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Abstract

Multidimensional unfolding methods are widely used for visualizing item response data.
Such methods project respondents and items simultaneously onto a low-dimensional Eu-
clidian space, in which respondents and items are represented by ideal points, with person-
person, item-item, and person-item similarities being captured by the Euclidian distances
between the points. In this paper, we study the visualization of multidimensional unfold-
ing from a statistical perspective. We cast multidimensional unfolding into an estimation
problem, where the respondent and item ideal points are treated as parameters to be esti-
mated. An estimator is then proposed for the simultaneous estimation of these parameters.
Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the
validity of model-based visualization. An alternating projected gradient descent algorithm
is proposed for the parameter estimation. We provide two illustrative examples, one on
users’ movie rating and the other on senate roll call voting.
Key words: Multidimensional Unfolding, Data Visualization, Distance Matrix Comple-
tion, Item Response Data, Embedding

1. Introduction

Multidimensional unfolding (MDU) methods are widely used as an important data visualiza-
tion tool in social and behavioral sciences such as psychology (Van Deun et al., 2007; Papesh
and Goldinger, 2010), political science (Poole, 2000, 2005; Clinton et al., 2004a; Bakker and
Poole, 2013), and marketing (DeSarbo and Ho↵man, 1987; DeSarbo et al., 1997; Ho et al.,
2010). It is regarded as the dominant method in the scaling of both preferential choice and
attitude (Mair et al., 2015). The basic idea of MDU is to place both respondents and items
in a joint Euclidean space based on data, with the understanding that respondents tend to
prefer items that are close to them in the space. This joint visualization may lead to better
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understanding and interpretations of both the respondents and the items, as compared with
separately visualizing the respondents and the items by themselves. MDU has its origin
in psychology (Bennett, 1956; Bennett and Hays, 1960; Hays and Bennett, 1961; Coombs,
1964). It is closely related to multidimensional scaling (MDS) methods (Kruskal, 1964;
Kruskal and Wish, 1978; Borg and Groenen, 2005) and several other recent approaches to
nonlinear dimension reduction and manifold learning (Tenenbaum et al., 2000; Lu et al.,
2005; Chen and Buja, 2009; Zhang et al., 2016).

MDU methods can be categorized into two types, algorithm-based and model-based.
Algorithm-based methods (e.g., Takane et al., 1977; Greenacre and Browne, 1986; de Leeuw
and Mair, 2009) estimate the ideal points by minimizing a certain objective function, also
known as the stress function in the literature of MDU. The classical algorithm-based meth-
ods have been implemented in the R package smacof (de Leeuw and Mair, 2009) that is
widely used for MDU and MDS analysis. Model-based methods (e.g., DeSarbo and Ho↵-
man, 1987; Hinich, 2005; Bakker and Poole, 2013), however, infer the locations of the ideal
points by making use of a probabilistic model. Such a model typically assumes that, up
to some measurement error, the similarity between a person and an item is a decreasing
function of some defined distance between the corresponding ideal points. The specification
of MDU models is closely related to item response theory models in psychometrics (see e.g.,
Embretson and Reise, 2000; Rabe-Hesketh and Skrondal, 2004; Bartholomew et al., 2011).

The MDU problem is closely related to MDS. The key di↵erence is that data for the
former do not contain direct measurement of within-set (i.e., person-person and item-item)
similarities, while data for MDS typically have such information. Largely due to the missing
information contained in the within-set similarities, the MDU problem tends to be more
challenging. As a result, degenerate solutions are often encountered in the applications of
MDU methods, in which case the visualization and the corresponding interpretations convey
no information (e.g., Busing et al., 2005; Borg and Groenen, 2005), while MDS results tend
to be more stable. These empirical observations suggest that it is of importance to study
the validity of MDU solutions, which motivates the research in this paper.

This paper studies the visualization of MDU from the statistical perspective. First, for
binary choice data, we formulate the MDU problem into a parameter estimation problem
under a general family of probabilistic MDU models, where the respondent and item ideal
points are treated as parameters to be estimated. Second, an estimator is proposed for the
ideal points and an asymptotic theory is provided for this estimator, shedding lights on the
validity of model-based visualization. Finally, an e�cient alternating projected gradient
algorithm is proposed for the computation which is scalable to large-scale problems.

We illustrate the proposed method through two applications, one on movie rating and
the other on senate roll call voting. The movie dataset is a subset from the famous Movie-
Lens dataset (Harper and Konstan, 2016). We unfold the 943 users and 338 movies in the
dataset. Specifically, we study the users’ movie watching decisions. Based on the ideal
points of movies in a two-dimensional space, it is found that one dimension of the space
corresponds to the popularity of the movies and the other dimension corresponds to the
release date of the movies. Good understanding of the user ideal points is further obtained
based on their distances to the movie ideal points. The senate voting dataset is based on
the senate roll call voting records from the 108th congress in 2003-2004. Based on the
unfolding of the senators and roll calls, it is found that most of the ideal points lie around
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a one-dimensional line, with the two extremes of the line representing the most liberal and
the most conservative political standings.

The rest of the paper is organized as follows. In Section 2, we introduce a family of
MDU models and formulate the problem of joint configuration recovery into an estimation
problem. In Section 3, we propose an estimator, for which statistical theory is established
that guarantees the consistency of configuration recovery under reasonable conditions. Sim-
ulation studies and real data examples are presented in Sections 4 and 5, respectively. We
end with discussions on future directions in Section 6. An application to cluster analysis,
proofs of the theoretical results, and numerical comparison with classical MDU methods
are provided as supplementary materials.

2. Distance-based MDU

2.1 Distance-based Unfolding Model for Binary Data

Consider N respondents making choice on J binary items (e.g., “agree/disagree”). Let Yij
be a random variable, denoting the response from respondent i to item j, taking value 0
or 1, and let yij be its realization. For example, such data can come from senate roll call
voting, where the respondents are senators and the items correspond to roll calls. Response
Yij = 1 means that senator i supports roll call j and Yij = 0 otherwise.

We provide a simulated example in Figure 1 to illustrate MDU analysis. Panel (a)
shows the heat map of an observed response matrix which consists of 20 respondents and
10 items, where 0 and 1 responses are represented by red and yellow colors, respectively.
Given choice data in panel (a), an MDU method aims at representing respondents and
items by ideal points in the same low-dimensional Euclidian space RK as in panel (b) of
Figure 1 that can be easily visualized, where the respondent-respondent, respondent-item,
and item-item relationships are captured by the between-points distance. The dimension
K of the Euclidian space is often set to be 2 or 3 for the purpose of visualization.

One way to conduct MDU is via a statistical model. An MDU model typically assumes
that each respondent/item is associated with a true ideal point in RK that is represented
by a K-dimensional parameter vector. Let ✓i = (✓i1, ..., ✓iK)> and aj = (aj1, ..., ajK)>

denote the parameter vectors of respondent i and item j, respectively. It is assumed that
response Yij is determined by the Euclidian distance between ✓i and aj in RK . Finally, we
use ⇥N = (✓ik)N⇥K and AJ = (ajk)J⇥K to denote the matrices containing all the person
and the item ideal points, respectively. Under such a statistical model, the goal of MDU
becomes to estimate the person and item parameters based on data.

In this paper, we focus on MDU models taking the form

P (Yij = 1 | ✓i,aj) = f(k✓i � ajk2), (1)

where k · k denotes the standard L2 norm and f : [0,1) ! [0, 1] is a pre-specified link
function. It is assumed that the responses Yij are conditionally independent, given the ideal
points ✓i and aj , i = 1, ..., N, j = 1, ..., J . This model falls under the general framework
of the MDU threshold model for binary choice data (see DeSarbo and Ho↵man, 1987).
According to the form of (1), the distribution of data only depends on the squared distance
between every pair of person and item ideal points, dij = k✓i � ajk2, i = 1, ..., N, j =
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Figure 1: An illustrative example. Panel (a): The heatmap of a response matrix, where
0 and 1 responses are represented by red and yellow colors, respectively. Panel (b): The
respondent and item ideal points where black circles represent respondents and red triangles
represent items.

1, ..., J . The matrix DN,J = (dij)N⇥J is known as the corresponding partial distance matrix,
where the subscripts of DN,J emphasize the dependence of this matrix on the numbers of
respondents and items.

In addition, the link function f is often assumed to be a monotone decreasing function,
so that a larger distance implies a lower probability of Yij = 1. An example of such a link
function is f(x) = 2/(1 + exp(x)). When f(x) takes this form, P (Yij = 1 | ✓i,aj) = 1 when
the distance between ✓i and aj is 0, i.e., the two points are identical, and the probability
P (Yij = 1 | ✓i,aj) decays towards 0 when the distance increases.

In what follows, we provide two remarks on this modeling framework.

Remark 1 We remark on the link function f which plays a similar role as the dissimi-
larity transformation function in the classical MDS and MDU methods (e.g., Chapter 9,
Borg and Groenen, 2005). Assuming a pre-specified f is similar to assuming an identity
transformation in classical MDU.

In classical MDS and MDU, the dissimilarity transformation function can be unknown
and estimated from data parametrically or non-parametrically. Similar treatment can be
applied to the link function f . For example, one may assume

f(k✓i � ajk2) = g(�0 + �1k✓i � ajk2),

where g : R ! [0, 1] is a given monotone decreasing function and �0 and �1 are additional
parameters to be estimated from data together with the person- and item-specific parameters.
This form is similar in spirit to the interval transformation in classical MDU. When no
constraint is imposed on the scales of ✓is and ajs, �1 needs to be fixed to be a constant (e.g.,
�1 = 1) for model identifiability. One may also estimate f non-parametrically, for example,
by using monotone splines.
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Under suitable regularity conditions, our theoretical development in Section 3 can be
extended to the case when f also needs to be estimated from data.

Remark 2 Although we focus on binary data, the introduced modeling framework can be
easily extended to other types of preference data, such as rating and ranking data. For
example, consider rating data Yij 2 {0, ..., T}, where 0, 1, ..., T are T + 1 ordered response
categories. A higher category implies a higher level of agreement between the respondent
and the item. Then one can assume the following unfolding model

P (Yij � t | ✓i,aj) = g
�
dt + k✓i � ajk2

�
, (2)

for t 2 {1, ..., T}, where g : R ! [0, 1] is a given monotone decreasing function and d1, ...,
dT are additional model parameters. It implies that the larger the distance, the smaller the
probability for Yij to take a large value. This model is closely related to the graded response
model (Samejima, 1997) in item response theory. For another example, consider ranking
data consisting of pair-wise comparisons, where each response is a comparison between two
items j and j0. Following the same idea as above, one may model the probability that item
j is preferred over j0 to take the form g(k✓i � ajk2 � k✓i � aj0k2). That is, the probability
decreases with the di↵erence of their squared distances to person i. Our theoretical results
and computational algorithm given below can be adapted to these situations.

2.2 Recovery of Configuration

Our main goal is the simultaneous recovery of the ideal points ✓i and aj , based on the
observed binary responses yij , i = 1, ..., N, j = 1, ..., J . Since the model only relies on the
Euclidian distance between the ideal points, two sets of points lead to the same model if
they have the same configuration, i.e., one set of points can be obtained by applying an
isometry mapping to the other. This is because, the distance between points is invariant
under an isometry mapping. An isometry mapping F in RK takes the form

F (x) = Ox+ b, 8x 2 RK ,

where O is a K ⇥ K orthogonal matrix and b is a vector in RK (see, e.g., Olver, 1999).
We further denote AK as the set of all isometry mappings on RK . Without additional
information, the best possible result one can expect is recovering the ideal points up to an
isometry mapping. We refer to this problem as the recovery of ideal point configuration.

It is worth noting that regularity conditions are needed to ensure the recovery of the
configuration. That is, it is possible that there exist multiple sets of ideal points with
di↵erent configurations that lead to the same distribution of Yijs. In other words, the
configuration of {✓1, ...,✓N ,a1, ...,aJ} may not be unique only given the partial distance
matrix. This is known as the situation of degeneration, in which case the visualization does
not convey information or can even be misleading. A simple example is given in Figure 2,
where the two di↵erent configurations in the two panels have the same partial distance
matrix.

Following the above discussion, the validity of unfolding-model-based visualization relies
on the accuracy of configuration recovery, a problem to be discussed. Specifically, we
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(a) (b)

Figure 2: An example of degenerate situation: The triangles represent item points and
circles represent person points. The two configurations in R2 share the same partial distance
matrix, where d11 = 12, d12 = 32, d21 = 22, d22 = 22, d31 = 32, and d32 = 12.

consider the following loss function for configuration recovery,

min
F2AK

P
N

i=1
k✓⇤

i � F (✓̂i)k2
N

+

P
J

j=1
ka⇤

j
� F (âj)k2

J
, (3)

where ✓⇤
i and a⇤

j
denote the true ideal points and ✓̂i and âj denote the estimates from data

(yij)N⇥J . Note that (3) quantifies the accuracy of configuration recovery in an average
sense, where isometry indeterminacy is bypassed by the minimization in (3) with respect to
all isometry mappings in AK . We call (3) the average loss for the recovery of ideal point
configuration. Error bounds will be established for (3) under reasonable conditions, which
ensures the accurate recovery of the loss function when both N and J are large.

