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Abstract

Multidimensional unfolding methods are widely used for visualizing item response data.
Such methods project respondents and items simultaneously onto a low-dimensional Eu-
clidian space, in which respondents and items are represented by ideal points, with person-
person, item-item, and person-item similarities being captured by the Euclidian distances
between the points. In this paper, we study the visualization of multidimensional unfold-
ing from a statistical perspective. We cast multidimensional unfolding into an estimation
problem, where the respondent and item ideal points are treated as parameters to be esti-
mated. An estimator is then proposed for the simultaneous estimation of these parameters.
Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the
validity of model-based visualization. An alternating projected gradient descent algorithm
is proposed for the parameter estimation. We provide two illustrative examples, one on
users’ movie rating and the other on senate roll call voting.

Key words: Multidimensional Unfolding, Data Visualization, Distance Matrix Comple-
tion, Item Response Data, Embedding

1. Introduction

Multidimensional unfolding (MDU) methods are widely used as an important data visualiza-
tion tool in social and behavioral sciences such as psychology (Van Deun et al., 2007; Papesh
and Goldinger, 2010), political science (Poole, 2000, 2005; Clinton et al., 2004a; Bakker and
Poole, 2013), and marketing (DeSarbo and Hoffman, 1987; DeSarbo et al., 1997; Ho et al.,
2010). It is regarded as the dominant method in the scaling of both preferential choice and
attitude (Mair et al., 2015). The basic idea of MDU is to place both respondents and items
in a joint Euclidean space based on data, with the understanding that respondents tend to
prefer items that are close to them in the space. This joint visualization may lead to better
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understanding and interpretations of both the respondents and the items, as compared with
separately visualizing the respondents and the items by themselves. MDU has its origin
in psychology (Bennett, 1956; Bennett and Hays, 1960; Hays and Bennett, 1961; Coombs,
1964). It is closely related to multidimensional scaling (MDS) methods (Kruskal, 1964;
Kruskal and Wish, 1978; Borg and Groenen, 2005) and several other recent approaches to
nonlinear dimension reduction and manifold learning (Tenenbaum et al., 2000; Lu et al.,
2005; Chen and Buja, 2009; Zhang et al., 2016).

MDU methods can be categorized into two types, algorithm-based and model-based.
Algorithm-based methods (e.g., Takane et al., 1977; Greenacre and Browne, 1986; de Leeuw
and Mair, 2009) estimate the ideal points by minimizing a certain objective function, also
known as the stress function in the literature of MDU. The classical algorithm-based meth-
ods have been implemented in the R package smacof (de Leeuw and Mair, 2009) that is
widely used for MDU and MDS analysis. Model-based methods (e.g., DeSarbo and Hoff-
man, 1987; Hinich, 2005; Bakker and Poole, 2013), however, infer the locations of the ideal
points by making use of a probabilistic model. Such a model typically assumes that, up
to some measurement error, the similarity between a person and an item is a decreasing
function of some defined distance between the corresponding ideal points. The specification
of MDU models is closely related to item response theory models in psychometrics (see e.g.,
Embretson and Reise, 2000; Rabe-Hesketh and Skrondal, 2004; Bartholomew et al., 2011).

The MDU problem is closely related to MDS. The key difference is that data for the
former do not contain direct measurement of within-set (i.e., person-person and item-item)
similarities, while data for MDS typically have such information. Largely due to the missing
information contained in the within-set similarities, the MDU problem tends to be more
challenging. As a result, degenerate solutions are often encountered in the applications of
MDU methods, in which case the visualization and the corresponding interpretations convey
no information (e.g., Busing et al., 2005; Borg and Groenen, 2005), while MDS results tend
to be more stable. These empirical observations suggest that it is of importance to study
the validity of MDU solutions, which motivates the research in this paper.

This paper studies the visualization of MDU from the statistical perspective. First, for
binary choice data, we formulate the MDU problem into a parameter estimation problem
under a general family of probabilistic MDU models, where the respondent and item ideal
points are treated as parameters to be estimated. Second, an estimator is proposed for the
ideal points and an asymptotic theory is provided for this estimator, shedding lights on the
validity of model-based visualization. Finally, an efficient alternating projected gradient
algorithm is proposed for the computation which is scalable to large-scale problems.

We illustrate the proposed method through two applications, one on movie rating and
the other on senate roll call voting. The movie dataset is a subset from the famous Movie-
Lens dataset (Harper and Konstan, 2016). We unfold the 943 users and 338 movies in the
dataset. Specifically, we study the users’ movie watching decisions. Based on the ideal
points of movies in a two-dimensional space, it is found that one dimension of the space
corresponds to the popularity of the movies and the other dimension corresponds to the
release date of the movies. Good understanding of the user ideal points is further obtained
based on their distances to the movie ideal points. The senate voting dataset is based on
the senate roll call voting records from the 108th congress in 2003-2004. Based on the
unfolding of the senators and roll calls, it is found that most of the ideal points lie around



UNFOLDING-MODEL-BASED VISUALIZATION: THEORY, METHOD AND APPLICATIONS

a one-dimensional line, with the two extremes of the line representing the most liberal and
the most conservative political standings.

The rest of the paper is organized as follows. In Section 2, we introduce a family of
MDU models and formulate the problem of joint configuration recovery into an estimation
problem. In Section 3, we propose an estimator, for which statistical theory is established
that guarantees the consistency of configuration recovery under reasonable conditions. Sim-
ulation studies and real data examples are presented in Sections 4 and 5, respectively. We
end with discussions on future directions in Section 6. An application to cluster analysis,
proofs of the theoretical results, and numerical comparison with classical MDU methods
are provided as supplementary materials.

2. Distance-based MDU
2.1 Distance-based Unfolding Model for Binary Data

Consider N respondents making choice on J binary items (e.g., “agree/disagree”). Let Y;;
be a random variable, denoting the response from respondent i to item j, taking value 0
or 1, and let y;; be its realization. For example, such data can come from senate roll call
voting, where the respondents are senators and the items correspond to roll calls. Response
Y;; = 1 means that senator ¢ supports roll call j and Y;; = 0 otherwise.

We provide a simulated example in Figure 1 to illustrate MDU analysis. Panel (a)
shows the heat map of an observed response matrix which consists of 20 respondents and
10 items, where 0 and 1 responses are represented by red and yellow colors, respectively.
Given choice data in panel (a), an MDU method aims at representing respondents and
items by ideal points in the same low-dimensional Euclidian space R¥ as in panel (b) of
Figure 1 that can be easily visualized, where the respondent-respondent, respondent-item,
and item-item relationships are captured by the between-points distance. The dimension
K of the Euclidian space is often set to be 2 or 3 for the purpose of visualization.

One way to conduct MDU is via a statistical model. An MDU model typically assumes
that each respondent /item is associated with a true ideal point in R that is represented
by a K-dimensional parameter vector. Let 6; = (6;1,...,0;x)" and a; = (ajl,...,ajK)T
denote the parameter vectors of respondent ¢ and item j, respectively. It is assumed that
response Y;; is determined by the Euclidian distance between 8; and a; in RX. Finally, we
use OV = (0;)nxx and A7 = (a;;)sxx to denote the matrices containing all the person
and the item ideal points, respectively. Under such a statistical model, the goal of MDU
becomes to estimate the person and item parameters based on data.

In this paper, we focus on MDU models taking the form

P(Yy; =1]0:,3;) = f(/10: — a;), (1)

where || - || denotes the standard Ly norm and f : [0,00) — [0, 1] is a pre-specified link
function. It is assumed that the responses Y;; are conditionally independent, given the ideal
points 6; and a;, © = 1,..., N,j = 1,...,J. This model falls under the general framework
of the MDU threshold model for binary choice data (see DeSarbo and Hoffman, 1987).
According to the form of (1), the distribution of data only depends on the squared distance
between every pair of person and item ideal points, d;; = [|0; — a;||?,i = 1,...,N,j =
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Figure 1: An illustrative example. Panel (a): The heatmap of a response matrix, where
0 and 1 responses are represented by red and yellow colors, respectively. Panel (b): The
respondent and item ideal points where black circles represent respondents and red triangles
represent items.

1,...,J. The matrix Dy, j = (d;j) nx s is known as the corresponding partial distance matriz,
where the subscripts of Dy, ; emphasize the dependence of this matrix on the numbers of
respondents and items.

In addition, the link function f is often assumed to be a monotone decreasing function,
so that a larger distance implies a lower probability of Y¥;; = 1. An example of such a link
function is f(z) = 2/(1 + exp(x)). When f(x) takes this form, P(Y;; = 1| 6;,a;) = 1 when
the distance between 6; and a; is 0, i.e., the two points are identical, and the probability
P(Y;j = 1] 6;,a;) decays towards 0 when the distance increases.

In what follows, we provide two remarks on this modeling framework.

Remark 1 We remark on the link function f which plays a similar role as the dissimi-
larity transformation function in the classical MDS and MDU methods (e.g., Chapter 9,
Borg and Groenen, 2005). Assuming a pre-specified f is similar to assuming an identity
transformation in classical MDU.

In classical MDS and MDU, the dissimilarity transformation function can be unknown
and estimated from data parametrically or non-parametrically. Similar treatment can be
applied to the link function f. For example, one may assume

FU16; — a;[1*) = g(Bo + B1]16; — a]?),

where g : R — [0,1] is a given monotone decreasing function and By and 51 are additional
parameters to be estimated from data together with the person- and item-specific parameters.
This form is similar in spirit to the interval transformation in classical MDU. When no
constraint is imposed on the scales of 0;s and a;js, B1 needs to be fized to be a constant (e.g.,
B1 = 1) for model identifiability. One may also estimate f non-parametrically, for example,
by using monotone splines.
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Under suitable reqularity conditions, our theoretical development in Section 3 can be
extended to the case when f also needs to be estimated from data.

Remark 2 Although we focus on binary data, the introduced modeling framework can be
easily extended to other types of preference data, such as rating and ranking data. For
example, consider rating data Y;; € {0,...,T}, where 0, 1, ..., T are T + 1 ordered response
categories. A higher category implies a higher level of agreement between the respondent
and the item. Then one can assume the following unfolding model

P(Y;; >t]0;,a;) =g (d+60; —a;|?), (2)

fort € {1,...,T}, where g : R — [0,1] is a given monotone decreasing function and dy, ...,
dr are additional model parameters. It implies that the larger the distance, the smaller the
probability for Y;; to take a large value. This model is closely related to the graded response
model (Samejima, 1997) in item response theory. For another example, consider ranking
data consisting of pair-wise comparisons, where each response is a comparison between two
items j and j'. Following the same idea as above, one may model the probability that item
j is preferred over j' to take the form ¢(||0; — a;||*> — ||0; — a;||?). That is, the probability
decreases with the difference of their squared distances to person i. Our theoretical results
and computational algorithm given below can be adapted to these situations.

2.2 Recovery of Configuration

Our main goal is the simultaneous recovery of the ideal points 8; and a;, based on the
observed binary responses ¥;;,% = 1,..., N,j = 1,...,J. Since the model only relies on the
Euclidian distance between the ideal points, two sets of points lead to the same model if
they have the same configuration, i.e., one set of points can be obtained by applying an
isometry mapping to the other. This is because, the distance between points is invariant
under an isometry mapping. An isometry mapping F in R¥ takes the form

F(x) =0x+b, ¥xecRE,

where O is a K x K orthogonal matrix and b is a vector in R¥ (see, e.g., Olver, 1999).
We further denote Ax as the set of all isometry mappings on RX. Without additional
information, the best possible result one can expect is recovering the ideal points up to an
isometry mapping. We refer to this problem as the recovery of ideal point configuration.

