
OFHE: An Electro-Optical Accelerator for Discretized TFHE

Mengxin Zheng†§ Cheng Chu† Qian Lou§ Nathan Youngblood∗ Mo Li‡ Sajjad Moazeni‡ Lei Jiang†
† Indiana University Bloomington § University of Central Florida

∗ University of Pittsburgh ‡ University of Washington
† {zhengme, chu6, jiang60}@iu.edu § qian.lou@ucf.edu

∗ nathan.youngblood@pitt.edu ‡ {moli96, smoazeni}@uw.edu

ABSTRACT

This paper presents OFHE, an electro-optical accelerator designed

to process Discretized TFHE (DTFHE) operations, which encrypt

multi-bit messages and support homomorphicmultiplications, lookup

table operations and full-domain functional bootstrappings. While

DTFHE ismore efficient and versatile than other fully homomorphic

encryption schemes, it requires 32-, 64-, and 128-bit polynomial

multiplications, which can be time-consuming. Existing TFHE ac-

celerators are not easily upgradable to support DTFHE operations

due to limited datapaths, a lack of datapath bit-width reconfigura-

bility, and power inefficiencies when processing FFT and inverse

FFT (IFFT) kernels. Compared to prior TFHE accelerators, OFHE

addresses these challenges by improving the DTFHE operation la-

tency by 8.7%, the DTFHE operation throughput by 57%, and the

DTFHE operation throughput per Watt by 94%.

CCS CONCEPTS

• Hardware → Emerging optical and photonic technologies;

• Security and privacy→ Cryptography.

KEYWORDS

electro-optical accelerator, fully homomorphic encryption

ACM Reference Format:

Mengxin Zheng, Cheng Chu, Qian Lou, Nathan Youngblood, Mo Li, Sajjad

Moazeni, and Lei Jiang. 2024. OFHE: An Electro-Optical Accelerator for

Discretized TFHE. In ACM/IEEE International Symposium on Low Power

Electronics and Design (ISLPED ’24), August 5–7, 2024, Newport Beach, CA,

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.xxxx/xxxxxxx.

11111108

1 INTRODUCTION

The realm of cryptography has evolved significantlywith the advent

of Fully Homomorphic Encryption (FHE) [4]. Tailored for cloud

computing, FHE allows users, like Alice, to send encrypted data as

ciphertexts to a server. The server can directly compute on these

ciphertexts, ensuring unparalleled data privacy. Once processed,

results, still encrypted, are returned to Alice. The server never

accesses actual data, underscoring FHE’s end-to-end encryption

strength. Only Alice, using her secret key, deciphers the results.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 999-99-9999-9999-1/19/99
https://doi.org/10.xxxx/xxxxxxx.11111108

Table 1: The comparison between various FHE schemes.

Scheme Operation Type Data Type Bootstrapping Application

CKKS [5] ×/+ fixed-point high latency machine learning

TFHE [6] logic binary low latency general purpose

DTFHE [7] ×/+/logic/mod integer low latency general purpose

In comparison to other FHE schemes, Discretized TFHE (DTFHE)

[7] emerges as a proficient FHE scheme, as illustrated in Table 1.

• DTFHE exhibits versatility in operational types. Traditional FHE

schemes, e.g., CKKS [5], which only support homomorphic ad-

ditions and multiplications, are potent in machine learning but

lack applicability in general-purpose scenarios [15]. While third-

generation FHE schemes like TFHE [6] focus on Boolean logic

operations, they do not support native homomorphic additions

and multiplications. For example, TFHE requires a lengthy se-

quence of logic gates to implement a multi-bit multiplication. In

contrast, DTFHE enhances its capabilities to support homomor-

phic operations including Boolean algebra, modular arithmetic,

and native multi-bit additions and multiplications. Compared to

TFHE running on the same CPU, DTFHE reduces the latency of

a 4-bit homomorphic multiplication by 99.5% [9].

• DTFHE can achieve fast bootstrapping operations. In the context

of FHE, operations performed on ciphertext inherently intro-

duce noise. Over time, this accumulation of noise can impede

accurate decryption. To mitigate this noise accumulation, FHE

schemes invariably require periodic bootstrapping. Traditional

FHE schemes like CKKS, unfortunately, suffer from prolonged

bootstrapping durations, sometimes extending to several hun-

dred seconds [5]. However, akin to TFHE, DTFHE boasts rapid

bootstrapping for binary messages. Nonetheless, for multi-bit

integer messages, DTFHE’s bootstrapping may require ∼ 5𝑠 on
a CPU. The expedited bootstrappings render DTFHE capable of

implementing various general-purpose applications requiring

substantial circuit depth.

Recent advancements in hardware accelerators [13, 18] have

been instrumental in expediting the bootstrapping operations of

TFHE. Nevertheless, the domain of accelerating DTFHE—distinctive

for its encryption of multi-bit messages within a singular cipher-

text—remains largely unexplored. The challenge of adapting pre-

existing TFHE accelerators to be compatible with DTFHE arises

from two fundamental issues.

• The initial concern is the static nature of the datapaths in earlier

TFHE accelerators, either 32 [13] or 64 [18] bits, which are ill-

equipped to accommodate the versatile computational demands

intrinsic to DTFHE. As an illustration, DTFHE’s encryption of a

singular-bit message can utilize a 32-bit datapath. However, for

the homomorphic LUT operations on ciphertexts that encrypt

messages up to 4 bits, a 64-bit datapath becomes imperative.

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA M. Zheng et al.

