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Abstract

Diagnostic classification tests are designed to assess examinees’ discrete
mastery status on a set of skills or attributes. Such tests have gained increas-
ing attention in educational and psychological measurement. We review
diagnostic classification models and their applications to testing and learn-
ing, discuss their statistical and machine learning connections and related
challenges, and introduce some contemporary and future extensions.
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1. INTRODUCTION

In educational and psychological tests, numbers or labels are assigned to individuals in a coher-
ent manner to represent hypothesized, unobserved (i.e., latent) constructs (Allen & Yen 2001,
Cronbach & Meehl 1955). Statistically, this task can be approached with a measurement model
that describes the relationship between the theorized construct(s) underlying the test and the
observed behavioral data, such as a total score in classical test theory (Spearman 1904) or re-
sponses to a series of items (i.e., questions) in item response theory (IRT) (Lord 1980). Early
work in psychometrics focused on the measurement of continuous traits in norm-referenced tests
(Glaser 1963), whose purpose is to rank individuals on a continuum and to compare individ-
uals with respect to a normative group. An example is an overall math proficiency score on a
standardized college admission test, which is informative in college admission decisions but does
not differentiate between individuals’ fine-grained math skills. Nor do criterion-referenced tests
provide diagnostic information on misconceptions or lack of cognitive skills leading to incorrect
problem-solving.

In the late 1970s, cognitive diagnostic testing was developed to bridge the gap between psy-
chometric theories of latent trait measurement and cognitive theories for problem-solving (e.g.,
Macready & Dayton 1977, Tatsuoka 2009). A response to a question is assumed to depend on the
discrete mastery status of a specific set of latent skill(s) or knowledge, commonly termed attributes.
The aim of cognitive diagnostic testing is hence to classify individuals into discrete latent classes
of attribute mastery on the basis of their responses to a series of well-designed assessment items.
Such discrete characterization is useful in many ways: to identify mistakes (e.g., misconceptions,
lack of skill/knowledge) that explain unsuccessful problem-solving, to create diagnostic profiles
of learners’ mastery level of specific skills, and to inform learners and teachers as to directions
for remediation and improvement. Here, testing is an integral part of the learning process that
provides ongoing feedback, also known as formative assessment (Tyler et al. 1972). Cognitive di-
agnostic testing is most commonly applied to the assessment of mathematics and reading skills
but is also applied to other disciplines, including the measurement of psychological disorders and
other noncognitive skills and profiles (e.g., de la Torre et al. 2018, Templin & Henson 2006).
Sessoms & Henson (2018) review the literature on specific applications of cognitive diagnostic
testing.

This article provides an introduction to the application of statistical methods to cognitive di-
agnostic testing. The task of diagnosing latent attributes on the basis of observed test responses
is closely connected to the statistical problems of clustering (e.g., Hartigan 1975, MacQueen
1967), classification (e.g., Bishop 1995, Fisher 1936, Ripley 1996), and latent class analysis (e.g.,
Langeheine & Rost 1988, Lazarsfeld & Henry 1968). With the practical demand of providing
interpretable diagnostic classification, one defining characteristic of cognitive diagnostic testing
is the incorporation of substantive expert opinion to define the domain of attributes underlying
an assessment, which restricts the space of possible latent classes, as well as the set of attributes
measured by each item (Tatsuoka 2009). In the following, we first introduce the general concepts
and frameworks of cognitive diagnostic testing, including early work, a selection of parametric
models, and nonparametric methods. We discuss the key statistical issues in cognitive diagnostic
testing such as parameter estimation, identification, and model/variable selection. Statistical ap-
plications for specific scenarios, such as adaptive testing, tracking learning over time, and adaptive
learning, are also briefly introduced. We conclude with a discussion of some ongoing and future
directions.
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2. APPROACHES TO COGNITIVE DIAGNOSTIC TESTING
2.1. Mastery Testing and Mastery Model

IRT models for the relationship between a continuous trait(s) and ordinal item response distri-
bution predated cognitive diagnostic testing (Birnbaum 1968, Lord 1980). Under a dichotomous
IRT model, the 7th examinee’s response to the jthiteminatest (=1,...,N,j=1,...,J), X}, is
assumed to follow a Bernoulli distribution with success probability

Pi(0) = PX;; = 116) = f(6:,8)), L.

where 6 is the latent ability of examinee 7, £ ; denotes the parameters associated with item (e.g.,
item difficulty), and f(-) is the item response function (such as the logistic or probit function). One
common assumption in IRT is local independence; that is, conditional on the measured latent
trait 6;, responses across questions (Xji, ..., Xjy) are independent. This enables one to write the
joint probability of observing a response vector x; = (x;1, . . . ,xi;)’ given 6; as the product of item
response probabilities for each individual item,
J
PXiy = i1, Xy =2y | 6) = [ [ BO)[1 - P6)]' ™. 2.
j=1

If one assumes that the responses across N total examinees are independent, the joint likelihood of

item parameters, { = (¢, ..., {;), and examinees’ ability parameters, § = (0;,...,0y)’, given the
observed response data x = (xy,...,Xy)/, can be written as
N J N J

L&, 6:0 = [[[[{B@r 11 - Bo—} =] [ £, [1 — £6, cp]“"'if]. 3.
i=1 j=1 i=1 j=1

The item and examinee parameters can then be estimated on the basis of Equation 3 and the ob-
served response data. The local independence assumption enables one to specify a latent variable
model for item responses by specifying an item response function.

Mastery testing based on the IRT framework may be regarded as a predecessor of cognitive di-
agnostic testing (Hambleton & Novick 1973, Lord 1980). It was proposed to provide decision rules
for mastery versus nonmastery on a criterion-referenced test. Different from norm-referenced
tests that rank individuals on a continuum, a criterion-referenced test yields measurement on
whether an examinee meets the performance standards for a particular domain (Glaser & Nitko
1970). Consider two levels of ability: 6,, a low ability level that is unsatisfactory for mastering the
domain, and 6, a high ability level that is satisfactory for the measured domain. The problem
of whether an examinee should be classified as a master, on the basis of the observed responses
(x;), can be formulated as a simple-versus-simple hypothesis testing problem (Neyman & Pearson
1933):

Ho:@;:@z, H1:9,':9]. 4.

A decision can be made by comparing the likelihood ratio at 6, and 6, given the observed responses
x; to a rejection region at a preset level of type I error.

The mastery model, which explicitly models the relationship between mastery status and the
observed responses, was subsequently proposed (e.g., Macready & Dayton 1977). Built upon latent
class models (Lazarsfeld & Henry 1968), in the mastery model, examinees are assumed to originate
from one of C a priori specified latent classes with a hierarchical structure. One special case is when
there are only two latent classes: masters of all items and nonmasters of all items. The assumption
of discrete mastery levels, instead of continuous latent traits, may be more consistently aligned
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with theories of developmental and educational psychology, in which the acquisition of skills or
knowledge occurs as qualitative jumps (e.g., Bloom 1956, Piaget 1950, von Davier & Lee 2019b).
Let v; denote the latent class membership of examinee i. The conditional probability of a response
vector x; given v; = v, (v, € {vy,..., v¢}) IS
L () T _ ()] i)
Pix;|vi=v,) = 1_[ [g]- A0 —yj)”f@f)] [(1 —g)! ”J@f)sj’ ‘ ] , 5.
j=1

where 1;(-) is a predefined function of the latent class membership v, thatis either 1 or 0, indicating
whether or not individuals in the cth proficiency class are capable of solving item j, if there was
no measurement error. These days, n; = n;(v;) is commonly referred to as the ideal response
on item j by examinee i. Moreover, g;, commonly termed the guessing parameter, denotes the
probability of a correct response by a nonmaster with 7;; = 0, and s;, the slipping parameter, denotes
the probability of an incorrect response (e.g., due to forgetting, a careless mistake) by a master
with n; = 1. Let 7. = P(v; = v,) denote the population membership probability of latent class
i.e., the probability that a randomly chosen examinee comes from the cth proficiency class, with
Zil 7, = 1. Then, the marginal probability of observing x; can be obtained by integrating out
the latent class membership,

c

P(x)) =Y P(x; | vo)m.. 6.