It is worth noting that regularity conditions are needed to ensure the recovery of the
configuration. That is, it is possible that there exist multiple sets of ideal points with
different configurations that lead to the same distribution of Yj;s. In other words, the
configuration of {01, ...,0x,a1,...,a;} may not be unique only given the partial distance
matrix. This is known as the situation of degeneration, in which case the visualization does
not convey information or can even be misleading. A simple example is given in Figure 2,
where the two different configurations in the two panels have the same partial distance
matrix.

Following the above discussion, the validity of unfolding-model-based visualization relies
on the accuracy of configuration recovery, a problem to be discussed. Specifically, we
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Figure 2: An example of degenerate situation: The triangles represent item points and
circles represent person points. The two configurations in R? share the same partial distance
matrix, where dy; = 12, dio = 32, do1 = 22, dos = 22, d31 = 32, and d3s = 12,

consider the following loss function for configuration recovery,

* A J N
N6 - F(0)? X Ay — F(ay)|?
min + ,
FeAg N J

3)

where 0 and a} denote the true ideal points and 6; and a; denote the estimates from data
(yij)NxJg. Note that (3) quantifies the accuracy of configuration recovery in an average
sense, where isometry indeterminacy is bypassed by the minimization in (3) with respect to
all isometry mappings in Ax. We call (3) the average loss for the recovery of ideal point
configuration. Error bounds will be established for (3) under reasonable conditions, which
ensures the accurate recovery of the loss function when both NV and J are large.

2.3 Connection with Other Scaling Methods

MDU is closely related to MDS, a class of methods for visualizing the similarity pattern
between data points (Borg and Groenen, 2005). More precisely, MDS maps a set of variables
onto a low dimensional space, based on data measuring the similarity between variables.
As pointed out in Chapter 14, Borg and Groenen (2005), MDU can be viewed as a special
case of MDS, where the set of variables in MDS composes of both the respondents and
items and the item response data (y;;)nx. are regarded as measures of similarity between
the respondents and the items, while the similarities within the two sets (i.e., respondents
and items) are structurally missing; see Figure 3 for an illustration that is a reproduction
of Figure 14.1 of Borg and Groenen (2005).

Little statistical theory has been developed for the recovery of configuration based on
MDS models. The most relevant work is Zhang et al. (2016), in which an error bound
is developed for the recovery of the complete distance matrix, under a linear MDS model
without structurally missing data. However, little discussion is provided on the recovery of
ideal point configuration, under an MDU setting.

The recovery of configuration is relatively easier under the setting of MDS with no
structurally missing data. This is because, the complete data matrix of similarities will
provide sufficient information on the complete distance matrix. The accurate recovery of
the complete distance matrix further implies the accurate recovery of configuration under
weak conditions, due to the one-to-one relationship between the complete distance matrix
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Figure 3: In MDU, the diagonal blocks are missing. All we observe are the off-diagonal
blocks.

and the ideal point configuration as described in Proposition 3. Under the MDU setting,
the recovery of configuration requires additional regularity conditions, due to the lack of
direct measurement of within-set distances.

Proposition 3 For {x1,...x,} C R¥, {y1,...,y.} C RE, if |x; — xil| = llyi — yjll for
all i and j, then there exists an isometry mapping F € Ax such that F(x;) = y; for all
1=1,...,n.

MDU is also related to other scaling methods for binary data such as item response the-
ory (IRT; Embretson and Reise, 2000; Reckase, 2009) and multiple correspondence analysis
(Gifi, 1990; Le Roux and Rouanet, 2010). Specifically, probabilistic models are available
from IRT for multivariate binary data. An IRT model also represents respondents and items
by low-dimensional parameter vectors, say 8; and a;. It also assumes that the probability of
Y;; = 1is a function of §; and a;. In this sense, the model introduced above can be viewed
as a special IRT model, in which the probability of ¥;; = 1 is assumed to be a monotone
decreasing function of ||@; — a;||. However, the classical IRT models (see e.g., Embretson
and Reise, 2000; Reckase, 2009) are not specified in this way. Consequently, it does not
make sense to visualize the person and item parameter vectors jointly.

Multiple correspondence analysis is an algorithm-based approach that can be applied
to binary data and produce low-dimensional scores for both respondents and items. These
score vectors can be plotted jointly in the same space. However, as a common issue with
algorithm-based approaches, the meaning of the distance between the score vectors is not
clear and the uncertainty associated with the visualization is hard to quantify.

3. Theoretical Results

3.1 Configuration Recovery based on Perturbed Partial Distances

We first study the recovery of configuration from a perturbed partial distance matrix, when
both N and J grow to infinity. Let 8], i =1,..., N, and aj, j =1,...,J be the true person
and item ideal points in RX, respectively, and let D}“\,’ 7 be the corresponding partial distance
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matrix. In addition, let 0, € RE+ and a; € RE+ correspond to a perturbed version of the
true configuration, satisfying

IDx,s = Dy |5 = o(NJ) (4)

and K; > K, where [)N, 7 denotes the partial distance matrix given by the perturbed
configuration and || - || denotes the matrix Frobenius norm. One can think of K| as the
latent dimension of the MDU model being applied to data, and 0, and a; as some estimates
of the person and item ideal points. For the time being, we treat K, 0;, and a; as given.

Based on the definition of matrix Frobenius norm, the left side of (4) has NJ terms,
each of which is a squared distance between a true person-item distance and its perturbed
value. Equation (4) implies that the perturbed partial distance matrix converges to the
true one in an average sense, when both N and J grow to infinity.

We denote 8 = ((67)7,07)" and aj = ((a;'f)T, 0")" in RX+ as the embedding of the
true ideal points in R+, where 0 denotes a zero vector. In what follows, we show that

— 0

~ J ~
XN 6F —F6))> X llaf - F(a)P?
min —+
Fedx, N J

as N and J grow to infinity, under reasonable conditions on the true ideal points.
Throughout this paper, we assume that ideal points are constrained in a compact set in
RE.

AQ. There exists a constant M such that ||6;] < M and [|aj[| < M for all i and j.

To impose regularity conditions on the true configuration of the N + J ideal points, which
can vary with NV and J, we introduce the notion of anchor points, two finite sets of points
in RX satisfying certain regularities that are independent of N and .J.

Definition 4 Two sets of points, {bj,...,b} },{c},...,c} } C B (M), are called a collec-
tion of anchor points of R, if they satisfy conditions A1 and A2 below, where B& (M)
denotes a closed ball in RX centered at 0 with radius M.

Let D* = (||b} — C;||2>k1><k2 be the partial distance matrix based on the anchor points,
whose entries are assumed to be all positive (i.e., there is no identical points).

Al. There exists > 0 such that for any partial distance matrix D € R¥1*k2 gatisfying
|D — D*||r <mn, D has a unique configuration.

A2. Both {bf,...,b; } and {cj,...,c},} can affine span RE.

Remark 5 According to Definition 4, we still get a collection of anchor points when slightly
perturbing the points in a given anchor point collection in RX.

According to condition A1, the anchor points are well-behaved points whose config-
uration can be uniquely determined by the partial distance matrix, even after a small
perturbation. In addition, thanks to A2, the anchor points will help to anchor the rest of
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the points in R¥ | i.e., determining the configuration of a larger set of respondent and item
ideal points.

Following the above concept of anchor points, it is intuitive that if there exist anchor
points {bj,...,by } and {c7,...,c; }, satisfying that each b} is surrounded by sufficiently
many respondent ideal points and each C;‘f is surrounded by sufficiently many item ideal
points; that is, there exist a sufficient number of anchor points. Then it is relatively easy
to recover the configuration of the ideal points from a perturbed partial distance matrix.
This intuition is formalized by condition A3 below.

A3. There exists a collection of anchor points {bj,...,b; } and {cj,...,c},} C BE(M) c
RX and 0 < € < M/10 such that the closed balls with b7, ...,b};l and cf, -~>sz as
centers and radius €, denoted by Bps(e), ""Bb;ﬁl (€) and Be:(e), ‘”’BC?ZQ (¢), do not
overlap. The following two conditions are required to hold.

(1) For any by € Bp:(€),...,by, € Bbil(e) and ¢; € Be:(e),...,cp, € BczQ(e),
{bi,...,bi, } and {cy, ..., c, } are also a collection of anchor points.
(2) When N and J grow to infinity,

N
p; = liminf 2_i=1 L{jj6;—b:||<e} >
! N—oco N
J
¢; = liminf 2= 1{Ilaz‘—c;||<e} -
J J—o00 J

0, i=1,..k,

0, j=1,.. k.

Theorem 6 Suppose that A0 and A3 are satisfied for the true ideal points 0] and a;f,i =

1,....,N,5 =1,...,J. Let éi,éj € Béﬂ(M) correspond to a perturbed version of the true
configuration, for some Ky > K. Further let Dy, be the corresponding partial distance
matriz. Suppose that |Dy,.; — Dy ;I|% = o(NJ), when N and J grow to infinity. Then

N 19T — F(0.)I12 J T F(a)|?
hmsup<mm Lo 6F — F@)IP | Xim llaf — F(&)l ) <ce.

(5)

N,J—oco \F'E€AK N J

where C' is a constant that does not depend on N and J. If there exists a fized collection of
anchor points, for which A8 is satisfied for any sufficiently small € > 0, then we have

( i S0 — F@)|? | Yo lla) - F(éj)ll2>

lim sup
N,J—o00

FeAx N J - (6)

Remark 7 Theorem 6 shows that the configuration can be recovered asymptotically when
both N and J grow to infinity and suitable conditions hold. The conditions required by
Theorem 6 are quite mild. It first requires all the true and perturbed ideal points to be
located in a compact set. Second, as will be shown in Proposition 8 below, condition A8
is satisfied with high probability when the true person and item points are i.i.d. samples
from two distributions satisfying mild conditions, respectively. Finally, it requires that the
perturbation of the partial distance matriz is not too large, i.e., | Dy .y — D}‘\,JH%7 =o(NJ).

As will be shown in Proposition 11, this condition holds with high probability when DN’J 18
given by a likelthood-based estimator.
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Proposition 8 Suppose that 07, ...,0% and aj,...,a% are independent and identically dis-
tributed samples from distributions Py and Pa, where Py and Py have positive and continuous
density functions within a ball G C B(I,((M). Then A8 holds almost surely for any sufficiently
small € > 0.

Remark 9 We remark that constant C is determined and only determined by the config-
uration of the anchor points in A3, according to our proof in the supplementary material.
Roughly, the more reqular the set of anchor points is (in terms of affine spanning R¥ ), the
smaller the value of C'.

Remark 10 As discussed in Section 2.2, we can only recover the ideal points up to an
isometry mapping. This isometry mapping may be fived if one is willing to make further
assumptions such as non-negativity (Donoho and Stodden, 2004; Hoyer, 2004) and sparsity
(Chen et al., 2020). In that case, one may further interpret each coordinate of the latent
space. We leave this problem for future investigation.

3.2 Likelihood-based Estimation

In what follows, we propose a constrained maximum likelihood estimator and show its
properties. Given the assumptions of the MDU model, our likelihood function takes the

form
N J

L(01,....0n, a1, ...ay) = [ [T £(16: —a;1%)¥ (1 = f([|6; — a,[|*)" 5.
i=1j=1
Based on this likelihood function, we consider the following estimator

(91,...,9N,él,...,éj) = arg min —log L(64,...,0n, a1, ...,ay)
01,...,.0N,a1,...,a,eRE+ (7)

st |10l <M, Jaj| <M, i=1,..N, j=1,...J

where K| and M are pre-specified. We denote lA)N, J as the partial distance matrix based
on ;s and a;s from (7).

We impose the following regularity condition on the link function f, which requires f
to be neither too steep nor too flat in the feasible domain. Similar conditions are assumed
in Davenport et al. (2014) for solving a 1-bit matrix completion problem.