2.3 Connection with Other Scaling Methods

MDU is closely related to MDS, a class of methods for visualizing the similarity pattern
between data points (Borg and Groenen, 2005). More precisely, MDS maps a set of variables
onto a low dimensional space, based on data measuring the similarity between variables.
As pointed out in Chapter 14, Borg and Groenen (2005), MDU can be viewed as a special
case of MDS, where the set of variables in MDS composes of both the respondents and
items and the item response data (yij)N⇥J are regarded as measures of similarity between
the respondents and the items, while the similarities within the two sets (i.e., respondents
and items) are structurally missing; see Figure 3 for an illustration that is a reproduction
of Figure 14.1 of Borg and Groenen (2005).

Little statistical theory has been developed for the recovery of configuration based on
MDS models. The most relevant work is Zhang et al. (2016), in which an error bound
is developed for the recovery of the complete distance matrix, under a linear MDS model
without structurally missing data. However, little discussion is provided on the recovery of
ideal point configuration, under an MDU setting.

The recovery of configuration is relatively easier under the setting of MDS with no
structurally missing data. This is because, the complete data matrix of similarities will
provide su�cient information on the complete distance matrix. The accurate recovery of
the complete distance matrix further implies the accurate recovery of configuration under
weak conditions, due to the one-to-one relationship between the complete distance matrix
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Figure 3: In MDU, the diagonal blocks are missing. All we observe are the o↵-diagonal
blocks.

and the ideal point configuration as described in Proposition 3. Under the MDU setting,
the recovery of configuration requires additional regularity conditions, due to the lack of
direct measurement of within-set distances.

Proposition 3 For {x1, ...,xn} ⇢ RK , {y1, ...,yn} ⇢ RK , if kxi � xjk = kyi � yjk for
all i and j, then there exists an isometry mapping F 2 AK such that F (xi) = yi for all
i = 1, ..., n.

MDU is also related to other scaling methods for binary data such as item response the-
ory (IRT; Embretson and Reise, 2000; Reckase, 2009) and multiple correspondence analysis
(Gifi, 1990; Le Roux and Rouanet, 2010). Specifically, probabilistic models are available
from IRT for multivariate binary data. An IRT model also represents respondents and items
by low-dimensional parameter vectors, say ✓i and aj . It also assumes that the probability of
Yij = 1 is a function of ✓i and aj . In this sense, the model introduced above can be viewed
as a special IRT model, in which the probability of Yij = 1 is assumed to be a monotone
decreasing function of k✓i � ajk. However, the classical IRT models (see e.g., Embretson
and Reise, 2000; Reckase, 2009) are not specified in this way. Consequently, it does not
make sense to visualize the person and item parameter vectors jointly.

Multiple correspondence analysis is an algorithm-based approach that can be applied
to binary data and produce low-dimensional scores for both respondents and items. These
score vectors can be plotted jointly in the same space. However, as a common issue with
algorithm-based approaches, the meaning of the distance between the score vectors is not
clear and the uncertainty associated with the visualization is hard to quantify.

3. Theoretical Results

3.1 Configuration Recovery based on Perturbed Partial Distances

We first study the recovery of configuration from a perturbed partial distance matrix, when
both N and J grow to infinity. Let ✓⇤

i , i = 1, ..., N , and a⇤
j
, j = 1, ..., J be the true person

and item ideal points in RK , respectively, and let D⇤
N,J

be the corresponding partial distance
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matrix. In addition, let ✓̃i 2 RK+ and ãj 2 RK+ correspond to a perturbed version of the
true configuration, satisfying

kD̃N,J �D⇤
N,Jk2F = o(NJ) (4)

and K+ � K, where D̃N,J denotes the partial distance matrix given by the perturbed
configuration and k · kF denotes the matrix Frobenius norm. One can think of K+ as the
latent dimension of the MDU model being applied to data, and ✓̃i and ãj as some estimates
of the person and item ideal points. For the time being, we treat K+, ✓̃i, and ãj as given.

Based on the definition of matrix Frobenius norm, the left side of (4) has NJ terms,
each of which is a squared distance between a true person-item distance and its perturbed
value. Equation (4) implies that the perturbed partial distance matrix converges to the
true one in an average sense, when both N and J grow to infinity.

We denote ✓+

i
= ((✓⇤

i )
>,0>)> and a+

j
= ((a⇤

j
)>,0>)> in RK+ as the embedding of the

true ideal points in RK+ , where 0 denotes a zero vector. In what follows, we show that

min
F2AK+

P
N

i=1
k✓+

i
� F (✓̃i)k2

N
+

P
J

j=1
ka+

j
� F (ãj)k2

J
! 0

as N and J grow to infinity, under reasonable conditions on the true ideal points.
Throughout this paper, we assume that ideal points are constrained in a compact set in

RK .

A0. There exists a constant M such that k✓⇤
i k  M and ka⇤

j
k  M for all i and j.

To impose regularity conditions on the true configuration of the N + J ideal points, which
can vary with N and J , we introduce the notion of anchor points, two finite sets of points
in RK satisfying certain regularities that are independent of N and J .

Definition 4 Two sets of points, {b⇤
1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
} ⇢ BK

0 (M), are called a collec-

tion of anchor points of RK , if they satisfy conditions A1 and A2 below, where BK

0 (M)
denotes a closed ball in RK centered at 0 with radius M .

Let D⇤ = (kb⇤
i
� c⇤

j
k2)k1⇥k2 be the partial distance matrix based on the anchor points,

whose entries are assumed to be all positive (i.e., there is no identical points).

A1. There exists ⌘ > 0 such that for any partial distance matrix D 2 Rk1⇥k2 satisfying
kD �D⇤kF < ⌘, D has a unique configuration.

A2. Both {b⇤
1
, ...,b⇤

k1
} and {c⇤

1
, ..., c⇤

k2
} can a�ne span RK .

Remark 5 According to Definition 4, we still get a collection of anchor points when slightly
perturbing the points in a given anchor point collection in RK .

According to condition A1, the anchor points are well-behaved points whose config-
uration can be uniquely determined by the partial distance matrix, even after a small
perturbation. In addition, thanks to A2, the anchor points will help to anchor the rest of
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the points in RK , i.e., determining the configuration of a larger set of respondent and item
ideal points.

Following the above concept of anchor points, it is intuitive that if there exist anchor
points {b⇤

1
, ...,b⇤

k1
} and {c⇤

1
, ..., c⇤

k2
}, satisfying that each b⇤

i
is surrounded by su�ciently

many respondent ideal points and each c⇤
j
is surrounded by su�ciently many item ideal

points; that is, there exist a su�cient number of anchor points. Then it is relatively easy
to recover the configuration of the ideal points from a perturbed partial distance matrix.
This intuition is formalized by condition A3 below.

A3. There exists a collection of anchor points {b⇤
1
, ...,b⇤

k1
} and {c⇤

1
, ..., c⇤

k2
} ⇢ BK

0 (M) ⇢
RK and 0 < ✏ < M/10 such that the closed balls with b⇤

1
, ...,b⇤

k1
and c⇤

1
, ..., c⇤

k2
as

centers and radius ✏, denoted by Bb⇤
1
(✏), ..., Bb⇤

k1
(✏) and Bc⇤1

(✏), ..., Bc⇤k2
(✏), do not

overlap. The following two conditions are required to hold.

(1) For any b1 2 Bb⇤
1
(✏), ...,bk1 2 Bb⇤

k1
(✏) and c1 2 Bc⇤1

(✏), ..., ck2 2 Bc⇤k2
(✏),

{b1, ...,bk1} and {c1, ..., ck2} are also a collection of anchor points.

(2) When N and J grow to infinity,

pi = lim inf
N!1

P
N

l=1
1{k✓⇤

l �b⇤
i k<✏}

N
> 0, i = 1, ..., k1,

qj = lim inf
J!1

P
J

l=1
1{ka⇤

l �c⇤jk<✏}

J
> 0, j = 1, ..., k2.

Theorem 6 Suppose that A0 and A3 are satisfied for the true ideal points ✓⇤
i and a⇤

j
, i =

1, ..., N, j = 1, ..., J . Let ✓̃i, ãj 2 BK+
0 (M) correspond to a perturbed version of the true

configuration, for some K+ � K. Further let D̃N,J be the corresponding partial distance
matrix. Suppose that kD̃N,J �D⇤

N,J
k2
F
= o(NJ), when N and J grow to infinity. Then

lim sup
N,J!1

 
min
F2AK

P
N

i=1
k✓+

i
� F (✓̃i)k2

N
+

P
J

j=1
ka+

j
� F (ãj)k2

J

!
 C✏2. (5)

where C is a constant that does not depend on N and J. If there exists a fixed collection of
anchor points, for which A3 is satisfied for any su�ciently small ✏ > 0, then we have

lim sup
N,J!1

 
min
F2AK

P
N

i=1
k✓+

i
� F (✓̃i)k2

N
+

P
J

j=1
ka+

j
� F (ãj)k2

J

!
= 0. (6)

Remark 7 Theorem 6 shows that the configuration can be recovered asymptotically when
both N and J grow to infinity and suitable conditions hold. The conditions required by
Theorem 6 are quite mild. It first requires all the true and perturbed ideal points to be
located in a compact set. Second, as will be shown in Proposition 8 below, condition A3
is satisfied with high probability when the true person and item points are i.i.d. samples
from two distributions satisfying mild conditions, respectively. Finally, it requires that the
perturbation of the partial distance matrix is not too large, i.e., kD̃N,J �D⇤

N,J
k2
F
= o(NJ).

As will be shown in Proposition 11, this condition holds with high probability when D̃N,J is
given by a likelihood-based estimator.
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Proposition 8 Suppose that ✓⇤
1, ...,✓

⇤
N

and a⇤
1
, ...,a⇤

J
are independent and identically dis-

tributed samples from distributions P1 and P2, where P1 and P2 have positive and continuous
density functions within a ball G ⇢ BK

0 (M). Then A3 holds almost surely for any su�ciently
small ✏ > 0.

Remark 9 We remark that constant C is determined and only determined by the config-
uration of the anchor points in A3, according to our proof in the supplementary material.
Roughly, the more regular the set of anchor points is (in terms of a�ne spanning RK), the
smaller the value of C.

Remark 10 As discussed in Section 2.2, we can only recover the ideal points up to an
isometry mapping. This isometry mapping may be fixed if one is willing to make further
assumptions such as non-negativity (Donoho and Stodden, 2004; Hoyer, 2004) and sparsity
(Chen et al., 2020). In that case, one may further interpret each coordinate of the latent
space. We leave this problem for future investigation.

3.2 Likelihood-based Estimation

In what follows, we propose a constrained maximum likelihood estimator and show its
properties. Given the assumptions of the MDU model, our likelihood function takes the
form

L(✓1, ...,✓N ,a1, ...,aJ) =
NY

i=1

JY

j=1

f(k✓i � ajk2)yij (1� f(k✓i � ajk2)1�yij .

Based on this likelihood function, we consider the following estimator

(✓̂1, ..., ✓̂N , â1, ..., âJ) = argmin
✓1,...,✓N ,a1,...,aJ2RK+

� logL(✓1, ...,✓N ,a1, ...,aJ)

s.t. k✓ik  M, kajk  M, i = 1, ..., N, j = 1, ..., J.
(7)

where K+ and M are pre-specified. We denote D̂N,J as the partial distance matrix based

on ✓̂is and âjs from (7).
We impose the following regularity condition on the link function f , which requires f

to be neither too steep nor too flat in the feasible domain. Similar conditions are assumed
in Davenport et al. (2014) for solving a 1-bit matrix completion problem.

A4. The link function f : R ! (0, 1) is a smooth and monotone decreasing function,
satisfying L4M2 < 1 and �4M2 < 1, where

L↵ = sup
|x|↵

|f 0(x)|
f(x)(1� f(x))

, and �↵ = sup
|x|↵

f(x)(1� f(x))

|f 0(x)|2 .

Proposition 11 Suppose that A0 and A4 are satisfied and K+ � K. Then there exist C1

and C2 independent of N and J , such that

1

NJ
kD̂N,J �D⇤

N,Jk2F  C1M
2L4M2�4M2

r
N + J

NJ

r
1 +

log(NJ)

N + J
,

with probability at least 1� C2/(N + J).

10
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Proposition 11 implies that kD̂N,J �D⇤
N,J

k2
F
= op(NJ), which, combined with Theorem

6, leads to Theorem 12 below.

Theorem 12 Suppose that A0, A3 and A4 are satisfied and K+ � K. Then

lim
N,J!1

P

 
min

F2AK+

P
N

i=1
k✓+

i
� F (✓̂i)k2

N
+

P
J

j=1
ka+

j
� F (âj)k2

J
 C✏2

!
= 1, (8)

where ✓̂i and âj, i = 1, ..., N , and j = 1, ..., J , are given by (7), ✏ is from condition A3, and
C is a constant independent of ✏, N , and J .

Remark 13 We remark that if A3 holds for any su�ciently small ✏, then (8) implies that
the loss

min
F2AK+

P
N

i=1
k✓+

i
� F (✓̂i)k2

N
+

P
J

j=1
ka+

j
� F (âj)k2

J

converges to zero in probability. Further note that according to Proposition 8, A3 holds with
high probability for any su�ciently small ✏, under a random design for the true ideal points.
Therefore, the loss can be shown to converge to zero in probability, under this random design.
This result is summarized in Theorem 14 below.

