloaded: Tunnelling Malicious Payloads over DNS.
In USENIX Security "21.

[45] Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Hai-Xin Duan,
and Jianping Wu. Ghost Domain Names: Revoked Yet
Still Resolvable. In NDSS ’12.

[46] Dan Kaminsky. It’s The End Of The Cache As We
Know It, 2008.

[47] Erin Kenneally and David Dittrich. The menlo report:
Ethical principles guiding information and communica-
tion technology research. SSRN Electronic Journal.

[48] Amit Klein. Cross Layer Attacks and How to Use Them
(for DNS Cache Poisoning, Device Tracking and More).
In S&P ’21.

[49] Amit Klein. BIND 8 DNS Cache Poisoning, 2007.
[50] Amit Klein. BIND 9 DNS Cache Poisoning, 2007.

[51] Amit Klein. OpenBSD DNS Cache Poisoning and
Multiple O/S Predictable IP ID Vulnerability, 2007.

[52] Amit Klein. Windows DNS Server Cache Poisoning,
2007.

[53] Amit Klein. PowerDNS Recursor DNS Cache Poison-
ing, 2008.

[54] Amit Klein. DNS Record Injection Vulnerabilities in
Home Routers. http://www.icir.org/mallman/t
alks/schomp-dns-security-nanog6l.pdf, 2014.

[55] Amit Klein, Haya Shulman, and Michael Waidner.
Internet-Wide Study of DNS Cache Injections. In IN-
FocoMm '17.

[56] Maciej Korczyniski, Michat Krél, and Michel van Eeten.
Zone Poisoning: The How and Where of Non-Secure
DNS Dynamic Updates. In IMC ’16.

[57] Hyeonmin Lee, Aniketh Gireesh, Roland van Rijswijk-
Deij, Tackyoung "Ted" Kwon, and Taejoong Chung. A
Longitudinal and Comprehensive Study of the DANE
Ecosystem in Email. In USENIX Security "20.

[58] Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang,
Qifan Zhang, Zhou Li, Haixin Duan, and Qi Li. Ghost
Domain Reloaded: Vulnerable Links in Domain Name
Delegation and Revocation. In NDSS '23.

[59] Xiang Li, Baojun Liu, Xiaofeng Zheng, Haixin Duan,
Qi Li, and Youjun Huang. Fast IPv6 Network Periphery
Discovery and Security Implications. In DSN ’21.

[60] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, and
Jianping Wu. Measuring Query Latency of Top Level
DNS Servers. In PAM ’13.

[61] Linux. https://www.kernel.org/doc/html/late
st/networking/ip-sysctl.html, 2022.

[62] Unix & Linux. BIND: forwarding zone does not work
when allow-recursive not allowed. https://unix.sta
ckexchange.com/questions/633561/bind-forwa
rding-zone-does—-not-work-when-allow-recurs
ive-not-allowed, 2021.

[63] Baojun Liu, Chaoyi Lu, Hai-Xin Duan, Ying Liu, Zhou
Li, Shuang Hao, and Min Yang. Who Is Answering My
Queries: Understanding and Characterizing Interception
of the DNS Resolution Path. In USENIX Security ’18.

[64] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys,
and Joshua A Kroll. Network Hygiene, Incentives, and
Regulation: Deployment of Source Address Validation
in the Internet. In CCS ’19.

https://developers.google.com/speed/public-dns
https://developers.google.com/speed/public-dns
https://www.dns-oarc.net/tools/fpdns
https://www.dns-oarc.net/tools/fpdns
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://www.fusionlayer.com/products/dns-server
https://www.fusionlayer.com/products/dns-server
https://www.sourceware.org/gdb/
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
https://www.kernel.org/doc/html/latest/networking/ip-sysctl.html
https://www.kernel.org/doc/html/latest/networking/ip-sysctl.html
https://unix.stackexchange.com/questions/633561/bind-forwarding-zone-does-not-work-when-allow-recursive-not-allowed
https://unix.stackexchange.com/questions/633561/bind-forwarding-zone-does-not-work-when-allow-recursive-not-allowed
https://unix.stackexchange.com/questions/633561/bind-forwarding-zone-does-not-work-when-allow-recursive-not-allowed
https://unix.stackexchange.com/questions/633561/bind-forwarding-zone-does-not-work-when-allow-recursive-not-allowed

[65] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng
Zheng, Youjun Huang, and Haixin Duan. DNS Cache
Poisoning Attack Reloaded: Revolutions with Side
Channels. In CCS ’20.