Extending further, the homomorphic multiplications in DTFHE

for ciphertexts with messages of 5 bits or more necessitate 128-

bit polynomial multiplications, which subsequently calls for a

128-bit datapath. Regrettably, prior TFHE accelerators neither

possess the infrastructure to sustain a 128-bit datapath nor the

adaptability to alternate between diverse datapath bit-widths.

• The second impediment revolves around the power efficiency—or

lack thereof—in pre-existing TFHE accelerators. Their DSP [3]

or CMOS ASIC [13, 18] platforms for FFT and IFFT ((I)FFT1)

are notorious energy consumers. Indeed, FFT and IFFT kernel

processing is responsible for a ∼ 55% [13, 18] to ∼ 80% [17] of

the total energy expenditure in preceding TFHE accelerators.

This paper unveils OFHE, an electro-optical accelerator designed

for DTFHE, with a focus on accelerating homomorphic multiplica-

tions and full-domain functional bootstrappings. The cornerstone

of OFHE is a photonic FFT engine, engineered to speed up (I)FFT

kernels across various scales and precisions integral to DTFHE

operations, with high power efficiency. The other kernels integral

to these operations are executed via CMOS modules.

• AChiplet PackageDesign: At the heart of OFHE lies a photonic

FFT engine adept at executing 64-point FFT functions. Leverag-

ing passive photonic devices, the FFT engine’s fabrication is

optimized on dedicated chips. In parallel, CMOS modules find

residence on a distinct CMOS chip. Each of these chips, whether

photonic or CMOS, is organized as a individual chiplet, intercon-

nected through photonic I/O links.

• Adaptable DTFHE Parameter Support: OFHE’s hallmark is

its adaptability, accommodating a plethora of DTFHE parame-

ters. Avoiding the slow runtime photonic device reconfiguration,

OFHE incorporates a forward FFT engine, enriched with con-

jugating operations, tailored for IFFT kernels. Furthermore, a

bit-level pipeline crafts a versatile 32-, 64-, or 128-bit (I)FFT dat-

apath. A novel electro-optical computing flow segments a 1K-,

2K-, or 4K-point FFT kernel into several 64-point FFT kernels,

which can be natively supported by the photonic FFT engine.

• Higher Throughput and Power Efficacy: Experimental results

show OFHE enhances the DTFHE operation latency by 8.7%, the
DTFHE operation throughput by 57% and the throughput per

Watt by 94%, compared to prior TFHE accelerators.

2 BACKGROUND

2.1 Discretized TFHE (DTFHE) Basics

Notations. In this paper, (1) boldface signifies vectors; (2) super-

scripts express the element count in vectors; (3) modulus is indicated

by subscripts. (4) S𝑛𝑞 denotes the set of 𝑛-element vectors in S mod-

ulo 𝑞. (5) S[𝑋] represents the set of polynomials over variable 𝑋
with S coefficients. (6) Power-of-2 cyclotomic polynomial’s modulo

is portrayed by its degree. (7) Vectors of polynomials over 𝑋 with

modulus Φ2𝑁 (𝑋) = 𝑋𝑁 + 1 and coefficients in S modulo 𝑞 are

represented by S𝑞 [𝑋]𝑛𝑁 . (8)M stands for the ℜ-module.

Binary-Secret Scale-Invariant LWE. FHE foundations lie in

the Learning With Errors (LWE) problem. An LWE sample encom-

passes a duo (a, 𝑏) ∈ M𝑛+1, with a uniformly drawn from M𝑛 ,

1Henceforth, we will use (I)FFT to refer to both FFT and IFFT.

Algorithm 1: Various TFHE Bootstrappings.

Input: a TLWE sample 𝑐 = (a, 𝑏) ∈ TLWE𝑠 (𝑚𝐵) ,𝑚 ∈ Z𝐵 ; a LUT

L = [𝑙0, . . . , 𝑙𝐵−1] ∈ Z𝐵𝐵 ; a bootstrap. key 𝐵𝐾𝑖 ∈ TRGSW𝑆 (𝑠𝑖) , 𝑖 ∈ �1, 𝑛�
Output: 𝑐′ ∈ TLWE𝑆 (L[𝑚]

𝐵) , 𝑆 ∈ B𝑁
1 Function FullDomainBootstrap((a, 𝑏) , L, BK):
2 𝑡𝑣 ← ∑ 𝐵

2 −1
𝑖=0

∑1
𝑗=0

∑𝑁
𝐵 −1
𝑘=0

1
𝐵 𝑙 𝑗𝐵

2 +𝑖𝑋
(2𝑖+𝑗) 𝑁𝐵 +𝑘

; 𝑝𝑎 ← 𝐵+1
4𝐵

3 𝑐𝑠𝑖𝑔𝑛 ← FunctionalBootstrap(𝑐 ,[𝑝𝑎, . . . , 𝑝𝑎], BK) −𝑝𝑎
4 return FunctionalBootstrap(𝑐 + 𝑐𝑠𝑖𝑔𝑛 , 𝑡𝑣, BK)
5 Function FunctionalBootstrap((a, 𝑏) , L, BK):
6 𝑏 ←
2𝑁𝑏 � and 𝑎𝑖 ← 2𝑁𝑎𝑖 ∈ Z2𝑁 , 𝑖 ∈ �1, 𝑛�
7 𝑡𝑣 ← ∑𝑁 −1

𝑖=0
1
2𝐵 · 𝑙� 𝑖𝐵𝑁 �𝑋

𝑖 ∈ T𝑁 [𝑋]
8 𝐴𝐶𝐶 ← BlindRotate((0, 𝑡 𝑣), (a, 𝑏 + 1

4𝐵),BK))
9 return SampleExtract(𝐴𝐶𝐶)