Theorem 14 Suppose that A0 and A4 are satisfied and K+ � K. Further suppose that
✓⇤
1, ...,✓

⇤
N

and a⇤
1
, ...,a⇤

J
are independent and identically distributed samples from distribu-

tions P1 and P2, respectively, where P1 and P2 have positive and continuous density func-
tions within a ball G ⇢ BK

0 (M). Then for ✓̂i and âj, i = 1, ..., N , and j = 1, ..., J , given by
(7), the loss function

min
F2AK+

P
N

i=1
k✓+

i
� F (✓̂i)k2

N
+

P
J

j=1
ka+

j
� F (âj)k2

J

goes to 0 in probability as N and J grow to infinity.

Remark 15 We remark that the probability measures in Theorems 12 and 14 are slightly
di↵erent. The probability in Theorem 12 is based on the conditional distribution of Yijs
given ✓⇤

i and a⇤
j
, while that for Theorem 14 is based on the joint distribution of Yij, ✓

⇤
i and

a⇤
j
, i = 1, ..., N, j = 1, ..., J .

Remark 16 A stress function is a squared error loss function that plays an important role
in the classical MDS/MDU algorithms. It serves not only as the objective function in the
search for the MDS/MDU solution, but also as the basis for assessing the goodness-of-fit of
the solution (Mair et al., 2016). In the proposed framework, the negative joint log-likelihood
function plays a similar role as the stress function. It replaces the squared loss in the stress
function by a loss function based on the Kullback-Leibler divergence. Similar goodness-of-fit
measures in classical MDU can be developed under the proposed framework, based on the
negative joint log-likelihood.

11
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Remark 17 We remark on the choice of latent dimension. Theorems 12 and 14 suggest
that as long as we choose K+ to be no less than the true dimension K, then the unfolding
result is asymptotically valid. When there is no such prior knowledge about an upper bound
of K, one can estimate the latent dimension K using data. Several methods from factor
analysis and network data analysis may be adapted to the current problem, such as trace-
norm regularization (Bach, 2008), cross-validation (Chen and Lei, 2018; Li et al., 2020),
and information criteria (Bai and Ng, 2002). We believe that consistency results on the
selection of K can be established.

Remark 18 We point out that the result of Proposition 11 can be easily extended to other
MDU models, such as models with additional parameters in the link function and models
for rating and ranking data. Then, by making use of Theorem 6, the results of Theorems 12
and 14 can also be extended to these models.

We propose an alternating minimization algorithm for solving (7). To handle the con-
straints in (7), a projected gradient descent update is used in each iteration. For x 2 RK+ ,
we define the following projection operator:

ProcM (x) = argmin
kykM

ky � xk =

(
x if kxk  M,

Mx/kxk if kxk > M.

Algorithm 1 (Alternating minimization algorithm)

Input: Data (yij)N⇥J , pre-specified dimension K+, constraint M , iteration number

m = 1, and the initial values ✓(0)

1
, ...,✓(0)

N
and a(0)

1
, ...,a(0)

J
in RK+.

Alternating minimization: at the mth iteration, perform

(a) For each respondent i, update

✓(m)

i
= ProcM

⇣
✓(m�1)

i
+ %s(m�1)

i
(✓(m�1)

i
)
⌘
,

where

s(m�1)

i
(✓)

=
@

@✓

0

@
JX

j=1

yij log f(k✓ � a(m�1)

j
k2) + (1� yij) log

�
1� f(k✓ � a(m�1)

j
k2)

�
1

A .

The step size % > 0 is chosen by line search.

(b) For each item j, update

a(m)

j
= ProcM

⇣
a(m�1)

j
+ %s̃(m�1)

j
(a(m�1)

j
)
⌘
,

where

s̃(m�1)

j
(a)

=
@

@a

 
NX

i=1

yij log f(k✓(m)

i
� ak2) + (1� yij) log

�
1� f(k✓(m)

i
� ak2)

�
!
.

The step size % > 0 is chosen by line search.

12
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Iteratively perform steps (a) and (b) until convergence. Let m⇤ be the last itera-
tion number upon convergence.

Output: ✓̂1 = ✓(m
⇤
)

1
, ..., ✓̂N = ✓(m

⇤
)

N
and â1 = a(m

⇤
)

1
, ..., âJ = a(m

⇤
)

J
.

Remark 19 Since (7) is not a convex optimization problem, there is no guarantee that Al-
gorithm 1 finds the global optimal solution. However, we point out that the previous theoret-
ical results hold even when {✓̂1, ..., ✓̂N , â1, ..., âJ} is not a global optimal point. Specifically,
Proposition 11 and Theorems 12 and 14 hold for any {✓̂1, ..., ✓̂N , â1, ..., âJ} satisfying the
constraints in (7) and

L(✓̂1, ..., ✓̂N , â1, ..., âJ) � L(✓⇤
1, ...,✓

⇤
N ,a⇤1, ...,a

⇤
J). (9)

According to our simulation study, estimates given by Algorithm 1 are likely to satisfy (9).

3.3 Analyzing Missing Data

We further discuss the configuration recovery problem when data have many missing values,
which is commonly encountered in practice. Denote matrix ⌦ = (!ij)N⇥J , where !ij = 1
indicates that response yij is observed and !ij = 0 indicates yij is missing. We consider
the simple case of uniformly missing, as described in condition A5. We point out that
this assumption can be relaxed to analyzing data that have non-uniformly missing entries,
following the developments in Cai and Zhou (2013) for solving a 1-bit matrix completion
problem.

A5. Entries of ⌦, !ij , are independent and identically distributed Bernoulli random vari-
ables with

P (!ij = 1) =
n

NJ
.

Under this condition, there are on average n entries of the data matrix (yij)N⇥J that
are observable. Thanks to the ignorable missingness, given ⌦ and the observed data, the
likelihood becomes

L⌦(✓1, ...,✓N ,a1, ...,aJ) =
Y

!ij=1

f(k✓i � ajk2)yij (1� f(k✓i � ajk2)1�yij .

We still consider a constrained maximum likelihood estimator

(✓̂
⌦

1 , ..., ✓̂
⌦

N , â⌦1 , ..., â
⌦

J ) = argmin
✓1,...,✓N ,a1,...,aJ2RK+

� logL⌦(✓1, ...,✓N ,a1, ...,aJ)

s.t. k✓ik  M, kajk  M, i = 1, ..., N, j = 1, ..., J.

(10)

Let D̂⌦

N,J
denote the partial distance matrix for ✓̂

⌦

1 , ..., ✓̂
⌦

N , â⌦1 , ..., â
⌦

J . Proposition 20 presents
a missing-data version of Proposition 11. It implies that we can still recover the partial dis-
tance matrix if n is large enough.

13
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Proposition 20 Suppose that A0, A4 and A5 are satisfied and K+ � K. Then there exist
C1 and C2 independent of N and J , such that

1

NJ
kD̂⌦

N,J �D⇤
N,Jk2F  C1M

2L4M2�4M2

r
N + J

n

s

1 +
NJ log(NJ)

n(N + J)
(11)

with probability at least 1� C2/(N + J).

Remark 21 If n > (N + J) log(NJ), then the right side of (11) goes to 0 as N and J
grow to infinity, which means kD̂⌦

N,J
�D⇤

N,J
k2
F
= op(NJ). Following the discussion in Sec-

tion 3, {✓̂⌦

1 , ..., ✓̂
⌦

N , â⌦1 , ..., â
⌦

J } provides a consistent estimate of the ideal point configuration.
This consistency result is summarized in Proposition 22, which is a missing-data version of
Theorem 14 under the random design.

Proposition 22 Suppose that A0, A4 and A5 are satisfied, and K+ � K, and n >
(N + J) log(NJ). Further suppose that ✓⇤

1, ...,✓
⇤
N

and a⇤
1
, ...,a⇤

J
are independent and iden-

tically distributed samples from distributions P1 and P2, where P1 and P2 have positive and
continuous density functions within a ball G ⇢ BK

0 (M). Then the loss function

min
F2AK+

P
N

i=1
k✓+

i
� F (✓̂

⌦

i )k2

N
+

P
J

j=1
ka+

j
� F (â⌦j )k2

J

goes to 0 in probability as N and J grow to infinity.

4. Simulation Studies

In what follows, simulation studies are conducted to verify our theoretical results. Specif-
ically, we consider a random design where the true ideal points are generated from distri-
butions. All the analyses in this section, as well as those in Section 5, are based on our
implementation of Algorithm 1 in statistical software R1.

4.1 Study I

Setting. We first consider a setting where K+ is chosen to be exactly K. We consider
MDU in a two-dimensional latent space, i.e., K = K+ = 2. Diverging sequences of J and
N are considered, by letting J = 200, 400, ..., 1000 and N = 20J . For given N and J , 100
independent datasets are generated. For each dataset, we first sample ✓⇤

i s and a⇤
j
s uniformly

from B2

0(1), a ball in R2 with center 0 and radius 1. Then given the ideal points, response
data Yij are generated under the link function f(x) = 2/(1+ exp(x+0.1)). It can be easily
verified that condition A4 is satisfied for this link function.

For each dataset, we obtain an estimate of the ideal points, by applying Algorithm 1
ten times with random starting points and then choosing the result that gives the largest
likelihood function value. The use of multiple starting points substantially reduces the risk
of the algorithm converging to bad local minima. In the application of Algorithm 1, the
constraint M is set to 1.5.

1. An R package has been developed and can be downloaded from https://github.com/hrzhang16/mmdu.
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J = 200 J = 400 J = 600 J = 800 J = 1000

25% 0.0630 0.0323 0.0218 0.0164 0.0131

median 0.0647 0.0328 0.0222 0.0167 0.0134

75% 0.0666 0.0336 0.0227 0.0170 0.0135

Table 1: Simulation Study I: The average squared Frobenius loss of partial distance when
J increases from 200 to 1000. For each J , the table shows the 25%, 50% and 75% quantiles
of the loss based on 100 independent experiments.

J = 200 J = 400 J = 600 J = 800 J = 1000

25% 0.0158 0.0079 0.0053 0.0040 0.0032

median 0.0160 0.0080 0.0053 0.0040 0.0032

75% 0.0162 0.0080 0.0054 0.0040 0.0032

Table 2: Simulation Study I: The average loss for configuration recovery when J increases
from 200 to 1000. For each J , the table shows the 25%, 50% and 75% quantiles of the loss
based on 100 independent experiments.

Results. We first check the obtained likelihood function values for the 100 datasets. As
we point out in Remark 19, Proposition 11 and Theorems 12 and 14 still hold as long as the
estimate satisfies (9), even if the global solution to the optimization (7) is not obtained. It
is found that by using ten random starting points, the likelihood function at the estimated
parameters is always larger than that at the true parameters for all the 100 datasets.

We then present the average squared Frobenius loss for the recovery of the partial
distance matrix, kD̂N,J �D⇤

N,J
k2
F
/(NJ). These results are given in Table 1 which presents

the 25%, 50%, and 75% quantiles of the loss based on the 100 datasets. From this table,
we see that the loss tends to decrease as the sample size increases, supporting the result of
Proposition 11.

Table 2 presents the results on loss (3) for configuration recovery, where the best isom-
etry mapping F in (3) is obtained by solving an optimization problem given the true and
estimated ideal points. Similar to the results on partial distance matrix recovery, the loss (3)
also decreases towards 0 as J grows large, which is consistent with the result of Theorem 14.

Finally, the computation time on a standard desktop machine2 for solving (7) is shown
in Table 3. It is worth pointing out that since the update of person and item parameters
in each iteration of Algorithm 1 can be run in parallel, the computation can be further
speeded up substantially by parallel computing.

4.2 Study II

Setting. We now consider a setting where K+ > K. We take the same setting as in Study
I, except that we set K+ = 3 when fitting the MDU model. The same as Study I, for each

2. All the computation is conducted on a single IntelrGold 6130 core.
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J = 200 J = 400 J = 600 J = 800 J = 1000

25% 98.2 109.6 144.1 191.5 254.6

median 113.8 120.1 156.0 201.5 272.6

75% 128.9 138.0 176.9 213.9 286.7

Table 3: Simulation Study I: The computation time of optimization (7) when J increases
from 200 to 1000. For each J , 25%, 50% and 75% quantiles of the computation time from
100 independent experiments are shown.

J = 200 J = 400 J = 600 J = 800 J = 1000

25% 0.0734 0.0384 0.0261 0.0198 0.0159

median 0.0758 0.0390 0.0265 0.0200 0.0161

75% 0.0780 0.0398 0.0269 0.0204 0.0163

Table 4: Simulation Study II: The average squared Frobenius loss of partial distance when
J increases from 200 to 1000. For each J , the table shows the 25%, 50% and 75% quantiles
of the loss based on 100 independent experiments.

pair of N and J , 100 independent datasets are generated. For each dataset, Algorithm 1 is
applied similarly, using 10 random starting points and constraint parameter M = 1.5.

Results. The results are given in Tables 4 through 6. Similar to Tables 1–3, these three
tables also show the results on partial distance matrix recovery, configuration recovery, and
computation time, respectively. Comparing with the results of Study I, we see that both
losses for the recovery of partial distance matrix and configuration tend to be larger. This
is due to the overfitting brought by adding unnecessary parameters in the model. The
computation time also increases compared with that of Study I.