[66] Keyu Man, Xin’an Zhou, and Zhiyun Qian. DNS Cache
Poisoning Attack: Resurrections with Side Channels. In
CCS 21.

[67] MaraDNS. https://maradns.samiam.org/, 2022.

[68] Microsoft. Forwarders and conditional forwarders reso-
lIution timeouts. https://docs.microsoft.com/e
n-us/troubleshoot/windows-server/networkin
g/forwarders-resolution-timeouts, 2020.

[69] Paul V. Mockapetris. RFC 1034: Domain Names -
Concepts and Facilities. RFC Standard.

[70] Paul V. Mockapetris. RFC 1035: Domain Names -
Implementation and Specification. RFC Standard.

[71] Nmap. https://nmap.org/, 2022.

[72] NSD. https://www.nlnetlabs.nl/projects/nsd/
about/, 2022.

[73] Simple DNS Plus. https://simpledns.plus/downl
oad, 2022.

[74] Posadis.
2005.

http://posadis.sourceforge.net/,

[75] PowerDNS. https://www.powerdns.com/, 2022.

[76] RaidenDNS. http://www.raidendnsd.com/eng_d
ownload.html, 2007.

[77] Knot Resolver. https://www.knot-resolver.cz/,
2022.

[78] Knot Resolver. Knot Resolver Source Code Reposi-
tory. https://gitlab.nic.cz/knot/knot-resolv
er/-/blob/v5.5.0/1ib/resolve.h#L95, 2022.

[79] Knot Resolver. New Policy. https://gitlab.nic.c
z/knot/knot-resolver/-/compare/master...ne
w-policy, 2022.

[80] Knot Resolver. Policy Docs. https://github.c
om/CZ-NIC/knot-resolver/commit/ccb9d9794db
5eb757c33becf65cblcf48ectdo6s, 2022.

[81] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. Assessing DNS Vulnerability to Record
Injection. In PAM ’14.

[82] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. On measuring the client-side DNS in-
frastructure. In IMC ’13.

[83] Christoph Schuba and Eugene H Spafford. Address-
ing Weaknesses in the Domain Name System Protocol.
Master’s thesis.

[84] Kaiwen Shen, Chuhan Wang, Minglei Guo, Xiaofeng
Zheng, Chaoyi Lu, Baojun Liu, Yuxuan Zhao, Shuang
Hao, Haixin Duan, Qinfeng Pan, and Min Yang. Weak
Links in Authentication Chains: A Large-scale Analysis
of Email Sender Spoofing Attacks. In USENIX Security
21.

[85] Sooel Son and Vitaly Shmatikov. The Hitchhiker’s
Guide to DNS Cache Poisoning. In SecureComm ’10.

[86] Joe Stewart. DNS Cache Poisoning — The Next Genera-
tion. Secureworks.

[87] Microsoft Domain Name System. https://docs.mic
rosoft.com/en-us/windows-server/networking
/dns/dns-top, 2022.

[88] Technitium. https://github.com/Technitiums
oftware/DnsServer/blob/master/CHANGELOG.md
#version-71, 2021.

[89] Technitium. https://technitium.com/dns/, 2022.

[90] Rick Trader. Windows Server — How to configure a
Conditional Forwarder in DNS. https://www.interf
acett.com/blogs/windows-server-how-to-conf
igure-a-conditional-forwarder-in-dns/, 2016.

[91] Unbound. https://nlnetlabs.nl/projects/unbo
und/about/, 2022.