10 Function BlindRotate((a, 𝑏) , 𝑡𝑣, BK):
11 𝐴𝐶𝐶 ← 𝑋 −
𝑏2𝑁 � · 𝑡𝑣
12 for 𝑖 = 1 to 𝑛 do

13 𝐴𝐶𝐶 ← 𝐵𝐾𝑖 · (𝐴𝐶𝐶 − 𝑋
𝑎𝑖 2𝑁 � · 𝐴𝐶𝐶) +𝐴𝐶𝐶
14 return𝐴𝐶𝐶

𝑏 = 〈a, s〉 + 𝑒 ∈ M, and 𝑛 ≥ 1 ∈ Z. The binary secret key s is uni-

formly selected from𝔅𝑛 . Meanwhile, error 𝑒 arises from a Gaussian

distribution overM, centralized at 0 with standard deviation 𝜎 .
Encryption and Decryption. The idea of a LWE-based cryp-

tosystem is to encrypt a message by adding the message to the 𝑏
part of an LWE sample, since it is indistinguishable from a vector

sampled from the uniform distribution. TFHE encrypts 1-bit mes-

sages in both TLWE and TRLWE samples [7]. Both are a type of

LWE samples, differing by the definition ofM and 𝔅.

DTFHE. DTFHE [7] is proposed to encrypt a multi-bit message

in a T(R)LWE sample. 𝑐 = (a, 𝑏) ∈ TLWE(𝑚2𝐵) is a TLWE sample,

where𝑚 indicates a multi-bit message, 𝐵 denotes a discretization

parameter, and only a half of the torus is used. DTFHE encodes the

message by𝑚 =
∑�log2𝑚�
𝑖=0 2𝑖𝑚̃𝑖 , where m̃ is the binary vector rep-

resentation of𝑚. Messages are mapped to integers by discretizing

the torus. 𝐵 specifies the base in which messages are decomposed

when working with messages encrypted in multiple samples.

2.2 DTFHE Operations and Implementations

Gate Bootstrapping. At the end of a two single-bit inputs TFHE

gate, a gate bootstrapping is required to remove the noises accu-

mulated in the ciphertext. A gate bootstrapping can be summa-

rized in three steps: (1) setting the accumulator vector, 𝐴𝐶𝐶 , to
be

∑𝑁
𝑖=0

1
4𝑋

𝑖 ∈ T𝑁 [𝑋]; (2) using BlindRotate to compute 𝐴𝐶𝐶 ·
𝑋 −𝜙 (𝑐)2𝑁 mod Φ2𝑁 ; and (3) using SampleExtract to extract the

constant term of the rotated 𝐴𝐶𝐶 . Particularly, the most important

step, BlindRotate, in a gate bootstrapping is shown in Line 10 of

Algorithm 1, where a blind rotation of 𝐴𝐶𝐶 by −𝜙 (𝑐) is performed.

Functional Bootstrapping. Besides removing noises, a func-

tional bootstrapping [18] also performs a homomorphic lookup

table (LUT) through replacing the regular test vector by an encoded

LUT, as shown in Line 5 of Algorithm 1. A functional bootstrapping

discretizes the domain of a function, evaluates the function in all

discretized points, and then stores the results in a LUT. The LUT is

encoded as a polynomial (Line 7, where 𝐵 is a discretization param-

eter). Due to the negacyclic property of BlindRotate, the function

supported by functional bootstrapping has to be anti-symmetric,

i.e., 𝑓 (𝑥 + 𝑁) = −𝑓 (𝑥). For an arbitrary function, the negacyclic

property can be avoided using only the first half of the torus.

OFHE: An Electro-Optical Accelerator for Discretized TFHE ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

gate func FDFB prod
0.0
0.2
0.4
0.6
0.8
1.0

la
te

nc
y

br
ea

kd
ow

n other IFFT FFT

Figure 1: The latency break-

down of DTFHE operations

(i.e., gate, functional, full-

domain bootstrappings, and

TRLWE tensor product).

MATCHA FPT Strix
0.0
0.2
0.4
0.6
0.8
1.0

po
w

er
 b

re
ak

do
w

n

 other (I)FFT

Figure 2: The power break-

down of prior TFHE hard-

ware accelerators including

MATCHA [13], FPT [3] and

Strix [18].

Full-Domain Functional Bootstrapping (FDFB). Besides us-

ing only the first half of the torus, a functional bootstrapping can-

not perform homomorphic modular arithmetic. FDFB [9] shown in

Line 1 of Algorithm 1 is created to work over the entire torus and

to support homomorphic modular arithmetic. A FDFB combines

two functional bootstrappings in a chaining way, which guarantees

the lowest output error variance.

TRLWE Tensor Product and TLWE multiplication. DTFHE

supports BFV-like TRLWE tensor product operations [7] by native

TFHE parameters. A integer parameter 𝑞 controls the precision

of the TRLWE result. A TRLWE tensor product also requires a

relinearization key to reduce the number of terms in the TRLWE

result to 2. Via a TRLWE tensor product, DTFHE can support a

homomorphic multiplication between two TLWE samples. When

implementing an𝑚-bit×𝑛-bit integer homomorphic multiplication,

a DTFHE TRLWE tensor product is faster than O(𝑚𝑛) TFHE gates.

Torus Implementation. In order to map and rescale all ele-

ments from T to Z𝑞 , an integer precision parameter 𝑞 ∈ N is used

when implementing a torus. For TFHE, which encrypts 1-bit mes-

sages and works with two single-bit inputs logic gates, 𝑞 = 232 [7] is

precise enough. However, DTFHE requires a larger plaintext space

to encrypt multiple bits, perform homomorphic multiplications,

and support full-domain functional bootstrappings. So DTFHE uses

𝑞 = 264 [7] to map all torus elements to 64-bit long integers.

