
Journal of Machine Learning Research 24 (2023) 1-56 Submitted 2/22; Revised 5/23; Published 7/23

Multiplayer Performative Prediction:

Learning in Decision-Dependent Games

Adhyyan Narang adhyyan@uw.edu

Department of Electrical and Computer Engineering
University of Washington
Seattle, WA 98195-4322, USA

Evan Faulkner evanjf5@uw.edu

Department of Electrical and Computer Engineering
University of Washington
Seattle, WA 98195-4322, USA

Dmitriy Drusvyatskiy ddrusv@uw.edu

Department of Mathematics
University of Washington
Seattle, WA 98195-4322, USA

Maryam Fazel mfazel@uw.edu

Department of Electrical and Computer Engineering
University of Washington
Seattle, WA 98195-4322, USA

Lillian J. Ratliff ratliffl@uw.edu

Department of Electrical and Computer Engineering

University of Washington

Seattle, WA 98195-4322, USA

Editor: Francesco Orabona

Abstract

Learning problems commonly exhibit an interesting feedback mechanism wherein the
population data reacts to competing decision makers’ actions. This paper formulates a new
game theoretic framework for this phenomenon, called multi-player performative prediction.
We focus on two distinct solution concepts, namely (i) performatively stable equilibria
and (ii) Nash equilibria of the game. The latter equilibria are arguably more informative,
but are generally computationally difficult to find since they are solutions of nonmonotone
games. We show that under mild assumptions, the performatively stable equilibria can be
found efficiently by a variety of algorithms, including repeated retraining and the repeated
(stochastic) gradient method. We then establish transparent sufficient conditions for strong
monotonicity of the game and use them to develop algorithms for finding Nash equilibria.
We investigate derivative free methods and adaptive gradient algorithms wherein each player
alternates between learning a parametric description of their distribution and gradient steps
on the empirical risk. Synthetic and semi-synthetic numerical experiments illustrate the
results.

Keywords: performative prediction, stochastic games, stochastic optimization, distribu-
tional shift, stochastic gradient method.

c©2023 Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0131.html.

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

1. Introduction

Supervised learning theory and algorithms crucially rely on the training and testing data
being generated from the same distribution. This assumption, however, is often violated in
contemporary applications because data distributions may “shift” in reaction to the decision
maker’s actions. Indeed, supervised learning algorithms are increasingly being trained on
data that is generated by strategic or even adversarial agents, and deployed in environments
that react to the decisions that the algorithm makes. In such settings, the model learned on
the training data may be unsuitable for downstream inference and prediction tasks.

The method most commonly used in machine learning practice to address such distri-
butional shifts is to periodically retrain the model to adapt to the changing distribution
(Diethe et al., 2019; Wu et al., 2020). Consequently, it is important to understand when such
retraining heuristics converge and what types of solutions they find. Despite the ubiquity of
retraining heuristics in practice, one should be aware that training without consideration
of strategic effects or decision-dependence can lead to unintended consequences, including
reinforcing bias. This is a concern for applications with potentially significant social impact,
such as predictive policing (Lum and Isaac, 2016), criminal sentencing (Angwin et al., 2016;
Courtland, 2018), pricing equity in ride-share markets (Chen et al., 2015), and loan or job
procurement (Bartlett et al., 2019).

Optimization over decision-dependent probabilities has classical roots in operations
research; see for example the review article of (Hellemo et al., 2018) and references therein.
The more recent work of (Perdomo et al., 2020), motivated by the strategic classification
literature (Dong et al., 2018; Hardt et al., 2016; Miller et al., 2020), sets forth an elegant
framework—aptly named performative prediction—for modeling decision-dependent data
distributions in machine learning settings. There is now extensive research that devel-
ops algorithms for performative prediction by leveraging advances in convex optimization
(Drusvyatskiy and Xiao, 2023; Miller et al., 2021; Mendler-Dünner et al., 2020; Perdomo
et al., 2020; Brown et al., 2022).

The existing strategic classification and performative prediction literature focuses solely on
the interplay between a single learner and the population that reacts to the learner’s actions.
However, learning algorithms in practice are often deployed alongside other algorithms which
may even be competing with one another. Concrete examples to keep in mind are those of
college admissions and loan procurement, wherein the applicants may tailor their profile to
make them more desirable for the college of their choice, or the loan with the terms (such as
interest rate) that match the applicant’s current socio-economic and fiscal situation. In these
cases, there are multiple competing learners (colleges, banks) and the population reacts based
on the admissions policies of all the colleges (or banks) simultaneously. Examples of this
type are widespread in applications; we provide further motivating vignettes in Section 3.

1.1 Contributions

We formulate the first game theoretic model for decision-dependent learning in the presence
of competition, called multi-player performative prediction.1 This is a new class of stochastic
games that model a variety of machine learning problems arising in many practical appli-

1. A preliminary version of this paper appeared in the Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics, 2022.

2

Multiplayer Performative Prediction

cations. The model captures, as a special case, important problems including strategic
classification in settings with multiple decision-making entities that model learning when
each entity’s data distribution depends on the action taken. It defines an entire new class
of problems that can be studied to determine consequences, unintended or otherwise, of
using machine learning algorithms (including classifiers and predictors) in settings where
the “data” generated for training is produced by strategic users that react based on their
own internal preferences. Indeed, strategic behavior can lead to feedback loops in the data
which if not monitored can, e.g., reinforce institutional biases as we have seen in predictive
policing (Ensign et al., 2018; Lum and Isaac, 2016). Such consequences may be further
exacerbated or alleviated in competitive settings where populations of users are choosing
amongst multiple firms providing different service qualities (Dean et al., 2022).

We focus on two solution concepts for such games: (i) performatively stable equilibria
and (ii) Nash equilibria. The former arises naturally when decision-makers employ näıve
repeated retraining algorithms. This is very common practice, and hence it is important
to understand the equilibrium to which such algorithms converge and precisely when they
do so. We show that performatively stable equilibria are sure to exist and to be unique
under reasonable smoothness, convexity, and Lipschitz assumptions (Section 4). Moreover,
repeated training and (stochastic) gradient methods succeed at finding such equilibrium
strategies. The finite time efficiency estimates (or iteration complexity) we obtain reduce to
state-of-the art guarantees in the single player setting.

In some applications, a performatively stable equilibrium may be a poor solution concept,
and instead a Nash equilibrium may be desirable; indeed, the latter is game theoretically
meaningful in the sense that players have no incentive to change their action even when
taking into consideration the decision-dependence in the data distribution and how this
impacts the expected loss experienced by the decision maker. The concept of a performatively
stable equilibrium does not have this feature, meaning that decision-makers may have a
direction in which they can adjust their strategy and improve their loss. In particular, as
machine learning algorithms become more sophisticated, in the sense that at the time of
learning decision-dependence is taken into consideration, a more natural equilibrium concept
is a Nash equilibrium. Aiming towards algorithms for finding Nash equilibria, we develop
transparent conditions ensuring strong monotonicity of the game (Section 5). Assuming
that the game is strongly monotone, we then discuss a number of algorithms that take
into consideration different information structures available to the players for finding Nash
equilibria (Section 6). In particular, derivative-free methods are immediately applicable

but have a high sample complexity O(d
2

ε2
) (Bravo et al., 2018; Drusvyatskiy et al., 2022).

Seeking faster algorithms, we introduce an additional assumption that the data distribution
depends linearly on the performative effects of all the players. When the players know
explicitly how the distribution depends on their own performative effects, but not those of
their competitors, a simple stochastic gradient method is applicable and comes equipped
with an efficiency guarantee of O(dε). Allowing players to know their own performative
effects may be unrealistic in some settings. Consequently, we propose an adaptive algorithm
in the setting when the data distribution has an amenable parametric description. In the
algorithm, the players alternate between estimating the parameters of the distribution and
optimizing their loss, again with only empirical samples of their individual gradients given

3

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

the estimated parameters. The sample complexity for this algorithm, up to variance terms,
matches the rate O(dε) of the stochastic gradient method.

Finally, we present illustrative numerical experiments using both a synthetic example to
validate the theoretical bounds, and a semi-synthetic example generated using data from
multiple ride-share platforms (Section 7). Further experiments are contained in Appendix E.

1.2 Related Work

Performative Prediction. The multiplayer setting in the present paper is inspired
by the single player performative prediction framework introduced by (Perdomo et al.,
2020), and further refined by (Mendler-Dünner et al., 2020) and (Miller et al., 2021).
These works introduce the two distinct concepts of (1) performative optimality and (2)
performative stability. The former are optimal points of the optimization problem induced
by decision-dependent data distributions, whereas the latter are fixed points of the repeated
retraining procedure. Subsequently, (Drusvyatskiy and Xiao, 2023) showed that a variety
of popular gradient-based algorithms—also seeking performatively stable points—in the
decision-dependent setting can be understood as the analogous algorithms applied to a
certain static problem corrupted by a vanishing bias. In general, however, performative
stability does not imply performative optimality. Seeking to develop algorithms for finding
performatively optimal points, (Miller et al., 2021) provide sufficient conditions for the
prediction problem to be convex. Drawing connections with the present paper, observe that
in the trivial “game” with a single decision-maker, the notion of a Nash equilibrium trivially
reduces to a performatively optimal point.

For decision-dependent distributions described as location families, (Miller et al., 2021)
additionally introduce a two-stage algorithm for finding performatively optimal points. The
paper (Izzo et al., 2022) instead focuses on algorithms that estimate gradients with finite
differences. The performative prediction framework is largely motivated by the problem of
strategic classification (Hardt et al., 2016). This problem has been studied extensively from
the perspective of causal inference (Bechavod et al., 2020; Miller et al., 2020) and convex
optimization (Dong et al., 2018).

Another line of work in performative prediction has focused on the setting in which the
environment evolves dynamically in time or experiences time drift. This line of work is more
closely related to reinforcement learning wherein a decision maker attempts to maximize
their reward over time given that the stochastic environment depends on their decision. In
particular, (Brown et al., 2022) formulate a time-dependent performative prediction problem
such that the decision-maker seeks to optimize the stationary reward—i.e., the reward
under the fixed point distribution induced by the player’s decision. Repeated retraining
algorithms seeking the performatively stable solution to this problem are studied. In contrast,
(Ray et al., 2022) study performative prediction in geometrically decaying environments,
and provide conditions and algorithms that lead to the performatively optimal solution.
The papers (Cutler et al., 2021; Li and Wai, 2022; Wood et al., 2021) study performative
prediction problems wherein the environment is drifting not only due to the action of the
decision maker but also in time. These two papers analyze the tracking efficiency of the
proximal stochastic gradient method and projected gradient descent under time drift.

4

Multiplayer Performative Prediction

Gradient-Based Learning in Continuous Games. There is a broad and growing
literature on learning in games. We focus on the most relevant subset: gradient-based
learning in continuous games. In his seminal work, (Rosen, 1965) showed that convex games
which are diagonal strictly convex admit a unique Nash equilibrium and that gradient play
converges to it. There is a large literature extending this work to more general games. For
instance, (Ratliff et al., 2016) provide a characterization of Nash equilibria in non-convex
continuous games, and show that continuous time gradient dynamics locally converge to
Nash; building on this work, (Chasnov et al., 2020a) provide local convergence rates that
extend to global rates when the game admits a potential function or is strongly monotone.

Under the assumption of strong monotonicity, the iteration complexity of stochastic and
derivative-free gradient methods has also been obtained (Mertikopoulos and Zhou, 2019;
Bravo et al., 2018; Drusvyatskiy et al., 2022). Relaxing strong monotonicity to monotonicity,
Tatarenko and Kamgarpour (2019, 2020) show that the stochastic gradient and derivative
free gradient methods—i.e., where players use a single-point query of the loss to construct an
estimate of their individual gradient of a smoothed version of their loss function—converge
asymptotically. The approach to deal with the lack of strong monotonicity is to add a
regularization term that decays to zero asymptotically. The update players employ in
this regularized game is then analyzed as a stochastic gradient method with an additional
bias term. We take a similar perspective to Tatarenko and Kamgarpour (2019, 2020) and
(Drusvyatskiy and Xiao, 2023) in the analysis of all the algorithms we study—namely, we
view the updates as a stochastic gradient method with additional bias.

Stochastic programming. Stochastic optimization problems with decision-dependent
uncertainties have appeared in the classical stochastic programming literature, such as
(Ahmed, 2000; Dupacová, 2006; Jonsbr̊aten et al., 1998; Rubinstein and Shapiro, 1993;
Varaiya and Wets, 1988). We refer the reader to the recent paper (Hellemo et al., 2018),
which discusses taxonomy and various models of decision dependent uncertainties. An
important theme of these works is to utilize structural assumptions on how the decision
variables impact the distributions. Consequently, these works sharply deviate from the
framework explored in (Perdomo et al., 2020; Mendler-Dünner et al., 2020; Miller et al.,
2021) and from our paper. Time-varying problems have also been studied under the title
“nonstationary optimization problems” in, e.g., (Gaivoronskii, 1978; Ermoliev, 1988), where
it is assumed that the time varying functions converges to a limit but there is no explicit
assumption on decision or state-feedback.