[92] Chuhan Wang, Kaiwen Shen, Minglei Guo, Yuxuan
Zhao, Mingming Zhang, Jianjun Chen, Baojun Liu,
Xiaofeng Zheng, Haixin Duan, Yanzhong Lin, and
Qingfeng Pan. A Large-scale and Longitudinal Mea-
surement Study of DKIM Deployment. In USENIX
Security ’22.

[93] Wouter Wijngaards. Draft: Resolver Side Mitigations.
RFC Draft.

[94] YADIFA. https://www.yadifa.eu/home, 2022.

[95] Yiming Zhang, Baojun Liu, Chaoyi Lu, Zhou Li, Haixin
Duan, Jiachen Li, and Zaifeng Zhang. Rusted Anchors:
A National Client-Side View of Hidden Root CAs in the
Web PKI Ecosystem. In CCS "21.

[96] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang,
Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao,
Haixin Duan, and Zhiyun Qian. Poison Over Troubled
Forwarders: A Cache Poisoning Attack Targeting DNS
Forwarding Devices. In USENIX Security "20.

https://maradns.samiam.org/
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/forwarders-resolution-timeouts
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/forwarders-resolution-timeouts
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/forwarders-resolution-timeouts
https://nmap.org/
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://simpledns.plus/download
https://simpledns.plus/download
http://posadis.sourceforge.net/
https://www.powerdns.com/
http://www.raidendnsd.com/eng_download.html
http://www.raidendnsd.com/eng_download.html
https://www.knot-resolver.cz/
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.5.0/lib/resolve.h#L95
https://gitlab.nic.cz/knot/knot-resolver/-/blob/v5.5.0/lib/resolve.h#L95
https://gitlab.nic.cz/knot/knot-resolver/-/compare/master...new-policy
https://gitlab.nic.cz/knot/knot-resolver/-/compare/master...new-policy
https://gitlab.nic.cz/knot/knot-resolver/-/compare/master...new-policy
https://github.com/CZ-NIC/knot-resolver/commit/ccb9d9794db5eb757c33becf65cb1cf48ecfd968
https://github.com/CZ-NIC/knot-resolver/commit/ccb9d9794db5eb757c33becf65cb1cf48ecfd968
https://github.com/CZ-NIC/knot-resolver/commit/ccb9d9794db5eb757c33becf65cb1cf48ecfd968
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-71
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-71
https://github.com/TechnitiumSoftware/DnsServer/blob/master/CHANGELOG.md#version-71
https://technitium.com/dns/
https://www.interfacett.com/blogs/windows-server-how-to-configure-a-conditional-forwarder-in-dns/
https://www.interfacett.com/blogs/windows-server-how-to-configure-a-conditional-forwarder-in-dns/
https://www.interfacett.com/blogs/windows-server-how-to-configure-a-conditional-forwarder-in-dns/
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/
https://www.yadifa.eu/home

Table 7: Trust levels in BIND.

Definition ‘ Level ‘ Description
dns_trust_ultimate 9 This server is authoritative
dns_trust_secure 8 Successfully DNSSEC validated
dns_trust_authanswer 7 Answer from an authoritative server
dns_trust_authauthority 6 Received in the authority section from an authoritative response
dns_trust_answer 5 Answer from a non-authoritative server
dns_trust_glue 4 Received in a referral response
dns_trust_additional 3 Received in the additional section of a response
dns_trust_pending_answer 2 DNSSEC has not been validated
dns_trust_pending_additional 1 DNSSEC has not been validated
dns_trust_none 0 No data should have this trust level

Summarized from the file bind9/lib/dns/include/dns/types.h#L.302 [14].

Table 8: Trust levels in Knot Resolver.
|Level|

KR_RANK_SECURE 32 |Verified trust chain from the closest TA
KR_RANK_AUTH 16 Authoritative data
KR_RANK_INSECURE| 8 Proven to be insecure

KR_RANK_MISSING
KR_RANK_MISMATCH
KR_RANK_BOGUS
KR_RANK_INDET

Definition Description

No RRSIG found

Ought to be secure but isn’t
Unable to determine whether secure

KR_RANK_TRY
KR_RANK_OMIT
KR_RANK_INITIAL 0

Attempt to validate
Do not attempt to validate
Initial-like states

— N~

Summarized from the file knot-resolver/lib/resolve.h#1.95 [78].