5. Real Examples

5.1 Example I: Movie Data

Background. We apply MDU to a movie rating dataset from the famous MovieLens
project (see e.g., Harper and Konstan, 2016). The dataset analyzed in this paper is a subset

J = 200 J = 400 J = 600 J = 800 J = 1000

25% 0.0853 0.0568 0.0452 0.0386 0.0343

median 0.0862 0.0573 0.0455 0.0390 0.0345

75% 0.0877 0.0580 0.0459 0.0392 0.0346

Table 5: Simulation Study II: The average loss for configuration recovery when J increases
from 200 to 1000. For each J , the table shows the 25%, 50% and 75% quantiles of the loss
based on 100 independent experiments.
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J = 200 J = 400 J = 600 J = 800 J = 1000

25% 106.3 264.0 639.3 1294.0 2302.5

median 110.0 286.5 698.8 1407.7 2480.8

75% 112.9 308.9 793.8 1551.0 2841.1

Table 6: Simulation Study II: The computation time of optimization (7) when J increases
from 200 to 1000. For each J , 25%, 50% and 75% quantiles of the computation time from
100 independent experiments are shown.

of a benchmark MovieLens dataset collected during a seven-month period from September,
1997 through April, 19983. This subset contains 943 users and 338 movies, obtained by
selecting movies that have been rated by at least 100 users. Unlike many analyses of
MovieLens data that focus on the rating scores, we consider to unfold the rating behavior
itself (i.e., rated/not rated) which may also reveal the users’ preference patterns. More
precisely, we let Yij = 1 if movie j has been rated by user i and Yij = 0 otherwise.

Analysis. For visualization purpose, we unfold the data onto a two-dimensional space.
To apply the MDU model introduced in this paper, we need to specify the link function f .
We assume f to take the logistic form f(x) = 2/(1 + exp(x+ �)), where � is a pre-specified
small positive constant. For any � > 0, it is easy to check that the regularity condition
A4 is satisfied. The results presented below are based on the choice � = 0.1, but we point
out that other choices of � (� = 0.05, 0.15, 0.2) have also been tried which all lead to very
similar results. The constraint constant M is set to 3.5 when applying Algorithm 1. After
obtaining the estimate, we transform the estimated ideal points by an isometry mapping, so
that the x-axis corresponds to the dimension along which the estimated movie ideal points
have the highest variance. As will be described in the sequel, under this isometry mapping
of the estimated ideal points, both the x- and y-axes receive good interpretations.

Results. The results from the MDU analysis are presented in Figures 4 through 6. Fig-
ure 4 jointly visualizes the estimated movie and user points. As we can see, the movies and
the users tend to form two giant clusters that only slightly overlap.

We investigate the movie points. First, the y-axis of the space largely indicates, if not
perfectly, the popularity of the movies. The movies with a smaller âj2 value tends to be
rated more frequently. Roughly speaking, the shorter the average distance from a movie to
the user points, the more often the movie is rated. In fact, the Kendall’s tau rank correlation
between âj2s and the numbers of ratings received by the movies is �0.66. This phenomenon
is further reflected by panel (a) of Figure 5, where movies are stratified by the numbers of
ratings they received into four categories. These four categories tend to be ordered along
the y-axis. We list four movies as examples, as indicated in panel (a) of Figure 5. From the
top to the bottom, they are Batman Forever (1995), Golden Eye (1995), Get Shorty (1995)
and The Godfather (1972), respectively. Based on our interpretation of the y-axis, these
four movies are ordered from the least popular to the most popular.

3. The dataset can be downloaded from https://grouplens.org/datasets/movielens/100k/
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Figure 4: Analysis of movie rating data: Simultaneous visualization of the estimated movie
and user points.

Second, the x-axis of the space seems to indicate the release time of the movies. The
Kendall’s tau correlation between âj1s and the release dates of the movies is -0.70. As shown
in panel (b) of Figure 5, where the movies are stratified into three categories, namely “before
1995”, “1995-1996”, and “1997-1998”. According to this figure, the clustering patten of the
movies can be largely explained by the three categories based on the movie release dates.
From the right to the left of the space, the points correspond to movies from the relatively
older ones to the relatively more recent ones. For example, the three movies indicated in
panel (b) of Figure 5 are, from right to left, Citizen Kane (1941), Twelve Monkeys (1995)
and The Devil’s Own (1997), respectively.

The interpretation of the latent space based on movies facilitates the interpretation of
the user points. First, the y-axis corresponds to the users’ activeness. Roughly speaking,
the shorter the average distance from a user point to the movies points, the more active the
user is. The Kendall’s tau rank correlation between ✓̂i2s and the numbers of ratings given
by the users is 0.73. This is further shown via Figure 6, where users are classified into four
equal-size groups depending on the number of movies they rated. These groups of users,
from the most active one to the least active one, lie from the top to the bottom. Second,
based on the alignment of movies along the x-axis, the user points from right to left may
be interpreted as the ones who tend to more frequently rate relatively older movies to the
ones who tend to more frequently rate relatively more recent ones.

5.2 Example II: Senate Roll Call Voting Data

Background. We now analyze a senate roll call voting dataset from the 108th congress.
This dataset contains the voting records from 100 senators to 675 roll calls in years 2003
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Figure 5: Analysis of movie rating data. Panel (a): Visualization of movie points, with
movies stratified into four equal-size categories based on the numbers of rating. Movies
with numbers of rating less than 127, 128-169, 170-229 and more than 230 are indicated
by black, red, green and blue points, respectively. Yellow points represent example movies.
Panel (b): Visualization of movie points, with movies stratified into three categories based
on their release time. Movies released in 1997-1998, 1995-1996, and before 1995 are indicated
by green, red and black points, respectively. Purple points represent example movies.
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Figure 6: Analysis of movie rating data: Visualization of user points, with users classified
into four equal-size categories based on the numbers of rating. Users who rated less than
24, , 25-47, 48-103 and more than 104 movies are indicated by black, red, green and blue
points, respectively.

and 20044. Among the 100 senators, there are 48 from the Democratic party, 51 from the
Republican party, and one independent politician. For each roll call j, the vote of senator
i is recorded in three ways, “Yea”, “Nay” and “Not Voting”, treated as Yij = 1, 0, and
missing, respectively.

Analysis. Similar analysis as the previous one is conducted. Specifically, we unfold the
data into a two-dimensional space. The same link function f and constraint constant M
are adopted as in the analysis of movie data. After getting the estimate, we transform
the estimated ideal points by an isometry mapping, so that the x-axis corresponds to the
dimension along which the estimated senate ideal points have the highest variance.

Results. The results are presented in Figures 7 through 9. In Figure 7, the ideal points
of both roll calls and senators are visualized simultaneously. As we can see, most of the
roll calls and all the senators tend to lie around a one-dimensional line. This visualization
is still valid, in the sense that even when the true latent dimension is one, according to
Theorem 14, unfolding the data in a two-dimensional space is still consistent.

This phenomenon of degeneration is quite consistent with the overall unidimensional
patten in the congress voting data throughout the history. It has been well recognized in
the political science literature (Poole et al., 1991; Poole and Rosenthal, 1991) that senate
voting behavior is essentially unidimensional, though slightly di↵erent latent space models
are used in that literature. For example, Poole et al. (1991) concluded that “to the extent

4. The dataset can be downloaded from https://legacy.voteview.com/dwnl.htm.
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Figure 7: Analysis of senator roll call data: Simultaneous visualization of the estimated
senator and roll call ideal points.

that congressional voting can be described by a spatial model, a unidimensional model is
largely (albeit not entirely) su�cient.”

We first interpret the senators. In Figure 8, all the senator points are visualized with
their party membership indicated by di↵erent point types. In Table 7, we rank the senators
based on their value of ✓̂i1, which is presented along the x-axis. According to this table, the
Democrats tend to lie on the left and the Republicans tend to be on the right. In fact, this
ranking is largely consistent with National Journal ’s liberalness ranking of the senators in
2003. National Journal ’s ranking result, which is replicated in Clinton et al. (2004b), is
obtained by unfolding the senators’ votes on 62 key roll calls using a model given in Clinton
et al. (2004a). The Kendall’s tau rank correlation between the result in Table 7 and that
given by the National Journal is 0.79. In fact, Senator John Kerry is ranked the most
liberal by both our model and by National Journal and Senator Craig L. Thomas, who is
the most conservative senator according to the ranking of National Journal, is the third
most conservative senator given by our model.

From Figure 8 and Table 7, it is also worth noting that there is a Democrat whose
estimated ideal point is mixed together with those of the Republicans. This senator is Zell
Miller from the state of Georgia. He is a conservative Democrat and in fact, he supported
Republican President George W. Bush against the Democratic nominee John Kerry in the
presidential election in 2004.

In this congress, there is an independent senator, Jim Je↵ords from the state of Vermont,
who does not belong to either of the two major parties. As we can see from both Figure 8 and
Table 7, his ideal point lies on the left, mixed with many ideal points of the Democrats. This
is also consistent with Senator Jim Je↵ords’ political standing. In fact, he left Republican
party to become an independent and began caucusing with the Democrats since 2001.
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Name State Name State Name State

1 Kerry D-MA 35 Johnson D-SD 69 Grassley R-IO

2 Sarbanes D-MD 36 Lieberman D-CT 70 Bond R-MO

3 Reed D-RH 37 Bingaman D-NM 71 Roberts R-KA

4 Harkin D-IO 38 Nelson D-FL 72 Gregg R-NH

5 Graham D-FL 39 Dorgan D-ND 73 Allen R-VI

6 Lautenberg D-NJ 40 Conrad D-ND 74 Domenici R-NM

7 Edwards D-NC 41 Carper D-DE 75 Bennett R-UT

8 Kennedy D-MA 42 Pryor D-AR 76 Dole R-NC

9 Durbin D-IL 43 Bayh D-IN 77 Frist R-TN

10 Levin D-MI 44 Lincoln D-AR 78 Brownback R-KA

11 Akaka D-HA 45 Landrieu D-LO 79 Hatch R-UT

12 Byrd D-WE 46 Baucus D-MT 80 Cochran R-MS

13 Boxer D-CA 47 Breaux D-LO 81 Graham R-SC

14 Corzine D-NJ 48 Nelson D-NE 82 Alexander R-TN

15 Clinton D-NY 49 Chafee R-RH 83 Lott R-MS

16 Leahy D-VE 50 Snowe R-ME 84 Chambliss R-GE

17 Dodd D-CT 51 Collins R-ME 85 Burns R-MT

18 Stabenow D-MI 52 Specter R-PE 86 Bunning R-KE

19 Mikulski D-MD 53 Mccain R-AZ 87 Crapo R-ID

20 Feingold D-WI 54 Dewine R-OH 88 Mcconnell R-KE

21 Rockefeller D-WE 55 Campbell R-CO 89 Ensign R-NV

22 Hollings D-SC 56 Smith R-OR 90 Cornyn R-TX

23 Kohl D-WI 57 Coleman R-MN 91 Sununu R-NH

24 Inouye D-HA 58 Warner R-VI 92 Santorum R-PE

25 Schumer D-NY 59 Murkowski R-AK 93 Craig R-ID

26 Cantwell D-WA 60 Voinovich R-OH 94 Inhofe R-OK

27 Dayton D-MN 61 Hutchison R-TX 95 Allard R-CO

28 Murray D-WA 62 Lugar R-IN 96 Enzi R-WY

29 Wyden D-OR 63 Miller D-GE 97 Sessions R-AL

30 Daschle D-SD 64 Fitzgerald R-IL 98 Thomas R-WY

31 Biden D-DE 65 Talent R-MO 99 Kyl R-AZ

32 Feinstein D-CA 66 Hagel R-NE 100 Nickles R-OK

33 Je↵ords I-VE 67 Stevens R-AK

34 Reid D-NV 68 Shelby R-AL

Table 7: Analysis of senator roll call data: Ranking of senators based on ✓̂i1.
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Figure 8: Analysis of senator roll call data: Visualization of senator points, where senators
are classified by their party membership. Specifically, The Democrats, Republicans and an
independent politician are indicated by blue, red, and green, respectively.

We now investigate the roll calls. The value of âj1, i.e., the roll calls’ coordinate on the
x-axis, seems to represent the roll calls’ liberalness-conservativeness. The more liberal roll
calls lie on the left and the more conservative ones lie on the right. This interpretation is
further confirmed by the voting records for the roll calls. In particular, for each roll call,
we calculate the proportion of Republicans among the senators who voted “Yea”. A larger
value of this proportion indicates that the roll call is more conservative. As we can see from
panel (a) of Figure 9, for roll calls from the left to the right, this proportion increases. In
fact, the Kendall’s tau rank correlation between âj1s and the proportions of “Yea” from
Republicans is as high as 0.88. We present the content of three roll calls as representative
examples. As indicated in panel (a) of Figure 9, these roll calls have substantially di↵erent
coordinates along the x-axis. From left to right, they are (1) “To improve the availability
of contraceptives for women”, (2)“Confirmation Thomas J. Ridge, of Pennsylvania, to be
Secretary of Homeland Security”, and (3)“To provide financial security to family farm and
small business owners by ending the unfair practice of taxing someone at death”.