=1

Macready & Dayton (1977) discussed methods for (#) estimating model parameters,
s=(s1,...,8),8=(1,...,g),w = (m1,...,7c_1); (b) evaluating absolute model fit; and (¢) com-
paring models (e.g., models with different structural assumptions about latent mastery hierarchy)
on the basis of the marginal likelihood. Once a model is selected and its parameters estimated, as-
signing mastery class labels to examinees amounts to a classification problem (Bishop 1995, Hastie
etal. 2009, Ripley 1996), where examinee 7’ latent class membership v, is estimated to minimize a
loss function that depends on both the likelihood of v; given the observed responses and the cost
of different misclassification errors (e.g., falsely classifying a nonmaster as a master and vice versa).

2.2. Extensions to Multiple Attributes and a Framework for Cognitive Diagnosis

Mastery testing and mastery models allow for statistical decision-making on whether or not an
individual should be considered a master on a single domain. Indeed, this approach can sufficiently
inform many practical decisions, for example, whether an examinee should pass or fail a licensure
testand whether a student is well prepared to proceed to the next level. It is not difficult to imagine,
however, test items that are designed to be solved with multiple fine-grained attributes.

The late 1970s and early 1980s saw the advancement of computing power and, as a result, early
development of computer-based systems that automatically diagnose learners’ use of erroneous
rules in elementary arithmetics on the basis of their item responses (e.g., Brown & VanLehn
1980, Tatsuoka et al. 1980). In the example of the signed number subtraction problem —3 —
(=7) =?, one example of an erroneous rule is, “The student always subtracts the smaller absolute
value from the larger one and takes the sign of the number with larger absolute value in the
answer. The conversion of subtraction problems to addition is omitted and the difference
between addition and subtraction of two signed numbers seems to be ignored” (Tatsuoka 1983,
p- 346). These developments sparked research interest in psychometric methods for measuring
misconceptions based on observed arithmetic item responses. Tatsuoka & Tatsuoka (1983) and
Tatsuoka (1983, 1984) proposed the rule space method for diagnosing erroneous rules on the
basis of observed response vectors. The original rule space method relied largely on proficiency
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estimates and person-fit indices under a continuous IRT model to diagnose misconceptions.
However, it established a framework for cognitive diagnosis, which is characterized by (2) a
thorough analysis of the set of specific cognitive skills and knowledge (i.e., attributes) that are
required for solving each task and (§) the diagnosis of an examinee’s error resulting from a lack
of a required attribute(s) for a task (Tatsuoka 1990). Another framework that was independently
developed at approximately the same time was knowledge space theory (Doignon & Falmagne
1985). A knowledge state is defined as the subset of tasks within a considered domain that an
examinee is capable of solving, and whether an examinee is a master of a task may be explained by
her latent mastery of a number of skills/knowledge that the task demands (e.g., Falmagne et al.
1990). Heller et al. (2015) provide an analysis of the connection between cognitive diagnosis and
knowledge space theory. These statistical frameworks for the measurement of discrete knowledge
states are a building block of many well-known computer-based instructional systems, including
the PLATO system (Tatsuoka 1983), the ALEKS system (Doignon & Falmagne 2012), and the
Cognitive Tutor intelligent tutoring system (Anderson et al. 1995).

Here, we formally define the cognitive diagnosis framework. Performance on a test is assumed
to depend on the mastery status, or knowledge state (Tatsuoka 2009), of a collection of K
attributes, denoted o = («y, ..., ak). For simplicity, we assume binary latent attributes where
o € {0, 1} for each k, indicating mastery/nonmastery of the kth attribute, but this can be extended
to ordinal attributes where different levels of mastery are assumed (e.g., Chen & de la Torre 2013).
The attributes can be skills, procedures, and knowledge that are required for solving an item,
and the set of attributes assessed by a test is typically identified by domain experts (Tatsuoka 1990).
The attributes may be either parallel or hierarchical, where one is the prerequisite to mastering
another (Gierl et al. 2000, Leighton et al. 2004). In the latter case, the number of permissible
attribute patterns can be less than 2X. Consider a J-item test. The relationship between items and
attributes is defined via a Q-matrix, a J x K incidence matrix indicating the presence (g = 1)
or absence (g = 0) of a connection between each item and each attribute. We say an attribute & is
a requisite skill of item 7 if g = 1. As an illustration, consider the fraction subtraction assessment
(Tatsuoka 2009, p. 41), a J = 20-item test for basic subtraction operations that involved fractions.
Experts identified K = 8 measured attributes:

. converting a whole number to a fraction or mixed number,
. separating a whole-number part from a fraction part,

. simplifying before getting the common denominator,

. finding the common denominator,

1

2

3

4

5. borrowing one from the whole-number part,

6. column borrowing for subtraction of the numerators,
7. reducing the answer to the simplest form, and

8

. subtracting numerators.

For this test, the Q-matrix is a 20 x 8 matrix. As an example, question 2 requires solving 3 — 3.
To solve this question, a student would first convert % to g (attribute 4) and work with 6 — 3 on
the numerator (attribute 8). Correspondingly, ¢, 4 and ¢, s = 1, and the remaining elements in the

second row of the Q-matrix are 0; i.e.,
q1,1 cee q1,8
0 001000 1

q20,1 . q208
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For an item that requires multiple attributes, a natural question that arises is how different skills
work together to influence the correct response probability. For the fraction question above, a
master of the question must be able to perform both required steps (attributes 4 and 8). This is
known as a conjunctive item, where an ideal response of 1 requires mastery of all requisite skills.
In the following section, models assuming other conjunction rules are introduced. The Q-matrix,
together with a conjunction rule, allows one to identify the ideal response to a question j by ex-
aminees with attribute profile . The ideal response, as seen in the mastery model by Macready &
Dayton (1977) (Equation 5), is the response that would have been observed were there no mea-
surement error, and in general, it can be written as a function of « and the jth row of the Q-matrix,
q;, nj(et, q;), which is either 0 (nonmaster) or 1 (master). Tatsuoka (1995, 2009) formulated the
task of cognitive diagnosis as a pattern recognition problem. She discussed the connection be-
tween the task of classifying an examinee’s & and the task of statistical pattern recognition and
classification (e.g., Ripley 1996). In the latter, on the basis of the observed patterns from a set
of feature variables, an observation is grouped into one of C predetermined groups. For cogni-
tive diagnostic testing, the C predetermined groups are knowledge states (i.e., & profiles) that
are permissible, given the expert-defined domain of K assessed skills and their hierarchical struc-
tures. Evaluating the similarity between an examinee’s observed response vector and the ideal
response vectors for each proficiency class (derived on the basis of Q and the conjunction rule)
enables classification of examinee knowledge state based on the latent feature space formed by
attributes.