A4. The link function f : R — (0,1) is a smooth and monotone decreasing function,
satisfying Ly < oo and B2 < 00, where

L@ @0 )
La= S0 51— f@y ™ = 50 T

Proposition 11 Suppose that A0 and A4 are satisfied and Ky > K. Then there exist Cy
and Cy independent of N and J, such that

N+J\/1 log(NJ)

1 B *
m“DN,J - DN,JH%’ S ClM2L4M2B4M2 NJ W7

with probability at least 1 — Cy /(N + J).

10



UNFOLDING-MODEL-BASED VISUALIZATION: THEORY, METHOD AND APPLICATIONS

Proposition 11 implies that || Dy, ; — D}“\,’JH% = 0p(NJ), which, combined with Theorem
6, leads to Theorem 12 below.

Theorem 12 Suppose that A0, A3 and A/ are satisfied and K, > K. Then

N + A\ 2 J + _ a 12

! ot — F(6:; L lal — F(a

i P [ mn S8 FOIE S - F@IP G
N,J—00 FeAg, N J

where 0; and aj,i=1,..,N,and j =1,...,J, are given by (7), € is from condition A3, and
C is a constant independent of €, N, and J.

Remark 13 We remark that if A3 holds for any sufficiently small €, then (8) implies that
the loss

N8 —F6)? X llal — F(ay))?
min _|_
FE.AKJr N J

converges to zero in probability. Further note that according to Proposition 8, A8 holds with
high probability for any sufficiently small €, under a random design for the true ideal points.
Therefore, the loss can be shown to converge to zero in probability, under this random design.
This result is summarized in Theorem 14 below.

Theorem 14 Suppose that AO and A4 are satisfied and Ky > K. Further suppose that

1,0y and aj,...,a% are independent and identically distributed samples from distribu-
tions Py and P», respectively, where Py and Py have positive and continuous density func-
tions within a ball G C B (M). Then for 0, and aj,i1=1,...N,and j=1,...,J, given by
(7), the loss function

~ J N
YN e - Fe)) X lla) - Fay)l?
min _|_
FG.AKJr N J

goes to 0 in probability as N and J grow to infinity.

Remark 15 We remark that the probability measures in Theorems 12 and 14 are slightly
different. The probability in Theorem 12 is based on the conditional distribution of Yj;s
given 07 and aj, while that for Theorem 14 is based on the joint distribution of Yi;, 0; and
aj,i=1,..,N,j=1,.,J.

Remark 16 A stress function is a squared error loss function that plays an important role
in the classical MDS/MDU algorithms. It serves not only as the objective function in the
search for the MDS/MDU solution, but also as the basis for assessing the goodness-of-fit of
the solution (Mair et al., 2016). In the proposed framework, the negative joint log-likelihood
function plays a similar role as the stress function. It replaces the squared loss in the stress
function by a loss function based on the Kullback-Leibler divergence. Similar goodness-of-fit
measures in classical MDU can be developed under the proposed framework, based on the
negative joint log-likelihood.

11
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Remark 17 We remark on the choice of latent dimension. Theorems 12 and 14 suggest
that as long as we choose Ky to be no less than the true dimension K, then the unfolding
result is asymptotically valid. When there is no such prior knowledge about an upper bound
of K, one can estimate the latent dimension K wusing data. Several methods from factor
analysis and network data analysis may be adapted to the current problem, such as trace-
norm regularization (Bach, 2008), cross-validation (Chen and Lei, 2018; Li et al., 2020),
and information criteria (Bai and Ng, 2002). We believe that consistency results on the
selection of K can be established.

Remark 18 We point out that the result of Proposition 11 can be easily extended to other
MDU models, such as models with additional parameters in the link function and models
for rating and ranking data. Then, by making use of Theorem 6, the results of Theorems 12
and 14 can also be extended to these models.

We propose an alternating minimization algorithm for solving (7). To handle the con-
straints in (7), a projected gradient descent update is used in each iteration. For x € R+,
we define the following projection operator:

Procys(x) = argmin ||y — x|| =

{ x if x| < M,
lyll<M

Mx/|x|| if |x|| > M.
Algorithm 1 (Alternating minimization algorithm)

Input: Data (yij)nx.J, pre-specified dimension K, constraint M, iteration number

m =1, and the initial values 0%0), ey 053) and ago), - af,o) in RE+.

Alternating minimization: at the mth iteration, perform
(a) For each respondent i, update
Bgm) = Procyy <0§m71) + gsgmfl)(egmfl))) ,
where

ng—l)(e)
0 (< X 1
=S witom (10— V) + (1 - i) tos (1 (10 - al" )
Jj=1

The step size o > 0 is chosen by line search.

(b) For each item j, update

ag.m) = Procyy (agm_l) + gég-m_l)(ag-m_l))) ,

N
a m m
= (Zyzj log /(116" — al*) + (1~ ij) log (1 — £(]16] )—an?))) .
i=1
The step size p > 0 is chosen by line search.

12
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Iteratively perform steps (a) and (b) until convergence. Let m* be the last itera-
tion number upon convergence.

Output: 6, =0\ 0y =0\ anda, =al™" .. a;=al"").

Remark 19 Since (7) is not a convexr optimization problem, there is no guarantee that Al-
gorithm 1 finds the global optimal solution. However, we point out that the previous theoret-
ical results hold even when {91, e éN,él, .,ay} is not a global optimal point. Specifically,
Proposition 11 and Theorems 12 and 14 hold for any {91, ., 0N, 4y, ..,ay} satisfying the
constraints in (7) and

L(Gl, ceny HN, é.l, ceey éJ) > L( 1(, ceey }k\f’ aik, ceey a*J) (9)
According to our simulation study, estimates given by Algorithm 1 are likely to satisfy (9).

3.3 Analyzing Missing Data

We further discuss the configuration recovery problem when data have many missing values,
which is commonly encountered in practice. Denote matrix = (w;;)nx.s, where w;; =1
indicates that response y;; is observed and w;; = 0 indicates y;; is missing. We consider
the simple case of uniformly missing, as described in condition A5. We point out that
this assumption can be relaxed to analyzing data that have non-uniformly missing entries,
following the developments in Cai and Zhou (2013) for solving a 1-bit matrix completion
problem.

A5. Entries of ), w;;, are independent and identically distributed Bernoulli random vari-

ables with
n

Plw;=1) = —.
(w’L] ) NJ

Under this condition, there are on average n entries of the data matrix (y;;)nx that
are observable. Thanks to the ignorable missingness, given 2 and the observed data, the
likelihood becomes

L0y, ... 0n a1, a) = [ F16: —al*)77 (1 — f(|6: —ay]|*)' ¥4,

wij=1

We still consider a constrained maximum likelihood estimator

~Q ~Q
6, ,...,0y,a%,....a} = arg min —log L0, ...,0x, a1, ...,ay)

01....0n.A,..., 8RN+ (10)
st. |6 <M, ||laj| <M, i=1,..,N, j=1,...,J.

- ~Q ~Q
Let D]%,J denote the partial distance matrix for 8, ..., 0, é?, s égf. Proposition 20 presents
a missing-data version of Proposition 11. It implies that we can still recover the partial dis-
tance matrix if n is large enough.

13



CHEN, YING AND ZHANG

Proposition 20 Suppose that A0, A4 and A5 are satisfied and Ky > K. Then there exist
C1 and Cs independent of N and J, such that

/N+J NJlog(NJ
NJHDNJ Dy, JIF < CLMPLypg2Bapse \/ (N + J)) (11)

with probability at least 1 — Co /(N + J).

Remark 21 Ifn > (N + J)log(NJ), then the right side of (11) goes to 0 as N and J

grow to infinity, which means HDJ%’J = D}k\,JH%J = 0,(NJ). Following the discussion in Sec-
~Q o

tion 3, {0 ,...,0y, é% e éf}} provides a consistent estimate of the ideal point configuration.

This consistency result is summarized in Proposition 22, which is a missing-data version of
Theorem 14 under the random design.

Proposition 22 Suppose that A0, A4 and A5 are satisfied, and Ky > K, and n >
(N + J)log(NJ). Further suppose that 07, ...,0N and a3, ...,a% are independent and iden-
tically distributed samples from distributions Py and Ps, where Py and Py have positive and
continuous density functions within a ball G C BE (M). Then the loss function

~ Q) J ~
SN e - F@OP X llaf — F@H|?
min +
FeAx, N J

goes to 0 in probability as N and J grow to infinity.

4. Simulation Studies

In what follows, simulation studies are conducted to verify our theoretical results. Specif-
ically, we consider a random design where the true ideal points are generated from distri-
butions. All the analyses in this section, as well as those in Section 5, are based on our
implementation of Algorithm 1 in statistical software R!.

4.1 Study I

Setting. We first consider a setting where K is chosen to be exactly K. We consider
MDU in a two-dimensional latent space, i.e., K = K = 2. Diverging sequences of J and
N are considered, by letting J = 200, 400, ..., 1000 and N = 20J. For given N and J, 100
independent datasets are generated. For each dataset, we first sample 0's and a’s uniformly
from B2(1), a ball in R? with center 0 and radius 1. Then given the ideal points, response
data Yj; are generated under the link function f(x) = 2/(1+ exp(z +0.1)). It can be easily
verified that condition A4 is satisfied for this link function.

For each dataset, we obtain an estimate of the ideal points, by applying Algorithm 1
ten times with random starting points and then choosing the result that gives the largest
likelihood function value. The use of multiple starting points substantially reduces the risk
of the algorithm converging to bad local minima. In the application of Algorithm 1, the
constraint M is set to 1.5.

1. An R package has been developed and can be downloaded from https://github.com/hrzhang16/mmdu.
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J =200 | J=400 | J=600 | J=800 | J=1000
25% 0.0630 | 0.0323 | 0.0218 | 0.0164 0.0131
median | 0.0647 | 0.0328 | 0.0222 0.0167 0.0134
75% 0.0666 0.0336 | 0.0227 | 0.0170 0.0135

Table 1: Simulation Study I: The average squared Frobenius loss of partial distance when
J increases from 200 to 1000. For each J, the table shows the 25%, 50% and 75% quantiles
of the loss based on 100 independent experiments.

J =200 | J=400| J=600 | J=800 | J=1000
25% 0.0158 0.0079 0.0053 0.0040 0.0032
median 0.0160 0.0080 0.0053 0.0040 0.0032
75% 0.0162 0.0080 0.0054 0.0040 0.0032

Table 2: Simulation Study I: The average loss for configuration recovery when J increases
from 200 to 1000. For each J, the table shows the 25%, 50% and 75% quantiles of the loss
based on 100 independent experiments.

Results. We first check the obtained likelihood function values for the 100 datasets. As
we point out in Remark 19, Proposition 11 and Theorems 12 and 14 still hold as long as the
estimate satisfies (9), even if the global solution to the optimization (7) is not obtained. It
is found that by using ten random starting points, the likelihood function at the estimated
parameters is always larger than that at the true parameters for all the 100 datasets.

We then present the average squared Frobenius loss for the recovery of the partial
distance matrix, || Dy,; — Dy JI1%/(NJ). These results are given in Table 1 which presents
the 25%, 50%, and 75% quantiles of the loss based on the 100 datasets. From this table,
we see that the loss tends to decrease as the sample size increases, supporting the result of
Proposition 11.

Table 2 presents the results on loss (3) for configuration recovery, where the best isom-
etry mapping F' in (3) is obtained by solving an optimization problem given the true and
estimated ideal points. Similar to the results on partial distance matrix recovery, the loss (3)
also decreases towards 0 as J grows large, which is consistent with the result of Theorem 14.

Finally, the computation time on a standard desktop machine? for solving (7) is shown
in Table 3. It is worth pointing out that since the update of person and item parameters
in each iteration of Algorithm 1 can be run in parallel, the computation can be further
speeded up substantially by parallel computing.