Although most of the roll calls lie near the x-axis (i.e., âj2 ⇡ 0), there are still quite a
few roll calls which spread out on the y-axis. It seems that the voting on such roll calls is
heterogeneous within both parties. Specifically, we measure heterogeneity of voting within
each party by a cross entropy measure, defined as

CE(i)

j
= �p(i)

jy
log p(i)

jy
� p(i)

jn
log p(i)

jn
� p(i)

jm
log p(i)

jm
,

where i = 1, 2 indicate Democrat and Republican, respectively, and p(i)
jy
, p(i)

jn
, and p(i)

jm

denote the proportions of “Yea”, “Nay”, and “Not voting” within the party for the jth roll
call. Cross entropy is a commonly used measure of heterogeneity (Chapter 9, Friedman
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Figure 9: Analysis of senator roll call data. Panel (a): Visualization of roll call points,
where roll calls are classified by the proportion of “Yea” from Republicans. Specifically, roll
calls who have the proportions less than 0.068, 0.068-0.52,0.52-0.73 and larger than 0.73
are indicated by black, red, green and blue points, respectively. The yellow solid points are

example roll calls to be discussed. Panel (b): Box plots of min{CE(1)

j
,CE(2)

j
}, for roll calls

lying near the x-axis (|âj2|  0.05) one the left and for those spreading out along the y-axis
(|âj2| > 0.05) on the right.

et al., 2001). The larger the cross entropy, the more heterogeneous voting behavior within

a party. In panel (b) of Figure 9, we present the box plots of min{CE(1)

j
,CE(2)

j
}, for

roll calls lying near the x-axis (|âj2|  0.05) and for those spreading out along the y-
axis (|âj2| > 0.05). According to panel (b) of Figure 9, the roll calls in the latter group

(|âj2| > 0.05) tend to have a larger value of min{CE(1)

j
,CE(2)

j
}, implying that the voting

tends to be more heterogeneous within both parties for these roll calls. The latter group
contains roll calls, such as “To provide for the distribution of funds under the infrastructure
performance and maintenance program”, “To enhance the role of Congress in the oversight
of the intelligence and intelligence-related activities of the United States Government”, and
“To strike provisions relating to energy tax incentives”. Many of such roll calls may be
explained by constituency specific factors.

6. Concluding Remarks

In this paper, we provide a statistical framework for studying unfolding-model-based visu-
alization. An estimator, together with an algorithm for its computation, is proposed, whose
performance is examined by simulation studies. Under reasonable conditions, we provide
asymptotic results for the recovery of ideal-point configuration. The proposed method is
applied to two datasets, one on movie rating and the other on senator voting, for which
interpretable results are obtained.
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The ideal points obtained from the proposed method can be used in further analysis. For
example, one can use the estimated person points as covariates in regression analysis. For
another example, one may further conduct cluster analysis on the respondents and items,
for example, by applying the K-means algorithm (MacQueen, 1967). In fact, as discussed
in the supplementary material, there is a connection between our unfolding model and the
stochastic co-blockmodel (Choi and Wolfe, 2014; Rohe et al., 2016) for bi-cluster analysis.
When data follow a stochastic co-blockmodel, then our consistency result for the unfolding
model further guarantees the consistency of bi-cluster analysis.

The current analysis may be extended along multiple directions. First, the current
analysis keeps the latent dimension K fixed. In fact, the theoretical results established
in this paper can be generalized to a setting where K also diverges, a more appropriate
setting for data of a very large scale. Second, it is possible to make statistical inference
about the person and item ideal points, such as testing whether a person point is closer
to one item point than another. Making statistical inference under our model is closely
related to statistical inference for low-rank matrix completion (see e.g., Chen et al., 2019;
Xia and Yuan, 2019), but the non-linear link function in our model brings more challenges
and thus methods and theory remain to be developed. Third, although we focus on binary
data in this paper, the proposed modeling framework, theory and computational algorithm
can be extended to other types of data, such as ratings and rankings. Finally, it may also
be of interest to extend the current framework to the modeling and analysis of large-scale
preferential choice data with informatively missing data entries.
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Appendix A. Bi-Cluster Analysis

The applications of multidimensional scaling, including multidimensional unfolding as a
special case, are often followed by cluster analysis (e.g., Kruskal and Wish, 1978; Borg and
Groenen, 2005) for better understanding and interpretation of the data visualization. In
our context, it is often of interest to cluster the respondents and the items, respectively.
This task is known as bi-clustering or co-clustering (Hartigan, 1972; Dhillon, 2001), which is
often studied statistically under the stochastic co-blockmodel (Choi and Wolfe, 2014; Rohe
et al., 2016), an extension of the widely used stochastic blockmodel (Holland et al., 1983).

Following multidimensional unfolding, it is natural to bi-cluster the respondents and the
items based on the estimated ideal points, using the Euclidian distance as a natural measure
of dissimilarity. In particular, we use the K-means algorithm (MacQueen, 1967) to cluster
the respondents and the items into k1 and k2 clusters, respectively, for some pre-specified
numbers of clusters k1 and k2. This two-step procedure for bi-cluster analysis is described
in Algorithm 2.
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Algorithm 2 (Two-step procedure for bi-cluster analysis)

Step 1: Apply Algorithm 1 and obtain estimates {✓̂1, ..., ✓̂N , â1, ..., âJ}.

Step 2: Perform the K-means algorithm to {✓̂1, ..., ✓̂N} and {â1, ..., âJ} given k1 and
k2 clusters, respectively.

Output: The cluster membership of respondents #̂i 2 {1, ..., k1} and cluster member-
ship of items �̂j 2 {1, ..., k2} (i = 1, ..., N ; j = 1, ..., J).

We provide a connection between the multidimensional unfolding model studied in this
paper and the stochastic co-blockmodel. Consider a special case under the multidimensional
unfolding model, where there are finite possible locations for the respondent ideal points
and also for the item ideal points, independent of N and J . We denote the possible locations
for the respondent ideal points as {b⇤

1
, ...,b⇤

k1
} and denote those for the item ideal points

as {c⇤
1
, ..., c⇤

k2
}. Under this setting, there exist k1 respondent latent classes and k2 item

latent classes, regarding two respondents/items as from the same latent class when they
have the same location. We denote #⇤

i
2 {1, ..., k1} and �⇤

j
2 {1, ..., k2} the true latent class

memberships of respondent i and item j, respectively. In this sense, the model becomes a
stochastic co-blockmodel, for which the distribution of Yij is only determined by the latent
class memberships of respondent i and item j and Yijs are conditionally independent given
all the latent memberships of the respondents and items. In what follows, we show that the
proportions of misclassified respondents and items converge to 0 in probability, when both
N and J grow to infinity, if the K-means algorithm in Algorithm 2 has converged to the
global optima.

Theorem 23 Suppose A0, A3 and A4 are satisfied, and K+ � K. Further suppose the
multidimensional unfolding model degenerates to a stochastic co-blockmodel, satisfying ✓⇤

i 2
{b⇤

1
, ...,b⇤

k1
} and a⇤

j
2 {c⇤

1
, ..., c⇤

k2
}. If both K-means algorithms in Algorithm 2 converge to

the global optima, then the clustering result satisfies

min

8
<

:max
⇣2Bk1

P
N

i=1
1{#̂i=⇣(#

⇤
i )}

N
, max
⇣2Bk2

P
J

j=1
1{�̂j=⇣(�

⇤
j )}

J

9
=

; (12)

goes to 1 in probability as both N and J grow to infinity, where Bk denotes the set of all
permutations on {1, ..., k}, for k = k1, k2.

Remark 24 To handle “label switching indeterminacy” in clustering, in the loss function
(12) we find permutations that best match the true latent class memberships and their esti-
mates for both the respondents and the items.

Appendix B. Proof of Theoretical Results

B.1 Definitions and Notations

In this appendix, we use c, C,C1, C2 to represent constants which do not depend on N, J,
the values of which may vary according to the context. With a little abuse of notation, we
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use AN,J to denote the specified events, which may di↵er in di↵erent proofs. For x 2 RK ,
we use BK

x (C) to denote the closed ball in RK centered at x with radius C. Unless otherwise
specified, all balls in the appendix is assumed to be closed. For a set G ⇢ RK , let int(G)
denote the set of all its interior points. For a positive integer n, we denote [n] := {1, ..., n}.
We start with some notions which will be used in the proof of theorems, propositions and
lemmas.

Definition 25 For points xi,x0
i
2 RK , i = 1, ..., n, we write (x1, ...,xn) ⇠ (x0

1
, ...,x0

n), if
there exists an isometry F 2 AK , such that x0

i
= F (xi), i = 1, ..., n.

Remark 26 It is easy to show that “⇠” is an equivalence relation.

Definition 27 (Configuration) We define an n-point configuration as an equivalence
class. That is, we define a configuration

[x1, ...,xn] := {(x0
1, ...,x

0
n) : (x

0
1, ...,x

0
n) ⇠ (x1, ...,xn)}

as the equivalence class of (x1, ...,xn).

Remark 28 By the property of isometry mapping, it is easy to see that all the elements in
the same configuration have the same distance matrix.

We now consider the space of all n-point configurations in RK , denoted by

Hn,K :=
�
[x1, ...,xn] : xi 2 RK , i = 1, ..., n

 
.

For two configurations ⌧1 = [x1, ...,xn], ⌧2 = [y1, ...,yn] 2 Hn,K , we define

d(⌧1, ⌧2) := inf
F2AK

s X

1in

kF (xi)� yik2.

First, we note that d(·, ·) is a well-defined mapping from Hn,K ⇥ Hn,K to R. That is, for
any (x0

1
, ...,x0

n) 2 [x1, ...,xn] and (y0
1
, ...,y0

n) 2 [y1, ...,yn],

inf
F2AK

s X

1in

kF (xi)� yik2 = inf
F2AK

s X

1in

kF (x0
i
)� y0

i
k2.

Second, we notice that d(·, ·) is a metric on Hn,K , as summarized in Lemma 29 below.

Lemma 29 d(·, ·) is a metric on Hn,K .

Remark 30 For [x1, ...,xn] 2 Hn,K , we have [(x>
1
, 0)>, ..., (x>

n , 0)
>] 2 Hn,K+1 in which

sense we can say Hn,K ⇢ Hn,K+1. Thus Hn,K1 ⇢ Hn,K2 if K1  K2. For ⌧1 = [x1, ...,xn] 2
Hn,K1 , ⌧2 = [y1, ...,yn] 2 Hn,K2 , the d(⌧1, ⌧2) is defined in the same way by seeing both ⌧1
and ⌧2 as elements in Hn,max{K1,K2}.
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We further denote Pa,b,K as the set of a⇥ b partial distance matrices for configurations
in RK :

Pa,b,K :=
�
(kxi � yjk2)a⇥b : [x1, ...,xa,y1, ...,yb] 2 Ha+b,K

 
.

It is easy to check that Pa,b,K ⇢ Pa,b,K+1.
For A1, ..., An ⇢ RK , denote [A1, ..., An] as a subset of Hn,K :

[A1, ..., An] := {[x1, ...,xn] : xi 2 Ai, i = 1, ..., n}.

For A,B ⇢ Hn,K , the distance between A and B is defined as

d(A,B) := inf
⌧12A,⌧22B

d(⌧1, ⌧2). (13)

We further denote

Hn,K,C := {[x1, ...,xn] 2 Hn,K : kxik  C}

as a compact subset of Hn,K , and

Pa,b,K,C :=
�
(kxi � yjk2)a⇥b : [x1, ...,xa,y1, ...,yb] 2 Ha+b,K,C

 
(14)

as a compact subset of Pa,b,K . We consider a mapping defined as following:

�a,b,K : R(a+b)⇥K ! Pa,b,K ,

(x1, ....,xa+b)
> 7! D,

whereD is the a⇥b partial distance matrix of {(x1, ...,xa), (xa+1, ...,xa+b)}. It is not di�cult
to check that �a,b,K is invariant with respect to isometry. Then, for ⌧ = [x1, ...,xa+b], we
denote

�a,b,K(⌧) := �a,b,K(X),

where X> = (x1, ...,xa+b).
Having introduced the notions above, we give the following lemma, which is crucial to

the proof of Theorem 6. It essentially shows that for any partial distance matrix D0 2
Pk1,k2,K+,M that approximates to another partial distance matrix D 2 Pk1,k2,K,M , whose
configuration ⌧ contains a collection of anchor points, then any configuration ⌧ 0 of D0 will
also approximate to ⌧.

Lemma 31 For compact subsets B1, ...,Bk1 , C1, ..., Ck2 ⇢ BK

0 (M), let

B = [B1, ...,Bk1 , C1, ..., Ck2 ].

Suppose that for any (x1, ...,xk1+k2) 2 B1 ⇥ · · · ⇥ Bk1 ⇥ C1 ⇥ · · · ⇥ Ck2 , {x1, ...,xk1} and
{xk1+1, ...,xk1+k2} are a collection of anchor points in RK . Then, for any ✏c > 0, there
exists ✏d > 0 such that for any ⌧ 0 2 Hk1+k2,K+,M and ⌧ 2 B satisfying

k�k1,k2,K+(⌧
0)� �k1,k2,K+(⌧)kF < ✏d,

we have
d(⌧ 0, ⌧) < ✏c.
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We end this section by the following lemma, which will also be used in the proof of
Theorem 6.

Lemma 32 Suppose {b⇤
1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
} ⇢ BK

0 (C) are a collection of anchor points

in RK . Then, for any x 2 BK

0 (C), the {x,b⇤
1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
} are also a collection of

anchor points in RK .