(I)FFT. Homomorphic multiplications and various types of boot-

strappings in DTFHE require numerous polynomial multiplica-

tions [7]. To reduce the computational complexity of polynomial

multiplication from O(𝑁 2) to O(𝑁 log𝑁), where 𝑁 is the degree

of the polynomials, DTFHE uses (I)FFT. As shown in Figure 1, (I)FFT

kernels consume 64% ∼ 75% [13] of the latency of various DTFHE

operations running on a CPU. Our experimental methodology is

explained in Section4. When the integer precision parameter 𝑞 is

232, 64-bit double-precision floating-point (I)FFT kernels can be

directly used without introducing significant errors. However, if

𝑞 = 264, particularly when the numeric base 𝐵 in Algorithm 1 is

large, polynomial multiplications of DTFHE require up to 128-bit

precision. Therefore, double-precision floating-point (I)FFT kernels

are not precise enough for various DTFHE operations [9].

2.3 Related Work and Motivation

RelatedWork. FHE is renowned for its security but often criticized

for its high computational overheads. To address these challenges,

ASIC-based accelerators [14, 20] have been developed for FHE

schemes such as CKKS and BGV, which support only homomor-

phic multiplications and additions. Additionally, several accelera-

tors [13, 18] have emerged, focusing on bootstrapping functions

within single-bit TFHE ciphertexts. However, no accelerator ade-

quately supports DTFHE encrypting multi-bit messages. Although

prior work [20] leverages photonic microdisks to design 512-bit

electro-optical adders and multipliers, enhancing BGV’s number-

theoretic transform (NTT) processes, no existing work except OFHE

uses analog photonic signals to accelerate (I)FFT kernels for DTFHE.

Motivation. Existing TFHE accelerators have limitations when

processing DTFHE operations. Two constraints are observed:

• Limited Datapath Scalability: Efforts to retrofit current TFHE

accelerators [13, 18] for DTFHE encounter several barriers. Intrin-

sic operations of DTFHE, like full-domain functional bootstrap-

pings, TRLWE tensor products, and TLWEmultiplications, neces-

sitate 128-bit polynomial computations. Most prior accelerators

offer datapaths confined to 32 bits, thus remaining incompatible

with highly precise (I)FFT kernels or 128-bit polynomial compu-

tations. While DTFHE’s single-bit message encryption parallels

TFHE, demanding a 32-bit datapath, multi-bit (e.g., 4-bit) encryp-

tion in DTFHE necessitates a 64-bit one. To adeptly manage these

variable requirements, accelerators must be equipped with flex-

ible data paths of 32, 64, and 128 bits, a feature conspicuously

absent in current TFHE accelerators.

• Power EfficiencyConcerns. Predominantly prior TFHE acceler-

ators [3, 13, 18] are notorious power guzzlers, with consumption

often breaching 40 ∼ 100 Watts. In these accelerators, (I)FFT

kernels notably surge the power demands, accounting for nearly

56% to 80% of their total consumption, as depicted in Figure 2.

3 OFHE

Architecture. This paper presents OFHE, a photonic accelerator

designed for efficient DTFHE operations. OFHE comprises multiple

photonic FFT chips and a CMOS chip, as depicted in Figure 3(a).

The components are structured as chiplets interconnected through

photonic I/O links. The CMOS chip initializes and calibrates all

photonic components. When an FFT or IFFT kernel is invoked,

the CMOS chip transmits input data to a photonic chip using an

I/O link. Digital-to-Analog Converters (DACs) transform this data

into optical signals, which are processed by the photonic chip. The

resultant signals are then sampled and digitized into final outputs

through Analog-to-Digital Converters (ADCs).

Photonic FFT. Unitary FFT operations can be performed us-

ing optical devices [11]: X𝑘 = 1√
𝑁

∑𝑁−1
𝑛=0 x𝑛𝑒

−𝑖 2𝜋𝑘𝑛𝑁 , where 𝑘 ∈
�0, 𝑁 − 1�, x𝑛 represents an input sampling point, and X𝑘 denotes

an output point. A 4-point Photonic FFT Engine (PFFTE) is shown

in Figure 3(b), where a butterfly unit is a 2-point unitary FFT sub-

strate. The butterfly of the 2-point FFT

(
𝑜𝑢𝑡0
𝑜𝑢𝑡1

)
= 1√

2

(
𝑖𝑛0 + 𝑖𝑛1
𝑖𝑛0 − 𝑖𝑛1

)
can

be described by

(
1 0

0 − 𝑗
)

︸����︷︷����︸
output phase shifter

1√
2

(
1 𝑗
𝑗 1

)
︸��������︷︷��������︸

coupler

(
1 0

0 − 𝑗
)

︸����︷︷����︸
input phase shifter

(
𝑖𝑛0
𝑖𝑛1

)
,

where 𝑖𝑛0 and 𝑖𝑛1 are inputs, and 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1 are outputs. The
first and third matrices are implemented by input and output phase

shifters, respectively, while the second matrix is performed by a

2 × 2 directional coupler. All components of the 2-point PFFTE are

passive optical devices, and therefore consume little power.

Photonic Chip. On a photonic chip, we use ITO plasmonic MZ

modulators [1] as amplitude and phase modulators, and Michelson

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA M. Zheng et al.