2.3. Probabilistic Diagnostic Classification Models

Even for a well-designed cognitive diagnostic test with a correctly specified Q-matrix, the observed
responses of an examinee can deviate from the ideal response vector for his/her proficiency class.
In the development of a Unified Model, DiBello et al. (1995) provided a conceptual analysis of
the possible sources of stochastic variation in responses:

m Strategy: The choice of strategy by some examinees can differ from what the expert-defined
Q-matrix presumes, and a correct response may arise from other routes.

m Positivity: A master of a skill may fail to apply it correctly to a question, yet a nonmaster
may accidentally apply the right strategy.

m Completeness: A correct response may require skills or ability not covered by the K skills; an
example is higher-order processing (Samejima 1995), such as reading, gathering and filtering
information, and strategizing a solution.

m Slips: Other random errors that cannot be attributed to the aforementioned sources can also
occur, resulting in deviations between observed and Q-predicted responses.

Built on the cognitive diagnosis framework, many parametric models were developed to ac-
count for the stochastic relationship between the theorized attribute profile and the observed
responses. These models are commonly referred to as cognitive diagnosis models (CDMs) or di-
agnostic classification models (DCMs) (e.g., Rupp et al. 2010). DCMs differ in their complexity,
in their assumptions on how different requisite skills are combined to affect the correct response
probability for an item, and in how measurement error enters the model. Thorough introductions
to various DCMs can be found in DiBello et al. (2006), Hartz (2002), Rupp et al. (2010), and von
Davier & Lee (2019a). Here, we survey a few examples.

Before we move on to specific models, it is worth mentioning how proficiency class can be
estimated on the basis of a parametric DCM. Similar to IRT, DCMs, which are restricted latent
class models, commonly assume local independence of the item responses conditioning on the
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measured attributes; i.e.,
J
PXir, ..., Xy | ) = [[PCX; | ).
j=1

With the local independence assumption, specifying an item response function (e.g., the probabil-
ity of a correct response for dichotomous items) amounts to specifying a model, i.e., the likelihood
function. In the next section, we provide an overview of DCM parameter estimation. For now, con-
sider the case in which the item and population parameters (£, ) are known and the only unknown
parameters are the a;s for the examinees. Then, the likelihood of e; given examinee /s observed
responses is

J

Liew;; x;) = [ [ POy = i | o). 7.
j=1

The likelihood in Equation 7 allows for the estimation of a;, the attribute pattern of examinee

i, based on the examinee’s observed response vector. There are multiple ways to fulfill this task,

such as maximum likelihood estimation, where &; is chosen to maximize Equation 7, and Bayesian

posterior mean or mode, where the posterior distribution of e; is proportional to the product of

the likelihood and some prior distribution.

One of the simplest and most studied DCMs is the DINA (deterministic input, noisy “and”
gate) model (Haertel 1990, Junker & Sijtsma 2001). DINA is a conjunctive DCM, where examinee
ineeds to master all attributes required by item j to answer correctly with probability (1 — s;), and
missing any required attribute will result in a correct response probability of g; < 1 — s;. In other

words,
P(X,; =1 |a) = (1 —s;)"g, ", 8.
where
K .
nij = l_[ai{". 9.
k=1

A disjunctive counterpart to the DINA model is the DINO (deterministic input, noisy “or”
gate) model (Templin & Henson 2006), where mastery of one requisite skill can completely com-
pensate for the lack of others. Only one of the required attributes for item j is needed for a correct
response probability of (1 — ), and for those examinees without any of the required attributes,
the probability of a correct response is g;. The DINO model differs from the DINA model in how
the ideal response relates to q; and a:

K
ng=1-]]0 —aw)r. 10.

k=1
Both the DINA and DINO models have two parameters for each item, slipping (s;) and
guessing (gj), which capture the non-Q-explained stochastic fluctuations in responses. Different
latent classes can take only one of two possible correct response probabilities, g; or 1 — 5;. One
should also note a close connection between the DINA/DINO models and the mastery model
by Macready & Dayton (1977) in Equation 5, where the DINA ideal response (Equation 9)
is 1 for any proficiency class &, > q; (i.e., each element of a, is greater than or equal to q;)
and 0 otherwise and the DINO ideal response (Equation 10) is 1 for any eq; > 0. Although
one assumes a conjunctive relationship and the other assumes a disjunctive relationship among
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requisite skills, K6hn & Chiu (2016) showed that the DINA and DINO models are algebraically
equivalent, where one can be reparameterized into the other.

The DINA and DINO models, as suggested by their names (i.e., deterministic input), assume
that masters of a required attribute (i.e., input) will have probability 1 of successfully retrieving it
on a task and that nonmasters will have probability 0 of retrieving it on a task. The noise of the
DINA or DINO model comes at the conjunction stage (i.e., the “and”/“or” gates). Two related
models, which assume that the noise comes at the input stage, are the NIDA (noisy input, deter-
ministic “and” gate) (Junker & Sijtsma 2001, Maris 1999) and NIDO (noisy input, deterministic
“or” gate) (Templin & Henson 2006) models. The NIDA item response function is

K
Py =1 a)=[I(1 — sp)ieg) e, 1.
k=1

where, for each attribute %, 5, and g; are the probabilities that a master fails to apply it and a non-
master applies it by chance, respectively, the same across all items. The “and” gate is deterministic;
that is, if all requisite skills are successfully retrieved for an item, the correct response probabil-
ity is 1. The NIDO model, in contrast, requires successful retrieval of any requisite skill by an
item.

In reality, an item is neither completely conjunctive nor completely disjunctive but is some-
where in between. An individual who masters more (but not all) requisite skills for an item may
have a higher chance of a correct response than someone who masters fewer of the requisite skills.
For instance, on a multiple-choice question with four options, an individual with partial mastery
of the required skills may have a higher chance of selecting the correct answer, as she is capable
of ruling out some distractors. This calls for models with more relaxed assumptions. One model
that accommodates this relaxation is the reduced reparameterized unified model ({RUM) (Hartz
2002), where the correct response probability is

K

7jk(1—ay)

P =1la) = [ [ ™,
k=1

That s, the probability of responding 1 is 7} for someone with all attributes required by the item,
and a penalty 7;; € [0, 1] is applied for lacking the required attribute £. The rRUM is algebraically
equivalent to a more general NIDA model, where attribute-level slipping and guessing can differ
across items.

Rather than explicitly defining how skills combine and how measurement error arises in the
model, general DCMs have also been proposed. For many of them, the item response func-
tion shares connections with generalized linear models (Nelder & Wedderburn 1972), where a
transformation (via a link function) of the correct response probability can be written as a lin-
ear combination of main effects and (possibly) higher-order interactions of the requisite skills
(ags with g = 1). Here, we present three examples:

m The first example is the general diagnostic model (GDM) (von Davier 2005), with item
response function

1
1 +exp[—(A; + D p; Aejgjectin)]
Note that giaz = 1 when k is a requisite skill for item j and is mastered by examinee 7. The
model can extend to include higher-order interactions among requisite skills (von Davier

2019), for example, as seen in the following model.
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m The second example is the loglinear CDM (LCDM) (Henson et al. 2009), with item
response function

K K
logitP(X;; =11 ;) = 2;+ Y Melcugie) + Y O M @iequtivqi) + ... 13
k=1 k=1 K>k
Higher-level interactions are permitted for the attributes required by j. For identifiability
purposes, Henson et al. (2009) suggested imposing a monotonicity assumption such that
mastering any additional skills results in a nondecreasing correct response probability.
m The third example is the generalized DINA (G-DINA) model (de la Torre 2011); here,

gPX; =1 ] =2+ Z Ajrctip + Z Z M Qi hip

Vg jp=1 Vg jp=1 V/e’:qjkrzl,k’>k

+ -4+ )\jkk/k"“. 1_[ Uiy 14
kig jp=1

where g(-) is a link function such as the identity link or the logit link.