B.2 Proof of Theorems

Proof [Proof of Theorem 6] We first show the proof of (5). For ✏ which is given in condition
A3, there exist constant p✏ 2 (0, 1), and balls of radius ✏ in RK , denoted by B̃1(✏), ..., B̃k1(✏),
G̃1(✏), ..., G̃k2(✏), such that for N, J large enough,

P
N

l=1
1{✓⇤

l 2Bb⇤
i
(✏),✓̃l2B̃i(✏)}

N
> p✏, i = 1, ..., k1,

P
J

l=1
1{a⇤

l 2Bc⇤i
(✏),ãl2G̃i(✏)}

J
> p✏, i = 1, ..., k2.

This comes straightforwardly from condition A0 and requirement (2) of anchor points in
condition A3. Note that the centers of B̃k(✏) and G̃l(✏) may vary through N, J . We also
use B⇤

k
(✏) and G⇤

l
(✏) to denote Bb⇤

k
(✏) and Bc⇤l

(✏), respectively.
We first focus on the set of person points

I1(✏) :=
k1[

k=1

{i 2 [N ] : ✓⇤
i 2 B⇤

k
(✏), ✓̃i 2 B̃k(✏)}

and the set of item points

I2(✏) :=
k2[

l=1

{j 2 [J ] : a⇤j 2 G⇤
l
(✏), ãj 2 G̃l(✏)}.

Let ✓+

i
=
�
(✓⇤

i )
>,0>

�>
,a+

j
=
⇣
(a⇤

j
)>,0>

⌘
2 RK+ . We will show that there exists an

isometry mapping FN,J 2 AK+ , under which FN,J(✓̃i) ⇡ ✓+

i
and FN,J(ãj) ⇡ a+

j
, for all

i 2 I1(✏) and j 2 I2(✏). This is formalized in the following lemma.

Lemma 33 For N, J large enough, there exists an isometry FN,J 2 AK+, such that

kFN,J(x)k  4M, for all x 2 BK+
0 (M),

and for all i 2 I1(✏) and for all j 2 I2(✏),

kFN,J(✓̃i)� ✓+

i
k  5✏,

and
kFN,J(ãj)� a+

j
k  5✏.
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We then show that for most of the person points i /2 I1(✏) and for most of the item
points j /2 I2(✏), we still have FN,J(✓̃i) ⇡ ✓+

i
and FN,J(ãj) ⇡ a+

j
, under the same isometry

mapping FN,J as in Lemma 33. This is formalized in Lemma 34 below.

Lemma 34 For N, J large enough, there exists a constant  > 0, such that for the isometry
mapping FN,J defined in Lemma 33, the proportions

�1,N,J =

P
N

i=1
1{kFN,J (✓̃i)�✓+

i k>✏}

N

and

�2,N,J =

P
J

j=1
1{kFN,J (ãj)�a+

j k>✏}

J

satisfy
�k,N,J ! 0, (15)

for k = 1, 2, as N, J grow to infinity.

Since by Lemma 33, we have FN,J maps BK+
0 (M) to BK+

0 (4M), then for all ✓̃i and for
all ãj ,

kFN,J(✓̃i)� ✓+

i
k  5M

and
kFN,J(ãj)� a+

j
k  5M.

Combining this with Lemma 34, we have

min
F2AK+

(P
N

i=1
kF (✓̃i)� ✓+

i
k2

N
+

P
J

j=1
kF (ãj)� a+

j
k2

J

)


P

N

i=1
kFN,J(✓̃i)� ✓+

i
k2

N
+

P
J

j=1
kFN,J(ãj)� a+

j
k2

J

�
25(M)2�1,N,J + 2✏2

�
+
�
25(M)2�2,N,J + 2✏2

�

25(M)2(�1,N,J + �2,N,J) + 22✏2

(16)

By (15), (5) holds. (6) holds if ✏ can be arbitrarily small. We complete the proof.

Proof [Proof of Theorem 12] Combining Theorem 6 and Proposition 11, we have the result.

Proof [Proof of Theorem 14] Theorem 14 is a special case of Proposition 22. See the proof
of Proposition 22.

Proof [Proof of Theorem 23] For simplicity of writing, we suppose K+ = K in this proof.
We only prove the result for the respondents. The proof for the items is the same. Under
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the conditions of Theorem 23, the result of Theorem 12 is satisfied and with a slight change
in the proof, we can get

max
F2AK

P
N

i=1
k✓̂i � F (b⇤

#
⇤
i
)k

N

2

= op(1).

Consequently, there exists isometry F ⇤
N,J

, such that

P
N

i=1
k✓̂i � F ⇤

N,J
(b⇤

#
⇤
i
)k2

N
= op(1), (17)

noting that b⇤
#
⇤
i
= ✓⇤

i .

Lemma 35 Under the same conditions as Theorem 23, suppose that
P

N

i=1
k✓̂i � F ⇤

N,J
(b⇤

#
⇤
i
)k2

N
= op(1).

Then we have

max
⇣2Bk1

P
N

i=1
1{#⇤

i=⇣(#̂i)}

N
= op(1).

With Lemma 35, we complete the proof for the respondents.

B.3 Proof of Propositions

Proof [Proof of Proposition 3] It su�ces to prove in the case when
P

n

i=1
xi = 0 andP

n

i=1
yi = 0. Denote D = (dij)n⇥n, where dij = kxi � xjk2 = kyi � yjk2 and let B =

(bij)n⇥n = �1

2
JDJ, where J = In � 1n1>n /n. Then B is inner product matrix of both

{x1, ...,xn} and {y1, ...,yn}. That is, bij = x>
i
xj = yiy>

j
, for 1  i, j  n. We refer readers

to Critchley (1988) for the relation between inner product matrix and distance matrix. So
if we denote

P1 = (x1, ...,xn)
>, P2 = (y1, ...,yn)

>,

then we have
P1P

>
1 = P2P

>
2 = B.

Let
P>
1 = Q1R1, P>

2 = Q2R2

be the QR decomposition (see Cheney and Kincaid (2009)) of P1, P2, where Q1, Q2 are k⇥k
orthogonal matrix and R1, R2 are k⇥n upper-triangular matrix with non-negative diagonal
entries. Since x>

i
xj = y>

i
yj , for 1  i, j  n, it is not di�cult to check that R1 = R2. If we

define O = Q2Q>
1
, then

OP>
1 = OQ1R1 = Q2Q

>
1 Q1R1 = Q2R1 = Q2R2 = P>

2 ,

which means Oxi = yi, for 1  i  n. We complete the proof.

Proof [Proof of Proposition 8] We first introduce a lemma as following.
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Lemma 36 There exists a collection of anchor points {b⇤
1
, ...,b⇤

k2
}, {c⇤

1
, ..., c⇤

k2
} ⇢ int(G),

where G is the ball defined in Proposition 8.

We fix such collection of anchor points. For any ✏ > 0, we denote B⇤
k
(✏), G⇤

l
(✏), for

1  k  k1 and 1  l  k2, as balls centered at b⇤
k
and c⇤

l
, respectively. For su�ciently

small ✏ > 0, it is easy to see that for any

b1 2 B⇤
1(✏), ...,bk1 2 B⇤

k1
(✏), c1 2 G⇤

1(✏), ..., ck2 2 G⇤
k2
(✏),

the {b1, ...,bk1}, {c1, ..., ck2} are a collection of anchor points in RK . Therefore, the (1) of
A3 holds. We define

�✏ :=
1

2
min

1kk1
1lk2

{P1B
⇤
k
(✏), P2G

⇤
l
(✏)}

and use AN,J to denote the following event

�����
1

N

NX

i=1

1{✓⇤
i2B⇤

k(✏)} � P1B
⇤
k
(✏)

�����  �✏, k = 1, ..., k1,

������
1

J

JX

j=1

1{a⇤
j2G⇤

l (✏)} � P2G
⇤
l
(✏)

������
 �✏, l = 1, ..., k2,

(18)

where P1B⇤
k
(✏), P2G⇤

l
(✏) represent the probability measure of B⇤

k
(✏), G⇤

l
(✏) with respect to

P1 and P2, respectively. By Hoe↵ding’s inequality, we have

Pr ((18) holds ) � 1� 2k1 exp(�
1

2
N�2

✏ )� 2k2 exp(�
1

2
J�2

✏ ). (19)

So we have
Pr(AN,J) ! 1

as N, J grow. On AN,J , we have

1

N

NX

i=1

1{✓⇤
i2B⇤

k(✏)} � �✏, 1  k  k1,

1

J

JX

j=1

1{a⇤
j2G⇤

l (✏)} � �✏, 1  l  k2.

(20)

On AN,J , (20) holds. Then, the (2) of A3 holds almost surely.

Proof [Proof of Proposition 11] Proposition 11 is a special case of Proposition 20. See the
proof of Proposition 20.

Proof [Proof of Proposition 20] The proof of Proposition 20 is similar to Theorem 1 of
Davenport et al. (2014). We only state the main steps.
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We denoteD as the partial distance matrix of (✓1, ...,✓N ) and (a1, ...,aJ) (to simplify the
notation, we ignore the subscripts N and J for D). Since the likelihood function depends on
(✓1, ...,✓N ) and (a1, ...,aJ) only through their partial distance matrix, we re-parameterize
the likelihood function by D. We denote

l⌦,Y (D) = logL⌦(✓1, ...,✓N ,a1, ...,aJ),

where the subscripts ⌦ = (!ij)N⇥J and Y = (Yij)N⇥J indicate the random variables in the
likelihood function and D contains the parameters.

Let
l̄⌦,Y (D) = l⌦,Y (D)� l⌦,Y (0), (21)

where 0 represents an N ⇥ J matrix whose elements are all 0 and let

G =
n
D 2 RN⇥J : kDk⇤  4M2

p
(K+ + 2)NJ

o
. (22)

Lemma 37 Under the same conditions as Proposition 20, there exist constant C1 and C2

such that

Pr

✓
sup
D2G

|l̄⌦,Y (D)� El̄⌦,Y (D)| � 4M2C1L4M2

p
K+ + 2

p
n(N + J) +NJ log(NJ)

◆

 C2

N + J
.

Let H = {D : dij = k✓i � ajk2, where k✓ik, kajk  M, i = 1, ..., N, j = 1, ..., J}. It is
easy to check that H ⇢ G. Consequently,

Pr

✓
sup
D2H

|l̄⌦,Y (D)� El̄⌦,Y (D)| � 4C1M
2L4M2

p
K+ + 2

p
n(N + J) +NJ log(NJ)

◆

 Pr

✓
sup
D2G

|l̄⌦,Y (D)� El̄⌦,Y (D)| � 4C1M
2L4M2

p
K+ + 2

p
n(N + J) +NJ log(NJ)

◆

 C2

N + J
.

Given the above development, Proposition 20 is implied by the following lemma.

Lemma 38 Under the same conditions as Proposition 20,

1

NJ
kD⇤

N,J � D̂N,Jk2F  16

n
�4M2 sup

D2H
|l̄⌦,Y (D)� El̄⌦,Y (D)|.

Therefore, with probability at least 1� C2/(N + J),

1

NJ
kD⇤

N,J � D̂N,Jk2F  64C1M
2L4M2�4M2

p
K+ + 2

r
N + J

n

s

1 +
NJ log(NJ)

n(N + J)
.
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We complete the proof by absorbing 64
p
K+ + 2 into C1.

Proof [Proof of Proposition 22] We use AN,J to denote the event that the result in Propo-
sition 20 holds. By Theorem 6 and Proposition 8, on AN,J , we have

min
F2AK+

P
N

i=1
k✓+

i
� F (✓̂

⌦

i )k2

N
+

P
J

j=1
ka+

j
� F (â⌦j )k2

J

goes to 0, as N, J grow to infinity. Since Pr(AN,J) ! 0, we complete the proof.

B.4 Proof of Lemmas

Proof [Proof of Lemma 29] Let ⌧1 = [x1, ...,xn], ⌧2 = [y1, ...,yn], ⌧3 = [z1, ..., zn]. Define

d̃(⌧1, ⌧2) := min
F2AK

max
i

kF (yi)� xik

and it is easy to check that

d̃(⌧1, ⌧2)  d(⌧1, ⌧2) 
p
nd̃(⌧1, ⌧2).

So we just need to verify that function d̃(·, ·) satisfies the triangle inequality. Let isometries
F21, F31 satisfy

d̃(⌧1, ⌧2) = max
i

kF21(yi)� xik = kF21(yl)� xlk,

d̃(⌧1, ⌧3) = max
i

kF31(zi)� xik = kF31(zm)� xmk.

Then

d̃(⌧2, ⌧3)  max
i

{kF31(zi)� F21(yi)k}

 max
i

{kF31(zi)� xik+ kF21(yi)� xik}

 kF21(yl)� xlk+ kF31(zm)� xmk
= d̃(⌧1, ⌧2) + d̃(⌧1, ⌧3).

We complete the proof.