(d) a pipeline for im-1, im-2, …, i0
reg
shft
add

amplitude
modulator

DAC

re
g

phase
modulator

DAC

sampling
modulator

ADC

re
g

photonic
FFT engine

calibration

ph
ot

on
ic

 c
hi

p

C
M

O
S

ch
ip

x0

x1

x2

x3

x0

x2

x1

x3

co
up

co
up

co
up

co
up in0

in1

out0

out1
phase shifter

waveguide cycle0

im-1...

cycle1
im-n-1...

cycle2
im-2n-1...

im-1... im-n-1...

im-1...

...im-2n

...im-n

...im-n ...im-3n

...im-2n

...im-n

(a) OFHE architecture (b) a photonic FFT engine example (c) pipeline stages
ph

ot
on

ic
 li

nk

photonic
chip

photonic
chip

photonic
chip

photonic
chip

C
M

O
S

ch
ip

Figure 3: The components and pipeline of OFHE, when processing𝑚-bit inputs 𝑖𝑚−1, 𝑖𝑚−2, . . . , 𝑖0.
modulators as sampling modulators. To construct a PFFTE, various

compact and low-loss photonic components are employed, includ-

ing 2 × 2 directional couplers [19], phase shifters [10], Y-splitters

and combiners, and straight and spiral [12] waveguides. The in-

put/output interfaces of the PFFTE are implemented using grating

couplers. The length of the spiral waveguide of a phase shifter in

the 𝑖𝑡ℎ FFT stage is calculated as 𝑇 /2𝑖 , where 1 ≤ 𝑖 ≤ log2 (𝑁), 𝑁
is the number of FFT inputs, and 𝑇 denotes the physical length of

time delay. 𝑇 can be computed as 𝑐/(𝑛𝑒 𝑓 𝑓 ∗ 𝑓 𝑟𝑒𝑞), where 𝑐 is the
speed of light, 𝑛𝑒 𝑓 𝑓 is the effective index, and 𝑓 𝑟𝑒𝑞 is the operating

frequency of the PFFTE. We set 𝑓 𝑟𝑒𝑞 to 12GHz [11], resulting in

𝑇 = 10 mm.

The Input Scale of a PFFTE. As the integration of additional

photonic components into a PFFTE escalates, there is an inevitable

rise in total optical loss. This uptick demands compensation via

heightened input power [11]. Consequently, to avert disproportion-

ate power usage, moderating the input count (𝑁) becomes para-

mount. High values of 𝑁 accentuate the optical losses associated

with spiral waveguides [11], making them the principal contribu-

tors to the PFFTE’s optical loss. The extinction ratio of a PFFTE,

expressed as the ratio 𝑃𝑚𝑎𝑥/𝑃𝑚𝑖𝑛 (with 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 being the

peak and nadir of PFFTE output powers respectively), diminishes

significantly with ascending input numbers, as depicted in Figure 4,

due to the increased necessity for spiral waveguides. For precise

sampling by modulators, maintaining a robust PFFTE output power

is vital, hence a restricted input count for the PFFTE is advocated.

Our design focuses on a 64-point PFFTE.

Fixed Point Representation. In TFHE and DTFHE, elements

from T are mapped to Z𝑞 , with 𝑞 taking values 232 or 264. Pre-

vious TFHE accelerators, when 𝑞 = 232, leveraged 38- [13] and

30-bit fixed-point results within (I)FFT cores, deviating from the

conventional double floating-point computations. The 30-bit de-

piction as per Figure 5 divides into 19-, 14-, and 6-bit fractions for

respective bootstrapping-key, FFT, and IFFT computations, thereby

ensuring consistent gate bootstrapping activities. Contrarily, ear-

lier DTFHE CPU executions employed the Karatsuba algorithm [9]

since achieving quadruple-precision floating-point (I)FFTs on CPUs

posed challenges. OFHE, aiming for minimized hardware expendi-

ture, translates the intermediary outcomes and twiddle factors of

(I)FFT cores in different DTFHE operations into fixed-point repre-

sentations. Adopting this scheme, OFHE cautiously utilizes 64-bit

and 128-bit fixed-point representations for 𝑞 = 232 and 𝑞 = 264,

respectively, dividing them into 29-, 26-, and 17-bit fractions.

FFT Pipeline with a Reconfigurable Datapath. DACs and

ADCs are limited by their precision, making it infeasible for a PFFTE

to process integer inputs of𝑚-bit in a singular operation, with𝑚
being 32, 64, or 128 bits. Thus, OFHE segments the FFT operation

into a tri-stage pipeline, as depicted in Figure 3(c). In stage �,

4 8 16 32 64 128 256
0

20
40
60
80

100

ex
tri

nc
tio

n
ra

tio

the input # of PFFTE

8.4

Figure 4: PFFTE extinction

ratio with varying input #.

0 5 10 15 20 25 30
-40

-20

0

20

 gate

lo
g 2(n

oi
se

 s
td

)

of fraction bits

 BK FFT IFFT

 functional

Figure 5: Fraction bit # vs

output approx. noise.

DACs extract 𝑛𝑖𝑛 bits from the FFT input register, converting these

to photonic signals transmitted to the PFFTE. Here, 𝑛𝑖𝑛 specifies

the DAC’s bit-width. In stage �, the PFFTE’s output signals are

relayed to samplingmodulators. ADCs then transform these voltage

outputs into 𝑛𝑜𝑢𝑡 -bit digital FFT outcomes, subsequently stored in

a register, where 𝑛𝑜𝑢𝑡 denotes the ADC’s bit-width. In stage �, a

shifting and addition procedure on the CMOS chip compiles each

𝑛𝑜𝑢𝑡 -bit FFT outcome into an𝑚-bit conclusive result. An example

pipeline, initialized from input’s most significant bits, is portrayed

in Figure 3(d). Achieving a stable pipeline kernel necessitates three

cycles from the PFFTE. The FFT pipeline’s bit-width adaptability

is facilitated by varying𝑚 values, with its operational frequency

tethered to the ADCs’ and DACs’ speeds.