4.2 Study 11

Setting. We now consider a setting where K > K. We take the same setting as in Study
I, except that we set K = 3 when fitting the MDU model. The same as Study I, for each

2. All the computation is conducted on a single Intel®Gold 6130 core.
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J =200 | J=400 | J=600 | J=800 | J=1000

25% 98.2 109.6 144.1 191.5 254.6
median 113.8 120.1 156.0 201.5 272.6
75% 128.9 138.0 176.9 213.9 286.7

Table 3: Simulation Study I: The computation time of optimization (7) when J increases
from 200 to 1000. For each J, 25%, 50% and 75% quantiles of the computation time from

100 independent experiments are shown.

J =200 | J=400| J=600 | J=800 | J=1000

25% 0.0734 0.0384 0.0261 0.0198 0.0159
median 0.0758 0.0390 0.0265 0.0200 0.0161
75% 0.0780 0.0398 0.0269 0.0204 0.0163

Table 4: Simulation Study II: The average squared Frobenius loss of partial distance when
J increases from 200 to 1000. For each J, the table shows the 25%, 50% and 75% quantiles
of the loss based on 100 independent experiments.

pair of N and J, 100 independent datasets are generated. For each dataset, Algorithm 1 is
applied similarly, using 10 random starting points and constraint parameter M = 1.5.

Results. The results are given in Tables 4 through 6. Similar to Tables 1-3, these three
tables also show the results on partial distance matrix recovery, configuration recovery, and
computation time, respectively. Comparing with the results of Study I, we see that both
losses for the recovery of partial distance matrix and configuration tend to be larger. This
is due to the overfitting brought by adding unnecessary parameters in the model. The
computation time also increases compared with that of Study I.

5. Real Examples
5.1 Example I: Movie Data

Background. We apply MDU to a movie rating dataset from the famous MovieLens
project (see e.g., Harper and Konstan, 2016). The dataset analyzed in this paper is a subset

J =200 | J=400| J=600 | J=800 | J=1000

25% 0.0853 0.0568 0.0452 0.0386 0.0343
median 0.0862 0.0573 0.0455 0.0390 0.0345
75% 0.0877 | 0.0580 0.0459 0.0392 0.0346

Table 5: Simulation Study II: The average loss for configuration recovery when J increases
from 200 to 1000. For each J, the table shows the 25%, 50% and 75% quantiles of the loss
based on 100 independent experiments.
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J =200 | J=400 | J=600 | J=800 | J=1000
25% 106.3 264.0 639.3 1294.0 2302.5
median 110.0 286.5 698.8 1407.7 2480.8
75% 112.9 308.9 793.8 1551.0 2841.1

Table 6: Simulation Study II: The computation time of optimization (7) when J increases
from 200 to 1000. For each J, 25%, 50% and 75% quantiles of the computation time from
100 independent experiments are shown.

of a benchmark MovieLens dataset collected during a seven-month period from September,
1997 through April, 19983. This subset contains 943 users and 338 movies, obtained by
selecting movies that have been rated by at least 100 users. Unlike many analyses of
MovieLens data that focus on the rating scores, we consider to unfold the rating behavior
itself (i.e., rated/not rated) which may also reveal the users’ preference patterns. More
precisely, we let Y;; = 1 if movie j has been rated by user i and Y;; = 0 otherwise.

Analysis. For visualization purpose, we unfold the data onto a two-dimensional space.
To apply the MDU model introduced in this paper, we need to specify the link function f.
We assume f to take the logistic form f(x) = 2/(1 + exp(z + d)), where § is a pre-specified
small positive constant. For any § > 0, it is easy to check that the regularity condition
A4 is satisfied. The results presented below are based on the choice § = 0.1, but we point
out that other choices of § (§ = 0.05,0.15,0.2) have also been tried which all lead to very
similar results. The constraint constant M is set to 3.5 when applying Algorithm 1. After
obtaining the estimate, we transform the estimated ideal points by an isometry mapping, so
that the z-axis corresponds to the dimension along which the estimated movie ideal points
have the highest variance. As will be described in the sequel, under this isometry mapping
of the estimated ideal points, both the z- and y-axes receive good interpretations.

Results. The results from the MDU analysis are presented in Figures 4 through 6. Fig-
ure 4 jointly visualizes the estimated movie and user points. As we can see, the movies and
the users tend to form two giant clusters that only slightly overlap.

We investigate the movie points. First, the y-axis of the space largely indicates, if not
perfectly, the popularity of the movies. The movies with a smaller a;2 value tends to be
rated more frequently. Roughly speaking, the shorter the average distance from a movie to
the user points, the more often the movie is rated. In fact, the Kendall’s tau rank correlation
between a;os and the numbers of ratings received by the movies is —0.66. This phenomenon
is further reflected by panel (a) of Figure 5, where movies are stratified by the numbers of
ratings they received into four categories. These four categories tend to be ordered along
the y-axis. We list four movies as examples, as indicated in panel (a) of Figure 5. From the
top to the bottom, they are Batman Forever (1995), Golden Eye (1995), Get Shorty (1995)
and The Godfather (1972), respectively. Based on our interpretation of the y-axis, these
four movies are ordered from the least popular to the most popular.

3. The dataset can be downloaded from https://grouplens.org/datasets/movielens/100k/
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Figure 4: Analysis of movie rating data: Simultaneous visualization of the estimated movie
and user points.

Second, the z-axis of the space seems to indicate the release time of the movies. The
Kendall’s tau correlation between a;1s and the release dates of the movies is -0.70. As shown
in panel (b) of Figure 5, where the movies are stratified into three categories, namely “before
19957, “1995-1996”, and “1997-1998”. According to this figure, the clustering patten of the
movies can be largely explained by the three categories based on the movie release dates.
From the right to the left of the space, the points correspond to movies from the relatively
older ones to the relatively more recent ones. For example, the three movies indicated in
panel (b) of Figure 5 are, from right to left, Citizen Kane (1941), Twelve Monkeys (1995)
and The Devil’s Own (1997), respectively.

The interpretation of the latent space based on movies facilitates the interpretation of
the user points. First, the y-axis corresponds to the users’ activeness. Roughly speaking,
the shorter the average distance from a user point to the movies points, the more active the
user is. The Kendall’s tau rank correlation between ;s and the numbers of ratings given
by the users is 0.73. This is further shown via Figure 6, where users are classified into four
equal-size groups depending on the number of movies they rated. These groups of users,
from the most active one to the least active one, lie from the top to the bottom. Second,
based on the alignment of movies along the z-axis, the user points from right to left may
be interpreted as the ones who tend to more frequently rate relatively older movies to the
ones who tend to more frequently rate relatively more recent ones.

5.2 Example II: Senate Roll Call Voting Data

Background. We now analyze a senate roll call voting dataset from the 108th congress.
This dataset contains the voting records from 100 senators to 675 roll calls in years 2003
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Figure 5: Analysis of movie rating data. Panel (a): Visualization of movie points, with
movies stratified into four equal-size categories based on the numbers of rating. Movies
with numbers of rating less than 127, 128-169, 170-229 and more than 230 are indicated
by black, red, green and blue points, respectively. Yellow points represent example movies.
Panel (b): Visualization of movie points, with movies stratified into three categories based
on their release time. Movies released in 1997-1998, 1995-1996, and before 1995 are indicated
by green, red and black points, respectively. Purple points represent example movies.
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Figure 6: Analysis of movie rating data: Visualization of user points, with users classified
into four equal-size categories based on the numbers of rating. Users who rated less than
24, , 25-47, 48-103 and more than 104 movies are indicated by black, red, green and blue
points, respectively.

and 2004*. Among the 100 senators, there are 48 from the Democratic party, 51 from the
Republican party, and one independent politician. For each roll call j, the vote of senator
¢ is recorded in three ways, “Yea”, “Nay” and “Not Voting”, treated as Y;; = 1,0, and
missing, respectively.

Analysis. Similar analysis as the previous one is conducted. Specifically, we unfold the
data into a two-dimensional space. The same link function f and constraint constant M
are adopted as in the analysis of movie data. After getting the estimate, we transform
the estimated ideal points by an isometry mapping, so that the x-axis corresponds to the
dimension along which the estimated senate ideal points have the highest variance.

Results. The results are presented in Figures 7 through 9. In Figure 7, the ideal points
of both roll calls and senators are visualized simultaneously. As we can see, most of the
roll calls and all the senators tend to lie around a one-dimensional line. This visualization
is still valid, in the sense that even when the true latent dimension is one, according to
Theorem 14, unfolding the data in a two-dimensional space is still consistent.

This phenomenon of degeneration is quite consistent with the overall unidimensional
patten in the congress voting data throughout the history. It has been well recognized in
the political science literature (Poole et al., 1991; Poole and Rosenthal, 1991) that senate
voting behavior is essentially unidimensional, though slightly different latent space models
are used in that literature. For example, Poole et al. (1991) concluded that “to the extent

4. The dataset can be downloaded from https://legacy.voteview.com/dwnl.htm.
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Figure 7: Analysis of senator roll call data: Simultaneous visualization of the estimated
senator and roll call ideal points.

that congressional voting can be described by a spatial model, a unidimensional model is
largely (albeit not entirely) sufficient.”

We first interpret the senators. In Figure 8, all the senator points are visualized with
their party membership indicated by different point types. In Table 7, we rank the senators
based on their value of éﬂ, which is presented along the z-axis. According to this table, the
Democrats tend to lie on the left and the Republicans tend to be on the right. In fact, this
ranking is largely consistent with National Journal’s liberalness ranking of the senators in
2003. National Journal’s ranking result, which is replicated in Clinton et al. (2004b), is
obtained by unfolding the senators’ votes on 62 key roll calls using a model given in Clinton
et al. (2004a). The Kendall’s tau rank correlation between the result in Table 7 and that
given by the National Journal is 0.79. In fact, Senator John Kerry is ranked the most
liberal by both our model and by National Journal and Senator Craig L. Thomas, who is
the most conservative senator according to the ranking of National Journal, is the third
most conservative senator given by our model.

From Figure 8 and Table 7, it is also worth noting that there is a Democrat whose
estimated ideal point is mixed together with those of the Republicans. This senator is Zell
Miller from the state of Georgia. He is a conservative Democrat and in fact, he supported
Republican President George W. Bush against the Democratic nominee John Kerry in the
presidential election in 2004.