2. Notation and Preliminaries

This section records basic notation that we will use. A reader that is familiar with convex
games and the Wasserstein-1 distance between probability measures may safely skip this
section. Throughout, we let Rd denote a d-dimensional Euclidean space, with inner product
〈·, ·〉 and the induced norm ‖x‖ =

√
〈x, x〉. The projection of a point y ∈ R

d onto a set
X ⊂ R

d is denoted

projX (y) = argmin
x∈X

‖x− y‖.

5

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

The normal cone to a convex set X at x ∈ X , denoted by NX (x), is the set

NX (x) = {v ∈ R
d : 〈v, y − x〉 ≤ 0 ∀y ∈ X}.

We say that f is C1-smooth if the mapping x 7→ ∇xf(x) is well-defined and continuous.

2.1 Convex Games and Monotonicity

Fix an index set [n] = {1, . . . , n}, integers di for i ∈ [n], and set d =
∑n

i=1 di. Throughout,
we decompose vectors x ∈ R

d as x = (x1, . . . , xn) with xi ∈ R
di . Given an index i, we abuse

notation and write x = (xi, x−i), where x−i denotes the vector of all coordinates except xi.
A collection of functions Li : R

d → R and sets Xi ⊂ R
di , for i ∈ [n], induces a game between

n players, wherein each player i seeks to solve the problem

min
xi∈Xi

Li(xi, x−i). (1)

Define the joint action space X = X1×· · ·×Xn. A vector x? ∈ R
d is called a Nash equilibrium

of the game (1) if the condition

x?i ∈ argmin
xi∈Xi

Li(xi, x
?
−i) holds for each i ∈ [n]. (2)

Thus x? is a Nash equilibrium if each player i has no incentive to deviate from x?i when the
strategies of all other players remain fixed at x?−i.

The gradient of Li(·, ·) with respect to the argument xi is denoted ∇iLi(xi, x−i) =
(∇xijLi(xi, x−i))

d
j=1 ∈ R

di . With this notation, we define the vector of individual gradients

H(x) := (∇1L1(x), . . . ,∇nLn(x)),

such that H(x) ∈ R
d. This map arises naturally from writing down first-order optimality

conditions corresponding to (1) for each player. Namely, we say that (1) is a C1-smooth
convex game if the sets Xi are closed and convex, the functions Li(·, x−i) are convex (i.e.,
Li is convex in xi when x−i are fixed), and the partial gradients ∇iLi(x) exist and are
continuous. Thus, the Nash equilibria x? are characterized by the inclusion

0 ∈ H(x?) +NX (x
?).

A C1-smooth convex game is called α-strongly monotone (for α ≥ 0) if it satisfies

〈H(x)−H(x′), x− x′〉 ≥ α‖x− x′‖2 for all x, x′ ∈ R
d.

If this condition holds with α = 0, the game is simply called monotone. It is well-known
from (Rosen, 1965) that α-strongly monotone games (with α > 0) over convex, closed and
bounded strategy sets X admit a unique Nash equilibrium x?, which satisfies

〈H(x), x− x?〉 ≥ α‖x− x?‖2 for all x ∈ X .

6

Multiplayer Performative Prediction

2.2 Probability Measures and Gradient Deviation

To simplify notation, we will always assume that when taking expectations with respect to
a measure that the expectation exists and that integration and differentiation operations
may be swapped whenever we encounter them. These assumptions are completely standard
to justify under uniform integrability conditions.

We are interested in random variables taking values in a metric space. Given a metric
space Z with metric d(·, ·), the symbol P(Z) will denote the set of Radon probability measures
µ on Z with a finite first moment Ez∼µ[d(z, z0)] < ∞ for some z0 ∈ Z. We measure the
deviation between two measures µ, ν ∈ Z using the Wasserstein-1 distance:

W1(µ, ν) = sup
h∈Lip1

{
E

X∼µ
[h(X)]− E

Y∼ν
[h(Y)]

}
, (3)

where Lip1 denotes the set of 1-Lipschitz continuous functions h : Z → R. Fix a function
g : Rd ×Z → R and a measure µ ∈ P(Z), and define the expected loss

fµ(x) = E
z∼µ

g(x, z).

Throughout, the symbol ∇fµ(x) denotes the gradient of fµ(·) with respect to its argument
x. The following standard result shows that the Wasserstein-1 distance controls how the
gradient ∇fµ(x) varies with respect to µ; see, for example, Drusvyatskiy and Xiao (2023,
Lemmas 1.1, 2.1) for a short proof.

Lemma 1 (Gradient deviation) Fix a function g : Rd × Z → R such that g(·, z) is C1

for all z ∈ Z and the map z 7→ ∇xg(x, z) is β-Lipschitz continuous for any x ∈ R
d. Fix now

any measures µ, ν ∈ P(Z) such that g(x, ·) is both µ and ν integrable for all x. Then we may
exchange differentiation and integration ∇fµ(x) = Eµ∇g(x, z) and the estimate holds:

sup
x

‖∇fµ(x)−∇fν(x)‖ ≤ β ·W1(µ, ν).

3. Decision-Dependent Games

We model the problem of n decision-makers, each facing a decision-dependent learning
problem, as an n-player game. Each player i ∈ [n] seeks to solve the decision-dependent
optimization problem

min
xi∈Xi

Li(xi, x−i) where Li(x) := E
zi∼Di(x)

`i(x, zi). (4)

Throughout, we suppose that each set Xi lies in the Euclidean space R
di and we set

d =
∑n

i=1 di. The loss function for the i’th player is denoted as `i : R
d × Zi → R, where

Zi is some metric space and Di(x) ∈ P(Zi) is a probability measure that depends on the
joint decision x ∈ X and the player i ∈ [n]. Observe that the random variable zi in the
objective function of player i is governed by the distribution Di(x), which crucially depends
on the strategies x = (x1, . . . , xn) chosen by all players. This is worth emphasizing: the
parameters chosen by one player have an influence on the data seen by all other players. This

7

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

is one of the critical ways in which the problems for the different players are strategically
coupled. The other is directly through the loss function `i which also depends on the joint
decision x. These two sources of strategic coupling are why the game theoretic abstraction
naturally arises. It is worth keeping in mind that in most practical settings (see the upcoming
Vignettes 1 and 2), the loss functions `i(x, zi) depend only on xi, that is `i(x, zi) ≡ `i(xi, zi).
If this is the case, we will call the game separable (which refers to separable losses, not
distributions). Thus, for separable games, the coupling among the players is due entirely to
the distribution Di(x) that depends on the actions of all the players.

Remark 2 The decision-dependence in the distribution map may encode the reaction of
strategic users in a population to the announced joint decision x; hence, in these cases there
is also a “game” between the decision-makers and the strategic users in the environment—a
game with a different interaction structure known as a Stackelberg game (Von Stackelberg,
2010). This level of strategic interaction between decision-maker and strategic user is
abstracted away to an aggregate level in Di(xi, x−i). The game between a single decision
maker and the strategic user population has been studied widely (cf. Section 1.2). We leave
it to future work to investigate both layers of strategic interaction simultaneously.

It is assumed that each player observes the other players’ actions. This is a reasonable
assumption in our setup: if the data population (e.g., strategic users) are able to respond
to the players’ deployed decisions xi, the other players must be able to respond to these
decisions as well. In essence, these decisions are publicly announced. We note that in practice
the players may have to learn competitors’ decisions and this might result in asynchronous
information. We comment in Sections 4 and 6 where we analyze algorithms in different
information settings on how asynchronous feedback can be captured in the algorithms
without fundamentally changing the convergence rate. We leave the question of players
estimating the actions of competitors, and the question of users estimating players decision
rules to future work.

The following vignettes based on practical applications motivate different types of
strategic coupling.

Vignette 1 (Multiplayer forecasting) Players have the same decision-dependent data
distribution—namely, D ≡ Di ≡ Dj for all i, j ∈ [n]. Multiple mapping applications
forecast the travel time between different locations, yet the realized travel time is collectively
influenced by all their forecasts. The decision-dependent players are the mapping applications
(firms). The decision xi each player makes is the rule for recommending routes. Users choose
routes, which then impact the realized travel time zi ≡ z ∼ D on the m different road
segments in the network observed by all firms.

Vignette 2 Players have different distributions—i.e., Di 6≡ Dj for all i, j ∈ [n].
(a) Multiplayer Strategic Classification. Multiple universities classify students as

accepted or rejected using applicant data, where each applicant designs their application
to fit desiderata of multiple universities. The data zi ∼ Di(x) is an application that
university i receives, and as a decision-dependent player, each university i designs a
classification rule xi to determine which applicants are accepted. The goal of a university
is to accept qualified candidates, and different types of universities predominently cater

8

Multiplayer Performative Prediction

to different populations (e.g., liberal arts versus science and engineering), yet students
may apply to multiple programs across many universities thereby resulting in distinct
distributions Di that depend on the joint decision rule x.

(b) Revenue Maximization via Demand Forecasting. In a ride-share market, mul-
tiple platforms forecast demand for rides (respectively, supply of drivers) at different
locations in order to optimize their revenue by using the forecast to set prices. In most
ride-share markets, drivers and passengers participate in multiple platforms by, e.g.,
“price shopping”. Hence, the forecasted demand zi ∼ Di(x) for platform i depends on
their own decision xi as well as their competitors’ decisions x−i.

Prior formulations of decision dependent learning do not readily extend to the settings
described in the vignettes without a game theoretic model. There are two natural solution
concepts for the game (4). The first is the classical notion of Nash equilibrium; we repeat
the definition here for ease of reference.

Definition 3 (Nash equilibrium) A vector x? ∈ X is a Nash equilibrium of the game (4)
if

x?i ∈ argmin
xi∈Xi

Li(xi, x
?
−i) holds for each i ∈ [n].

The game (4) can easily fail to be monotone even if it is separable and the loss functions `i(·, z)
are strongly convex. In Section 5, we develop sufficient conditions for (strong) monotonicity
and use them to analyze algorithms for finding Nash equilibria. Further we provide examples
that illustrate the sufficient conditions. We note however that the sufficient conditions we
develop, which are in line with those in the single player setting (Miller et al., 2021), are
quite restrictive.

On the other hand, there is an alternative solution concept, which is more amenable to
numerical methods, and reduces to performatively stable points of (Perdomo et al., 2020) in
the single player setting. The idea is to decouple the effects of a decision x on the integrand
`(x, z) and on the distribution D(x). Setting notation, any vector y ∈ X induces a static
game, G(y) (without performative effects), wherein the distribution for player i is fixed at
Di(y):

G(y) :=
(

E
z1∼D1(y)

`1(x1, x−1, z1), . . . , E
zn∼Dn(y)

`n(xn, x−n, zn)

)
, (5)

meaning each player i seeks to solve

min
xi∈Xi

Ly
i (xi, x−i) where Ly

i (xi, x−i) := E
zi∼Di(y)

`i(xi, x−i, zi).

Notice that this is a parametric family of games, indexed by y ∈ X , in which players do not
take into consideration the dependence of Di on the their actions; we refer to this class of
games as “static games” since the distribution is fixed at y.

Definition 4 (Performatively stable equilibria) A strategy vector x? ∈ X is a perfor-
matively stable equilibrium of the game (4) if it is a Nash equilibrium of the static game
G(x?) (with game G(·) as defined above).

9

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

The difference between performatively stable equilibria and Nash equilibria of is that the
governing distribution for player i is fixed at Di(x

?). Performatively stable equilibria have a
clear intuitive meaning: each player i has no incentive to deviate from x? having access only
to data drawn from D(x?). Notice that if the game (4) is separable—the typical setting—the
static game G(y) is entirely decoupled for any y in the sense that the problem that player i
aims to solve depends only on xi and not on x−i. This enables a variety of single player
optimization techniques to extend to the computation of performatively stable equilibria.

Nash and performatively stable equilibria are typically distinct, even in the single player
setting as explained in (Perdomo et al., 2020). This distinction is worth highlighting. Under
mild smoothness assumptions,2 taking the derivative directly implies the following expression
for the gradient of the objective of player i:

∇iLi(xi, x−i) = E
zi∼Di(x)

[∇i`i(xi, x−i, zi)]

︸ ︷︷ ︸
Pi

+∇ui

(
E

zi∼Di(ui,x−i)
[`i(xi, x−i, zi)]

) ∣∣∣
ui=xi︸ ︷︷ ︸

Qi

, (6)

where ∇i`i(xi, x−i, zi) = (∂
∂xi,1

`i(xi, x−i, zi), . . . ,
∂

∂xi,di
`i(xi, x−i, zi)) is the gradient of `i with

respect to the xi argument, and

∇ui

(
E

zi∼Di(ui,x−i)
[`i(xi, x−i, zi)]

) ∣∣∣
ui=xi

=

(
∂

∂ui,j
E

zi∼Di(ui,x−i)
[`i(xi, x−i, zi)]

∣∣∣
ui,j=xi,j

)di

j=1

.