Fast IFFT. Although it is possible for the PFFTE to perform an

IFFT operation through reconfiguring phase shifters, this approach

has a long latency and requires a large number of DACs. Reconfigur-

ing a phase shifter can take several milliseconds [11], and adjusting

the parameters of all necessary phase shifters concurrently for an

IFFT operation requires hundreds of DACs. To avoid the expensive

run-time phase shifter reconfiguration, OFHE employs the con-

version [8] between IFFT and FFT. The conversion is described as

IFFT(X𝑘) = 1
𝑁 conj(FFT(conj(X𝑘))), where 𝑘 ∈ �0, 𝑁 − 1�, and

conj represents a conjugate operation. In this way, OFHE can per-

form conjugate operations on the input and output points of an

IFFT operation on the CMOS chip and use the same PFFTEs to

complete the IFFT operation.

Scaling FFT. To work with different DTFHE parameters with

assorted security levels, OFHE needs to execute FFT operations on

inputs spanning 1K, 2K, and 4K points. Given that PFFTE inherently

supports only 64-point FFT operations, OFHE employs the 4-step

FFT algorithm [2]. This algorithm compartmentalizes extensive FFT

operations into numerous 64-point FFT tasks. Specifically, for an 𝑁 -

point FFT (where 𝑁 encompasses 1K, 2K, or 4K), OFHE conducts 𝑛0
64-point FFT operations on the input points structured as an 𝑛0×64

matrix, leading to a resultant matrix 𝑅𝑝𝑞 . Subsequently, this matrix

undergoes multiplication by the exponential factor 𝑒−2𝜋𝑖𝑝𝑞/𝑁 and

is transposed. Ultimately, OFHE executes 64 𝑛0-point FFT opera-

tions on the resulting matrix via the PFFTE, with necessary padding

introduced when 𝑛0 is less than 64.

OFHE: An Electro-Optical Accelerator for Discretized TFHE ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

Table 2: The area and power consumption of OFHE

Name Component Spec Power (𝑚𝑊) Area (𝑚𝑚2)

D. coupler [19], ×192 0 0.0013
P. shifter [10], ×448 0 0.014
spiral [12], ×192 0 0.06
splt/comb ×484 0 0.028
G. coupler ×128 0 0.003

64-point MZ mod. [1], ×64 0.121 0.0069
photonic samp. mod. ×64 4.096 0.0076
FFT chip holder 12G, ×64 0.001 0.0001

1-bit DAC 12G, ×128 2.5 0.0001
6-bit ADC [16], 12G, ×64 1280 0.768
I/O buff. 32KB, ×1 9.92 0.017
laser ×1 130 0.235
chplt PHY 1KB 19.2 0.864

sub-total 1.45 Watt 1.99

I/O buff. 4KB, ×8 9.92 0.017
32nm core 1.2G, ×8 15,920 13.76
CMOS NoC 8 × 32, 256b 2110 0.44
chip SPM 2MB, 32 banks 1510 1.64

chplt PHY 1KB 19.2 1.728
mem ctrl DDR5 PHY 6,400 7.5

sub-total 26.03 Watt 30.66

OFHE
OFFT chip ×8 11.6 Watt 15.92
CMOS chip ×2 52.06 Watt 61.32

total 63.66Watt 77.2

CMOS Chip. The CMOS chip, interfacing with PFFTE chips via

photonic I/O links, comprises 8 cores that manage computations for

DTFHE operations, excluding (I)FFT kernels. A crossbar network

connects these cores with a scratchpad memory. One core uses

serial adders to collate intermediate results derived from the PFFTEs.

Each core is calibrated to support datapaths of 32, 64, and 128 bits,

leveraging serial adders and multipliers for polynomial additions

and element-wise multiplications. Conjugating units modify IFFT

inputs for direct PFFTE processing. Furthermore, a transposition

and shufflingmechanism optimizes the data structure for inputs and

intermediate (I)FFT kernel results. 1KB input and output registers

serve all computational units within a core.

DesignOverhead. Table 2 presents the power and area overhead

of OFHE. The system comprises 8 PFFTE chips, operating at 12 GHz,

and two CMOS chips running at 1.2 GHz.

• PFFTE chip. Each PFFTE chip is constructed using ∼ 1.5𝐾 pas-

sive photonic components. The light for a PFFTE is generated

by an on-chip laser. The PFFTE guarantees only 6-bit accurate

FFT intermediate results, due to the relative intensity noise of

our laser. These components are modeled using Lumerical FDTD

and INTERCONNECT software tools.

• CMOS chip. Each CMOS chip ismodeled using Cadence Virtuoso

with 32nm PTM technology. Memory parts are modeled using

CACTI. Each core has 1K serial adders, 1K serial multipliers, 1K

conjugate units, four transpose and shuffling units.

4 EXPERIMENTAL METHODOLOGY

Schemes. OFHE is compared against four prior accelerators as

shown in Table 3. The comparison includes FPT, an FPGA-based

accelerator [3], as well as two ASIC-based accelerators, MATCHA

(MATC) [13] and Strix [18]. Additionally, CryptoLight (Cryp) [20],

an electro-optical accelerator originally designed for processing

BGV by photonic NTT units, was selected. Since its detailed con-

figurations are not reported in [20], we adapted Cryp to accelerate

DTFHE by replacing the CMOS adders and multipliers of Strix with

the electro-optical counterparts of Cryp while following the same

configuration of Strix. It is noted that all prior TFHE accelerators

Table 3: The comparison of TFHE hardware accelerators.