In this congress, there is an independent senator, Jim Jeffords from the state of Vermont,
who does not belong to either of the two major parties. As we can see from both Figure 8 and
Table 7, his ideal point lies on the left, mixed with many ideal points of the Democrats. This
is also consistent with Senator Jim Jeffords’ political standing. In fact, he left Republican
party to become an independent and began caucusing with the Democrats since 2001.
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Name State Name State Name State
1 Kerry D-MA | 35 Johnson D-SD | 69 Grassley R-10
2 Sarbanes D-MD | 36 Lieberman D-CT | 70 Bond R-MO
3  Reed D-RH | 37 Bingaman D-NM | 71 Roberts R-KA
4 Harkin D-10 38 Nelson D-FL | 72 Gregg R-NH
5  Graham D-FL | 39 Dorgan D-ND | 73  Allen R-VI
6  Lautenberg D-NJ | 40 Conrad D-ND | 74  Domenici R-NM
7  Edwards D-NC | 41 Carper D-DE | 75  Bennett R-UT
8  Kennedy D-MA | 42 Pryor D-AR | 76 Dole R-NC
9  Durbin D-IL 43 Bayh D-IN | 77  Frist R-TN
10 Levin D-MI | 44 Lincoln D-AR | 78  Brownback R-KA
11  Akaka D-HA | 45 Landrieu D-LO | 79  Hatch R-UT
12 Byrd D-WE | 46 Baucus D-MT | 80  Cochran R-MS
13 Boxer D-CA | 47 Breaux D-LO | 81 Graham R-SC
14  Corzine D-NJ | 48 Nelson D-NE | 82  Alexander R-TN
15 Clinton D-NY | 49 Chafee R-RH | 83  Lott R-MS
16 Leahy D-VE | 50 Snowe R-ME | 8  Chambliss R-GE
17  Dodd D-CT | 51 Collins R-ME | 8  Burns R-MT
18 Stabenow D-MI | 52 Specter R-PE | 86  Bunning R-KE
19  Mikulski D-MD | 53 Mccain R-AZ | 87  Crapo R-ID
20  Feingold D-WI | 54 Dewine R-OH | 8  Mcconnell R-KE
21 Rockefeller D-WE | 55 Campbell R-CO | 89  Ensign R-NV
22 Hollings D-SC | 56 Smith R-OR | 90  Cornyn R-TX
23  Kohl D-WI | 57 Coleman R-MN | 91 Sununu R-NH
24  Inouye D-HA | 58 Warner R-VI 92  Santorum  R-PE
25  Schumer D-NY | 59 Murkowski R-AK | 93  Craig R-ID
26  Cantwell D-WA | 60 Voinovich R-OH | 94  Inhofe R-OK
27 Dayton D-MN | 61 Hutchison R-TX | 95  Allard R-CO
28 Murray D-WA | 62 Lugar R-IN 96  Enzi R-WY
29 Wyden D-OR | 63 Miller D-GE | 97  Sessions R-AL
30  Daschle D-SD | 64 Fitzgerald R-IL 98  Thomas R-WY
31 Biden D-DE | 65 Talent R-MO | 99 Kyl R-AZ
32 Feinstein D-CA | 66 Hagel R-NE | 100 Nickles R-OK
33 Jeffords I-VE 67 Stevens R-AK
34 Reid D-NV | 68 Shelby R-AL

Table 7: Analysis of senator roll call data: Ranking of senators based on O;1.
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Figure 8: Analysis of senator roll call data: Visualization of senator points, where senators
are classified by their party membership. Specifically, The Democrats, Republicans and an
independent politician are indicated by blue, red, and green, respectively.

We now investigate the roll calls. The value of a;1, i.e., the roll calls’ coordinate on the
r-axis, seems to represent the roll calls’ liberalness-conservativeness. The more liberal roll
calls lie on the left and the more conservative ones lie on the right. This interpretation is
further confirmed by the voting records for the roll calls. In particular, for each roll call,
we calculate the proportion of Republicans among the senators who voted “Yea”. A larger
value of this proportion indicates that the roll call is more conservative. As we can see from
panel (a) of Figure 9, for roll calls from the left to the right, this proportion increases. In
fact, the Kendall’s tau rank correlation between a;is and the proportions of “Yea” from
Republicans is as high as 0.88. We present the content of three roll calls as representative
examples. As indicated in panel (a) of Figure 9, these roll calls have substantially different
coordinates along the x-axis. From left to right, they are (1) “To improve the availability
of contraceptives for women”, (2)“Confirmation Thomas J. Ridge, of Pennsylvania, to be
Secretary of Homeland Security”, and (3)“To provide financial security to family farm and
small business owners by ending the unfair practice of taxing someone at death”.

Although most of the roll calls lie near the z-axis (i.e., aj2 =~ 0), there are still quite a
few roll calls which spread out on the y-axis. It seems that the voting on such roll calls is
heterogeneous within both parties. Specifically, we measure heterogeneity of voting within
each party by a cross entropy measure, defined as

() (4)

cEﬁ-i) = —p§2 log p§~2 - pﬁ log Pg-i) = Pjm 108 P

@

where ¢ = 1,2 indicate Democrat and Republican, respectively, and pj;, pjjz, and p(%

K3
J
denote the proportions of “Yea”, “Nay”, and “Not voting” within the party for the jth roll

call. Cross entropy is a commonly used measure of heterogeneity (Chapter 9, Friedman
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Figure 9: Analysis of senator roll call data. Panel (a): Visualization of roll call points,
where roll calls are classified by the proportion of “Yea” from Republicans. Specifically, roll
calls who have the proportions less than 0.068, 0.068-0.52,0.52-0.73 and larger than 0.73
are indicated by black, red, green and blue points, respectively. The yellow solid points are
example roll calls to be discussed. Panel (b): Box plots of min{CE§.1), CE;Q)}7 for roll calls
lying near the z-axis (|a;2| < 0.05) one the left and for those spreading out along the y-axis
(laj2| > 0.05) on the right.

et al., 2001). The larger the cross entropy, the more heterogeneous voting behavior within
a party. In panel (b) of Figure 9, we present the box plots of min{CEél),CE?)}, for
roll calls lying near the z-axis (|ajo| < 0.05) and for those spreading out along the y-
axis (|ajo| > 0.05). According to panel (b) of Figure 9, the roll calls in the latter group
(laj2| > 0.05) tend to have a larger value of min{CEy), CEE.Q)}, implying that the voting
tends to be more heterogeneous within both parties for these roll calls. The latter group
contains roll calls, such as “To provide for the distribution of funds under the infrastructure
performance and maintenance program”, “To enhance the role of Congress in the oversight
of the intelligence and intelligence-related activities of the United States Government”, and
“To strike provisions relating to energy tax incentives”. Many of such roll calls may be
explained by constituency specific factors.

6. Concluding Remarks

In this paper, we provide a statistical framework for studying unfolding-model-based visu-
alization. An estimator, together with an algorithm for its computation, is proposed, whose
performance is examined by simulation studies. Under reasonable conditions, we provide
asymptotic results for the recovery of ideal-point configuration. The proposed method is
applied to two datasets, one on movie rating and the other on senator voting, for which
interpretable results are obtained.
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The ideal points obtained from the proposed method can be used in further analysis. For
example, one can use the estimated person points as covariates in regression analysis. For
another example, one may further conduct cluster analysis on the respondents and items,
for example, by applying the K-means algorithm (MacQueen, 1967). In fact, as discussed
in the supplementary material, there is a connection between our unfolding model and the
stochastic co-blockmodel (Choi and Wolfe, 2014; Rohe et al., 2016) for bi-cluster analysis.
When data follow a stochastic co-blockmodel, then our consistency result for the unfolding
model further guarantees the consistency of bi-cluster analysis.

The current analysis may be extended along multiple directions. First, the current
analysis keeps the latent dimension K fixed. In fact, the theoretical results established
in this paper can be generalized to a setting where K also diverges, a more appropriate
setting for data of a very large scale. Second, it is possible to make statistical inference
about the person and item ideal points, such as testing whether a person point is closer
to one item point than another. Making statistical inference under our model is closely
related to statistical inference for low-rank matrix completion (see e.g., Chen et al., 2019;
Xia and Yuan, 2019), but the non-linear link function in our model brings more challenges
and thus methods and theory remain to be developed. Third, although we focus on binary
data in this paper, the proposed modeling framework, theory and computational algorithm
can be extended to other types of data, such as ratings and rankings. Finally, it may also
be of interest to extend the current framework to the modeling and analysis of large-scale
preferential choice data with informatively missing data entries.
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Appendix A. Bi-Cluster Analysis

The applications of multidimensional scaling, including multidimensional unfolding as a
special case, are often followed by cluster analysis (e.g., Kruskal and Wish, 1978; Borg and
Groenen, 2005) for better understanding and interpretation of the data visualization. In
our context, it is often of interest to cluster the respondents and the items, respectively.
This task is known as bi-clustering or co-clustering (Hartigan, 1972; Dhillon, 2001), which is
often studied statistically under the stochastic co-blockmodel (Choi and Wolfe, 2014; Rohe
et al., 2016), an extension of the widely used stochastic blockmodel (Holland et al., 1983).

Following multidimensional unfolding, it is natural to bi-cluster the respondents and the
items based on the estimated ideal points, using the Euclidian distance as a natural measure
of dissimilarity. In particular, we use the K-means algorithm (MacQueen, 1967) to cluster
the respondents and the items into k1 and ko clusters, respectively, for some pre-specified
numbers of clusters k1 and ks. This two-step procedure for bi-cluster analysis is described
in Algorithm 2.
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Algorithm 2 (Two-step procedure for bi-cluster analysis)

Step 1: Apply Algorithm 1 and obtain estimates {91, 0N, &, wnagh

Step 2: Perform the K-means algorithm to {91, vy éN} and {ay, ...,as} given ki and
ko clusters, respectively.

Output: The cluster membership of respondents v; € {1,...,k1} and cluster member-
ship of items v; € {1,...,k2} (i=1,..,N; j=1,..,J).

We provide a connection between the multidimensional unfolding model studied in this
paper and the stochastic co-blockmodel. Consider a special case under the multidimensional
unfolding model, where there are finite possible locations for the respondent ideal points
and also for the item ideal points, independent of N and J. We denote the possible locations
for the respondent ideal points as {bj, ...,bzl} and denote those for the item ideal points
as {cj, ...,c;’;Q}. Under this setting, there exist k; respondent latent classes and ko item
latent classes, regarding two respondents/items as from the same latent class when they
have the same location. We denote J; € {1,...,k1} and vj € {1,...,k2} the true latent class
memberships of respondent ¢ and item j, respectively. In this sense, the model becomes a
stochastic co-blockmodel, for which the distribution of Y;; is only determined by the latent
class memberships of respondent 7 and item j and Yj;s are conditionally independent given
all the latent memberships of the respondents and items. In what follows, we show that the
proportions of misclassified respondents and items converge to 0 in probability, when both
N and J grow to infinity, if the K-means algorithm in Algorithm 2 has converged to the
global optima.

Theorem 23 Suppose A0, A3 and A4 are satisfied, and Ky > K. Further suppose the
multidimensional unfolding model degenerates to a stochastic co-blockmodel, satisfying 0; €
{bi,....,by, } and &} € {c7, ..., c;,}. If both K-means algorithms in Algorithm 2 converge to
the global optima, then the clustering result satisfies

N J
. D im1 1{&-:4(79;)} 2j=1 Lioj=cwp)y
min { max , max
CEBy, N CEB, J

(12)

goes to 1 in probability as both N and J grow to infinity, where By, denotes the set of all
permutations on {1,....k}, for k = kq, ks.

Remark 24 To handle “label switching indeterminacy” in clustering, in the loss function
(12) we find permutations that best match the true latent class memberships and their esti-
mates for both the respondents and the items.

Appendix B. Proof of Theoretical Results
B.1 Definitions and Notations

In this appendix, we use ¢, C,C7, Cy to represent constants which do not depend on N, J,
the values of which may vary according to the context. With a little abuse of notation, we
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use Ay s to denote the specified events, which may differ in different proofs. For x € R,
we use BX(C) to denote the closed ball in R® centered at x with radius C. Unless otherwise
specified, all balls in the appendix is assumed to be closed. For a set G C R¥, let int(G)
denote the set of all its interior points. For a positive integer n, we denote [n] := {1,...,n}.
We start with some notions which will be used in the proof of theorems, propositions and
lemmas.

Definition 25 For points x;,x, € RE i = 1,...,n, we write (x1,...,%) ~ (X],...., %), if
there exists an isometry F € Ak, such that X, = F(x;),i=1,..,n

Remark 26 [t is easy to show that “~7 is an equivalence relation.

Definition 27 (Configuration) We define an n-point configuration as an equivalence
class. That is, we define a configuration

(X1, ey Xn) 1= {(X]5 o0y X0) 1 (X, ey X)) ~ (X150, %) }

as the equivalence class of (X1, ...,Xp).

Remark 28 By the property of isometry mapping, it is easy to see that all the elements in
the same configuration have the same distance matriz.