Interpretations of the three models are quite similar: A; is the intercept of the linear predictor,
which affects the correct response probability of the proficiency class of nonmasters of all at-
tributes; A, is the main effect of possessing a requisite skill £ on item j; the slope coefficients for
higher-order interactions, A ..., describe how requisite skills combine to influence correct re-
sponse probability. Not all main effects or interaction terms need to be active; some s can be
restricted to 0 on the basis of model assumptions. All three models subsume many restricted mod-
els as nested cases. For instance, under the G-DINA model (de la Torre 2011), using an identity
link and setting all but A; and A ,—1) to 0 yield the DINA model, and similarly for the GDM
and the LCDM. This approach allows for model fit comparisons among different item response
functions, where an appropriate one can be chosen to balance flexibility and parsimony.

Lastly, we note a number of ways in which a model involves both discrete attributes and a con-
tinuous trait or traits. The idea that different (continuous) abilities can combine in a nonadditive
manner to affect correct response probability is seen in many continuous item response models;
see DiBello etal. (2006) for a review. Continuous traits may also be introduced to model the resid-
ual effect on item response unexplained by an expert-specified Q. An early example is the unified
model by DiBello et al. (1995), which incorporates the four sources of variation introduced at the
beginning of this subsection, with item response function

K
P(X; = 1] ;,0) = d; [ [(1 = s;0)*tg, P, (6) + (1 — d)Py,(6)
k=1

that depends on a residual trait 6, in addition to the attribute profile «;. This person-specific
continuous trait is used to explain response variations due to alternative strategies [P}, ()] not
specified in Q and those due to the demand for additional skills (i.e., completeness), P, (6). This
model, while conceptually meaningful, is statistically unidentifiable (Jiang 1996), leading to sim-
plifications such as the reparameterized unified model (RUM, i.e., the fusion model) (Hartz 2002,
Roussos et al. 2007),

K w(1—ay
P(X"/' =1, 91') = [”J%H/;lrfq'ik(l A)] F.(0)). 15.

The aforementioned rRUM (Hartz 2002), without the completeness term involving continuous
0, is the further simplification of the RUM.
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Another way in which continuous (4 > 1-dimensional) 6, as a high-order latent trait (de la
Torre & Douglas 2004), can be incorporated is through the joint distribution of discrete attributes,
specified by

K
Ple; | B,6) =] | Plevi | 6:.Bro, By) = 16.

k=1

l_[ 1+ exp[ (,Bko + B0

"This approach allows for the use of DCM as the measurement model to explain observed item
responses but at the same time generate an overall continuous proficiency estimate that is useful
for summative evaluations, comparisons, and joint modeling with other continuous traits (e.g.,
speed) (Wang et al. 2018b, Zhan et al. 2018a). Another by-product of the higher-order model
is its computational advantage. With the K attributes assumed conditionally independent given
0, one can circumvent working with the mixture of 2X discrete latent classes. At the end of this
review, we discuss another current development in which continuous random effects are added to
DCMs to account for residual dependence between items for tests with testlets.

2.4. Nonparametric Methods for Diagnostic Classification

Applying the aforementioned parametric DCMs to diagnostic classification requires estimation of
model parameters. When examinees’ ;s are assumed to be random samples from an underlying
population, the model parameters often consist of item parameters and structural parameters that
characterize the distribution of different proficiency classes in the population. de la Torre & Lee
(2010) suggested N = 500 to be a sufficient sample size for DINA parameter recovery when the
number of attributes is K = 5. Reliable parameter estimates for more complex models and larger
number of attributes would demand even larger sample sizes. However, such a large sample size
is often unattainable for small-scale, classroom assessments, where cognitive diagnostic testing
shows its merit as a formative assessment.

Nonparametric methods for clustering and classification provide viable alternatives to para-
metric models for cognitive diagnosis. Nonparametric clustering methods for cognitive diagnosis
aim to infer latent proficiency classes on the basis of observed responses using clustering algo-
rithms (e.g., Chiu et al. 2009). Nonparametric classification methods for cognitive diagnosis (e.g.,
Chiu & Douglas 2013), in contrast, employ distance-based algorithms to classify individuals into
predefined proficiency classes, and they were shown to be not only usable for any sample size
but also computationally inexpensive. Chiu & Koéhn (2019) thoroughly review nonparametric
methods in cognitive diagnostic testing. We give a brief primer to the problem, methods, and
theories behind nonparametric clustering and classification for cognitive diagnosis here, although
this survey of the literature is by no means complete.

Nonparametric clustering and classification in cognitive diagnosis greatly leverage methods in
statistical and machine learning for clustering (unsupervised learning) and classification (super-
vised learning). In particular, the rule space method (Tatsuoka 1983, 2009) discussed above can be
seen as a nonparametric classification approach, where the diagnosis of mastery profiles is formu-
lated as a pattern recognition problem. The key distinctions, again, are that (#) cognitive diagnostic
testing restricts the latent space to the latent proficiency classes defined by the K assessed attributes
and (if applicable) their hierarchical relationships, and (b) the relationship between observed fea-
tures (i.e., item responses) and the underlying latent classes are constrained by the Q-matrix.
Classical methods for clustering, such as the £-means algorithm (e.g., Hartigan & Wong 1979), the
hierarchical agglomerative clustering algorithm (e.g., Johnson 1967, Ward Jr. 1963), and meth-
ods for feature-based supervised classification (e.g., Bishop 1995, Fisher 1936, Ripley 1996), being
mostly data driven, are not straightforwardly aligned with theory-driven psychometric practice,
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which emphasizes interpretability (e.g., diagnostic reports that can be understood by students and
teachers) and reliable and valid measurement of theorized constructs based on psychological or
educational theory (Allen & Yen 2001, Cronbach & Meehl 1955). To oversimplify, statistical prob-
lems unique to nonparametric cognitive diagnosis are (#) how expert inputs (e.g., the Q-matrix)
should be incorporated to guide the clustering and classification of individuals into proficiency
classes and (b) whether and when the true knowledge state structure and examinee proficiency
classes can be recovered using data-driven methods for clustering and classification.

Cluster analysis aims to identify maximally homogeneous groups, with observations across
groups maximally separated, on the basis of either P-dimensional feature variables summa-
rized in an N x P matrix (e.g., k-means clustering; Hartigan & Wong 1979) or pairwise
distance/dissimilarity between observations, which can be summarized as an N x N matrix (e.g.,
hierarchical clustering; Johnson 1967, Ward Jr. 1963). In nonparametric clustering for cognitive
diagnosis, raw scores on individual questions are aggregated into attribute-wise sum scores based
on the Q-matrix. Specifically, denote the response matrix by X7, where Xj; is the score on item
j by examinee 7. The attribute-wise sum scores, W = XQ, are an N x K matrix, with the (7, k)th
entry, ZL] XijQji, being the sum score of examinee i on all items that involve skill . W can be
used as the feature variables for £-means clustering or to constructan N x N pairwise dissimilarity
matrix for hierarchical clustering, whose [7, 7]th entry is the dissimilarity between examinee 7’s and
examinee ;s observed responses, computed by the Euclidean distance of their attribute sum score
vectors (Chiu et al. 2009).

Cluster analysis, as an unsupervised algorithm, identifies groups that do not come with inherent
interpretations. Hence, one important question is when nonparametric clustering for cognitive
diagnosis can separate individuals into their true underlying proficiency classes.

Definition 1 (Completeness of a Q-matrix). A Q-matrix is complete if it guarantees
the identifiability of all realizable proficiency classes among examinees. Specifically, let
S(a) = E(X | &) be the vector of expected scores on a test given latent attribute profile
a. Then Q is complete if for any two &, a*s from the set of possible attribute profiles,
S(a) = S(e¢*) = &« = ™.