Schemes Description Power (Watt)

CryptoLight [20] 8 photonic units, 21MB on-chip SPM 68.5

MATCHA [13] ASIC, 8-core 4MB SPM, 8GB HBM2 37

FPT [3] Alveo U280, 8GB HBM, 16GB DDR4 99

Strix [18] 8-core, 21MB on-chip SPM, HBMe 77.14

support only gate-level functional bootstrappings (GFBs) and are

unable to perform BFV-like TLWE multiplications or full-domain

functional bootstrappings (FDFBs).

DTFHEOperations andParameters. To compareOFHE against

prior TFHE accelerators, we studied GFBs operating on 32-bit data-

paths. We also studied DTFHE-specific FHE operations including

BFV-like TLWE multiplications, and FDFBs, which may require 64-

or 128-bit datapaths. As Table 4 shows, we studied 4 sets of DTFHE

parameters, i.e., I and II typically for GFBs, while III and IV [9] often

for TLWE multiplications and FDFBs.
Table 4: The parameters of DTFHE.

Parameters I II III IV

𝑞 of Z𝑞 232 232 264 2128

Security Level (𝜆) 128-bit 110-bit 128-bit 128-bit

TLWE Dim. (𝑛) 586 500 632 829

TGLWE Dim. (𝑘) 2 1 1 1

Polynom. Size (𝑁) 512 1024 2048 4096

Decomp. Base (𝛽) 8 10 9 2

Decomp. Level (𝑙) 2 2 4 1

Applications. Besides DTFHE operations, we also study en-

crypted general-purpose applications implemented by TFHE and

DTFHE. We selected four circuit designs from the ISCAS’85 bench-

mark suite. These circuits cannot be realized using traditional FHE

schemes like CKKS, as they necessitate linear operations such as

additions, as well as Boolean Algebra operations like XOR. Al-

though TFHE can implement these circuits bit by bit, we demon-

strate that DTFHE can efficiently and inherently support both linear

and Boolean operations within the circuits.

Simulation. We simulated the OFHE’s cycle-level performance

by our in-house CGRAmodeling framework, and validated it against

Strix [18]. Underpinning the architectural description of OFHE, the

framework compiles DTFHE operations into data flow graphs, or-

chestrating and mapping each to an OFHE hardware unit. This

methodology informs the derivation of both latency and energy

metrics for each DTFHE operation.

5 RESULTS AND ANALYSIS

5.1 Comparison Against Prior Accelerators

GFB Latency. The bottleneck in TFHE gates with dual 1-bit inputs

is the GFB, typically positioned at the end of a logic gate, operating

on a 32-bit datapath. Figure 6 illustrates the latency differences

between prior accelerators and OFHE when executing a GFB. FPT

exhibits the longest GFB latency for parameter sets I and II, while

OFHE achieves the most significant latency reduction, trimming

Strix GFB latency by 12.5% and 8.7% for parameter sets I and II,

respectively. Although Cryp uses faster photonic adders and mul-

tipliers, its latency for a GFB is determined by its on-chip CMOS

memory speed. During an (I)FFT kernel, Cryp needs to write every

intermediate result into the on-chip memory, so it has almost the

same latency as Strix.

GFB Throughput. As depicted in Figure 7, the GFB throughput

varies significantly among accelerators. MATCHA and FPT face

constraints in supporting numerous simultaneous GFB operations

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA M. Zheng et al.

I II
0.0
0.2
0.4
0.6
0.8

la
te

nc
y

(m
s)

 Cryp MATC FPT
 Strix OFHE

Figure 6: GFB Lat.
I II

103

104

105

106

th
ro

ug
hp

ut
 (F

B/
s)

 Cryp MATC FPT
 Strix OFHE

Figure 7: GFB thr.
I II

102

103

104

th
ro

ug
hp

ut
 /

W
at

t

 Cryp MATC FPT
 Strix OFHE

Figure 8: GFB thr/W.

I IIIIV I IIIIV
103
104
105
106
107
108

FDFBth
ro

ug
hp

ut

 Strix
 OFHE

TLWE Mult

Figure 9: DTFHE Ops.

���
��
���

��	�
�
��
���

�
	

��

��

�

��

�

la
te

nc
y

(m
s)

 Strix
 OFHE

Figure 10: DTFHE Apps.

due to hardware limitations or lack of a fully-pipelined design.

OFHE’s PFFTE chips outperform FPT in GFB throughput, with

enhancements of 61% & 57% over Strix for parameter sets I and II.

Throughput per Watt. Figure 8 depicts the energy efficiency

of the accelerators, measured as GFB throughput per Watt. Apart

from Cryp, the energy efficiency of the other platforms closely

follows their throughput results. Cryp utilizes low-power photonic

computing units, resulting in slightly superior energy efficiency

compared to Strix. FPT, operating on FPGA substrate, incurs sub-

stantial power overhead, significantly reducing its energy efficiency.

OFHE’s PFFTE chips consume minimal power, resulting in a 2×
and 94% improvement in GFB throughput per Watt compared to

Strix for parameter sets I and II, respectively.

5.2 Performance of 64- & 128-bit Datapaths

Figure 9 compares the throughput of GFBs, TLWEMults, and FDFBs

between OFHE and Strix. GFBs, TLWE Mults, and FDFBs utilize

parameter sets I, III, and IV, respectively, to encrypt different sizes

of plaintexts. For parameter sets III and IV, DTFHE requires 64-

and 128-bit datapaths. Prior TFHE accelerators face a limitation as

none support datapaths exceeding 32-bits. Consequently, Strix only

natively supports parameter set I. We employ the Karatsuba algo-

rithm [9], with a time complexity of O(3log2 𝑛) on Strix to process

64- and 128-bit operations using native 32-bit operations, where 𝑛
can be 64 or 128. This leads to an exponential decrease in through-

put on Strix when transitioning from a 32-bit to a 64-bit to a 128-bit

datapath, due to the high complexity of the Karatsuba algorithm.