We now consider the space of all n-point configurations in RX, denoted by
Ho k= {[xl, v Xp] 1 X € RE =1, ,n} .

For two configurations 71 = [X1,...,Xp], 72 = [y1, ..., ¥n] € Hn Kk, Wwe define

d(m,m2) = Fieri{\/ Z | F(xi) — yill%

1<i<n

First, we note that d(-,-) is a well-defined mapping from H,, g X H, x to R. That is, for
any (X},...,x},) € [X1,...,Xp] and (¥}, ..., ¥5,) € [Y1, -, ¥nl,

Jnf ST PG il = it ST IR - v

1<i<n 1<i<n

Second, we notice that d(-,-) is a metric on M, g, as summarized in Lemma 29 below.

Lemma 29 d(-,-) is a metric on H, k.

Remark 30 For [xi,...,X,] € Hnx, we have [(x],0)7, ..., (x}),0)T] € Hy i1 in which
sense we can say Hp x C Hp 1. Thus Hpx, C Hare, if K1 < Ka. For 7 = [X1,...,Xy] €
Ho ki, T2 = [Y15 - Yn] € Hn Ky, the d(T1,72) is defined in the same way by seeing both 1
and T2 as elements in H, max{K, K}

27



CHEN, YING AND ZHANG

We further denote P, i as the set of a x b partial distance matrices for configurations
in RE :
Papic = L% = Y1) axs : (X1, s Xas Y15 s Yb] € Hatbi | -

It is easy to check that Py C Pap ic+1-
For Ay, ..., A, C RE denote [Ay, ..., A,] as a subset of H,, k :

[A1, .., An) = A{[x1, ... xp] x5 € Ajyi=1,...,n}.
For A, B C H, i, the distance between A and B is defined as

A, B) = inf . 1
d(A, B) nei‘l}meBd(ﬁﬁz) (13)

We further denote
Hu .o = {[X1, - Xn) € Hnx : ||xi] < C}

as a compact subset of H, x, and

Papi,c = { (1% — ¥ill>)axb : X150y Xa, Y1, -, ¥5) € Harv k.0 ) (14)

as a compact subset of P, . We consider a mapping defined as following:

. b)x K
Dypre: RO Py,

(Xl, ceeey XCL_H,)T — D,

where D is the axb partial distance matrix of {(x1, ..., Xqa), (Xq41, ---s Xqtp) }- 1t is not difficult
to check that @, i is invariant with respect to isometry. Then, for 7 = [x1,...,Xq4p), We
denote

Qo k(7)== Popx(X),

where X T = (X1, ..., Xa4b)-

Having introduced the notions above, we give the following lemma, which is crucial to
the proof of Theorem 6. It essentially shows that for any partial distance matrix D’ €
Pry ko k4 ,m that approximates to another partial distance matrix D € Py, r, k 1, Whose
configuration 7 contains a collection of anchor points, then any configuration 7 of D’ will
also approximate to .

Lemma 31 For compact subsets By, ..., By, ,C1, ...,Cr, C B (M), let
B =[Bi,...,Bk,,C1, ..., Ck,].

Suppose that for any (Xi,...,Xg,+ky) € B1 X -+ X By, X Cp X -+ X Cpy, {X1,...,Xp;, } and
{Xky 415 s Xkty +ky } aT€ @ collection of anchor points in RX. Then, for any e, > 0, there
exists g > 0 such that for any 7" € Hy, ko i, M and T € B satisfying

1Py g i, (T1) = Py o i (T P < g

we have
d(t', 1) < ec.
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We end this section by the following lemma, which will also be used in the proof of
Theorem 6.

Lemma 32 Suppose {b7,...,b} },{ci,...;c;,} C BE(C) are a collection of anchor points
in RE. Then, for any x € B (O), the {x, b, byt et ¢, b are also a collection of

anchor points in RE.

B.2 Proof of Theorems

Proof [Proof of Theorem 6| We first show the proof of (5). For e which is given in condition
A3, there exist constant pe € (0, 1), and balls of radius € in R% | denoted by Bi(€), ..., By, (),
Gi(€), ..., Gy, (€), such that for N, J large enough,

N
Zl:l 1{0?631,; (e),éZEBi(e)}
N
J
>t YaeBe: (9.ac0:())
J

> p€7i = 17 "’7k17

> pei=1,... ko

This comes straightforwardly from condition A0 and requirement (2) of anchor points in
condition A3. Note that the centers of Bj(e) and Gj(€) may vary through N,.J. We also
use Bj(e) and Gy (e) to denote By (€) and Be: (¢), respectively.

We first focus on the set of person points

k1
L) = | J{i € N] : 6 € B(e), 8 € Bi(e))
k=1

and the set of item points

ko
Le) = | J{j €[] : a} € Gi(e),a; € Gi(e)}.
=1

Let 0 = ((Oz»k)T,OT)T ,aj = ((a;)T,OT) € RE+. We will show that there exists an

isometry mapping Fy,; € Ag,, under which Fy, J(éz) = 9;" and Fy j(a;) ~ a;r, for all
i € I1(e) and j € Iz(e). This is formalized in the following lemma.
Lemma 33 For N,.J large enough, there exists an isometry Fy j € Ak, such that
|Fn.s(x)|| < 4M, for all x € BY* (M),
and for all i € I1(€) and for all j € I(e),
|Fw,s(8:) — 6 || < 5e,

and
1Fw,(a;) —af || < Be.
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We then show that for most of the person points i ¢ I1(e) and for most of the item
points j & I>(e), we still have Fiy ;(6;) ~ 0] and Fy ;(a;) ~ a;r, under the same isometry
mapping Fi ; as in Lemma 33. This is formalized in Lemma 34 below.

Lemma 34 For N, J large enough, there exists a constant k > 0, such that for the isometry
mapping Fy, ; defined in Lemma 33, the proportions

N
\ _ 2int 1{||FN,J(éi)70?II>H6}
1,N,J N
and J
=1 Yiry @) -at > e}
AN, J = i
satisfy
Ag,N,g — 0, (15)

for k=1,2, as N, J grow to infinity.

Since by Lemma 33, we have Fiy ; maps B(I,(Jr (M) to Béﬁr (4M), then for all 8; and for
all éj,
1P (0:) — 07 || < 5M

and
|Fn,(&;) —af || < 5M.

Combining this with Lemma 34, we have

~ J ~ +12
. {zgil IF®:) — 0717 | Xjm IF(E) —a]] }

FEAK+ N J

~ J ~

it [ F,s(8) = 07 * | Xt IFv (&) — af | (16)
N J

< (25(M)* A1 n,g + K2€%) + (25(M )Xo, + KP€?)

<25(M)* (A1 N+ Aan.g) + 2K2%€

<

By (15), (5) holds. (6) holds if € can be arbitrarily small. We complete the proof. [ |

Proof [Proof of Theorem 12| Combining Theorem 6 and Proposition 11, we have the result.
]

Proof [Proof of Theorem 14| Theorem 14 is a special case of Proposition 22. See the proof
of Proposition 22. |

Proof [Proof of Theorem 23| For simplicity of writing, we suppose K = K in this proof.
We only prove the result for the respondents. The proof for the items is the same. Under
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the conditions of Theorem 23, the result of Theorem 12 is satisfied and with a slight change
in the proof, we can get
N 7 N
SN, 16: - F (b))

= 1).
Mmax N op(1)

Consequently, there exists isometry F' ]f, 7, such that

S 116 — Fy (b3
I = 0,(1), (17)

noting that bj. = 6;.
Lemma 35 Under the same conditions as Theorem 23, suppose that

ity 116; — F (b5 )II?
N = OP(1)~

Then we have N
2i=1 Ligr—c(d

max =0,(1).
CeBkl N P( )
With Lemma 35, we complete the proof for the respondents. |

B.3 Proof of Propositions

Proof [Proof of Proposition 3] It suffices to prove in the case when > " ;x; = 0 and
S yi = 0. Denote D = (dij)nxn, where d;j = [|x; — x;||> = |ly; — y;|* and let B =
(bij)nxn = —%JDJ, where J = I, — 1,1, /n. Then B is inner product matrix of both
{x1,...,xp} and {y1,...,yn}. That is, b;; = xiij = yiij, for 1 <14, j < n. We refer readers
to Critchley (1988) for the relation between inner product matrix and distance matrix. So
if we denote

Pl = (X17-~-7XTL)T7 PQZ(YI7~--aYn)T7

then we have
PP =PP =B.

Let
P =QiRi, P, =QaRy

be the QR decomposition (see Cheney and Kincaid (2009)) of P;, Py, where Q1, Q2 are k x k

orthogonal matrix and R;, Rs are k X n upper-triangular matrix with non-negative diagonal

entries. Since xiij = yZTyj, for 1 <14,5 <mn, it is not difficult to check that Ry = Rs. If we

define O = QQQI, then
OP = 0Q 1Ry = Q2Q{ Q1R1 = Q2Ry = QaRy = Py,

which means Ox; = y;, for 1 <i < n. We complete the proof. |

Proof [Proof of Proposition 8] We first introduce a lemma as following.
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Lemma 36 There exists a collection of anchor points {bi,...,b} },{c},...,c},} C int(G),
where G is the ball defined in Proposition 8.

We fix such collection of anchor points. For any € > 0, we denote Bj(e),Gj(€), for
1 <k <k and 1 <1 < ko, as balls centered at by and cj, respectively. For sufficiently
small € > 0, it is easy to see that for any

by € Bi(e),...,bx, € By, (€),c1 € Gi(€),...,c, € Gy, (€),

the {by,...,bs, },{c1,...,cr, } are a collection of anchor points in RX. Therefore, the (1) of
A3 holds. We define 1
Be = ) 1§mk:1§nk1 {P1Bi(e), P2G7(€)}
1<i<ks

and use Ay, s to denote the following event

| N

Nzl{GZEBZ(e)} —PlBZ(E) Sﬁe, k= 1,...,k‘1,
i=1

J
1 *
7 Z Lazegyy — P2Gr(€)| < Be, 1=1,.... kg,
=

where P Bj (€), PG} (€) represent the probability measure of Bj (€), G} (e) with respect to
P, and Py, respectively. By Hoeffding’s inequality, we have

Pr ((18) holds ) > 1 — 2k exp(—%Nﬁ?) — 2k exp(—%Jﬁz). (19)

So we have
Pr(Ay, ;) — 1

as N, J grow. On Ay, s, we have

N

1

N E Lorenr(e) = Py 1<k <k,
=1

J (20)
1
7 Zl{a;ecl*(e)} > Be, 1<1< k.
j=1
On Ay s, (20) holds. Then, the (2) of A3 holds almost surely. |

Proof [Proof of Proposition 11] Proposition 11 is a special case of Proposition 20. See the
proof of Proposition 20. |

Proof [Proof of Proposition 20] The proof of Proposition 20 is similar to Theorem 1 of
Davenport et al. (2014). We only state the main steps.
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We denote D as the partial distance matrix of (61, ...,0y) and (ay, ..., as) (to simplify the
notation, we ignore the subscripts N and J for D). Since the likelihood function depends on
(61,...,0N) and (aj,...,ay) only through their partial distance matrix, we re-parameterize
the likelihood function by D. We denote

ZQ7Y(D) = log LQ(Gl, ceey GN, aj, ...,aJ),

where the subscripts Q = (w;j)nxs and Y = (Yj;) v indicate the random variables in the
likelihood function and D contains the parameters.
Let

l_Qy(D) = le(D) — le(O), (21)

where 0 represents an N x J matrix whose elements are all 0 and let

G= {D e RV . ||D||, < 4M2\/(K + 2)NJ}. (22)

Lemma 37 Under the same conditions as Proposition 20, there exist constant C7 and Cy
such that

Pr <sup oy (D) — Elgy (D)| > 4M*Cy Lypp /Ky +2v/n(N +J) + NJlog(NJ))
DeG

Co
< .
"N+ J

Let H = {D : d;j = ||0; — a;||?, where ||6;]],|la;]| < M,i=1,..,N,j=1,..,J}. It is
easy to check that H C G. Consequently,

Pr <Sup iy (D) — Elgy(D)| > 401 M* Ly /Ky +2v/n(N + J) + NJlog(NJ)
DeH

IN

Pr <sup oy (D) — Elgy(D)| > 4C1 M* Ly /Ky +2v/n(N +J) + NJ]og(NJ))
DeG

Co
< .
- N+J

Given the above development, Proposition 20 is implied by the following lemma.