If x is a Nash equilibrium of the game (4) and X = R
d, then equality 0 = ∇iLi(xi, x−i) =

Pi +Qi holds for all i ∈ [n]. On the other hand, provided the loss functions `i are convex,
the joint action x is a performatively stable equilibrium precisely when Pi ≡ 0 for all i ∈ [n].
This clearly shows that the two solution concepts are typically distinct, since performative
stability in essence ignores the term Qi on the right side of (6). It is an open question as to
how these equilibrium concepts compare in terms of their efficiency relative to the social
optimum. We explore this empirically in Section 7.

Before proceeding, we introduce some convenient notation that we use throughout. Fix
two vectors x = (x1, . . . , xn) ∈ X and z = (z1, . . . , zn) ∈ Z1 × . . .×Zn. We then set

gi(x, zi) := ∇i`i(x, zi) and g(x, z) := (g1(x, z1), . . . , gn(x, zn)).

Taking expectations define

Gi,y(x) := E
zi∼Di(y)

gi(x, zi) and Gy(x) := (G1,y(x), . . . , Gn,y(x)), (7)

so that Gy(·) is the vector of individual gradients corresponding to the game 5. Notice that
we may write

Gy(x) := E
z∼Dπ(y)

g(x, z)

where Dπ(y) := D1(y)× . . .×Dn(y) is the product measure.
In the rest of the paper we impose the following assumption that is in line with the

performative prediction literature.

2. cf. Assumption 5 in Section 5 for the precise assumptions needed for the product rule to apply.

10

Multiplayer Performative Prediction

Assumption 1 (Convexity and smoothness) There exist constants α > 0 and βi > 0
such that for each i ∈ [n], the following hold:

1. Each loss `i(xi, x−i, zi) is C
1-smooth in xi and the map zi 7→ ∇zi`i(x, zi) is βi-Lipschitz

continuous for any x ∈ X .

2. For any y ∈ X , the game G(y) is α-strongly monotone—i.e., the game G(y) induced
by the fixed joint action y satisfies

α · ‖x− x′‖2 ≤ 〈Gy(x)−Gy(x
′), x− x′〉 ∀ x, x′ ∈ X .

It is worth noting that in the setting where the losses are separable, the game G(y) is
α-strongly monotone as long as each expected loss Ez∼Di(y) `i(xi, zi) is α-strongly convex in
xi. Assumption 1 alone does not imply convexity of the objective functions Li(xi, x−i) in
xi nor monotonicity of the game (4) itself. Sufficient conditions for convexity and strong
monotonicity of the game are given in Section 5.

Next, we require the distributions Di(x) to vary in a Lipschitz way with respect to x.

Assumption 2 (Lipschitz distributions) For each i ∈ [n], there exists γi > 0 satisfying

W1(Di(x),Di(y)) ≤ γi · ‖x− y‖ for all x, y ∈ X .

In this case, we define the constant ρ :=
√∑n

i=1(
βiγi
α)2.

Theorem 7 implies that the constant ρ is fundamentally important for algorithms, since
it characterizes settings in which algorithms can be expected to work.

The following is a direct consequence of Lemma 1.

Lemma 5 (Deviation in the vector of individual gradients) Suppose Assumptions 1
and 2 hold. Then for every x, y, y′ ∈ X and index i ∈ [n], the estimates hold:

‖Gi,y(x)−Gi,y′(x)‖ ≤ βiγi · ‖y − y′‖,

‖Gy(x)−Gy′(x)‖ ≤

√√√√
n∑

i=1

β2i γ
2
i · ‖y − y′‖.

Proof Using Lemma 1 and the standing Assumptions 1 and 2 we compute

‖Gi,y(x)−Gi,y′(x)‖ =

∥∥∥∥ E
zi∼Di(y)

∇i`i(x, zi)− E
zi∼Di(y′)

∇i`i(x, zi)

∥∥∥∥

≤ βi ·W1(Di(y),Di(y
′))

≤ βiγi · ‖y − y′‖.
Therefore, we deduce that

‖Gy(x)−Gy′(x)‖2 =
n∑

i=1

‖Gi,y(x)−Gi,y′(x)‖2 ≤
n∑

i=1

β2i γ
2
i · ‖y − y′‖2.

The proof is complete.

We end the section by noting that in principle one could bound the distance between
performatively stable equilibria and Nash equilibria as follows.

11

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Lemma 6 (Performatively stable & Nash equilibrium deviation) Suppose that As-
sumptions 1 and 2 hold and that we are in the regime ρ < 1. Moreover, suppose that the
expression (6) is valid and the loss functions `i(·, x−i, zi) are Li-Lipschitz on Xi. Let x̄
and x? be, respectively, a Nash equilibrium and performatively stable equilibrium. Then the
estimate holds:

‖x̄− x?‖ ≤

√∑n
i=1 L

2
i γ

2
i

α−
√∑n

i=1 β
2
i γ

2
i

.

Proof Using strong monotonicity, we compute

α‖x̄− x?‖2 ≤ 〈Gx?(x̄)−Gx?(x?), x̄− x?〉
≤ 〈Gx?(x̄), x̄− x?〉

≤ 〈Gx̄(x̄), x̄− x?〉+

√√√√
n∑

i=1

β2i γ
2
i · ‖x̄− x?‖2,

(8)

where the last inequality follows from Lemma 5. Next recall that by definition of Nash
equilibrium and the expression (6) we have

0 ∈ Gx̄(x̄) + [Qi]i=1n +NX (x̄), (9)

where Qi is evaluated at x̄. Note that the Kantorovich-Rubenstein dual representation for

W1 distance directly implies ‖[Qi]
n
i=1‖ ≤

√∑n
i=1 L

2
i γ

2
i . Therefore we deduce

〈Gx̄(x̄), x̄− x?〉 ≤

√√√√
n∑

i=1

L2
i γ

2
i · ‖x̄− x?‖.

Combining (8)-(9) and rearranging and dividing by ‖x̄− x?‖ completes the proof.

4. Algorithms for Finding Performatively Stable Equilibria

The previous section isolated two solution concepts for decision dependent games: Nash
equilibria and performatively stable equilibria. In this section, we discuss existence of the
latter and algorithms for finding these. We discuss three algorithms: repeated retraining, the
repeated gradient method, and the repeated stochastic gradient method. While the first two
are largely conceptual, the repeated stochastic gradient method is entirely implementable.

4.1 Repeated Retraining

Observe that performatively stable equilibria of (4) are precisely the fixed points of the map

Nash(x) := {x′ ∈ X : x′ is a Nash equilibrium of the game G(x)}.

A natural algorithm is therefore repeated retraining, which is simply the fixed point iteration

xt+1 = Nash(xt). (10)

12

Multiplayer Performative Prediction

In the single player settings, this algorithm was studied in Perdomo et al. (2020). Unrolling
notation, given a current decision vector xt, the updated decision vector xt+1 is the Nash
equilibrium of the game wherein each player i ∈ [n] seeks to solve

min
yi∈Xi

E
zi∼Di(xt)

`i(yi, y−i, zi). (11)

It is important to notice that since xt is fixed, the game (11) is strongly monotone in light
of Assumption 1. Thus, in iteration t, the players play a Nash equilibrium (i.e., a best
response) in this game induced by the prior joint decision xt. Importantly, despite the fact
that xt+1 is a Nash equilibrium of a game in iteration t, the collective decision xt+1 is not a
Nash equilibrium for the multiplayer performative prediction problem (4). In fact, players
have an incentive to change their action since it is possible that by changing xti, the change
it induces in the distribution Di(·) reduces their expected loss.

The following theorem shows that in the regime ρ < 1, the game (4) admits a unique
performatively stable equilibrium and repeated retraining converges linearly.

Theorem 7 (Repeated retraining) Suppose Assumptions 1-2 hold and that we are in
the regime ρ < 1. Then the game (4) admits a unique performatively stable equilibrium x?

and the repeated retraining process (10) converges linearly:

‖xt+1 − x?‖ ≤ ρ · ‖xt − x?‖ for all t ≥ 0.

Proof We will show that the map Nash(·) is Lipschitz continuous with parameter ρ. To
this end, consider two points x and x′ and set y := Nash(x) and y′ := Nash(x′). Note that
first order optimality conditions for y and y′ guarantee

〈Gx(y), y − y′〉 ≤ 0 and 〈Gx′(y′), y′ − y〉 ≤ 0.

Strong monotonicity of the game G(x) therefore ensures

α · ‖y − y′‖2 ≤ 〈Gx(y)−Gx(y
′), y − y′〉

≤ 〈Gx′(y′)−Gx(y
′), y − y′〉

≤ ‖Gx′(y′)−Gx(y
′))‖ · ‖y − y′‖

≤

√√√√
n∑

i=1

γ2i β
2
i · ‖x− x′‖ · ‖y − y′‖,

where the last inequality follows from Lemma 5. Dividing through by ‖y − y′‖ guarantees
that Nash(·) is indeed a contraction with parameter ρ. The result follows immediately from
the Banach fixed point theorem.

Theorem 7 shows that the interesting parameter regime is ρ < 1, since outside of this
setting performative equilibria may even fail to exist. It is worth noting that when the game
(4) is separable, each iteration of repeated retraining (10) becomes

min
yi∈Xi

E
zi∼Di(xt)

`i(yi, zi). (12)

13

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

That is, the optimization problems faced by the players are entirely independent of each
other. In the separable case, the regime when repeated retraining succeeds can be slightly

enlarged from ρ < 1 to
∑n

i=1

(
βiγi
αi

)2
< 1, where αi is the strong convexity constant of

the loss for player i. This is the content of the following theorem, whose proof is a slight
modification of the proof of Theorem 7.

Theorem 8 (Improved contraction for separable games) Suppose that the game (4)
is separable and that each loss function Ly

i (xi) = Ezi∼Di(y) `i(xi, zi) is αi-strongly convex in
xi for every y ∈ X . Suppose moreover that Assumptions 1 and 2 hold, and that we are in the

regime
∑n

i=1

(
βiγi
αi

)2
< 1. The game (4) admits a unique performatively stable equilibrium

x? and the repeated retraining process converges linearly:

‖xt+1 − x?‖ ≤

√√√√
n∑

i=1

(
βiγi
αi

)2
· ‖xt − x?‖ for all t ≥ 0.

Proof We show that the map Nash(·) is Lipschitz continuous with parameter

√
∑n

i=1

(
βiγi
αi

)2
.

To this end, consider two points x and x′ and set y := Nash(x) and y′ := Nash(x′). Note
that first order optimality conditions for y and y′ guarantee

〈Gi,x(y), yi − y′i〉 ≤ 0 and 〈Gi,x′(y′), y′i − yi〉 ≤ 0 for all i ∈ [n].

Set v = (α−1
1 , . . . , α−1

n) and let � denote the Hadamard product between two vectors. Strong
convexity of the loss functions therefore ensures

‖y − y′‖2 ≤
∑

i

α−1
i 〈Gi,x(y)−Gi,x(y

′), yi − y′i〉

≤
∑

i

α−1
i 〈Gi,x′(y′)−Gi,x(y

′), yi − y′i〉

= 〈v � (Gx′(y′)−Gx(y
′)), y − y′〉

≤ ‖v � (Gx′(y′)−Gx(y
′))‖ · ‖y − y′‖

≤

√√√√
n∑

i=1

β2i γ
2
i

α2
i

· ‖x− x′‖ · ‖y − y′‖,

where the last inequality follows from Lemma 1 and the standing Assumptions 1 and 2.
Dividing through by ‖y− y′‖ guarantees that Nash(·) is indeed a contraction with parameter√∑n

i=1
β2

i γ
2

i

α2

i
. The result follows immediately from the Banach fixed point theorem.

4.2 Repeated Gradient Method

Repeated retraining is largely a conceptual algorithm since in each iteration it requires
computation of the exact Nash equilibrium of a stochastic game (11). A more realistic

14

Multiplayer Performative Prediction

algorithm would instead take a single gradient step on the game (11). With this in mind,
given a step-size parameter η > 0, the repeated gradient method repeats the updates:

xt+1 = projX (x
t − ηGxt(xt)).

More explicitly, in iteration t, each player i ∈ [n] performs the update

xt+1
i = projXi

(
xt − ηt E

zi∼Di(xt)
∇i`i(x

t
i, x

t
−i, zi)

)
.