A Data Trust Levels of DNS Software

Table 7 and Table 8 show the data trust levels implemented
by BIND and Knot Resolver, which differ from the rankings
defined by DNS standards.

B List of Analyzed DNS Software
Table 9 shows all software we surveyed and explains why we

do not analyze bailiwick checking algorithms (in Section 4).
Table 10 shows our analysis workload on 9 DNS software.

Table 9: List of not analyzed DNS software.

DNS Software ‘ Version ‘ Analyzed ‘ Comments

Posadis [74] 0.60.6 X Too old
djbdns [30] 1.05 X Too old
dbndns [29] 1.05-8 X Too old
RaidenDNS [76] 1.3 X Too old
FusionLayer [36] - X No links
Dnsmasq [33] 2.86 X Not CDNS
DNRD [26] 2.20.3 X Not CDNS
YADIFA [94] 2.5.4 X Not CDNS
NSD [72] 4.5.0 X Not CDNS

C DNS Resolution Algorithm and Structures

The overall DNS resolution algorithm is shown in Algo-
rithm 1, and related DNS definitions and functions are listed
in Table 11 and Table 12.

Table 10: Analysis workload on DNS software. “# Days” is
how long we spent on software analysis.

Software | #Key SLOC | #Files | #Days

BIND 331,926 (C) 1,030 4
Knot Resolver 71,079 (C) 178 3
Unbound 127,601 (C) 283 3
PowerDNS Recursor | 78,320 (C++) 265 3
Microsoft DNS - - 1
MaraDNS 54,748 (C) 240 3
CoreDNS 44,777 (Go) 554 2
Technitium 29,709 (C#) 114 2
Simple DNS Plus - - 1
Total \ 738,160 \ 2,664 \ 22

D The SAD DNS Attack

SAD DNS (Side channel AttackeD DNS) [65] is a novel DNS
cache poisoning attack defeating UDP port randomization via
a side channel of the networking stack in modern operating
systems. SAD DNS leverages the ICMP error rate limit side
channel to scan ephemeral UDP ports used for DNS queries.

In detail, attackers use UDP messages to probe ports on the
target server. If the target port is not open (i.e., not used for
DNS queries) an ICMP port unreachable error will be emit-
ted, while no ICMP errors will be returned if the port is open.
Linux implements both per-IP (one per second) and global
rate-limit (1,000/s) to restrict the number of ICMP error pack-
ages sent out per second. SAD DNS leverages the global rate
limit of ICMP error messages, which has a periodic maximum
burst of 50 and recovers every 20ms. This global limit opens
a side channel: during each round (20ms), attackers send 50
probing packets to scan 50 ports with different source IPs.
If all 50 ports are closed, 50 ICMP error messages will be
triggered. If n ports are in use, then only 50 —n ICMP error
message will be sent. The attacker then send a verification
packet to a closed port with his IP address. If no ICMP replies
are observed, it means the global ICMP error rate limit has
been used up, and all 50 ports are closed. Otherwise, the scan-
ning hits at least one open port. Leveraging the above side
channel, the scanning speed will be at most 1,000/s, enabling
SAD DNS to enumerate the entire 65,535 port range within
60+ seconds.

Algorithm 1: DNS resolution process Table 11: DNS definitions and notations.