Lemma 38 Under the same conditions as Proposition 20,

1 16 _ -
—||ID& ; — 2 < — loy (D) — Elgy(D)|.
NJH N.J = Banrz [S)lellz\ oy (D) oy (D)]

Therefore, with probability at least 1 — Cy/(N + J),

N+J NJlog(NJ)
D% = D gllE < 64 M Lggs Baage VB, 12 F \/ TN D)
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We complete the proof by absorbing 64/K + 2 into Cj. |

Proof [Proof of Proposition 22| We use Ay, to denote the event that the result in Propo-
sition 20 holds. By Theorem 6 and Proposition 8, on Ay, s, we have

~Q J ~
N (e — PO X lla) — P&
min +
FE.AK+ N J

goes to 0, as N, J grow to infinity. Since Pr(Ay ) — 0, we complete the proof. [ |

B.4 Proof of Lemmas

Proof [Proof of Lemma 29| Let 71 = [X1,...,Xp], 72 = [y1, .--s ¥n), T3 = [21, ..., Zp]. Define

d(m.m) = mip max|IF(y) = x|

and it is easy to check that
d(1,72) < d(11,72) < Vnd(11, 7).

So we just need to verify that function J(, -) satisfies the triangle inequality. Let isometries
FQl, F31 satisfy
d(r1,79) = max | F1(yi) — xil| = [|£21(v1) — %],

d(m1,73) = max 1 F31(2:) — Xil| = | F31(Zm) — Xm |-

Then
d(ry, 75) < max {|| Fa(z:) — Far (v3) |}
< max{[|F(zi) — x| + [[Fa1(yi) — xill}
<N Far(ya) — xall + ([ Fs1(2zm) — x|
= J(Tl,Tg) + J(Tl,Tg).
We complete the proof. [ ]

Proof [Proof of Lemma 31| Otherwise there exist ¢g > 0 and sequences {Tl(n)}fle C
My +ko, Ko M, and {72(”) o 1 C B such that

1
H(I)kl,kQ,K+ (Tl(n)) - (I)kl7k2’K+ (TQ(n))HF < ﬁ

and
d(Tl(n) , TQ(H)) > €.
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Since both Hy, 41, k. v and B are compact, there exists a subsequence {np}e, C N*, such

that limy_,o 7'1("'“) =T € Hpy4ho, kv and limy_, o TZ(nk) = 19 € B. The two configurations

7 and 79 have the same partial distance matrix but d(7, 79) > €y. This makes a contradiction
because 19 € B is the only configuration of its partial distance matrix, by the requirement
of B. -

Proof [Proof of Lemma 32| For a collection of points {x, b7, ...,b} },{c},...,c}, }, it is not
difficult to verify that condition A2 holds. So we only need to verify Al.

To verify Al, it suffices to show that if {by,...,bg, },{c1,...,ck, } is a collection of an-
chor points, then for any x € B (C), [x,b1,...,bk,, €1, ..., Ck,] is the unique configuration
corresponding to its (k1 + 1) X ko partial distance matrix.

Suppose that 7 = [x, b1, ..., by, €1, ...ck,] and 7" = [x/, b, ..., b} , €}, ...c) ] satisfy

Dy 41k, K (T) = Py 1 g, 1 (7).

Then
(I)kq,kg,K([blv ...,ka,Cl, ...,CkQD = (bkl,kQ,K([bll’ ceny 2;1,C/1,...C§€2]).

Since {by, ..., by, },{c1, ...cx, } are a collection of anchor points, then [by, ..., by, , 1, ...Cx,] =

[bY, ..., b}, €1, ...cp, ]. Without loss of generality, we suppose b; = b and ¢,, = c;,. Then,

the two configurations, [x,c1,...,cx,]| and [x,cf,...,c}, ], have the same complete distance
matrix, which further leads that

[X, €1, ey Chy] = [X/, €14 ony Cy |-

Since ¢, ..., €y, can affine span R | it is not difficult to see that x = x’. Then, we get 7 = 7/,
and A1 has been verified. |

Proof [Proof of Lemma 33| We define
Sn.a(€) = [Bi(e), ... B, (€), G1(€), .. Gk, (€)] € Hary o, 0
St (€) = [Br(©)s s Bia (6, G1(€)s s Gia ()] € My kg i
where B} (e), Bi(¢), G (€), Gi(€) are defined in the proof of Theorem 6. Let
on, = d(Sn,s(€), Sk s (€)) (23)

By (13) and triangle inequality, there exists an iosmetry Fi ; € Ag,, such that for all
x; € Bf(e),y; € Gf(e), X1, € By(e),y1 € Gi(e),

|Fng(X) — x| <de+ong, 1<k<Ek,

) (24)
|Fng(3) =y || <detong, 1<1<ks.

In what follows, we will show that o ; <€ for N, J large enough. We first define

VN7 = Rk, o, 10 (F) = Py o g, (T9) |7 2 7 € Sng(€),7° € Sy ()} (25)
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and we have
V0,0 (PN ) (pe]) < ||Div,s = Dy |13 = o(N ),
which leads to
g = o(1). (26)
By (23), there exist 7 € Sy s(€) and 7* € Sy .s(€) such that

[Pk o, 54 () — Py g i, (T |7 < 290,
Then by (23), we have

ON,J = d(§N7J(€),57V7J(E)) <d(t*,7). (27)

As shown in the beginning of proof for Theorem 6 and according to Definition 4, the
is the unique configuration corresponding to its k1 X ko partial distance matrix. Since
7 € SN, 7(€) C Hiytho, ks M, Dy Lemma 31, we know d(7*,7) — 0 as N, J grow to infinity,
and thus

*

d(t*,7) < e (28)
for N, J large enough.
Finally, since

Bil().Gi(e) € By (M), By(e), Gi(e) € By * (M),
we have, for N, J large enough,
|Fn.7(x)|| < 4M, for x € BEH(M).
To see this, if there exists x € Bg* (M) such that || F,j(x)|| > 4M, then by simple geometry,

min  ||Fy j(x) — x| > M.
xe€By T (M)

According to (24) and (28), we will get
M < ||FN7J()~(]€) — X || < 4€+O'NJ < 56

which contradicts with the fact that € < EM < TOM .

Proof [Proof of Lemma 34| Let &1, ..., &, denote the centers of G1(e), ...., Gy, (€) and & =
(¢/,0")T e RE . We first give the following lemma.

Lemma 39 For any
1 = [X, X1, ..o, Xfgy| € [B (M), Gi(e), ..., Gy, (€)],
T2 = [, Y15 Yho) € [B§+(M),Bél+(e),...,B%(e)],

we have

Ix" —y|| < cmax{ d(1y, 72), Z I —yill? ¢,
for a constant ¢, which only depends on the set {cf, ..., Ckz} and M.
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Define

Hy(e) := {i € [N]: |Fn.s(8;) — 0 || > 5max(c, 1)y/ky + kae} (29)

and
Hy(e) :={j € [J]: |Fn.(a;) — a][| > 5max(c, 1)v/k1 + kae},

(
where c is the constant in Lemma 39. We set the constant x in Lemma 34 to be 5 max(c, 1)v/k1 + kae.
and then we have |Hi(e)| = NA1 n.7, |Ha(€)| = JA2n,7. Note that I1(e) N Hyi(e) = 0, I2(e) N
Hy(e) =0 for N, J large.
We choose i1, ..., 7k, € I1(€) and ji, ..., jk, € I2(€) such that

30)

O:k € BZ(G)a élk € Bk(€)7
a;l € Gje), aj € él(e)
for 1 <k <kyand 1 <[ < ko. For any i € Hy(e), we consider the following configurations
[0:70:17’ 79;kk ) jl" ) ]k]er1+k2+lKM7
T = [017 07217 ey eikl ) aj17 ey aij] € Hk1+kz+1,K+,M

and
[0:7 ;(1?' ’ajk] [BO( ),GT(E),..., 22(6)}7

T = [Oi,ajl, ...,aij] S [Bé(Jr(M),él(e), ...,ékQ(E)].

It is obvious that
d(7,7) > d(T1,717).

By Lemma 33, we have

ko
Z ”FN,J(ajz) - 3—3‘1”2 < 5\ koe < B/ ki + koe.
=1

Combining it with (29) and Lemma (39), we have

d(7~'1,7'1*) > 5/ k1 +]€2€,

which leads to

,7°) > 5y k1 + kae. (31)

According to Lemma 32, {67, 0;"1, o Zk bAag Jk } are a collection of anchor points.

Let D,D € Pry+1,ks, K, be the partial distance matrix of 7 and 7%, respectively. Combin-
ing (31) and Lemma 31, there exists a constant . > 0 such that

|D = D||r > 6. (32)

For each i € Hy(e), we choose i1, ...,ik, € I1(€) to form a group {i,iy, ..., } C [IN] such
that
(07,67,...,07, ) € B (M) x Bi(e) x -+ x By, (€)

i Yy e Vg
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and
(5,05,,...,0;, ) € By (M) x Bi(e) x -+ x By, (e).
We could find at least min{\; n s, pe} X N such groups which are mutually exclusive. We

could also find at least p.J mutually exclusive groups of {ji, ..., jk, } C [J] such that
(a% ,. ) € Gi(e) x --- x G}, (e)

J1o ]k

and

(8, ., 85,,) € G1(€) X -+ x Gy (e).
By (4) and (32), we have
min{)\l’NJ,pe}Nngéz < o(NJ).
So
min{)\l,N,J,pe} = 0(1)7

which means A\ y ; — 0, as N, J grow to infinity. Similar result holds for Ay n,; and we do
not repeat it. |

Proof [Proof of Lemma 35| Consider the K-means clustering of the person points in Algo-
rithm 2. We define a loss function

L(D1,..., 9N ZHQ — py, 1%,

as the loss function for K-means clustering, where 9; € {1,...,k;} represents the cluster
membership of person ¢ and

N &
D oim1 Oily,—iy
N
> ic1 L=k}
denotes the centroid of the kth cluster. Under the conditions of Theorem 23, the K-means
clustering converges to the global optima, which implies that

By =

A~ A~

L(,...,0N) = L1, ...,0N). 33
( 1, ) N) 196{1, glll}nz 1N ( 1 ) N) ( )

So for any isometry F € A,

ZH@ — |17 <ZH‘9 — F(bj.)]*.

By triangle inequality,
3 N > N
<Z [, = F(bys) H2> (Z g, — 9in) (Z F(by:)
N 3
<2 (Z 16; — F(HE;)V)
i=1
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Define d = min;.; [|b] — b}[| and for F' € Ak, define
. X d
Api={1<i <Ny~ Fb3)] < 9.

and denote AS, :={1,..,N}/Ap.

Then
ZieAF* ZieA;* 1
N,. 1 _ J
N N

4 ZieACF* Hﬂgi - FJ@,J(b;;;)H

>1-— i

- d? N

N * *
4 2iz1 Hﬂgi - FN,J(bﬁ;)HQ
1— z N (34)

16 2_im1 105 — Fﬁ,J(b§;)||2

- d? N

L]

Lemma 40 Under the same conditions as Lemma 35, if there exists (1 € By, satisfying

* * d
e,y — Fns (b7 < 5
where p; is the centroid of the lth cluster, F]’(u is defined in (17) and d is defined above,
then there exists (2 € By,, such that for alli € AFJ*V J,zg‘i = (V7).