This algorithm is largely conceptual since each player needs to compute an expectation;
nonetheless we next show that this process converges linearly under the following additional
smoothness assumption.

Assumption 3 (Smoothness) For every y ∈ X , the vector of individual gradients Gy(x)
is L-Lipschitz continuous in x.

The following is the main result of this section. Note that the slightly suboptimal
parameter regime ρ < 1

2+
√
2
can be widened to the regime ρ < 1 by a more involved

argument (cf. Theorem 10 with σ2 = 0).

Theorem 9 (Repeated gradient method) Suppose that Assumptions 1-3 hold and that
we are in the regime ρ < 1

2+
√
2
. Then the iterates xt generated by the repeated gradient

method with η = α
L2 converge linearly to the performatively stable equilibrium x?—that is,

the following estimate holds:

‖xt+1 − x?‖ ≤


 1√

1 + α2

L2

+
α2ρ

L2


 ‖xt − x?‖ for all t ≥ 0. (13)

Proof Using the triangle inequality, we estimate

‖xt+1 − x?‖ = ‖ projX (xt − ηGxt(xt))− x?‖
≤ ‖projX (xt − ηGx?(xt))− x?‖

+ ‖ projX (xt − ηGxt(xt))− projX (x
t − ηGx?(xt))‖

≤ ‖projX (xt − ηGx?(xt))− x?‖+ η‖Gxt(xt))−Gx?(xt))‖

≤ ‖projX (xt − ηGx?(xt))− x?‖+ η

√∑

i

β2i γ
2
i · ‖xt − x?‖,

(14)

where the last inequality follows from Lemma 5. The rest of the argument is standard. We
will simply show that the first term on the on right-side is a fraction of ‖xt − x∗‖. To this
end, set yt+1 = projX (x

t − ηGx?(xt)). Since the function x 7→ 1
2‖xt − ηGx?(xt) − x‖2 is

1-strongly convex and yt+1 is its minimizer over X , we deduce

1

2
‖yt+1 − x?‖2 ≤ 1

2
‖xt − ηGx?(xt)− x?‖2 − 1

2
‖xt − ηGx?(xt)− yt+1‖2.

15

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Expanding the right hand side yields

1

2
‖yt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − η〈Gx?(xt), yt+1 − x?〉 − 1

2
‖yt+1 − xt‖2

=
1

2
‖xt − x?‖2 − η〈Gx?(yt+1), yt+1 − x?〉

− η〈Gx?(xt)−Gx?(yt+1), yt+1 − x?〉 − 1

2
‖yt+1 − xt‖2.

(15)

Strong convexity of the loss functions ensures

η〈Gx?(yt+1), yt+1 − x?〉 ≥ η〈Gx?(yt+1)−Gx?(x?), yt+1 − x?〉 ≥ αη‖yt+1 − x?‖2. (16)

Young’s inequality in turn implies

η|〈Gx?(xt)−Gx?(yt+1), yt+1 − x?〉| ≤ ‖Gx?(xt)−Gx?(yt+1)‖2
2L2

+
η2L2‖yt+1 − x?‖2

2

≤ ‖xt − yt+1‖2
2

+
η2L2‖yt+1 − x?‖2

2
,

(17)

where the last inequality follows from Assumption 3. Putting the estimates (15)-(17) together
yields

1

2
‖yt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − 2αη − η2L2

2
‖yt+1 − x?‖2.

Rearranging gives ‖yt+1 − x?‖2 ≤ 1
1+2αη−η2L2 ‖xt − x?‖2. Returning to (14) we therefore

conclude

‖xt+1 − x?‖ ≤


 1√

1 + 2αη − η2L2
+ η

√∑

i

β2i γ
2
i


 ‖xt − x?‖.

Plugging in η = α
L2 yields the claimed estimate (13). An elementary argument shows that

in the assumed regime ρ < 1
2+

√
2
, the term in the parentheses in (13) is indeed smaller than

one.

4.3 Repeated Stochastic Gradient Method

As observed earlier, the repeated gradient method is still largely a conceptual algorithm since
an expectation has to be computed in every iteration. We next analyze an implementable
algorithm that approximates the expectation in each step of gradient with an unbiased
estimator. Namely, in each iteration t of the repeated stochastic gradient method, each player
i ∈ [n] performs the following update:

{
Sample zti ∼ Di(x

t)

Set xt+1
i = projXi

(
xti − η∇i`i(x

t
i, x

t
−i, z

t
i)
)
}
. (18)

We will analyze the method under the following standard variance assumption. Recall the
notation Dπ(y) := D1(y)× . . .×Dn(y).

16

Multiplayer Performative Prediction

Assumption 4 (Finite variance) There exists a constant σ ≥ 0 satisfying

E
z∼Dπ(x)

‖Gx(x)− g(x, z)‖2 ≤ σ2 for all x ∈ X .

Convergence analysis for the repeated stochastic gradient method follows from the
following simple observation. Taking into consideration the equalityGx(x) = Ez∼Dπ(x) g(x, z),
Lemma 5 directly implies that

‖Gx(x)−Gx?(x)‖ ≤ αρ‖x− x?‖.

That is, we may interpret the repeated stochastic gradient method as a standard stochastic
gradient algorithm applied to the static problem G(x?) with a bias that is linearly bounded
by the distance to x?. With this realization, we can simply analyze the stochastic gradient
method on a static problem—i.e., where the decision distribution is fixed—with this special
form of bias. Appendix A does exactly that. In particular, by taking G(x) = Gx?(x), the
following is a direct consequence of Theorem 24 in Appendix A. This is in fact one of the
interesting results of the paper—i.e., that analyzing multiplayer performative prediction
problems with different updates reduces to analyzing stochastic gradient methods with
different types of bias.

In the following theorem, let Et denote the conditional expectation with respect to the
σ-algebra generated by (xl)l=1,...,t.

Theorem 10 (One-step improvement) Suppose that Assumptions 1-4 hold and that we

are in the regime ρ < 1. Then with any η < α(1−ρ)
8L2 , the repeated stochastic gradient method

generates a sequence xt satisfying

Et‖xt+1 − x?‖2 ≤ 1 + 2ηαρ+ 2η2α2ρ2

1 + 2ηα(1+ρ
2)

‖xt − x?‖2 + 4η2σ2

1 + 2ηα(1+ρ
2)

,

where x? is the performatively stable equilibrium of the game (4).

Proof This follows directly from applying Theorem 24 in Appendix A with G(x) = Gx?(x),
gt = g(xt, zt), Ct = D = 0, and B = αρ.

With Theorem 10 at hand, it is straightforward to obtain efficiency estimates—i.e. inde-
pendent of the initialization—under a variety of step-size choices. One particular choice,
highlighted by (Ghadimi and Lan, 2013), is the step-decay schedule that periodically cuts
η by a fraction. This choice of the step-size schedule allows us to separate the rate of
convergence into a deterministic part (as if there is zero variance) and the stochastic part.
The deterministic part exhibits a standard linear rate of convergence where as the stochastic
part exhibits a sublinear rate. Other step-size schedules do not typically lead to such a
decomposition. The resulting algorithm and its convergence guarantees are summarized in
the following corollary.

Corollary 11 (Repeated stochastic gradient method with a step-decay schedule)

Suppose that Assumptions 1-4 hold and we are in the regime ρ < 1. Set η0 := α(1−ρ)
4 ·

17

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

min{1, 1
2L2 }. Consider running the repeated stochastic gradient method in k = 0, . . . ,K

epochs, for Tk iterations each, with constant step-size ηk = 2−kη0, and such that the last
iterate of epoch k is used as the first iterate in epoch k + 1. Fix a target accuracy ε > 0 and
suppose we have available a constant R ≥ ‖x0 − x?‖2. Set

T0 =
⌈

10
(1−ρ)αη0

log(2Rε)
⌉
, Tk =

⌈
10 log(4)
(1−ρ)αηk

⌉
for k ≥ 1, and K =

⌈
1 + log2

(
40η0σ2

(1−ρ)αε

)⌉
.

The final iterate x produced satisfies E ‖x− x?‖2 ≤ ε, while the total number of iterations of
the repeated stochastic gradient method is at most

O
(

L2

(1− ρ)α2
· log

(
2R

ε

)
+

σ2

(1− ρ)2α2ε

)
.

Proof Consider a sequence x0, x1, . . . , xt generated by the stochastic gradient method with
a fixed step-size η ≤ η0. Using Theorem 10 together with the tower rule for conditional
expectations, we deduce

E‖xt+1 − x?‖2 ≤ 1 + 2ηαρ+ 2η2α2ρ2

1 + 2ηα(1+ρ
2)

E ‖xt − x?‖2 + 4η2σ2

1 + 2ηα(1+ρ
2)

. (19)

Our choice of η0 ensures

1 + 2ηαρ+ 2η2α2ρ2

1 + 2ηα(1+ρ
2)

≤ 1 + 2ηα · 1+3ρ
4

1 + 2ηα · 1+ρ
2

= 1− 2ηα(1−ρ
4)

1 + 2ηα(1+ρ
2)

≤ 1− 1−ρ
10 ηα.

Therefore iterating (19) we obtain the estimate

E‖xt+1 − x?‖2 ≤ (1− ψ(η))t+1 ‖x0 − x?‖2 + Γη,

where we set ψ(η) = cη with c = 1−ρ
10 α and Γ = 40σ2

α(1−ρ) . The result now follows directly from

(Drusvyatskiy and Xiao, 2023, Lemma B.2).

The efficiency estimate in Corollary 11 coincides with the standard efficiency estimate
for the stochastic gradient method on static problems, up to multiplication by (1− ρ)−2.

Remark 12 (Asynchronous Feedback) In practice, it may not be the case that the
decision makers observe data or actions synchronously, and as a result they may not have
the requisite information to update their action in every time step (iteration). A natural
model to capture asynchronous updates is one in which decision maker i receives sufficient
information to update its decision xi with probability pi. For instance, in the case of the
repeated stochastic gradient method, this means that

xt+1
i =

{
projXi

(
xti − η∇i`i(x

t
i, x

t
−i, z

t
i)
)
, w.p. pi

xti, w.p. (1− pi)
(20)

This type of update has been studied fairly extensively in the literature on stochastic
optimization and in learning in games—see, e.g., (Recht et al., 2011; Lian et al., 2015;

18

Multiplayer Performative Prediction

Huo and Huang, 2017; Mertikopoulos and Zhou, 2019; Zhou et al., 2018; Chasnov et al.,
2020b) and references therein. In the context of finding performatively stable points via the
repeated stochastic gradient method in (18) modified via (20), the rates in Corollary 11 do not
change much; the primary difference is that the Lipschitz constants are rescaled by pmax :=
max{p1, . . . , pn} and the strong monotonicity constant is rescaled by pmin := min{p1, . . . , pn}.
The reason this works out is that we can simply perform the exact same analysis using a
modified inner product as has been performed in prior literature—i.e., we simply perform
the analysis in the inner product [x, y] = 〈P−1x, y〉 where P = diag(p1, . . . , pn). Since there
are new insights deriving from the performative structure of the problem in the convergence
analysis beyond what we have already shown for the synchronous case, for brevity we do
not go into the full details for the asynchronous case; the results follow precisely from the
analysis we have already presented except in this new coordinate system.

5. Monotonicity of Decision-Dependent Games

Our next goal is to develop algorithms for finding true Nash equilibria of the game (4).
As the first step, this section presents sufficient conditions for the game to be monotone
along with some examples. We note, however, that the sufficient conditions we present are
strong because the game (4) is typically not monotone. When specialized to the single player
setting n = 1, the sufficient conditions we derive are identical to those in (Miller et al., 2021)
although the proofs are entirely different.

We impose the following mild smoothness assumption.

Assumption 5 (Smoothness of the distribution) For each index i ∈ [n] and point
x ∈ X , the map ui 7→ Ezi∼D(ui,x−i) `i(x, zi) is differentiable at ui = xi and its derivative is
continuous in x.

Under Assumption 5, direct differentiation implies the following expression for the
derivative of player i’s loss function which is precisely (6) from Section 3:

∇iLi(xi, x−i) =
d

dui
E

zi∼Di(xi,x−i)
[`i(ui, x−i, zi)]

∣∣∣
ui=xi

+
d

dui
E

zi∼Di(ui,x−i)
[`i(xi, x−i, zi)]

∣∣∣
ui=xi

.

To simplify notation, define

Hi,x(y) :=
d

dui
E

zi∼D(ui,x−i)
`i(y, zi)

∣∣∣
ui=xi

.

Therefore, we may equivalently write

∇iLi(xi, x−i) = Gi,x(x) +Hi,x(x)

where Gi,x(x) is defined in (7). Stacking together the individual partial gradients Hi,x(y)
for each player, we set Hx(y) = (H1,x(y), . . . , Hn,x(y)). Therefore the vector of individual
gradients for (4) is simply the map D(x) := Gx(x) +Hx(x). Thus the game (4) is monotone,
as long as D(x) is a monotone mapping.