Intuitively, a Q-matrix of a test is complete if no two different proficiency classes yield identical
expected scores on all J items. An incomplete Q implies that the given test cannot uniquely identify
all underlying latent proficiency classes on the basis of the observed response data. Two things are
worth noting here. First, whether different latent classes can be uniquely identified depends on
the structure of the Q-matrix, i.e., the set of skills that each item measures. Second, because the
definition of Q-matrix completeness involves E(X | &), the completeness of the Q-matrix of a test
is always in reference to the true underlying item response model. In other words, for the same
test, a Q-matrix thatis complete for rRUM might not necessarily be complete for the DINA model
(Kohn & Chiu 2017).

This definition of completeness was introduced by Chiu et al. (2009) in the asymptotic clas-
sification theory for cognitive diagnosis. It provides a theoretical justification for the use of the
hierarchical agglomerative clustering algorithm for clustering individuals into proficiency classes,
when Q is complete. In particular:

m If the data-generating model is DINA, the Q-matrix is complete if and only if it contains an
identity submatrix after row permutations. In other words, for each k € {1,...,K}, at least
one item assesses skill & exclusively. This provides a practical guide to the design of a test
that has complete Q under the DINA model.
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m Under the DINA model, if the Q-matrix is complete, then the expected attribute-level sum
score vector, T(e) = E(W | &), uniquely identifies &; that is, T'(et) # T'(a*) for & # e*. This
allows for the use of attribute-wise sum scores for clustering.

m The hierarchical agglomerative clustering algorithm separates individuals into their true
latent classes when the underlying model is a finite mixture model.

These lemmas ensure that the probability that the hierarchical agglomerative clustering algo-
rithm separates individuals into their true latent classes approaches 1 as the number of items, J,
approaches infinity. Later work extended this to DCMs other than DINA (e.g., see Chiu & Kéhn
2019, K6hn & Chiu 2017), but the conditions for Q-completeness and the separation of profi-
ciency classes by attribute-wise sum scores could differ. Intuitively, this theory justifies the use
of hierarchical clustering to identify groups that correspond to the theorized latent proficiency
classes. Whether similar theoretical properties can be established for #-means clustering remains
an open problem, and diagnosing the proficiency classes requires postclustering labeling, e.g., find-
ing a closest match between within-cluster attribute sum scores and candidate attribute vectors
(Chiu et al. 2009).

Nonparametric classification methods for cognitive diagnosis, in contrast, are designed to clas-
sify examinees into predefined groups of attribute proficiency. One method proposed by Chiu &
Douglas (2013) using distance-based algorithms seeks optimal alignment of an individual’s ob-
served response vector (x;) and the ideal response vector (1) of each candidate proficiency class c.
That is,

&; =arg min_ d(x;,1,),
cefl,...,C
where d is a distance measure, such as the weighted or unweighted Hamming distance, and 7, is
either the conjunctive (Equation 9) or the disjunctive (Equation 10) ideal response for class o,
given Q. Wang & Douglas (2015) showed the consistency of the nonparametric estimator & under
certain regularity conditions for a number of conjunctive models (e.g., DINA, NIDA, rRUM)
as the true data-generating model. Recognizing that a true data-generating model may not be
completely conjunctive or disjunctive, but somewhere in between, Chiu et al. (2018) proposed a
generalized nonparametric classification method, where the ideal response to item j for a class Z, n;,

was taken as a convex combination of the conjunctive [nﬂ] and disjunctive [

1] ideal responses;

ie.,
nj) = wzmﬁ +(1 - wlj)n;‘i)'

For an item that measures K* < Kattributes, /indexes up to 25" proficiency classes that the item can
distinguish, termed equivalent classes. Thus, equivalent classes that share the same mastery pattern
on the K* attributes but differ on the remaining K\K* share the same /. The weight parameters,
wy;, can be estimated from the data on the basis of initial estimates of & (e.g., using the conjunctive
ideal response), and the final attribute classification can be derived on the basis of the weighted
ideal responses.

Comparing model-based and nonparametric classification via simulations, Chiu & Douglas
(2013) showed that, when the true data-generating model is known and accurate estimation of a
parametric model is feasible, model-based classification provides more efficient and reliable mea-
surement. However, nonparametric classification provides a viable alternative when parametric
inference is not feasible, for example, when the sample size is small. Other classifiers may also be
used for nonparametric classification; one example is maximizing the cosine similarity between
observed and ideal responses (von Davier & Lee 2019b), a commonly adopted distance measure
in statistical learning.
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3. STATISTICAL INFERENCE

In this section, we discuss some of the issues central to statistical inference with cognitive diagnos-
tic testing. We focus primarily on inferences based on parametric DCMs. Central to the discussion
are (#) parameter estimation; () model identifiability; and (¢) Q-matrix learning and refinement,
which are closely connected to model fit and model/variable selection. Our hope is to provide a
primer on them, but we omit the full technical discussion.

3.1. Parameter Estimation

As the above discussion shows, parametric DCMs can take many different forms, some involv-
ing continuous traits and some allowing ordinal observed responses. For clarity of presentation,
consider the most common case of a DCM with binary attribute patterns (i.e., mastery versus
nonmastery), binary observed responses (correct versus incorrect), and item response function

P =1]w,¢;q;). 17.

An example is the DINA item response function in Equation 8. Here ¢; is the item parameter
vector for j (e.g., 5j, gj for DINA). Although we include q; to emphasize that the correct response
probability depends on the interaction between the examinee’s mastery and the item’s attribute
requirements, q; is conventionally expert-specified and hence not a parameter of the model. The
joint likelihood of the unknown parameters @, ¢ (i.e., &; for all /s and ¢; for all js), given the N x J

response matrix X = (X1,...,XN), 1S
N J
L &%) =[[]T [P =11 @6, 00711 = PG =11 2;,8,,q)1' 7. 18.
i=1 j=1

Several approaches exist for parameter estimation. The firstis the joint maximum likelihood es-
timation via maximizing Equation 18. However, the number of parameters in the joint likelihood
in Equation 18 grows with sample size N, and, similar to continuous IRT models, joint maxi-
mum likelihood estimation leads to inconsistent parameter estimates (Baker & Kim 2004). Chiu
et al. (2016) suggested initializing the examinees’ attribute pattern estimates with nonparametric
classifications on examinee mastery patterns to improve estimation stability.

More commonly adopted, under a frequentist framework, is marginal maximum likelihood es-
timation. Here, ;s are assumed to be multinomial, drawn from a distribution of possible attribute
patterns in the population, with a population membership parameter & = (ny,...,7¢), where
7. = P(e; = ;) = p(et;) and C is the total number of realizable proficiency classes. This allows
the marginal likelihood of ¢ to be written by integrating out the as:

N C
L) =[]D P | e =, O)plexs), 19.

i=1 =1

with corresponding log-likelihood

N C
1§) =log L(&:x) = ) Jlog |} P(x; | & = o, O)plexs) |- 20.

i=1 =1
Direct maximization of Equation 20 is not straightforward. The expectation-maximization (EM)
algorithm provides a way to find ¢ that maximizes Equation 20 iteratively (Dempster et al. 1977).
The idea is that the unobserved latent class memberships, just like the unobserved latent abilities
in IRT models (Bock & Aitkin 1981), are treated as missing data and the responses x as observed

data; the two combined are referred to as the complete data. The EM algorithm initializes ¢ with
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some starting value and iterates between two steps: an E-step, which computes the expectation of
the complete data likelihood, under the conditional distribution of the missing data & given the
observed responses and current value of ¢, and an M-step, where the conditional expectation in
the E-step is maximized with respect to ¢. de la Torre (2009) adapted the EM algorithm to the
DINA model and derived the analytical expressions for the iterative updates:

m Initialize item parameters ¢©.
m Atiterationr=1,2,...
— E-step: For each attribute classc = 1,.. ., C, compute I, = Y~ | Pla; = &, | x;, £~ V]. For
N Ple — gl
i=1 Xij i = | x;,¢ 1.
O_ LR o _ &

— M-step: For each j, set 50 =14t g = 1—0', where, for the classes corresponding to
J J

masters of j with DINA ideal response 7, = 1,

=2 I B=7) R

enje=1 enje=1

each j, ¢, compute Rj, = >°

and for the nonmasters classes such that 7;, = 0,

=31, R=)> R.

enj=0 cnj=0

m Stop when the termination criterion is reached (e.g., after M iterations or if change of ¢
from ¢£7~Y is less than some preset tolerance) and set & = ¢%).