Let Qn,y = {w: 3¢ € By, s.t. [[peqy(w) — FR (b)) < 4, i=1,....k1}. Notice that Qs
is a subset of the whole probability space. By Lemma 40, for any w € Qu, s, there exists
(n,J € By, , which corresponds to (3 in Lemma 40, such that

N X N X . 1
max > >
(eB, N N N

Lemma 41 Under the same conditions as Lemma 35, we have

lim Pr(Qyy) =1,

N,J—o0
where Q2n_j is defined above.
By Lemma 41 and (34), we complete the proof. [ |
Proof [Proof of Lemma 36| Without loss of generality, we suppose that the ball G ¢ RX

has center at orgin. By Theorem 2.1 of Alfakih (2005), we know there exist ki, ko > K + 1
and two sets of points, {bj,...,by },{ci,...,c},} C int(G), satisfying condition A2 whose
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*. c* also

partial distance matrix D* has unique configuration. Furthermore, points near b}, ;

have this property. Specifically, there exists ¢ > 0 such that for
b, € Bye(e) CG, «¢j¢ Bg(e) C G,

the {b1,...,bg, },{c1, ..., c, } satisfy condition A2 and their partial distance matrix D has
unique configuration. Then, by Lemma 31, condition A1 holds and {b7, ...,by },{c7,...,c;,}
are anchor points in R¥. |

Proof [Proof of Lemma 37| The proof of Lemma 37 is similar to Lemma A.1 of Davenport
et al. (2014). [

Proof [Proof of Lemma 38| We have
0 < loy(Dn,s) —loy(Di.;) =loy (Dn.s) — Eloy (Dn,s) + Elo,y (Dy,s) — Eloy (Di.y)
+Eloy(Dy,;) — loy (D)
< (Eloy (D) = Elo,y (Di. 1)) + 2 sup lla,y (D) — lo,y (D).
DeH

So

E (loy (Dxs) ~ oy (Dx)) <2 sup [loy (D) = loy (D))

Notice that

E (l_Q,y(D}‘v,J) - Z_Q,Y(EN,J)) =E (lQ,Y(DTV,J) - lQ,Y@N,J))

n f(d3;) 1 — f(dj;)
= —— d ) 1o 2y 4 (1 — f(d)) log(————22
N7 EJ J(dip)log(Z 550 + (L= (i) log(;— 557)

For two distributions P and Q, let D, (P| Q) denote the Kullback-Leibler divergence
p(x)
D PQ::/pxlo ()dw,
xL(PlIQ) (z)log @)

where p(z) and ¢(x) are the density functions for P and Q, respectively. For 0 < p,q < 1,
we use

Dics(pla) = plog(2) + (1= p) log(=2)

to denote the Kullback-Leibler divergence between two Bernoulli distributions with param-
eter p and ¢, respectively. For P,Q € (0,1)V*7, we define

1
DKL(PHQ) = m E DKL(PUHQU)
1,7

For a partial distance matrix Dy, y, denote f(Dy,s) as the matrix (f(dij))nx.s. So from
above, we know that

nDgr(f(Dy. ) f(Dn,s)) < 2 sup |loy(D) — loy (D).
DeH
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Still for 0 < p,q < 1, let

dir(p.q) = (VP —vVO* + (V1-p—V1-0q)’

denote the Hellinger distance between two Bernoulli distributions with parameters p and ¢,

respectively. For P,@Q € (0,1)V*7, we define
d3(P|Q) : Zd2 Pij, Qij).
It is easy to check that d%(p,q) < Dkr(plq). So
Bi(f(D3y) /(D)) < = sup [l (D) ~ Ty (D)
N peH

By Lemma A.2 of Davenport et al. (2014), we have

1 ~ * * 2
m\|DN,J — Dy jlIF < 8Buar2d (f(D g), f (D))

16 - -
< —Banmez sup |lay (D) —lo,y(D)|.
n DeH

Proof [Proof of Lemma 39| Denote

n = max { d(11,T2), ZHX —yill?

and then d(m,72) < n and
||Xl+_yl|| Sna I = 17‘-',]{72-

Therefore there exist A € Ok, and b € RE+ such that

ko
[Axt +b—y[2+> A% +b—yi|* <,
=1

which leads that
[AxT +b—y| <n

and
||AXZJr +b—-yi|<n, 1=1,.. ko

Combining (35) and (37), we get

[Ax; +b—x|| <2, 1=1,.. k.
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According to condition A2, xy,...,Xy, can affine span RE. Then there exists aq, ey Oy
satisfying Zfﬁl oy = 1, such that x = Z;Zl o;X;. So we have

ko
Z o(Ax +b—x")
=1

[AxT +b—xT| =

ko
<203 |e)n.
j=1

k1

Combining it with (36), we have ||xT —y| < (23 || + 1)n. We complete the proof by
j=1

setting the constant ¢ in Lemma 39 to be

xeBE (M) X, a=1

ko
max inf 2 Z lay|.
=1
x1EG] () x=2_; uxy

Proof [Proof of Lemma 40| For 4, j € Apy, , if 97 = ¥} and suppose they are both equal
to k, then [|p; — Fy ;(b})|| < d/2 and ||y — Fy ;(b7)|| < d/2. Given the condition in
i ’ 7 )
Lemma 40, it is easy to check that there is only one p; among {1, ..., py, } satisfying
[ — Fiy (bp)ll < d/2,
then J; = ;. If ¥ # V%, then ||y — Fy ;(b%.)|| < d/2 and e, — Fy,y (b3 )l < d/2. So
K ’ k3 ’ J

g, = by Il = 1 EN s (byr) = i, s (by-)

| =Nk, = Fna(bge)ll = llmg, — v,y (b )l

d d

which means J; # 19]-. So there exists (3 such that for i € Apy, J,@i = (V7). [ |

Proof [Proof of Lemma 41| Let

(€) EiEAFKrJl ’
FNJ::{UJ:T’Zl_E}’

which is a subset of the whole probability space. By (34), for any ¢ > 0, we have

: (€)Y _
N,I}IEOO Pr(I'y ;) = 1.

For any w ¢ Q. 7, there exists [ such that [|p,, (w) — FY ;(b])[| > d/2, for m =1,..., k1. So
for i satisfying ¥ = [, we have [|p; (w) — Fy ;(bj.)[| = d/2. According to (2) of condition

A3, for sufficiently small €, if N,J are sufficiently large, then w ¢ Fgf,,j], which means
FE\E,/?] C Qu.y. By (34), for sufficiently small €,
. . ()
> =
N,l}gloo Pr(Qn.j) > N,I}gloo Pr(I'y ;) = 1.

We complete the proof. |
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Figure 10: Analysis of movie rating data: Simultaneous visualization of the estimated movie
and user points.

Appendix C. Algorithm-based MDU: Real Data Examples

To compare the proposed method with classical algorithm-based MDU methods, we apply
ordinal MDU (Busing et al., 2005) to both real datasets analyzed in the paper. The ap-
plication is based on the implementation in R package smacof (de Leeuw and Mair, 2009).
For both examples, the latent dimension is set to two, and all the tuning parameters are set
to be the default ones. The results below show that the ordinal MDU approach provides
similar visualization results as the proposed one, especially for the roll call voting data due
to its unidimensional nature. The results for the movie rating dataset are also similar for
the two methods, but the interpretable patterns from the ordinal MDU approach is not as
clear as the proposed one.

Figures 10 through 12 show the same plots as in Figures 4 through 6 in Section 5.1,
respectively, for the movie rating dataset. Figure 10 provides the simultaneous visualization
of the movie and user points. Similar to the plot in Figure 4 given by our method, the movies
and the users tend to form two giant clusters that only slightly overlap.

Figure 11 is similar to Figure 5, where the two panels show the same scatter plot for
the movie points. In the left panel, the movies are stratified by the the numbers of ratings
that they received, where different stratums are marked by different colors. In the right
panel, the movies are stratified by their release time. Recall that the patterns of popularity
and release time are captured by the proposed method as shown in Figure 5. Figure 11
seems also to capture these patterns, but not as clear as those in Figure 5. According to
panel (a) of Figure 11, the more popular movies tend to be located near the origin, while
the less popular movies tend to be located away from the origin. According to panel (b)
of Figure 11, the clustering patten of the movies can be largely explained by the three
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X <=127 1997-1998
< 128-169 < 1995-1996

170-229 % before 1995
B >=230

Figure 11: Analysis of movie rating data. Panel (a): Visualization of movie points, with
movies stratified into four equal-size categories based on the numbers of rating. Movies
with numbers of rating less than 127, 128-169, 170-229 and more than 230 are indicated by
black, red, green and blue points, respectively. Panel (b): Visualization of movie points,
with movies stratified into three categories based on their release time. Movies released
in 1997-1998, 1995-1996, and before 1995 are indicated by green, red and black points,
respectively.

categories of release dates. From the left to the right of the space, the points correspond to
movies from the relatively older ones to the relatively more recent ones.

Figure 12 shows the same plots as in Figure 6. Similar pattern is shown that the shorter
the average distance from a user point to the movies points, the more active the user is.
In Figure 12, users are classified into four equal-size groups depending on the numbers of
movies they rated. These groups of users, from the most active one to the least active one,
lie from the top left to the bottom right.

Figures 13 through 15 show the same plots as in Figures 7 through 9 in Section 5.2,
respectively, for the roll call voting dataset. Figure 13 provides the simultaneous visualiza-
tion of senators and roll calls. Similar to the plot in Figure 7, most of the points tend to
lie on a straight line.

Figure 14 provides a scatter plot of the senator points. Similar to Figure 8, most
of the senator points tend to locate around a straight line, with the Democrats on one
side and the Republicans on the other side. Also similar to Figure 8, the independent
senator, Jim Jeffords from the state of Vermont, is mixed together with the Democrats,
while the Democrat senator, Zell Miller from the state of Georgia, is mixed together with
the Republicans.

Finally, Figure 15 shows the unfolding results for the roll calls. The pattern in panel (a)
of Figure 15 is similar to that of Figure 9, where from the right to the left, the proportion
of “Yeas” from the Republicans increases. Also similar to Figure 9, although most of the
roll calls lie near the x-axis, there are still quite a few of them spreading out along the
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Figure 12: Analysis of movie rating data: Visualization of user points, with users classified
into four equal-size categories based on the numbers of rating. Users who rated less than
24, , 25-47, 48-103 and more than 104 movies are indicated by black, red, green and blue
points, respectively.
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Figure 13: Analysis of senator roll call data: Simultaneous visualization of the estimated
senator and roll call ideal points.
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Figure 14: Analysis of senator roll call data: Visualization of senator points, where senators
are classified by their party membership. Specifically, The Democrats, Republicans and an
independent politician are indicated by blue, red, and green, respectively.

y-axis. According to panel (b) of Figure 15 based on the cross entropy measure, the voting
behavior on these roll calls tends to be heterogeneous within both parties. This result is
similar to that given in panel (b) of Figure 9.
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Figure 15: Analysis of senator roll call data. Panel (a): Visualization of roll call points,
where roll calls are classified by the proportion of Yeas from Republicans. Specifically, roll
calls who have the proportions less than 0.068, 0.068-0.52,0.52-0.73 and larger than 0.73
are indicated by black, red, green and blue points, respectively. Panel (b): Box plots of
min{CEgl),CEf)}, for roll calls lying near the z-axis (|ajo| < 0.05) one the left and for
those spreading out along the y-axis (|a;2| > 0.05) on the right.
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