The sufficient conditions for monotonicity (cf. Theorem 13 below) are simply that we
are in the regime ρ < 1

2 and that the map x 7→ Hx(y) is monotone for any y. The latter can

19

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

be understood as requiring that for any y ∈ X , the auxiliary game wherein each player aims
to solve

min
xi∈X

E
zi∼Di(xi,x−i)

`i(y, zi).

is monotone. In the single player setting n = 1, this simply means that the function
x 7→ Ezi∼Di(x) `(y, zi) is convex for any fixed y ∈ X , thereby reducing exactly to the
requirement in (Miller et al., 2021, Theorem 3.1).

Theorem 13 (Monotonicity of the decision-dependent game) Suppose that Assump-
tions 1, 2, and 5 hold, and that we are in the regime ρ < 1

2 and the map x 7→ Hx(y) is
monotone for any y. The game (4) is strongly monotone with parameter (1− 2ρ)α.

The proof of Theorem 13 crucially relies on the following useful lemma.

Lemma 14 Suppose that Assumptions 1, 2, and 5 hold. For any x ∈ X , the map Hx(y) is

Lipschitz continuous in y with parameter
√∑n

i=1 β
2
i γ

2
i .

Proof Fix three points x, x′, y ∈ X . Player i’s coordinate of Hx′(x)−Hx′(y) is simply

Hi,x′(x)−Hi,x′(y) =
d

dui
E

zi∼Di(ui,x′

−i)
(`i(x, zi)− `i(y, zi))

∣∣∣
ui=x′

i

.

Setting γ(s) = y + s(x− y) for any s ∈ (0, 1), the fundamental theorem of calculus ensures

`i(x, zi)− `i(y, zi) =

∫ 1

s=0
〈∇i`i(γ(s), zi), x− y〉 ds.

Therefore differentiating, taking an expectation, and using the Cauchy-Schwarz inequality
we deduce

‖Hi,x′(x)−Hi,x′(y)‖ ≤
∫ 1

s=0

∥∥∥∥∥
d

dui
E

zi∼Di(ui,x′

−i)
∇i`i(γ(s), zi)

∣∣∣
ui=x′

i

∥∥∥∥∥ · ‖x− y‖ ds. (21)

Now for any s ∈ (0, 1), Lemma 5 guarantees that the map ui 7→ Ezi∼Di(ui,x′

−i)
∇i`i(γ(s), zi)

is Lipschitz continuous with parameter βiγi and therefore its derivative is upper-bounded in
norm by βiγi. We therefore deduce that the right hand side of (21) is upper bounded by
βiγi‖x− y‖. Applying this argument to each player leads to the claimed Lipschitz constant
on Hx(y) with respect to x.

Given the preceding lemma, we now prove Theorem 13.

Proof [Proof of Theorem 13] Fix an arbitrary pair of points x, x′ ∈ X . Expanding the
following inner product, we have

〈D(x)−D(x′), x− x′〉 = 〈Gx(x)−Gx′(x′), x− x′〉+ 〈Hx(x)−Hx′(x′), x− x′〉. (22)

20

Multiplayer Performative Prediction

We estimate the first term as follows:

〈Gx(x)−Gx′(x′), x− x′〉 = 〈Gx′(x)−Gx′(x′), x− x′〉+ 〈Gx(x)−Gx′(x), x− x′〉

≥ α‖x− x′‖2 −
(

n∑

i=1

β2i γ
2
i

)1/2

· ‖x− x′‖2 (23)

= (1− ρ)α‖x− x′‖2, (24)

where (23) follows from Assumption 1 and Lemma 5. Next, we estimate the second term on
the right side of (22) as follows:

〈Hx(x)−Hx′(x′), x− x′〉 = 〈Hx′(x)−Hx′(x′), x− x′〉+ 〈Hx(x)−Hx′(x), x− x′〉
≥ 〈Hx′(x)−Hx′(x′), x− x′〉 (25)

≥ −‖Hx′(x)−Hx′(x′)‖ · ‖x− x′‖ (26)

≥ −
(

n∑

i=1

β2i γ
2
i

)1/2

‖x− x′‖2, (27)

where (25) follows from the assumption that the map x 7→ Hx(y) is monotone and (27)
follows from Lemma 14. Combining (22), (24), and (27) completes the proof.

Observe that for the game to be strongly monotone we need that the map D(x) =
Gx(x) +Hx(x) is strongly monotone. In Section 4, to obtain convergence results we simply
need that Gx(x) is strongly monotone, and hence, under the assumption that Gx(x) is
strongly monotone, in order for D(x) to be strongly monotone, it is sufficient for Hx(x) to
be monotone. That being said, even if Gx(x) is not strongly monotone, as long as Hx(x) is
sufficiently monotone, then D(x) will be. Thus the conditions we provide in this section
are merely sufficient. Below we provide examples of performative prediction games that
may arise in applications of machine learning, and provide conditions under which strongly
montonicity holds.

Indeed, the following two examples of multiplayer performative prediction problems
illustrate settings where the mapping x 7→ Hx(y) is indeed monotone and therefore Theo-
rem 13 may be applied to deduce monotonicity of the game. We explore both these examples
numerically in Section 7.

Example 1 (Revenue Maximization in Rideshare Markets) Consider a rideshare mar-
ket with two firms that each would like to maximize their revenue by setting the price xi.
The demand zi that each ride share firm sees is influenced not only by the price they set but
also the price that their competitor sets. Suppose that firm i’s loss is given by

`i(xi, zi) = −z>i xi +
λi
2
‖xi‖2

where λi ≥ 0 is some regularization parameter. Moreover, let us suppose that the random
demand zi takes the semi-parametric form zi = ζi +Aixi +A−ix−i, where ζi follows some
base distribution Pi and the parameters Ai and A−i capture price elasticities to player i’s

21

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

and its competitor’s change in price, respectively. The mapping x 7→ Hx(y) is monotone.
Indeed, observe that i-th component of Hx(y) is given by

Hi,x(y) = E
ζi∼Pi

A>
i ∇zi`i(yi, ζi +Aixi +A−ix−i) = −A>

i yi.

Hence, the map x 7→ Hx(y) is constant and is therefore trivially monotone.

The next example is a multiplayer extension of Example 3.2 in (Miller et al., 2021) which
models the single player decision-dependent problem of predicting the final vote margin in
an election contest.

Example 2 (Strategic Prediction) Consider two election prediction platforms. Each
platform seeks to predict the vote margin. Not only can predicting a large margin in either
direction dissuade people from voting, but people may look at multiple platforms as a source
for information. Features θ such as past polling averages are drawn i.i.d. from a static
distribution Pθ. Each platform observes a sample drawn from the conditional distribution

zi|θ ∼ ϕi(θ) +Aixi +A−ix−i + wi,

where ϕi : R
di → R is an arbitrary map, the parameter matrices Ai ∈ R

mi×di and A−i ∈
R
mi×d−i are fixed, and wi is a zero-mean random variable. Each player seeks to predict zi

by minimizing the loss

`i(xi, zi) =
1

2
‖zi − θ>xi‖2.

We claim that the map x 7→ Hx(y) is monotone as long as
√
n− 1 ·max

i∈[n]
‖A>

−iAi‖op ≤ min
i∈[n]

λmin(A
>
i Ai),

where λmin denotes the minimal eigenvalue. The interpretation of this condition is that the
performative effects due to interaction with competitors are small relative to any player’s own
performative effects. To see the claim, set Āi to be the matrix satisfying Āix = Aixi+A−ix−i

and observe that the i-th component of Hx(y) is given by

Hi,x(y) = E
θ,wi

A>
i ∇zi`i(yi, ϕi(θ) + Āix+ wi)

= E
θ,wi

A>
i (ϕi(θ) + Āix− θ>yi + wi)

= A>
i Aixi +A>

i A−ix−i + E
θ,wi

A>
i (ϕi(θ)− θ>yi + wi).

Therefore, the map Hi,x(y) is affine in x. Consequently, monotonicity of x 7→ Hi,x(y) is
equivalent to monotonicity of the linear map x 7→ V (x) + W (x), where V is the block
diagonal matrix V (x) = Diag(A>

1 A1, . . . , A
>
nAn)x and we define the linear map W (x) =

(A>
1 A−1x−1, . . . , A

>
nA−nx−n). The minimal eigenvalue of V is simply mini∈[n] λmin(A

>
i Ai).

Let us estimate the operator norm of W . To this end, set s := maxi ‖A>
i A−i‖op and for any

x we compute

‖W (x)‖2 =
n∑

i=1

‖A>
i A−ix−i‖2 ≤

n∑

i=1

s2‖x−i‖2 = (n− 1)s2‖x‖2.

Thus, under the stated assumptions, the operator norm of W is smaller than the minimal
eigenvalue of V , and therefore the sum V +W is monotone.

22

Multiplayer Performative Prediction

6. Algorithms for Finding Nash Equilibria

In contrast to Section 4, in this section we analyze algorithms that converge to the Nash
equilibrium of the n–player performative prediction game (4) when the game is strongly
monotone. Recall that the Nash equilibrium x? of this game is characterized by the relation

x?i ∈ argmin
xi∈Xi

E
zi∼Di(xi,x?

−i)
`i(xi, x

?
−i, zi) ∀i ∈ [n].

It is important to stress the distinction between the performatively stable equilibria studied
in Section 4 and the Nash equilibrium x? of the game (4): namely, for the latter concept
the distribution Di explicitly depends on the optimization variable xi versus being fixed
at x? = (x?i , x

?
−i). Theorem 13 (cf. Section 5) gives sufficient conditions under which the

multiplayer performative prediction game (4) is strongly monotone and hence, admits a
unique Nash equilibrium.

In the following subsections, we study natural learning dynamics—namely, variants of
gradient play as it is referred to in the literature on learning and games—for continuous
games seeking Nash equilibrium in different information settings. Specifically, we study
gradient-based learning methods where players update using an estimate of their individual
gradient consistent with the information available to them. It is important to contrast the
gradient updates in Section 4 with the updates considered in this section: the Nash-seeking
algorithms studied in this section all use gradient estimates of the individual gradient

∇iLi(xi, x−i) = E
zi∼Di(x)

[∇i`i(x, zi)] +
d

dui
E

zi∼Di(ui,x−i)
[`i(x, zi)]

∣∣∣
ui=xi

(28)

for each player i ∈ [n], whereas performatively stable equilibrium seeking algorithms of
Section 4 are defined such that the gradient update only uses the first term on the right
hand side of (28).

The main difficulty with applying gradient-based methods is that estimation of the
second term on the right hand side of (28), without some parametric assumptions on the
distributions Di. Consequently, we start in Section 6.1 with derivative free methods, wherein
each player only has access to loss function queries. This does not require players to have any
information on the distribution Di, but results in a slow algorithm, roughly with complexity
O(d

2

ε2
). In practice, the players may have some information on Di, and it’s reasonable that

they would exploit this information during learning. Hence, in Section 6.2 we impose a
specific parametric assumption of the distributions and study stochastic gradient play3 under
the assumption that each player knows their own “influence” parameter on the distribution.
The resulting algorithm enjoys efficiency on the order of O(1ε). Section 6.3 instead develops a
variant of a stochastic gradient method wherein each player adaptively learns their influence
parameters, and uses their current estimate of those parameters to optimizing their loss
function by taking a step along the direction of their individual gradient; the resulting
process has efficiency on the order of O(dε).

3. This method is known as stochastic gradient play in the game theory literature; here we refer to as the
stochastic gradient method to be consistent with the naming convention of other methods in the paper.

23

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Remark 15 (Asynchronous Feedback Revisted) As noted in Remark 12, in practice,
it may not be the case that the decision makers observe data or actions synchronously. In
the pursuit of learning Nash equilibrium in this setting, we can adopt the same model as
described in Remark 12—wherein player i receives gradient information with probability pi
in each iteration—to capture asynchronous information feedback. As noted, this type of
update has been studied fairly extensively in the literature on stochastic optimization and in
learning in games. In the context of finding Nash equilibrium via the methods proposed in
the remainder of this section, up to scaling factors proportional to pmin := min{p1, . . . , pn}
and pmax := max{p1, . . . , pn}, the rates we present do not fundamentally change. Again,
this follows simply by using the exact same analysis in a transformed coordinate system,
and so for brevity we do not go into the full details for the asynchronous case.

6.1 Derivative Free Method for Performative Prediction Games

As just alluded to, the first information setting we consider for multiplayer performative
prediction is the “bandit feedback” setting, where players have oracle access to queries of
their loss function only, and therefore are faced with the problem of creating an estimate
of their gradient from such queries. This setting requires the least assumptions on what
information is available to players. In the optimization literature, when a first order oracle
is not available, derivative free or zeroth order methods are typically applied. Derivative free
methods have been extended to games (Bravo et al., 2018; Drusvyatskiy et al., 2022). The
results in this section are direct consequences of the results in these papers. We concisely
spell them out here in order to compare them with the convergence guarantees discussed in
the following two sections.