input :A DNS Request from clients Definition | Description
output : A DNS Reply to clients Request the DNS request from clients
1 main () Reply the DNS reply to clients
2 step_0: InitQuery (Q, Request) RR the resource record
3 step_lI: if SeachCache (Q, Cache) name the name of a resource record, i.e., RR.name
then type the type of a resource record, i.e., RR.type
4 L goto final (0] the DNS query transformed from Request
2 75 TotS Q.name the domain name of the Q
5 step_2: FindServers (Q, T gtSvrs) 0.type the domain type of the Q
6 step_3: SendQuery (Q, TgtSvrs) Q.zone the name of the closest NS RRs to Q
7 step_4: ProcessResponse (Q, R) Q.svrs the servers of the closest NS RRs to Q
8 if ServerlsError (Q, R) then Zr the domain specified for recursive queries
9 L goto step 3 Zr the domain specified for forwarding queries
p g q
10 if not MatchQuery (O, R) then FwdZone the closest zone in Zg to Q.name
FwdSvrs the servers to resolve domains in FwdZone
11 L goto final
12 SanitizeRecords (O, R) Cache ‘ the structure storing query results in local
13 if IsReferral (Q, R) then TgtSvrs ‘ the target servers to send current queries
14 if not TsFwding () then R the response from T gtSvrs
15 UpdateQuery (Q) R.qry the question section (RR) of R
16 goto step 2 R.ans the answer section (RR) of R
= R.auth the authority section (RR) of R
17 if IsCNAME (Q, R) then R.add the additional section (RR) of R
18 UpdateQuery (Q) name, € namey, nameg, is under or same to namey,
19 | goto step 1 0 no RR in the corresponding field
20 CacheRecords (R, Cache)
21 final: ConstructReply (Reply) Table 12: Common DNS server functions and notations.
2 | return Reply Function | Description
z Inlt,Q,u.e?y (Q, Request) InitQuery initialize data structures in Table 11
2 T?ma 1zelQ.nam;, Q-type, Q.zone IsFwding check if Q.name € FwdZone
2 ! Istd.lng () then ModifyFwdQuery | modity Q to fit for forwarding
26 L ModifyFwdQuery (Q)
L SearchCache look for the answer in local Cache
27 SanitizeRecords (Q, R) FindServers find the best servers T gtSvrs to ask
28 for RR € Rdo SendQuery send the best servers T gtSvrs queries
29 if OutofBailiwick (RR) then P 2 - 1 0 R
0 L remove RR from R rocessResponse receive and analyze .
ServerIsError check if T gtSvrs is error, e.g., timeout
N M heck if R. hes
31 UpdateQuery (Q, R) atc/_zQuery check if R.qry matches O
N L update Q.name, Q.type, Q.zone IsReferral check if R is a referral
’ T i IsCNAME check if R is a CNAME
SanitizeRecords remove out-of-bailiwick records
E Public DNS Services U pdateQuery update data structure in Table 11
CacheRecords stash records into local Cache
We collected 16 popular public DNS resolvers via search ConstructReply form a Reply to clients
e;f?;%?é?g? IA’ gart of Whl}fh hare llllsec.l 11 priot WOﬂ;S InBailiwick check if RR.name € Q.zone
[44,57,65,66,96]. And we test whether they insert NS records OutofBailiwick check if RR.name ¢ Q.zone

into the authority section of DNS responses to type A queries
to evaluate requirement a) for CDNS discovery.
Table 13: Test results on whether public DNS services stuff
type NS RRSets in DNS responses to type A queries.

Stuff NS | Public DNS Services

Google, Cloudflare, Quad9, OpenDNS,
Verisign, Yandex, AdGuard, Level3,

Dyn, FreeDNS, Hurricane, CleanBrowsing,
UltraDNS, 114 DNS, AliDNS, Tencent
Yes Baidu DNS, Comodo Secure, DNS.Watch

No

	Introduction
	Background
	DNS Concepts and Infrastructure
	Conditional DNS Servers (CDNS)
	DNS Caching Mechanisms

	Attack Overview
	Threat Model
	Attack Workflow
	Comparison with Related Works

	Systematic Analysis of Bailiwick Checking
	Implementations of Bailiwick Checking
	Vulnerability in Query Zone Initialization

	End-to-End Attacks under MaginotDNS
	Attack Design
	On-path Attack
	Off-path Attack

	Finding Vulnerable CDNSes at Large
	CDNS Probing Methodology
	CDNS Probing Results
	In-Depth Understanding of CDNS

	Discussion
	Other Related Work
	Conclusion
	Data Trust Levels of DNS Software
	List of Analyzed DNS Software
	DNS Resolution Algorithm and Structures
	The SAD DNS Attack
	Public DNS Services