Proof [Proof of Lemma 31] Otherwise there exist ✏0 > 0 and sequences {⌧ (n)
1

}1
n=1

⇢
Hk1+k2,K+,M , and {⌧ (n)

2
}1
n=1

⇢ B such that

����k1,k2,K+(⌧
(n)

1
)� �k1,k2,K+(⌧

(n)

2
)
���
F

<
1

n

and
d(⌧ (n)

1
, ⌧ (n)

2
) > ✏0.
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Since both Hk1+k2,K+,M and B are compact, there exists a subsequence {nk}1k=1
⇢ N+, such

that limk!1 ⌧ (nk)

1
= ⌧̃ 2 Hk1+k2,K+,M and limk!1 ⌧ (nk)

2
= ⌧0 2 B. The two configurations

⌧̃ and ⌧0 have the same partial distance matrix but d(⌧̃ , ⌧0) > ✏0. This makes a contradiction
because ⌧0 2 B is the only configuration of its partial distance matrix, by the requirement
of B.

Proof [Proof of Lemma 32] For a collection of points {x,b⇤
1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
}, it is not

di�cult to verify that condition A2 holds. So we only need to verify A1.
To verify A1, it su�ces to show that if {b1, ...,bk1}, {c1, ..., ck2} is a collection of an-

chor points, then for any x 2 BK

0 (C), [x,b1, ...,bk1 , c1, ..., ck2 ] is the unique configuration
corresponding to its (k1 + 1)⇥ k2 partial distance matrix.

Suppose that ⌧ = [x,b1, ...,bk1 , c1, ...ck2 ] and ⌧ 0 = [x0,b0
1
, ...,b0

k1
, c0

1
, ...c0

k2
] satisfy

�k1+1,k2,K(⌧) = �k1+1,k2,K(⌧ 0).

Then
�k1,k2,K([b1, ...,bk2 , c1, ..., ck2 ]) = �k1,k2,K([b0

1, ...,b
0
k1
, c01, ...c

0
k2
]).

Since {b1, ...,bk1}, {c1, ...ck2} are a collection of anchor points, then [b1, ...,bk1 , c1, ...ck2 ] =
[b0

1
, ...,b0

k1
, c0

1
, ...c0

k2
]. Without loss of generality, we suppose bl = b0

l
and cm = c0m. Then,

the two configurations, [x, c1, ..., ck2 ] and [x, c0
1
, ..., c0

k2
], have the same complete distance

matrix, which further leads that

[x, c1, ..., ck2 ] = [x0, c1, ..., ck2 ].

Since c1, ..., ck2 can a�ne span RK , it is not di�cult to see that x = x0. Then, we get ⌧ = ⌧ 0,
and A1 has been verified.

Proof [Proof of Lemma 33] We define

S⇤
N,J(✏) =

⇥
B⇤

1(✏), ..., B
⇤
k1
(✏), G⇤

1(✏), ..., G
⇤
k2
(✏)

⇤
⇢ Hk1+k2,K,M ,

S̃N,J(✏) =
h
B̃1(✏), ..., B̃k1(✏), G̃1(✏), ..., G̃k2(✏)

i
⇢ Hk1+k2,K+,M ,

where B⇤
k
(✏), B̃k(✏), G⇤

l
(✏), G̃l(✏) are defined in the proof of Theorem 6. Let

�N,J := d(S̃N,J(✏), S
⇤
N,J(✏)) (23)

By (13) and triangle inequality, there exists an iosmetry FN,J 2 AK+ , such that for all

x⇤
k
2 B⇤

k
(✏),y⇤

l
2 G⇤

l
(✏), x̃k 2 B̃k(✏), ỹl 2 G̃l(✏),

kFN,J(x̃k)� x+

k
k  4✏+ �N,J , 1  k  k1,

kFN,J(ỹl)� y+

l
k  4✏+ �N,J , 1  l  k2.

(24)

In what follows, we will show that �N,J  ✏ for N, J large enough. We first define

�N,J = inf{k�k1,k2,K+(⌧̃)� �k1,k2,K+(⌧
⇤)kF : ⌧̃ 2 S̃N,J(✏), ⌧

⇤ 2 S⇤
N,J(✏)} (25)
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and we have
�2N,J(p✏N)(p✏J)  kD̃N,J �D⇤

N,Jk2F = o(NJ),

which leads to
�N,J = o(1). (26)

By (23), there exist ⌧̃ 2 S̃N,J(✏) and ⌧⇤ 2 S⇤
N,J

(✏) such that

k�k1,k2,K+(⌧̃)� �k1,k2,K+(⌧
⇤)kF  2�N,J .

Then by (23), we have

�N,J = d(S̃N,J(✏), S
⇤
N,J(✏))  d(⌧⇤, ⌧̃). (27)

As shown in the beginning of proof for Theorem 6 and according to Definition 4, the
⌧⇤ is the unique configuration corresponding to its k1 ⇥ k2 partial distance matrix. Since
⌧̃ 2 S̃N,J(✏) ⇢ Hk1+k2,K+,M , by Lemma 31, we know d(⌧⇤, ⌧̃) ! 0 as N, J grow to infinity,
and thus

d(⌧⇤, ⌧̃) < ✏ (28)

for N, J large enough.
Finally, since

B⇤
k
(✏), G⇤

l
(✏) ⇢ BK

0 (M), B̃k(✏), G̃l(✏) ⇢ BK+
0 (M),

we have, for N, J large enough,

kFN,J(x)k  4M, for x 2 BK+
0 (M).

To see this, if there exists x 2 BK+
0 (M) such that kFN,J(x)k > 4M, then by simple geometry,

min
x2BK+

0 (M)

kFN,J(x)� xk > M.

According to (24) and (28), we will get

M < kFN,J(x̃k)� x+

k
k  4✏+ �N,J  5✏,

which contradicts with the fact that ✏ < 1

10
M  1

10
M.

Proof [Proof of Lemma 34] Let c̃1, ..., c̃k2 denote the centers of G̃1(✏), ...., G̃k2(✏) and c̃+
l
=

(c̃>
l
,0>)> 2 RK

+
. We first give the following lemma.

Lemma 39 For any

⌧1 = [x,x1, ...,xk2 ] 2 [BK

0 (M), G⇤
1(✏), ..., G

⇤
k2
(✏)],

⌧2 = [y,y1, ...,yk2 ] 2 [BK+
0 (M), Bc̃+1

(✏), ..., Bc̃+k2
(✏)],

we have

kx+ � yk  cmax

8
<

:d(⌧1, ⌧2),

vuut
k2X

l=1

kx+

l
� ylk2

9
=

; ,

for a constant c, which only depends on the set {c⇤
1
, ..., c⇤

k2
} and M.
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Define

H1(✏) := {i 2 [N ] : kFN,J(✓̃i)� ✓+

i
k > 5max(c, 1)

p
k1 + k2✏} (29)

and
H2(✏) := {j 2 [J ] : kFN,J(ãj)� a+

j
k > 5max(c, 1)

p
k1 + k2✏}, (30)

where c is the constant in Lemma 39. We set the constant  in Lemma 34 to be 5max(c, 1)
p
k1 + k2✏.

and then we have |H1(✏)| = N�1,N,J , |H2(✏)| = J�2,N,J . Note that I1(✏)\H1(✏) = ;, I2(✏)\
H2(✏) = ; for N, J large.

We choose i1, ..., ik1 2 I1(✏) and j1, ..., jk2 2 I2(✏) such that

✓⇤
ik

2 B⇤
k
(✏), ✓̃ik 2 B̃k(✏),

a⇤jl 2 G⇤
l
(✏), ãjl 2 G̃l(✏)

for 1  k  k1 and 1  l  k2. For any i 2 H1(✏), we consider the following configurations

⌧⇤ = [✓⇤
i ,✓

⇤
i1
, ...,✓⇤

ik1
,a⇤j1 , ...,a

⇤
jk2

] 2 Hk1+k2+1,K,M ,

⌧̃ = [✓̃i, ✓̃i1 , ..., ✓̃ik1
, ãj1 , ..., ãjk2 ] 2 Hk1+k2+1,K+,M

and
⌧⇤1 = [✓⇤

i ,a
⇤
j1
, ...,a⇤jk2

] 2 [BK

0 (M), G⇤
1(✏), ..., G

⇤
k2
(✏)],

⌧̃1 = [✓̃i, ãj1 , ..., ãjk2 ] 2 [BK+
0 (M), G̃1(✏), ..., G̃k2(✏)].

It is obvious that
d(⌧̃ , ⌧⇤) � d (⌧̃1, ⌧

⇤
1 ) .

By Lemma 33, we have
vuut

k2X

l=1

kFN,J(ãjl)� a⇤
jl
k2  5

p
k2✏  5

p
k1 + k2✏.

Combining it with (29) and Lemma (39), we have

d(⌧̃1, ⌧
⇤
1 ) > 5

p
k1 + k2✏,

which leads to
d(⌧̃ , ⌧⇤) > 5

p
k1 + k2✏. (31)

According to Lemma 32, {✓⇤
i ,✓

⇤
i1
, ...,✓⇤

ik1
}, {a⇤

j1
, ...,a⇤

jk2
} are a collection of anchor points.

Let D̃,D 2 Pk1+1,k2,K+,M be the partial distance matrix of ⌧̃ and ⌧⇤, respectively. Combin-
ing (31) and Lemma 31, there exists a constant �✏ > 0 such that

kD̃ �DkF � �✏. (32)

For each i 2 H1(✏), we choose i1, ..., ik1 2 I1(✏) to form a group {i, i1, ..., ik1} ⇢ [N ] such
that

(✓⇤
i ,✓

⇤
i1
, ...,✓⇤

ik1
) 2 BK

0 (M)⇥B⇤
1(✏)⇥ · · ·⇥B⇤

k1
(✏)
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and
(✓̃i, ✓̃i1 , ..., ✓̃ik1

) 2 BK+
0 (M)⇥ B̃1(✏)⇥ · · ·⇥ B̃k1(✏).

We could find at least min{�1,N,J , p✏} ⇥N such groups which are mutually exclusive. We
could also find at least p✏J mutually exclusive groups of {j1, ..., jk2} ⇢ [J ] such that

(a⇤j1 , ...,a
⇤
jk2

) 2 G⇤
1(✏)⇥ · · ·⇥G⇤

k2
(✏)

and
(ãj1 , ..., ãjk2 ) 2 G̃1(✏)⇥ · · ·⇥ G̃k2(✏).

By (4) and (32), we have

min{�1,N,J , p✏}Np✏J�
2

✏  o(NJ).

So
min{�1,N,J , p✏} = o(1),

which means �1,N,J ! 0, as N, J grow to infinity. Similar result holds for �2,N,J and we do
not repeat it.

Proof [Proof of Lemma 35] Consider the K-means clustering of the person points in Algo-
rithm 2. We define a loss function

L(#1, ...,#N ) =
1

N

NX

i=1

k✓̂i � µ#i
k2,

as the loss function for K-means clustering, where #i 2 {1, ..., k1} represents the cluster
membership of person i and

µk =

P
N

i=1
✓̂i1{#i=k}P

N

i=1
1{#i=k}

denotes the centroid of the kth cluster. Under the conditions of Theorem 23, the K-means
clustering converges to the global optima, which implies that

L(#̂1, ..., #̂N ) = min
#i2{1,...,k1},i=1,...,N

L(#1, ...,#N ). (33)

So for any isometry F 2 AK ,

NX

i=1

k✓̂i � µ
#̂i
k2 

NX

i=1

k✓̂i � F (b⇤
#
⇤
i
)k2.

By triangle inequality,

 
NX

i=1

kµ
#̂i

� F (b⇤
#
⇤
i
)k2

! 1
2


 

NX

i=1

(kµ
#̂i

� ✓̂ik2
! 1

2

+

 
NX

i=1

k✓̂i � F (b⇤
#
⇤
i
)k2

! 1
2

,

 2

 
NX

i=1

k✓̂i � F (b⇤
#
⇤
i
)k2

! 1
2

.
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Define d = mini 6=j kb⇤
i
� b⇤

j
k and for F 2 AK , define

AF := {1  i  N : kµ
#̂i

� F (b⇤
#
⇤
i
)k <

d

2
},

and denote Ac
F
:= {1, ..., N}/AF .

Then
P

i2AF⇤
N,J

1

N
= 1�

P
i2Ac

F⇤
N,J

1

N

� 1� 4

d2

P
i2Ac

F⇤
N,J

kµ
#̂i

� F ⇤
N,J

(b⇤
#
⇤
i
)k2

N

� 1� 4

d2

P
N

i=1
kµ

#̂i
� F ⇤

N,J
(b⇤

#
⇤
i
)k2

N
(34)

� 1� 16

d2

P
N

i=1
k✓̂i � F ⇤

N,J
(b⇤

#
⇤
i
)k2

N
pr! 1

Lemma 40 Under the same conditions as Lemma 35, if there exists ⇣1 2 Bk1 satisfying

kµ⇣1(l)
� F ⇤

N,J(b
⇤
l
)k <

d

2
,

where µl is the centroid of the lth cluster, F ⇤
N,J

is defined in (17) and d is defined above,

then there exists ⇣2 2 Bk1, such that for all i 2 AF
⇤
N,J

, #̂i = ⇣2(#⇤
i
).

Let ⌦N,J := {! : 9⇣ 2 Bk1 , s.t. kµ⇣(l)(!)� F ⇤
N,J

(b⇤
l
)k < d

2
, i = 1, ..., k1}. Notice that ⌦N,J

is a subset of the whole probability space. By Lemma 40, for any ! 2 ⌦N,J , there exists
⇣N,J 2 Bk1 , which corresponds to ⇣2 in Lemma 40, such that

max
⇣2Bk1

P
N

i=1
1{#⇤

i=⇣(#̂i(!))}

N
�

P
N

i=1
1{#̂i=⇣N,J (#

⇤
i )}

N
�

P
i2AF⇤

N,J

1

N

Lemma 41 Under the same conditions as Lemma 35, we have

lim
N,J!1

Pr (⌦N,J) = 1,

where ⌦N,J is defined above.