Standard error estimation for ¢ is possible via the asymptotic approximation on the basis of the
inverse of the Fisher information matrix; see de la Torre (2009) for details. The EM algorithm for
DINA [where ¢; = (s;,g;)] is generalizable to more complex models, including general models
such as G-DINA. Software implementation is available through the G-DINA R package (Ma &
de la Torre 2020).

Bayesian posterior inference is another option. Let 8 denote all parameters, including e, ¢, and
possibly others (e.g., population membership 7). Then the posterior distribution of the parameters
given the observed data is proportional to the product of the prior density and the likelihood:

£®1%) x Pix | 8)p(6). 21,

Markov chain Monte Carlo (MCMC) sampling algorithms are often applied: Samples of 6 are
sequentially drawn on the basis of some transition kernel (e.g., Gibbs sampler; Albert & Chib
1993) to eventually converge to the (stationary) posterior distribution. Inferences, such as point
estimates (and credible intervals) for item parameters and attribute mastery profiles, can then
be drawn on the basis of the posterior samples. For DCM parameter estimation, Metropolis-
Hastings within-Gibbs (Hastings 1970) sampling algorithms are quite flexible in that they can
be adapted to various models and can be readily implemented in many software programs (e.g.,
BUGS; Lunn et al. 2009), but acceptance-rejection sampling requires tuning and can be computa-
tionally costly. Full Gibbs-sampling algorithms have been proposed for a number of well-known
DCMs (e.g., Culpepper 2015, Culpepper & Hudson 2018), where carefully chosen priors and
augmentation schemes enable sampling in each iteration from well-known distributional families
without acceptance-rejection. Software implementation is available through the edm R package
(Balamuta et al. 2020).

Even flexible algorithms for parameter estimation face computational challenges. For example,
MCMC requires sequential sampling with typically tens of thousands of iterations until conver-
gence. Alternatives to MCMC for Bayesian inference with DCMs, such as Hamiltonian Monte
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Carlo samplers implemented in STAN (e.g., Carpenter et al. 2017, Jiang & Carter 2019) and varia-
tional inference (e.g., Blei et al. 2017, Yamaguchi & Okada 2020), were recently adopted. Another
challenge to both frequentist and Bayesian parameter estimation is that, as K increases, the num-
ber of latent classes C, which can be as many as 2%, increases exponentially, making the evaluation
of P(a, | x, ¢, .. .) computationally burdensome, if not infeasible, for large Ks. Methods have been
proposed in the past few years to leverage advanced computational methods (e.g., reformulat-
ing a DCM as a network model and applying noise contrastive estimation; von Davier 2018) and
computing power (e.g., parallel computing; Khorramdel et al. 2019) to address the computational
challenges of DCMs, but open problems and opportunities for acceleration of algorithms remain.

3.2. Identifiability

Regardless of which parameter estimation scheme from Section 3.1 is adopted, model identifia-
bility is a prerequisite for consistent parameter estimation and valid inference (Gabrielsen 1978).
Overparameterization can lead to nonidentifiability. Unrestricted latent class models with binary
responses are not identifiable (Gyllenberg et al. 1994); in other words, the parameters do not
uniquely determine the corresponding likelihood (Casella & Berger 2002). For DCMs, which are
restricted latent class models, it is therefore essential to check whether the appropriate restric-
tions are in place to meet identifiability conditions, before proceeding to model estimation and
inferences.

One may notice a resemblance of the definition of statistical identifiability and the definition
for the completeness of the Q-matrix in Definition 1, which examines whether expected responses
can uniquely identify a. For most discussions about identifiability of parametric DCMs, however,
;s are assumed to be random effects from a population with membership probabilities &, and the
goal instead is to identify the item parameters ¢ and =, that is, whether for two sets of parameters

(¢ m) # @7,

PX=x10,¢m)#PX=x|0Q,¢ 7). 22.
Checking this condition is not straightforward. Many theoretical results for the identifiability
conditions of DCMs or restricted latent class models were instead established by checking an
equivalent condition involving a T-matrix (e.g., Gu & Xu 2019, 2020; Xu 2017; Xu & Shang 2018;
Xu & Zhang 2016). Following Liu et al. (2013), T(Q, ¢) is a 2 x 2% matrix whose rows index the
possible response patterns x € {0, 1}’ and whose columns index the possible proficiency classes

o € {0, 1}X. Each entry, ,4(Q, £), is the marginal probability that an examinee in proficiency class
o answers correctly on all items whose corresponding entry in x is 1; i.e.,

txa(Q,8) = PX = x| Q, ¢, ),

with X > x meaning Xj > x; across all J entries (i.e., items). Then, checking Condition 22 becomes
equivalent to checking whether

T(Q,9)r # T(Q, 0w 23.
for (¢, ) # (L, ). This is because the dot product between each row of T'(Q, ¢) and =,

C
T.(Q O =Y PXx>x|Q¢a)Pla=a)=PXx>x|Q¢m),

=1

gives the marginal probability of X > x in the population, which has a one-to-one mapping with
P(X =x|Q,¢,n)in Condition 22.
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Easily checkable conditions for DINA model identifiability were proposed in Xu & Zhang
(2016), later extended to sufficient and necessary conditions in Gu & Xu (2019). The DINA model
parameters s, g,  are identifiable if and only if

m the Q-matrix is complete—i.e., upon row permutations, it takes the form

e
o (%)

where Zg is a K x Kidentity matrix and Q* corresponds to the remaining J — K items—and
m cach attribute # is assessed by at least three items.

The identifiability of DCM:s has direct practical implications for the design and administration of
cognitive diagnostic testing. For example, for a test that assesses K = 3 skills, there needs to be at
least 1 item exclusively assessing each skill and a minimum of J = 9 total items (3 items for each
skill) for drawing valid statistical inference on the basis of the DINA model.

Because DINO is algebraically equivalent to DINA (Kohn & Chiu 2016), the same iden-
tifiability results for DINA apply. Beyond specific DCMs like the DINA and DINO models,
identifiability conditions have also been established for some general restricted latent class mod-
els. Xu (2017) provided sufficient conditions for identifiability of a general restricted latent class
model with parameters & and ©, with ® being a J x 2% matrix with 0;0 = P(X; = 1| &), repre-
senting the probability of a correct response on each item by each proficiency class. Here, the
parameter space of © is restricted by the Q-matrix and the underlying model. Fang et al. (2019)
established generic identifiability results for general restricted latent class models allowing for or-
dinal attributes and responses. Chen et al. (2020) established identifiability conditions for a sparse
latent class model. In most cases, these identifiability conditions are easily checkable on the ba-
sis of the structure of the Q-matrix or other incidence matrices that characterize the relationship
between items and proficiency classes. However, models with less restrictive assumptions gener-
ally pose more requirements on test design (e.g., more than one identity matrix in the Q-matrix)
for identifiability, and for the more general models, complete characterization of identifiability
is not yet available. Xu (2019) provided a detailed technical introduction to the identifiability of
restricted latent class models. In addition, the conditions for strict identifiability can be difficult to
meet in some scenarios. For example, it might be practically infeasible to design items that assess
only a single attribute for some skills. To this end, Gu & Xu (2020) proposed a general framework
for checking the strict and partial identifiability of restricted latent class models, where parameters
of a restricted latent class model may still be partially identified, even if the strict identifiability
conditions are not met.