The derivative free (gradient) method we consider proceeds as follows. Fix a parameter
δ > 0. In each iteration t, each player i ∈ [n] performs the following update:





Sample vti ∈ Si

Sample zti ∼ Di(x
t + δvt)

Set xt+1
i = proj(1−δ)Xi

(
xti − ηt

di
δ
`i(x

t + δvt, zti)v
t
i

)




. (29)

There are not additional information requirements on the players beyond what is assumed
for derivative gradient play as studied for example in (Bravo et al., 2018; Drusvyatskiy et al.,
2022). Each player simply submits its query xti + δvti to the environment and receives back
its loss `i(x

t + δvt, zti) where z
t
i ∼ D(xt + δvt).

Recall that Si denotes the unit sphere with dimension di. The reason for projecting onto
the set (1− δ)Xi is simply to ensure that in the next iteration t+ 1, the strategy played by
player i remains in Xi. We state the convergence guarantees of the method informally here
because they are meant only as a baseline result. The formal statement for derivative free
methods in general games can be found in Drusvyatskiy et al. (2022).4

4. Though Theorem 2 in Drusvyatskiy et al. (2022) is stated for deterministic games, it applies verbatim
whenever the value of the loss function for each each player is replaced by an unbiased estimator of their
individual loss functions—our setting.

24

Multiplayer Performative Prediction

Proposition 16 (Convergence rate of the derivative free method) Consider an n–
åplayer decision-dependent game as defined in (4). Under reasonable smoothness and

bounded variance assumptions, algorithm (29) with appropriately chosen parameters δ and

ηt will find a point x satisfying E[‖x− x?‖2] ≤ ε after at most O(d
2

ε2
) iterations.

The rate O(d
2

ε2
) can be extremely slow in practice. The constants in this rate may be

improved slightly in our setting by taking into consideration that the gradient (cf. (28)) is com-
posed of two terms, one of which is known and the other which is not: Ezi∼Di(x)[∇i`i(x, zi)]

which is known, and d
dui

Ezi∼Di(ui,x−i)[`i(x, zi)]|ui=xi which is unknown without a priori
knowledge on the structure of Di(·). Therefore, if player i only applies a derivative free
estimation scheme on the second part of the gradient then the constants showing up in the
rate could be improved.

In the rest of the paper, we focus on stochastic gradient based methods which enjoy
significantly better efficiency guarantees (at cost of access to a richer oracle).

6.2 Stochastic Gradient Method in Performative Prediction Games

In practice, often players have some information regarding their data distribution Di and can
leverage this during learning. Stochastic gradient play—which we refer to as the stochastic
gradient method to be consistent with the rest of the paper—is a natural learning algorithm
commonly adopted in the literature on learning in games for settings where players have an
unbiased estimate of their individual gradient. To apply the stochastic gradient method to
multiplayer performative prediction, players need oracle access to the gradient of their loss
with respect to their choice variable, which requires some knowledge of how the distribution
Di depends on the joint action profile x. To this end, let us impose the following parametric
assumption, which we have already encountered in Example 1.

Assumption 6 (Parametric assumption) For each index i ∈ [n], there exists a proba-
bility measure Pi and matrices Ai and A−i satisfying

zi ∼ Di(x) ⇐⇒ zi = ζi +Aixi +A−ix−i for ζi ∼ Pi.

The mean and covariance of ζi are defined as µi := Eζi∼Pi
[ζi] and Σi := Eζi∼Pi

[(ζi −µi)(ζi −
µi)

>], respectively.

Assumption 6 generalizes an analogous modeling very commonly used in the single player
performative prediction setting in (Miller et al., 2021). It can also be viewed as a local linear
approximation of nonlinear behavior. It asserts that the distribution used by player i is a
“linear perturbation” of some base distribution Pi. We can interpret the matrices Ai and
A−i as quantifying the performative effects of player i’s decisions and the rest of the players’
decisions, respectively, on the distribution Di governing player i’s data.

Under Assumption 6, we may write player i-th loss function as

Li(x) = E
ζi∼Pi

`i(x, ζi +Aixi +A−ix−i). (30)

Under mild smoothness assumptions, differentiating (30) using the chain rule, we see that
the gradient of the i-th player’s loss is simply

∇iLi(x) = E
zi∼Di(x)

[∇i`i(x, zi) +A>
i ∇zi`i(x, zi)]. (31)

25

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Therefore, given a point x, player i may draw zi ∼ Di(x) and form the vector

wi(x, zi) = ∇i`i(x, zi) +A>
i ∇zi`i(x, zi).

By definition, wi(x, zi) is an unbiased estimator of ∇iLi(x), that is

E
zi∼Di(x)

wi(x, z) = ∇iLi(x).

With this notation, the stochastic gradient method proceeds as follows: in each iteration
t ≥ 0 each player i ∈ [n] performs the update:

{
Sample zti ∼ Di(x

t)

Set xt+1
i = projXi

(
xti − ηt · wi(x

t, zti)
)
}
. (32)

Let us look at the computation that is required in each iteration. Evaluation of the
vector wi(x, zi) requires evaluation of both ∇i`i(x, zi) and ∇zi`i(x, zi), and knowledge of
the matrix Ai. When the game is separable, it is very reasonable that each player can
explicitly compute ∇i`i(xi, zi) and ∇zi`i(xi, zi) assuming oracle access to queries zi from
the environment which does depend on x−i and xi. Moreover, the matrix Ai depends only
on the performative effects of player i, and in this section we will suppose that it is indeed
known to each player. In the next section, we will develop an adaptive algorithm wherein
each player i ∈ [n] simultaneously learns Ai and A−i while optimizing their loss.

In order to apply standard convergence guarantees for stochastic gradient play, we need
to assume that (i) the vector of individual gradients is Lipschitz continuous and (ii) that
the variance of w(x, zi) is bounded. Let us begin with the former.

Assumption 7 (Smoothness) Suppose that the map (∇1L1(x),∇2L2(x), . . . ,∇nLn(x))
is L-Lipschitz continuous.

The constant L may be easily estimated from the smoothness parameters of each
individual loss function `i(x, z) and the magnitude of the matrices Ai and A−i; this is the
content of the following lemma. In what follows, we define the mixed partial derivative
∇i,zi`i(x, zi) = (∇i`i(x, zi),∇zi`i(x, zi)). Recall that ∇i`i(xi, x−i, zi) denotes the partial
derivative of `i with respect to the xi argument and ∇zi`i(xi, x−i, zi) denotes the partial
derivative with respect to zi.

Lemma 17 (Sufficient conditions for Assumption 7) Suppose that Assumption 6 holds
and that there exist constants ξi ≥ 0 such that for each index i the map (x, zi) 7→ ∇i,zi`i(x, zi)
is ξi-Lipschitz continuous. Then Assumption 7 holds with

L =

√√√√
n∑

i=1

ξ2i max{1, ‖Ai‖2op} · (1 + ‖Āi‖2op).

Proof Let Āi be a matrix satisfying Āix = Aixi +A−ix−i. Observe that we may write

∇iLi(x) = E
ζi,0∼Pi

V >∇i,zi`i(x, ζi + Āix) where V =

[
I 0
0 Ai

]
.

26

Multiplayer Performative Prediction

Therefore, we deduce

‖∇iLi(x)−∇iLi(x
′)‖ ≤ ‖V ‖op E

ζi∼Pi

‖∇i,zi`i(x, ζi + Āix)−∇i,zi`i(x
′, ζi + Āix

′)‖

≤ max{1, ‖Ai‖op} · ξi · E
ζi∼Pi

‖(x, ζi + Āix)− (x′, ζi + Āix
′)‖

= max{1, ‖Ai‖op} · ξi ·
√

‖x− x′‖2 + ‖Āi(x− x′)‖2

≤ max{1, ‖Ai‖op} · ξi ·
√

1 + ‖Āi‖2op · ‖x− x′‖.

This completes the proof.

Next, we assume a finite variance bound.

Assumption 8 (Finite variance) Suppose that there exists a constant σ > 0 satisfying

E
z∼Dπ(x)

‖w(x, z)− E
z′∼Dπ(x)

w(x, z′)‖2 ≤ σ2 ∀x ∈ X .

Let us again present a sufficient condition for Assumption 8 to hold in in terms of the
variance of the individual gradients ∇i,zi`(x, zi). The proof is immediate and we omit it.

Lemma 18 (Sufficient conditions for Assumption 8) Suppose that there exist con-
stants s1, s2 ≥ 0 such that for all x ∈ X and i ∈ [n] the estimates hold:

E
z′i∼Di(x)

‖∇i`i(x, z
′
i)− E

zi∼Di(x)
∇i`i(x, zi)‖2 ≤ s21

E
z′i∼Di(x)

‖∇zi`i(x, z
′
i)− E

zi∼Di(x)
∇zi`i(x, zi)‖2 ≤ s22

Then Assumption 8 holds with σ2 =
∑n

i=1 2(s
2
1 + ‖Ai‖2ops22).

The following is now a direct consequence of standard convergence guarantees for
stochastic gradient methods.

Theorem 19 (Stochastic gradient play) Consider an n-player performative prediction
game (4). Suppose that Assumptions 6-8 hold and that the game is α-strongly monotone
with α > 0. Then a single step of the stochastic gradient method (32) with any constant
η ≤ α

2L2 satisfies

E[‖xt+1 − x?‖2] ≤ 1

1 + αη
E[‖xt − x?‖2] + 2η2σ2

1 + ηα
, (33)

where x? is the Nash equilibrium of the game (4).

Proof This is immediate from Theorem 24 in Appendix A with B ≡ Ct ≡ D ≡ 0.

Analogous to the analysis of the stochastic repeated gradient method, applying a step-decay
schedule on η yields the following corollary. The proof follows directly from the recursion
(33) and the generic results on step decay schedules; e.g. (Drusvyatskiy and Xiao, 2023,
Lemma B.2).

27

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Corollary 20 (Stochastic gradient method with a step-decay schedule) Suppose that
the assumptions of Theorem 19 hold. Consider running stochastic gradient method in
k = 0, . . . ,K epochs, for Tk iterations each, with constant step-size ηk = α

2L2 · 2−k, and such
that the last iterate of epoch k is used as the first iterate in epoch k+1. Fix a target accuracy
ε > 0 and suppose we have available a constant R ≥ ‖x0 − x?‖2. Set

T0 =
⌈

2
αη0

log(2Rε)
⌉
, Tk =

⌈
2 log(4)
αηk

⌉
for k ≥ 1, and K =

⌈
1 + log2

(
2η0σ2

αε

)⌉
.

The final iterate x produced satisfies E ‖x− x∗‖2 ≤ ε, while the total number of iterations of
stochastic gradient play called is at most

O
(
L2

α2
· log

(
2R

ε

)
+

σ2

α2ε

)
.

6.3 Adaptive Gradient Method in Performative Prediction Games

Throughout this section, we continue working under the parametric Assumption 6. An
apparent deficiency of the stochastic gradient method discussed in Section 6.2 is that each
player i needs to know the matrix Ai that governs the performative effect of the player on
the distribution. In typical settings, the matrix Ai may be unknown to the player, but it
might be possible to estimate it from data. Inspired by methods in adaptive control to
simultaneously estimate the parameters of the system and optimize the control input, we
propose the adaptive gradient method outlined in Algorithm 1.5 In each iteration, each
player simultaneously estimates their distribution parameters and myopically optimizes
their individual loss via stochastic gradient method on the current estimated loss. More
precisely, the algorithm maintains two sequences: (i) xt that eventually converges to the
Nash equilibrium x?, and (ii) estimates Ât

i that dynamically estimates the unknown matrix
Āi. In each iteration t, the algorithm draws samples zti ∼ Di(x

t), and each player i takes
the gradient step

xt+1
i = projXi

(
xti − ηt((∇i`i(x

t, zti) + (Ât
ii)

>∇zi`i(x
t, zti))

)
,

where Ât
ii denotes the submatrix of Ât

i whose columns are indexed by player i’s action space.
Next, in order to update Ât, the algorithm draws a sample qti ∼ Di(x

t + ut) where ut is a
user-specified noise sequence. Observe that conditioned on ut, the equality holds:

E[qti − zti | ut] = Āiu
t.

Therefore, a good strategy for forming a new estimate Ât+1
i of Āi from Ât

i is to take a
gradient step on the least squares objective

min
Bi

1

2
‖qti − zti −Biu

t‖2.

5. We remark that the word “adaptive” here refers to adaptively estimating the model parameters, and is
different from its meaning in methods like AdaGrad, where it is the algorithm’s stepsize that is being
adapted.