By Lemma 41 and (34), we complete the proof.

Proof [Proof of Lemma 36] Without loss of generality, we suppose that the ball G ⇢ RK

has center at orgin. By Theorem 2.1 of Alfakih (2005), we know there exist k1, k2 � K + 1
and two sets of points, {b⇤

1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
} ⇢ int(G), satisfying condition A2 whose
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partial distance matrix D⇤ has unique configuration. Furthermore, points near b⇤
i
, c⇤

j
also

have this property. Specifically, there exists ✏ > 0 such that for

bi 2 BK

b⇤
i
(✏) ⇢ G, cj 2 BK

c⇤j
(✏) ⇢ G,

the {b1, ...,bk1}, {c1, ..., ck2} satisfy condition A2 and their partial distance matrix D has
unique configuration. Then, by Lemma 31, condition A1 holds and {b⇤

1
, ...,b⇤

k1
}, {c⇤

1
, ..., c⇤

k2
}

are anchor points in RK .

Proof [Proof of Lemma 37] The proof of Lemma 37 is similar to Lemma A.1 of Davenport
et al. (2014).

Proof [Proof of Lemma 38] We have

0  l̄⌦,Y (D̂N,J)� l̄⌦,Y (D
⇤
N,J) =l̄⌦,Y (D̂N,J)� El̄⌦,Y (D̂N,J) + El̄⌦,Y (D̂N,J)� El̄⌦,Y (D

⇤
N,J)

+ El̄⌦,Y (D
⇤
N,J)� l̄⌦,Y (D

⇤
N,J)


⇣
El̄⌦,Y (D̂N,J)� El̄⌦,Y (D

⇤
N,J)

⌘
+ 2 sup

D2H
|l̄⌦,Y (D)� l̄⌦,Y (D)|.

So
E
⇣
l̄⌦,Y (D

⇤
N,J)� l̄⌦,Y (D̂N,J)

⌘
 2 sup

D2H
|l̄⌦,Y (D)� l̄⌦,Y (D)|.

Notice that

E
⇣
l̄⌦,Y (D

⇤
N,J)� l̄⌦,Y (D̂N,J)

⌘
= E

⇣
l⌦,Y (D

⇤
N,J)� l⌦,Y (D̂N,J)

⌘

=
n

NJ

X

i,j

f(d⇤ij) log(
f(d⇤

ij
)

f(d̂ij)
) + (1� f(d⇤ij)) log(

1� f(d⇤
ij
)

1� f(d̂ij)
)

For two distributions P and Q, let DKL(PkQ) denote the Kullback-Leibler divergence

DKL(PkQ) :=

Z
p(x) log

✓
p(x)

q(x)

◆
dx,

where p(x) and q(x) are the density functions for P and Q, respectively. For 0 < p, q < 1,
we use

DKL(pkq) := p log(
p

q
) + (1� p) log(

1� p

1� q
)

to denote the Kullback-Leibler divergence between two Bernoulli distributions with param-
eter p and q, respectively. For P,Q 2 (0, 1)N⇥J , we define

DKL(PkQ) :=
1

NJ

X

i,j

DKL(PijkQij).

For a partial distance matrix DN,J , denote f(DN,J) as the matrix (f(dij))N⇥J . So from
above, we know that

nDKL(f(D
⇤
N,J)kf(D̂N,J))  2 sup

D2H
|l̄⌦,Y (D)� l̄⌦,Y (D)|.
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Still for 0 < p, q < 1, let

d2H(p, q) := (
p
p�p

q)2 + (
p
1� p�

p
1� q)2

denote the Hellinger distance between two Bernoulli distributions with parameters p and q,
respectively. For P,Q 2 (0, 1)N⇥J , we define

d2H(PkQ) :=
1

NJ

X

i,j

d2H(Pij , Qij).

It is easy to check that d2
H
(p, q)  DKL(pkq). So

d2H(f(D⇤
N,J), f(D̂N,J)) 

2

n
sup
D2H

|l̄⌦,Y (D)� l̄⌦,Y (D)|

By Lemma A.2 of Davenport et al. (2014), we have

1

NJ
kD̂N,J �D⇤

N,Jk2F  8�4M2d2H(f(D⇤
N,J), f(D̂N,J))

 16

n
�4M2 sup

D2H
|l̄⌦,Y (D)� l̄⌦,Y (D)|.

Proof [Proof of Lemma 39] Denote

⌘ := max

8
<

:d(⌧1, ⌧2),

vuut
k2X

l=1

kx+

l
� ylk2

9
=

;

and then d(⌧1, ⌧2)  ⌘ and

kx+

l
� ylk  ⌘, l = 1, ..., k2. (35)

Therefore there exist A 2 OK+ and b 2 RK+ such that

vuutkAx+ + b� yk2 +
k2X

l=1

kAx+

l
+ b� ylk2  ⌘,

which leads that
kAx+ + b� yk  ⌘ (36)

and
kAx+

l
+ b� ylk  ⌘, l = 1, ..., k2. (37)

Combining (35) and (37), we get

kAx+

l
+ b� x+

l
k  2⌘, l = 1, ..., k2.
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According to condition A2, x1, ...,xk2 can a�ne span RK . Then there exists ↵1, ...,↵k1

satisfying
P

k2
l=1

↵l = 1, such that x =
P

k2
l=1

↵lxl. So we have

kAx+ + b� x+k =

�����

k2X

l=1

↵l(Ax+

l
+ b� x+

l
)

�����  2(
k2X

j=1

|↵j |)⌘.

Combining it with (36), we have kx+ � yk  (2
k1P
j=1

|↵j | + 1)⌘. We complete the proof by

setting the constant c in Lemma 39 to be

max
x2BK

0 (M)

xl2G⇤
l (✏)

infP
l ↵l=1

x=
P

l ↵lxl

2
k2X

l=1

|↵l|.

Proof [Proof of Lemma 40] For i, j 2 AF
⇤
N,J

, if #⇤
i
= #⇤

j
and suppose they are both equal

to k, then kµ
#̂i

� F ⇤
N,J

(b⇤
k
)k < d/2 and kµ

#̂j
� F ⇤

N,J
(b⇤

k
)k < d/2. Given the condition in

Lemma 40, it is easy to check that there is only one µl among {µ1, ...,µk1
} satisfying

kµl � F ⇤
N,J(b

⇤
k
)k < d/2,

then #̂i = #̂j . If #⇤
i
6= #⇤

j
, then kµ

#̂i
� F ⇤

N,J
(b⇤

#
⇤
i
)k < d/2 and kµ

#̂j
� F ⇤

N,J
(b⇤

#̂j
)k < d/2. So

kµ
#̂i

� µ
#̂j
k � kF ⇤

N,J(b
⇤
#
⇤
i
)� F ⇤

N,J(b
⇤
#
⇤
j
)k � kµ

#̂i
� F ⇤

N,J(b
⇤
#
⇤
i
)k � kµ

#̂j
� F ⇤

N,J(b
⇤
#̂j
)k

> d� d

2
� d

2
> 0,

which means #̂i 6= #̂j . So there exists ⇣2 such that for i 2 AF
⇤
N,J

, #̂i = ⇣2(#⇤
i
).

Proof [Proof of Lemma 41] Let

�(✏
0
)

N,J
:= {! :

P
i2AF⇤

N,J

1

N
� 1� ✏0},

which is a subset of the whole probability space. By (34), for any ✏0 > 0, we have

lim
N,J!1

Pr(�(✏
0
)

N,J
) = 1.

For any ! /2 ⌦N,J , there exists l such that kµm(!)� F ⇤
N,J

(b⇤
l
)k � d/2, for m = 1, ..., k1. So

for i satisfying #⇤
i
= l, we have kµ

#̂i
(!)� F ⇤

N,J
(b⇤

#
⇤
i
)k � d/2. According to (2) of condition

A3, for su�ciently small ✏0, if N, J are su�ciently large, then ! /2 �(✏
0
)

N,J
, which means

�(✏
0
)

N,J
⇢ ⌦N,J . By (34), for su�ciently small ✏0,

lim
N,J!1

Pr(⌦N,J) � lim
N,J!1

Pr(�(✏
0
)

N,J
) = 1.

We complete the proof.
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Figure 10: Analysis of movie rating data: Simultaneous visualization of the estimated movie
and user points.

Appendix C. Algorithm-based MDU: Real Data Examples

To compare the proposed method with classical algorithm-based MDU methods, we apply
ordinal MDU (Busing et al., 2005) to both real datasets analyzed in the paper. The ap-
plication is based on the implementation in R package smacof (de Leeuw and Mair, 2009).
For both examples, the latent dimension is set to two, and all the tuning parameters are set
to be the default ones. The results below show that the ordinal MDU approach provides
similar visualization results as the proposed one, especially for the roll call voting data due
to its unidimensional nature. The results for the movie rating dataset are also similar for
the two methods, but the interpretable patterns from the ordinal MDU approach is not as
clear as the proposed one.

Figures 10 through 12 show the same plots as in Figures 4 through 6 in Section 5.1,
respectively, for the movie rating dataset. Figure 10 provides the simultaneous visualization
of the movie and user points. Similar to the plot in Figure 4 given by our method, the movies
and the users tend to form two giant clusters that only slightly overlap.

Figure 11 is similar to Figure 5, where the two panels show the same scatter plot for
the movie points. In the left panel, the movies are stratified by the the numbers of ratings
that they received, where di↵erent stratums are marked by di↵erent colors. In the right
panel, the movies are stratified by their release time. Recall that the patterns of popularity
and release time are captured by the proposed method as shown in Figure 5. Figure 11
seems also to capture these patterns, but not as clear as those in Figure 5. According to
panel (a) of Figure 11, the more popular movies tend to be located near the origin, while
the less popular movies tend to be located away from the origin. According to panel (b)
of Figure 11, the clustering patten of the movies can be largely explained by the three
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Figure 11: Analysis of movie rating data. Panel (a): Visualization of movie points, with
movies stratified into four equal-size categories based on the numbers of rating. Movies
with numbers of rating less than 127, 128-169, 170-229 and more than 230 are indicated by
black, red, green and blue points, respectively. Panel (b): Visualization of movie points,
with movies stratified into three categories based on their release time. Movies released
in 1997-1998, 1995-1996, and before 1995 are indicated by green, red and black points,
respectively.

categories of release dates. From the left to the right of the space, the points correspond to
movies from the relatively older ones to the relatively more recent ones.

Figure 12 shows the same plots as in Figure 6. Similar pattern is shown that the shorter
the average distance from a user point to the movies points, the more active the user is.
In Figure 12, users are classified into four equal-size groups depending on the numbers of
movies they rated. These groups of users, from the most active one to the least active one,
lie from the top left to the bottom right.

Figures 13 through 15 show the same plots as in Figures 7 through 9 in Section 5.2,
respectively, for the roll call voting dataset. Figure 13 provides the simultaneous visualiza-
tion of senators and roll calls. Similar to the plot in Figure 7, most of the points tend to
lie on a straight line.

Figure 14 provides a scatter plot of the senator points. Similar to Figure 8, most
of the senator points tend to locate around a straight line, with the Democrats on one
side and the Republicans on the other side. Also similar to Figure 8, the independent
senator, Jim Je↵ords from the state of Vermont, is mixed together with the Democrats,
while the Democrat senator, Zell Miller from the state of Georgia, is mixed together with
the Republicans.

Finally, Figure 15 shows the unfolding results for the roll calls. The pattern in panel (a)
of Figure 15 is similar to that of Figure 9, where from the right to the left, the proportion
of “Yeas” from the Republicans increases. Also similar to Figure 9, although most of the
roll calls lie near the x-axis, there are still quite a few of them spreading out along the
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Figure 12: Analysis of movie rating data: Visualization of user points, with users classified
into four equal-size categories based on the numbers of rating. Users who rated less than
24, , 25-47, 48-103 and more than 104 movies are indicated by black, red, green and blue
points, respectively.
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Figure 13: Analysis of senator roll call data: Simultaneous visualization of the estimated
senator and roll call ideal points.
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Figure 14: Analysis of senator roll call data: Visualization of senator points, where senators
are classified by their party membership. Specifically, The Democrats, Republicans and an
independent politician are indicated by blue, red, and green, respectively.

y-axis. According to panel (b) of Figure 15 based on the cross entropy measure, the voting
behavior on these roll calls tends to be heterogeneous within both parties. This result is
similar to that given in panel (b) of Figure 9.
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Figure 15: Analysis of senator roll call data. Panel (a): Visualization of roll call points,
where roll calls are classified by the proportion of Yeas from Republicans. Specifically, roll
calls who have the proportions less than 0.068, 0.068-0.52,0.52-0.73 and larger than 0.73
are indicated by black, red, green and blue points, respectively. Panel (b): Box plots of

min{CE(1)

j
,CE(2)

j
}, for roll calls lying near the x-axis (|âj2|  0.05) one the left and for

those spreading out along the y-axis (|âj2| > 0.05) on the right.
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