3.3. Learning and Identifying the Q-Matrix

So far in this review, we assume the Q-matrix to be known and provided by content experts and
test developers. In reality, an expert-defined Q-matrix is subject to misspecification, which can lead
to biased parameter estimates and inaccurate diagnostic classifications (Rupp & Templin 2008).
This calls for statistical methods to refine or estimate the Q-matrix.

In Q-matrix refinement, a researcher works with an expert-defined Q and uses objective indices
to determine, item by item, whether and how the item’s ¢g-vector can be modified to improve fit.
As an example, de la Torre (2008) proposed a Q-matrix validation method on the basis of an item
discrimination index, ¢;. The intuition is as follows: A correctly specified q; vector, which requires
K* < K attributes, should differentiate the 25" equivalence classes involving the K* requisite skills,
each containing equivalence classes of as associated with the same correct response probability
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for item j. The task of Q-refinement is hence transformed to finding a minimum set of K’ skills
such that the resulting ¢, a measure of between-equivalence-class variance in correct probabil-
ity for j, is adequately close to the maximum achieved by q; = 1 (with 2X equivalent classes). An
initial expert-defined Q is used to estimate the parameters of the G-DINA model (de la Torre
2011; see Equation 14 in Section 2.3). Then for each item j, ¢? is computed for each candidate
Q-vector @, and the most parsimonious qj; that is adequately close to the maximum is chosen to
replace the original expert specification, q;. Chiu (2013) proposed another Q-matrix refinement
method based on nonparametric classification: An initial expert-defined Q is used to obtain exam-
inees’ preliminary proficiency class classifications. Subsequently, the algorithm iterates between
(#) updating, one by one, items’ ¢g-vectors by minimizing the within-equivalent-class residual sum
of squares, RSS; = M Y icc, Xij — nwj)?, and (b) reestimating proficiency classifications until
no item’s RSS can be improved.

In Q-matrix learning, in contrast, the researcher estimates the Q-matrix directly from the ob-
served data. Liu & Kang (2019) provided a thorough introduction to this problem and highlighted
two key statistical issues of concern:

m Statistical identifiability: whether the Q-matrix, together with the remaining DCM pa-
rameters ¢, 7, can be identified, and if so, when. The problem of identifiability becomes
more challenging when the Q-matrix is an additional unknown parameter, which requires

checking whether (¢, 7, Q) # (Z, 7, Q) yields
P(X=X|;5n’Q>¢P(X=X|Z’7_{,Q_) 24.

Depending on the underlying true model from a multitude of plausible models, the con-
ditions for Q and parameter identifiability differ. Liu et al. (2013) provided sufficient
conditions for consistent estimation of Q, up to column swaps (i.e., permutation of the order
of attributes), when the underlying DCM is DINA (or equivalently DINO) and the guessing
parameter is known. The sufficient conditions were given by (#) nonempty attribute classes
in the population (77, > 0 for any class ¢); () monotonicity, in that the true DINA parameters
satisfy 1 — 5; > g; for all items; and (¢) Q-matrix completeness, in that the true underlying
Q contains an identity submatrix after row permutations. Chen et al. (2015) extended the
results to unknown guessing parameters under two additional conditions: (4) At least three
items assess each skill, and (e) there are at least two identity matrices in the true Q after
row permutations. For general restricted latent class models for both binary and ordinal at-
tributes, Fang et al. (2019) provided sets of conditions for the identifiability of items’ partial
information structure, that is, the equivalent classes of attribute patterns that an item is able
to separate.

m Computational intensity: Estimating Q involves searching among all 27X possible inci-
dence matrices, in addition to the model parameters (¢, ). Two plausible estimators are
(@) the maximum likelihood estimator (Liu et al. 2012),

QML =arg mélX n{lax L, ®, Q; x),

where L(-) is the marginal likelihood of parameters integrating out o given observed
responses X, and () an estimator that minimizes the L, distance between the model-implied
distribution and the empirical distribution [Is(x)] of the response vector (Liu et al. 2013):

gl7irn Z |P(x) - P(X | Q: ;, JT)|2.

vxe{0,1)/

www.annualreviews.org o Cognitive Diagnostic Testing

667



Annu. Rev. Stat. Appl. 2023.10:651-675. Downloaded from www .annualreviews.org

Access provided by 88.128.88.37 on 06/05/23. See copyright for approved use.

668

An exhaustive search over Q :{Qx : ¢;x € {0,1}}, however, is computationally costly.
Leveraging methods for regularization and variable selection (e.g., Hastie et al. 2009, 2015),
Chen et al. (2015) reformulated the problem of Q estimation as revealing a sparse relation-
ship between attributes and items: Recall that the general DCMs in Section 2.3, such as the
GDM (von Davier 2005), the G-DINA model (de la Torre 2011), and the LCDM (Henson
et al. 2009), have a linear predictor of the item response model that involves main effects,
a4s,and interactions, [ [, @it - . .s. Let A denote the matrix of A parameters of each item
for a saturated model with all main effects and interactions among K skills, where columns
correspond to the possible main effect and up to order-K interactions of attributes. Chen
et al. (2015) proposed the following regularized maximum likelihood estimator,

J
(A, ) = argn{zg{x log L(A, m; x) — N;p(gj(kj) .

Here, log L(:) is the marginal log-likelihood, and p;;(-) is a penalty function applied to reg-
ularize the coefficients for the main effect and interactions of attributes. When certain As
are shrunk to 0 through the regularization, the corresponding combinations of skills will
not affect the correct response probability for j. Here, regularization is applied to select the
attribute main effects and higher-order interactions that are active for each item. Recall that
these main effects and interactions were also present in the general DCMs in Section 2.3,
where, on the basis of an expert-provided Q, s are restricted to zero for attribute combi-
nations not measured by item j (ks s.t. gj = 0; see Equations 12—14). With specific models,
e.g., DINA, as special cases of the general models, this framework allows for Q estimation
for both specific and general DCMs. G. Fang, J. Liu, & Z. Ying (unpublished manuscript,
available upon request) proposed a group LASSO approach to regularizing the coefficients
(e.g., Yuan & Lin 2006), which penalizes all the slope coefficients involving & at the group
level. Because the Q-matrix defines the relationship between items and the unobserved la-
tent discrete attributes that arise from the population with membership probabilities 7, the
methods proposed by Chen et al. (2015) and Fang et al. work with the marginal likelihood
and employ the EM algorithm. Researchers have proposed a number of Bayesian approaches
to estimating the Q-matrix, for example, drawing Q-matrices that satisfy identifiability and
completeness constraints with efficient Metropolis-Hastings samplers (Chen et al. 2018a),
incorporating expert input about Q as prior information (Culpepper 2019), revealing sparse
structures via Bayesian variable selection (Chen et al. 2020), and inferring the number of
attributes through Bayesian Dirichlet processes (Chen et al. 2021).