28

Multiplayer Performative Prediction

In particular, a key step in the adaptive gradient method is running online least squares in
parallel with the stochastic gradient play (cf. step 7 in Algorithm 1). Explicitly, this gives
the update

Ât+1
i = Ât

i + νt(q
t
i − zti − Ât

iu
t)(ut)>.

Analogous to estimation in adaptive control (Varaiya and Wets, 1988) or machine learning,
we exploit noise injection ut to ensure sufficient exploration of the parameter space. In
particular, the noise vector needs to be sufficiently isotropic. This ensures that the covariance
of the estimates of the parameters is bounded away from zero. The idea is that it is possible
that the iterates of the algorithm would not necessarily vary in enough directions for the
least squares solution to converge – by injecting noise, we can guarantee that we can estimate
each entry of the matrix Ai even in the worst case. We impose the following assumption.

Assumption 9 (Injected Noise) The injected noise vector ut = (ut1, . . . , u
t
n) ∈ R

d is a
zero-mean random vector that is independent of xt, and independent of the injected noise at
any previous queries to the environment by any player. Moreover, there exists constants
cl, R > 0 and cu,i > 0 for each i ∈ [n] such that for all t ≥ 0 and i ∈ [n] the random vector
vi := uti satisfies

0 ≺ cl · I � E[viv
>
i], E ‖vi‖2 ≤ cu,i, and E[‖vi‖2viv>i] � R2

E[viv
>
i].

In the simple Gaussian case where ut ∼ N (0, Id), we may set6

cl = 1, cu,i = di, and R2 = 3max
i∈[n]

di.

Analyzing the convergence of Algorithm 1 amounts to decomposing the analysis into conver-
gence of the stochastic gradient method on the estimated losses induced by the sequence of
Ât

i, and convergence of the estimation error E ‖Ât
i − Āi‖2. The former analysis proceeds in

an analogous fashion to that of Theorem 19 in Section 6.2. For the latter, we leverage the
injected noise to ensure there is sufficient exploration. The following lemma establishes a
one-step improvement guarantee on estimation of Āi. Throughout, we set Â

t := (Ât
1, . . . , Â

t
n)

and let ‖ · ‖F denote the Frobenius norm. We also let Et be the conditional expectation with
respect to the σ-algebra generated by (xl, ul)l=1,...,t.

Lemma 21 (Estimation error) Suppose that Assumptions 6 and 9 hold and choose νt ∈
(0, 2

R2). Then the matrices Ât
i generated by Algorithm 1 satisfy the estimate:

1

2
Et‖Ât+1

i − Āi‖2F ≤ 1− clνt(2− νtR
2)

2
‖Ât

i − Āi‖2F + ν2t tr(Σi)cu,i. (34)

Therefore when setting νt =
2(

cl(t+
2R2

cl
)
) for all t ≥ 0, the estimate holds:

E‖Ât − Ā‖2F ≤
max

{
(1 + 2R2

cl
)‖Â1 − Ā‖2F ,

8
∑n

i=1
tr(Σi)cu,i
c2l

}

t+ 2R2

cl

.

6. For the justification of the expression for R2, see (Dieuleveut et al., 2017, Section 2.1).

29

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Algorithm 1: Adaptive Gradient Method

1 Input: Stepsizes {ηt}t≥1, {νt}t≥1; initial x
1 ∈ R

d, Â1
i ∈ R

m×d;
2 for t = 1, . . . , t do
3 for i ∈ [n] do
4 Query the environment: Draw samples zti ∼ Di(x

t) and qti ∼ Di(x
t + ut);

5 Individual gradient update:

xt+1
i = projXi

(
xti − ηt(∇i`i(x

t, zti) + (Ât
ii)

>∇zi`i(x
t, zti))

)
,

6 where Ât
ii denotes the submatrix of Ât

i whose columns are indexed by player i.

7 Estimation update: Ât+1
i = Ât

i + νt(q
t
i − zti − Ât

iu
t
i)(u

t
i)
>

8 end

9 end

Proof This follows from a standard estimate for online least squares, which appears as
Lemma 27 in Appendix C. Namely, let G1 be the σ-algebra generated by x1, . . . , xt and let
G2 be the σ-algebra generated by G1 ∪{ut}. Set b = qti − zti , y = uti, B = Ât

i, V = Āi, v = uti,
λ1 = cl, and λ2 = cu,i.

Let us upper bound the variance E[‖V y − b‖2 | G2]. To this end, let w and w′ be drawn
i.i.d from Pi. Observe that conditioned on uti, the random vector Āiu

t
i − (qti − zti) has the

same distribution as w − w′. Let us compute

E ‖w − w′‖2 = tr(E((w − w′)(w − w′)>) = 2tr(Σi).

Therefore, we may set σ2 = 2tr(Σi). An application of Lemma 27 completes the proof of (34).
Summing up (34) for i = 1, . . . , n and using the tower rule for for conditional expectations
yields:

E‖Ât+1 − Ā‖2F ≤ (1− νtcl(2− ν2tR
2))E‖Ât − Ā‖2F + 2ν2t

n∑

i=1

tr(Σi)cu,i.

Noting νt ≤ 1
R2 , we deduce 1− νtcl(2− ν2tR

2) ≤ 1− νtcl. The result follows directly from
plugging in the value of νt and using Lemma 25 in Appendix B.

Next we show that the direction of motion of Algorithm 6.3 is well-aligned with the
direction of motion of the stochastic gradient method. To this end, define the true (stochastic)
vector of individual gradients

vt := (∇i`i(x
t, zti) +A>

i ∇zi`i(x
t, zti))i∈[n],

and its estimator that is used by the algorithm

v̂t := (∇i`i(x
t, zti) + (Ât

ii)
>∇zi`i(x

t, zti))i∈[n].

We make the following Lipschitzness assumption on the loss `i(x, zi) in the variable zi.

30

Multiplayer Performative Prediction

Assumption 10 (Lipschitz continuity in z) Suppose that there exists a constant δ > 0
such that for all x ∈ X , the estimate holds:

E
z∼Dπ(x)

√√√√
n∑

i=1

‖∇`i(x, zi)‖2 ≤ δ.

Lemma 22 Suppose that Assumptions 6 and 10 hold. Then for each t ≥ 1 and i ∈ [n], the
estimate holds:

Et‖v̂t − vt‖ ≤ δ‖Ât − Ā‖2F .

Proof Notice that we may write v̂t − vt = Btwt, where Bt is the block diagonal matrix
with blocks Ât

ii −Ai and we set wt = (∇zi`i(x
t, zti))

n
i=1. Using Hölder’s inequality, we obtain

the following estimate as claimed:

Et‖v̂t − vt‖ = Et‖Btwt‖ ≤ ‖Bt‖F · Et‖wt‖ ≤ δ‖Ât − Ā‖2F .

In light of Lemmas 21 and 22, we may interpret Algorithm 6.3 as an approximation to
the stochastic gradient method with a bias that tends to zero; we may then simply invoke
generic convergence guarantees for biased stochastic gradient methods, which we record in
Theorem 24 of Appendix A. We will make use of the following assumption.

Assumption 11 (Finite variance) Suppose that there exists σ > 0 such that for all
x ∈ X , the variance bound holds:

E
zi∼Di(xt)

‖∇i,zi`i(x
t, zti)− E

z′i∼Di(xt)
∇i,zi`i(x

t, z′i)‖2 ≤ σ2.

The end result is the following theorem, which in particular implies a O(d/t) rate of
convergence when ut are standard Gaussian. See the discussion after the theorem.

Theorem 23 (Convergence of the adaptive method) Suppose that Assumptions 6, 7,
9, 10, and 11 hold and that the game (4) is α-strongly monotone. Define the constant

k0 = 1 + 8L2

α2 and q0 =
2R2

cl
and set ηt =

2
α(t+k0−2) and νt =

2
cl(t+q0)

for all t ≥ 0. Then for
all t ≥ 1, the iterates generated by Algorithm 1 satisfy

E‖xt − x?‖2 ≤
max

{
1
2α

2(1 + k0)‖x1 − x?‖2, 32(1 + 2‖Ā‖2F)σ2 + 8δ2Zmax{1+k0
1+q0

, 1}
}

α2(t+ k0)

+
max

{
1
2α

2(1 + k0)
3/2‖x1 − x?‖2, 64σ2Zmax{1+k0

1+q0
, 1}
}

α2(t+ k0)3/2
.

where we set Z = max
{
(1 + 2R2

cl
)‖Â1 − Ā‖2F ,

8
∑n

i=1
tr(Σi)cu,i
c2l

}
.

31

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Proof We will apply the standard convergence guarantees in Theorem 24 of Appendix A
for biased stochastic gradient methods. Using Lemma 22 we estimate the gradient bias:

‖Et[v̂
t]− Et[v

t]‖ = Et‖v̂t − vt‖ ≤ δ‖Ât − Ā‖2F .

Next, we estimate the variance:

Et[‖v̂ti − E v̂ti‖2] = Et

∥∥∥∥
[
I 0

0 Ât
ii

]
(∇i,zi`i(x

t, zti)− E
z′i∼Di(xt)

∇i,zi`i(x
t, z′i))

∥∥∥∥
2

.

Summing these inequalities over i ∈ [n], we deduce

E[‖v̂ti − E v̂ti‖2] ≤ max{1, ‖Ât‖2op}σ2.

Recalling the definition of Z and q0 and applying Theorem 24 in Appendix A we deduce

Et‖xt+1 − x?‖2 ≤ 1

1 + ηtα
‖xt − x?‖2 +

2η2t (max{1, ‖Ât‖2op})σ2
1 + ηtα

+
2ηtδ

2‖Ât − Ā‖2F
α

≤ 1

1 + ηtα
‖xt − x?‖2 + 2η2t (1 + ‖Ât‖2F)σ2 +

2ηtδ
2‖Ât − Ā‖2F

α

≤ 1

1 + ηtα
‖xt − x?‖2 + 2η2t (1 + 2‖Ā‖2F)σ2 +

2ηtδ
2‖Ât − Ā‖2F

α

+ 4η2t σ
2‖Ât − Ā‖2F ,

where the last inequality follows from the algebraic expression ‖Ât‖2 ≤ 2‖Ā‖2 + 2‖Ât − Ā‖2.
Taking expectations and using the tower rule, we compute

E‖xt+1 − x?‖2 ≤ 1

1 + ηtα
E ‖xt − x?‖2 + 2η2t (1 + 2‖Ā‖2F)σ2 +

2ηtδ
2
E ‖Ât − Ā‖2F
α

+ 4η2t σ
2
E ‖Ât − Ā‖2F

≤ 1

1 + ηtα
E ‖xt − x?‖2 + 2η2t (1 + 2‖Ā‖2F)σ2 +

2ηtδ
2Z

α(t+ q0)
+

4η2t σ
2Z

t+ q0
,

where the last inequality follows from Lemma 21.
Now our choice ηt =

2
α(t+k0−2) ensures 1

1+ηtα
= 1− 2

t+k0
. Therefore we deduce

E‖xt+1 − x?‖2 ≤
(
1− 2

t+ k0

)
E ‖xt − x?‖2 + 8(1 + 2‖Ā‖2F)σ2

α2(t+ k0 − 2)2

+
16σ2Z

α2(t+ q0)(t+ k0 − 2)2
+

4δ2Z

α2(t+ q0)(t+ k0 − 2)
.

(35)

We now aim to apply Lemma 26 in Section B. To this end, we need to upper bound the last
three terms in (35) so that the denominators are of the form (t+ k0)

p for some power p. To
this end, note the following elementary estimates:

t+ k0
t+ k0 − 2

≤ k0 + 1

k0 − 1
≤ 2

32

Multiplayer Performative Prediction

and
(t+ k0)

2

(t+ q0)(t+ k0 − 2)
≤ k0 + 1

k0 − 1
· t+ k0
t+ q0

≤ c(k0 + 1)

k0 − 1
≤ 2c

where c = maxt≥1{ t+k0
t+q0

} = max{1+k0
1+q0

, 1}. Combining these estimates with (35), we obtain

E‖xt+1 − x?‖2 ≤
(
1− 2

t+ k0

)
‖xt − x?‖2 + 32(1 + 2‖Ā‖2F)σ2 + 8δ2Zc

α2(t+ k0)2
+

64σ2Z · c
(α2(t+ k0)3)

.

Applying Lemma 26 in Section B, we conclude:

E‖xt − x?‖2 ≤ max
{
1
2α

2(1 + k0)‖x1 − x?‖2, 32(1 + 2‖Ā‖2F)σ2 + 8δ2Zc
}

α2(t+ k0)

+
max

{
1
2α

2(1 + k0)
3/2‖x1 − x?‖2, 64σ2Zc

}

α2(t+ k0)3/2
.

This completes the proof.