In contrast, OFHE maintains a linear latency evolution across its

datapaths. Consequently, a significant throughput disparity arises

between Strix and OFHE, ranging from 71.5% to 35.6×.

5.3 General Purpose Application Performance

We selected four circuits from the ISCAS’85 benchmark: c7552 (32-

bit adder/comparator), c6288 (16x16 multiplier), c3540 (8-bit ALU),

and 74283 (4-bit adder). Figure 10 compares the latency of these

circuits on Strix and OFHE. While TFHE processes the circuits gate

by gate on Strix, DTFHE utilizes multi-bit additions and multiplica-

tions on OFHE to realize the same circuits. OFHE demonstrates a

latency reduction ranging from 29.4% to 96.1% compared to Strix.

This improvement is particularly significant for c6288 and 74283,

where most Boolean logic gates can be combined into multi-bit mul-

tiplication or addition operations. The superiority of DTFHE over

TFHE in processing general-purpose applications is evident. For

c7552 and c3540, the latency reduction benefits from both DTFHE

advantages and OFHE’s support for TLWE Mults and FDFBs. On

average, compared to Strix, OFHE decreases the latency of these

applications by 58.6%.

6 CONCLUSION

This study introduces OFHE, an electro-optical accelerator designed

for DTFHE operations on multi-bit plaintexts, particularly BFV-like

TLWE multiplications and FDFBs. Leveraging PFFTE chips, OFHE

efficiently addresses the FFT and IFFT kernel bottlenecks, achieving

enhanced performance with reduced power. When benchmarked

against existing TFHE accelerators, OFHE showcases a 8.7% la-

tency reduction, 57% throughput improvement, and an 94% boost

in throughput per watt.

ACKNOWLEDGMENTS

This work was supported in part by NSF CCF-2105972.

REFERENCES
[1] Rubab Amin et al. 2020. Broadband Sub-𝜆 GHz ITO Plasmonic MZM in Silicon

Photonics. In Integrated Photonics Research, Silicon and Nanophotonics.
[2] D. H. Bailey. 1989. FFTs in external or hierarchical memory. In ACM/IEEE Confer-

ence on Supercomputing. 234–242.
[3] Michiel Van Beirendonck et al. 2022. FPT: a Fixed-Point Accelerator for Torus

Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2022/1635.
[4] Zvika Brakerski et al. 2014. (Leveled) Fully Homomorphic Encryption without

Bootstrapping. ACM Transactions on Computation Theory 6, 3 (2014).
[5] Jung Hee Cheon et al. 2020. Remark on the Security of CKKS Scheme in Practice.

Cryptology ePrint Archive, Report 2020/1581.
[6] Ilaria Chillotti et al. 2020. TFHE: Fast Fully Homomorphic Encryption Over The

Torus. Journal of Cryptology 33, 1 (2020).
[7] Ilaria Chillotti et al. 2021. Improved Programmable Bootstrapping with Larger

Precision and Efficient Arithmetic Circuits for TFHE. In ASIACRYPT.
[8] P. Duhamel, B. Piron, and J.M. Etcheto. 1988. On computing the inverse DFT. IEEE

Transactions on Acoustics, Speech, and Signal Processing 36, 2 (1988), 285–286.
[9] Antonio Guimaraes et al. 2022. MOSFHET: Optimized Software for FHE over the

Torus. Cryptology ePrint Archive, Report 2022/515.
[10] Nicholas C. Harris et al. 2014. Efficient, compact and low loss thermo-optic phase

shifter in silicon. Optics Express 22, 9 (May 2014).
[11] D Hillerkuss et al. 2010. Simple all-optical FFT scheme enabling Tbit/s real-time

signal processing. Optics express 18, 9 (2010).
[12] Shihan Hong et al. 2022. Ultralow-loss compact silicon photonic waveguide

spirals and delay lines. Photonics Research 10, 1 (Jan 2022).
[13] Lei Jiang et al. 2022. MATCHA: A Fast and Energy-Efficient Accelerator for Fully

Homomorphic Encryption over the Torus. In Design Automation Conference.
[14] Sangpyo Kim et al. 2022. BTS: An Accelerator for Bootstrappable Fully Homo-

morphic Encryption. In ACM International Symposium on Computer Architecture.
[15] Kotaro Matsuoka et al. 2021. Virtual Secure Platform: A Five-Stage Pipeline

Processor over TFHE. In USENIX Security Symposium.
[16] Boris Murmann. [n. d.]. ADC Performance Survey 1997-2022. https://github.c

om/bmurmann/ADC-survey.
[17] Kevin Nam et al. 2022. Accelerating N-Bit Operations over TFHE on Commodity

CPU-FPGA. In IEEE/ACM International Conference on Computer-Aided Design.
[18] Adiwena Putra et al. 2023. Strix: An End-to-End Streaming Architecture with

Two-Level Ciphertext Batching for Fully Homomorphic Encryption with Pro-
grammable Bootstrapping. In IEEE/ACM International Symposium on Microarchi-
tecture.

[19] Chenran Ye et al. 2015. A compact plasmonic MOS-based 2× 2 electro-optic
switch. Nanophotonics (2015).

[20] Mengxin Zheng et al. 2022. CryptoLight: An Electro-Optical Accelerator for
Fully Homomorphic Encryption. In ACM NanoArch.