4. DISCUSSION: EXTENDED APPLICATIONS AND FUTURE
DIRECTIONS

Diagnosing examinees’ mastery of discrete attributes is vital for both criterion-referenced testing
and formative assessment. This article provides an introduction to cognitive diagnostic testing, a
class of restricted latent class models that assess mastery of categorical attributes and the multitude
of inferential problems, such as identifiability, estimation, and model selection and validation, that
are essential to the design and administration of reliable, valid, and practically useful diagnostic
tests.

Beyond a stand-alone test, cognitive diagnostic testing can also be integrated into a wide
range of scenarios in the learning setting to promote the attainment of educational goals. We
briefly mention a few examples here and refer readers to Chang et al. (2021), who discuss how
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statistical and machine learning methods can advance educational measurement to better inform
personalized learning.
m Cognitive diagnostic computerized adaptive testing: Unlike linear testing, in which all ex-
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aminees receive the same test questions, in computerized adaptive testing, test questions
are chosen adaptively for examinees on the basis of information collected about their la-
tent proficiency in real time (Lord 1980). This approach allows for tailored selection of test
questions that most efficiently inform the researcher about the underlying trait of interest,
and computerized adaptive testing can substantially reduce test length without compromis-
ing measurement reliability. With the virtue of informing learning through diagnosis of
fine-grained skill mastery and misconceptions, cognitive diagnostic testing may be used for
interim assessments in the learning process. The integration of cognitive diagnostic testing
and computerized adaptive testing enables the use of short diagnostic tests to assess students’
attribute mastery (see Cheng 2009, Chiu & Chang 2021, Xu et al. 2003) but at the same time
reveals a set of statistical questions, such as algorithms for the adaptive selection of test items
to maximize efficiency and statistically identify attribute patterns (e.g., Liu et al. 2015, Xu
etal. 2016).

Longitudinal models for learning: Attribute mastery can be tracked over time in a learning
setting through interim, formative assessments, such as exercises and quizzes. Latent transi-
tion analysis and hidden Markov models have been developed for this setting (e.g., Kaya &
Leite 2017; Li et al. 2016; Wang et al. 2018a,b). DCMs serve as the measurement model that
connects unobserved skill mastery profiles at each time point to the observed test responses
at that time point; see Zhan (2020) for a review. This allows for not only the measurement
of students’ learning trajectories over time but also modeling and inference as to how latent
skill mastery changes as a result of learners’ cognitive and noncognitive traits, the effec-
tiveness and characteristics of treatments (e.g., Zhang & Chang 2020), and other covariates
(Chen & Culpepper 2020, Wang et al. 2018a). This information can subsequently be used
by educators to tailor and adjust instruction in both classrooms and personalized learning
settings.

Recommendation systems for adaptive learning: The recent surge in online, remote ed-
ucation, at both the K-12 and higher education levels, promotes educational equity by
improving the accessibility of good-quality educational materials. At the same time, this
trend introduces challenges: Learners’ backgrounds and needs become more heterogeneous,
and face-to-face interaction between students and teachers becomes less feasible. This calls
for recommendation systems for adaptive learning, which can tailor instructional routes
and interventions on the basis of real-time information about students’ attribute mastery.
The task of adaptive content recommendation is closely connected to statistical problems
of recommendation systems, Markov decision process, and reinforcement learning. Chen
etal. (2018b) proposed a framework based on partially observable Markov decision process,
where, at each time point, on the basis of the learner’s estimated mastery status, the next
intervention can be adaptively recommended to optimize an expected reward, which can be
a function of skill mastery trajectories (e.g., expected time to reach mastery). Parameters of
the reward function can be defined via a longitudinal model for attribute mastery change,
as explained by parameters of particular interventions (e.g., Zhang & Chang 2020). How-
ever, more realistically, often no initial data support the estimation of such a complex model.
Tang et al. (2019) used reinforcement learning to address the so-called cold start problem
(see Sutton & Barto 2018), where limited data are available at the initial implementation of a
recommendation system. The expected reward function used for content recommendation
is updated in an online manner as more data come in over time.
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Statistical applications to cognitive diagnostic testing provide fundamental building blocks for
the development of reliable and valid diagnostic assessments, yet many open questions remain as
to how statistics can further promote the validity and practical feasibility of cognitive diagnostic
testing. An example is the modeling of testlet effects in cognitive diagnostic testing, where sets of
questions originate from the same stem. Testlets are highly relevant in classroom and language as-
sessments: For example, reading assessments often contain passage-based questions, where several
questions involve the same passage, and math assessments are often designed to contain subques-
tions under a common setup. This approach introduces local dependence among items in the
same testlet, a violation of the fundamental assumption of independence in item response mod-
eling. This development has led to a multitude of DCMs that incorporate testlet effects (Hansen
2013; Zhan et al. 2015, 2018b). Recently, Xu et al. (2022) provided a framework for statistical
analysis of testlet effects in cognitive diagnostic testing: the interacted testlet DINA model. Un-
der this general model, the DINA ideal response, a continuous testlet-specific random effect, and
the interaction between the ideal response and the testlet-specific effect are allowed to jointly af-
fect the correct response probability. Inferences on the slope coefficient for the testlet effect and
the interaction between the ideal response and the testlet effect can support hypothesis testing
about the existence of the testlet effect (i.e., local dependence within the testlet), as well as the
dependency between discrete attribute mastery and the continuous trait for testlet-induced local
dependence. Xu et al. (2022) also provided theoretical results on the identifiability of the inter-
acted testlet DINA model, which informs assessment developers as to the Q-matrix structure, the
number of testlets, and the required number of items per testlet for constructing a statistically
valid testlet-based diagnostic test.

Real-world implementations of cognitive diagnostic testing often face a difficult trade-off
between statistical (or psychometric) soundness and practical feasibility: For instance, reliable
measurement of an attribute often requires repeated measures (i.e., multiple items measuring
the same skill), and the parameter identifiability and Q-matrix completeness conditions call for
single-attribute items. These recommendations by statistical theory may be difficult to imple-
ment in practice: In a learning setting, long tests containing a large number of items may be too
burdensome, even causing interruptions to the stream of instructions. Single-attribute items that
do not require the integration of different concepts may also fail to reflect how well a learner
has internalized a concept. We believe that the trade-off might be partially resolved through
the incorporation of additional information from problem-solving process data, that is, the or-
dered sequence of observed events that an examinee executes in pursuit of solving a problem. The
growth in computer-based testing has enabled the easy collection of such data, and, compared to
a final score, they can provide time-stamped information on the steps that a student took to ar-
rive at a final response. A recent study by Zhan & Qiao (2022) expanded the sequence of actions
performed on a single constructed response item on the PISA 2012 problem solving assessment
(OECD 2014) to a series of dichotomous indicators, representing the presence or absence of cer-
tain subsequences of actions in a student’s recorded log. A Q-matrix was constructed to represent
the relationship between subsequences of actions and the measured attributes, allowing for the
use of the log sequence for building and classifying individuals on the basis of DCMs. By de-
composing the observed data on a single item into finer-grained subtasks (Wang et al. 2020), the
number of indicators (i.e., items) increases, and each step is more likely to involve just a single
skill. Yet, process data are extremely complex and highly variable, and expert-based construction
of a Q-matrix, especially on more open-ended problems, can be challenging. Recently proposed
methods on automated feature extraction from process data provide data-driven methods for ex-
tracting meaningful latent features from observed action sequences (Tang et al. 2020, 2021), and
the extracted features have been shown to improve measurement reliability in IRT-based ability
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assessment (Zhang et al. 2023). Modern statistical and machine learning has great potential to
support the use of process information for diagnostic assessments, which can serve a pivotal role
in personalized learning.
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