In particular, consider the Gaussian case ut ∼ N (0, Id) in the setting when di = Cid for
some numerical constants Ci, and when the traces tr(Σi) ≡ tr(Σ) are equal for all i ∈ [n].
Then the efficiency estimate in Theorem 23 becomes

E ‖xt − x?‖2 = O
(

max
{
L2‖x1−x?‖2, ‖Ā‖2F σ2+δ2 max{d‖Â1−Ā‖2F ,tr(Σ)

∑n
i=1

cu,i}max{ L2

dα2
,1}

}

α2t+L2

+
max

{
L3‖x1−x?‖2, ασ2 max{d‖Â1−Ā‖2F ,tr(Σ)

∑n
i=1

cu,i}max{ L2

dα2
,1}

}

(α2t+L2)3/2

)
.

Consequently, treating all terms besides d and t as constants, yields the rate O(dt).

7. Numerical Examples

Section 5 introduced two examples that are motivated by practical problems: revenue
maximization in ride-share markets and interactions between election prediction platforms.
In this section, to illustrate the theoretical results we explore a synthetic multiplayer
performative prediction game which is an abstraction of the latter, and a semi-synthetic
ride-share market example. For brevity, the majority of the numerical experiments on the
revenue maximization in ride-share markets using real data are relegated to Appendix E.

7.1 Multiplayer Performative Prediction with Strategic Sources

The purpose of the synthetic example presented in this section is to illustrate the theoretical
convergence results for the algorithms proposed in Section 6, including the setting in which
players receive feedback asynchronously.7

7. For the repeated stochastic gradient method analyzed in Section 4, we include a plot confirming the
theoretical convergence guarantee in Appendix E.

33

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Game Abstraction. In Example 2, we introduced a performative prediction game mo-
tivated by multiple election platforms. A set of features θ are drawn i.i.d. from a static
distribution Pθ, and player i observes a sample drawn from the conditional distribution

zi|θ ∼ ϕi(θ) +Aixi +A−ix−i + wi,

where ϕi : R
di → R

mi is an arbitrary map, the parameter matrices Ai ∈ R
mi×di and

A−i ∈ R
mi×d−i are fixed, and wi is a zero-mean random variable with variance σ2wi

. Each
player seeks to predict zi by minimizing the loss

`i(xi, zi) =
1

2
‖zi − θ>xi‖2.

We showed in Example 2 that the map x 7→ Hx(y) is monotone as long as
√
n− 1 ·max

i∈[n]
‖A>

−iAi‖op ≤ min
i∈[n]

λmin(A
>
i Ai), .

As noted in Example 2, the interpretation is that the performative effects due to interaction
with competitors are small relative to any player’s own performative effects. We enforce this
condition on the parameters for our numerical examples.
Instance generation. We randomly generate problem instances—namely, the parameters
Ai, A−i for i ∈ [n]—by using scipy.sparse.random which allows for the sparsity of the
matrix to be set in addition to randomly generating the matrix parameters.8 Furthermore,
we set θ ∈ R

d×m with entries distributed as N (0, 0.01), σ2w = 0.1, and ϕi(θ) = θ>1d×1 for
d = 2 and m = 5 for the experiments in Figure 1. These values can be changed in the
provided code, resulting in similar conclusions regarding the convergence rate.

As discussed in earlier sections, in many practical applications players may not receive
information synchronously. To model this, we consider the setting in which player i receives
information in each iteration with probability pi.
Experiment 1a: Convergence rates & Estimation Error. In Figure 1a we show the
iteration complexity of the norm-square error to the Nash equilibrium for the stochastic
gradient method, the adaptive gradient method, and players independently playing according
to derivative free optimization.9 Figure 1b shows the estimation error for the matrices
(Ai, A−i), i = 1, 2 in the adaptive gradient method. We run the methods for 20 different
random initializations and show the mean and ±1 standard deviation, depicted with darker
lines, and the individual sample trajectories using lighter shade lines of the same color
indicated in the legend. The step-sizes are chosen according to the theory.
Experiment 1b: Asynchronous updates. Figure 2a contains a violin plot for the number
of iterations required to hit ε = 1e-3 error (to the Nash equilibrium) in the asynchronous
setting where p1 = 1 and we vary p2, as shown on the x-axis. As expected, we see that as
p2 increases from zero to one, the number of iterations required decreases. Additionally, as
expected, the distributions for adaptive gradient play have a large spread due to the time it
takes players to estimate the performative effects.

8. The data and code used in this paper are publicly available (https://github.com/ratlifflj/
performativepredictiongames).

9. In all the experiments, we compute the Nash equilibrium for the game defined by the expected cost using
a symbolic solver such as Mathematica or sympy.

34

Multiplayer Performative Prediction

0 500 1000 1500 2000 2500 3000
iterations

10 8

10 6

10 4

10 2

100
xt

x
2

SGM AGM DFO

(a) Error to Nash Equilibrium

0 500 1000 1500 2000 2500 3000
iterations

10 4

10 3

10 2

10 1

100

At i
A i

2

A1 A1 2

A 1 A 1 2
A2 A2 2

A 2 A 2 2

(b) Estimation Error for (Ai, A−i)

Figure 1: Strategic Prediction. (a) Iteration complexity of the norm-squared error to the
Nash equilibrium for both the stochastic gradient method (SGM), adaptive gradient method
(AGM), and derivative free optimization (DFO) for a randomly generated problem instance
where mi = 5 and di = 2 for each i ∈ {1, 2}. The sample complexity of AGM empirically
matches that of SGM as expected up to the estimation error. (b) Estimation error for the
matrices (Ai, A−i), i = 1, 2. Due to the time it takes to estimate the matrices we see in (a)
that AGM converges somewhat slower.

0.1 0.325 0.55 0.775 1.0
p2

0

500

1000

1500

2000

2500

ite
ra
tio
ns

SGM
AGM

(a) Asynchronous Updates

0 2000 4000 6000 8000
iterations

10 3

10 2

10 1

100

101

102

103

xt
x

2

SGM: p= [1, 0.5]
AGM: p= [1, 0.5]
DFO: p= [1, 0.5]

SGM: p= [1, 1]
AGM: p= [1, 1]
DFO: p= [1, 1]

(b) Ride-Share: Iteration Complexity

Figure 2: (a) Asynchronous Updates in Multiplayer Strategic Prediction (§7.1):
Number of iterations to hit an ε–Nash equilibrium where ε = 1e-3 for stochastic gradient
play (SGM) and adaptive gradient play (AGM), respectively, where p = (p1, p2) with
p1 = 1 and p2 varying from 0.1 to one. (b) Competition in Ride-Share Markets (§7.2):
Iteration complexity for Nash seeking algorithms including derivative free optimization(DFO),
stochastic gradient method and adaptive gradient method.

7.2 Revenue Maximization in Ride-Share Markets

In this section, we explore semi-synthetic competition between two ride-share platforms
seeking to maximize their revenue given that the demand they experience is influenced by

35

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

their own prices as well as their competitors. We use data from a prior Kaggle competition
to set up the semi-synthetic simulation environment.10

Game Abstraction. The abstraction for the game can be described as follows. Consider
a ride-share market with two platforms that each seek to maximize their revenue by setting
prices for their rides given by a vector xi ∈ R

mi . The vector of demands zi ∈ R
mi containing

demand information for mi locations that each ride-share platform serves is influenced not
only by the prices they set but also the prices that their competitor sets. Suppose that
platform i’s loss is given by

`i(xi, zi) = −1

2
z>i xi +

λi
2
‖xi‖2

where λi ≥ 0 is some regularization parameter, and xi ∈ R
mi represents the vector of price

differentials from some nominal price for each of the mi locations. Observe that this game is
separable since the losses `i do not explicitly depend on x−i. Moreover, let us suppose that
the random demand zi takes the semi-parametric form zi = ζi + Aixi + A−ix−i, where ζi
follows some base distribution Pi and the parameters Ai and A−i capture price elasticities
to player i’s and its competitor’s change in price, respectively. We have that Ai � 0 and
A−i � 0; this captures that an increase in player i’s prices results in decreased demand,
while an increase in its competitor’s prices results in increased demand. Moreover, we
showed in Example 1 that the mapping x 7→ Hx(y) is trivially monotone. Hence, the game
between ride-share platforms is strongly monotone and admits a unique Nash equilibrium.
Throughout the remainder of this section, we set λ1 = λ2 = 1.
Instance Generation. There are eleven locations, and each element in xi represents the
price difference (set by platform i) from a nominal price at each location. We aggregate the
rides into bins of $5 increments; this is done by taking the raw data and rounding the price
to the nearest bin as follows: pnominal = 5 · bp5c where p is the actual price of a particular
ride. Then, for each bin j we have an empirical distribution Pi,j for each player i ∈ {1, 2}
which is just the collection of rides in the data set for the location and price range specified
by that bin. The results presented in Figure 2b use data for the $10 nominal price bin;
however, in the linked code it is easy to adjust this parameter to any of the other price bins,
and the conclusions we draw are similar across the bins. The results in Figure 3 use data
from the bins ranging from $10 to $30 increments of $5.

In the experiments presented, we estimate the matrices Ai and A−i that govern the
performative effects from the data. The details of this estimation are outlined in detail
Appendix E, and the heuristics used to set-up the semi-synthetic model can be changed in
the code-base.11 The semi-synthetic model is constructed such that there are no performative
effects across different locations. This amounts to zero elements off the diagonals of the
matrices Ai and A−i. However, in the provided code base, we have additional experiments
that estimate the correlation between locations and explore the effects of positive and
negative correlations on equilibrium outcomes when the off-diagonal elements are nonzero.

We run each of the algorithms in Section 6 from twenty random initial conditions, and
compute the error between the trajectory of the algorithm and the Nash equilibrium. The
parameters used in the algorithms are set based on the respective theorems.

10. The data used in this paper is publicly available (https://www.kaggle.com/brllrb/
uber-and-lyft-dataset-boston-ma).

11. In our experience, changing the heuristics does not significantly change the trends we observe.

36

Multiplayer Performative Prediction

$10 $15 $20 $25 $30
0

2500

5000

7500

10000

12500

15000 Lyft NE
Lyft PS
Uber NE
Uber PS
Lyft SO
Uber SO

(a) Revenue & Social Welfare

$10 $15 $20 $25 $30
0.0

0.2

0.4

0.6

0.8 PS
NE

(b) Price of Anarchy

Figure 3: Competition in Ride-Share Markets: (a) Revenue and social welfare for each
of the bins ranging from $10 to $30 increments of $5. The “grey” shaded parts of the bar
show Uber’s revenue while the “pink” shaded parts show Lyft’s. The sum of the two is the
social welfare. (b) Price of Anarchy for each of the bins ranging from $10 to $30 increments
of $5.

Below we describe two experiments: (2a) verifies convergence rates, and (2b) explores
the relative social cost and market share split under different equilibrium concepts. Further
numerical experiments exploring the comparison between the social cost at the different
equilibrium concepts, as well as comparing outcomes when one player ignores performative
effects while the other does not are contained in Appendix E, and theoretical bounds on the
suboptimality gaps in Appendix D.

Experiment 2a: Convergence Rates. Figure 2b simply illustrates the convergence rate
as predicted by the theory in Section 6 for each of the algorithms therein. We show the mean
of the error trajectories and ±1 one standard deviation. The plots demonstrate the that
empirical sample complexity of the adaptive gradient method and the stochastic gradient
method are nearly identical, and outperform the derivative free method as expected.

Experiment 2b: Social Efficiency of Different Equilibrium Concepts. As noted in
the preceding sections, in the study of equilibrium for games, it is important to understand
the efficiency of different equilibrium concepts. The typical benchmark for efficiency is
the cost at the social optimum. The social cost C is defined as the sum of all the players
individual costs, and the negative of this term is the social welfare S:

C(x) =
n∑

i=1

Li(x) and S ≡ −C.

Let xne be the Nash equilibrium of the game (L1,L2) and let xps be the Nash equilibrium
of the game G(xps), using the notation from Section 3 for the game induced by xps. We
find the unique socially optimal equilibrium xso (the social cost is strongly convex), and the
Nash and performatively stable equilibrium using the expected cost in a symbolic solver
(Mathematica).

37

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

The price anarchy is a common metric for equilibrium efficiency and is defined as the
ratio of the social welfare at the worst case competitive equilibrium concept relative to the
social welfare at the social optimum—namely, it is given by

PoA(x) =
maxx∈Eq(Ḡ) S(x)

S(xso) ,

where Eq(Ḡ) denotes the set of equilibria for the game Ḡ = (L1, . . . ,Ln). An equilibrium
concept is said to be more efficient the closer this quantity is to one.

In Figure 3, we show the (a) revenue and the (b) price of anarchy in each of the price bins
ranging from $10 to $30 in increments of $5. It is interesting to note the price of anarchy of
the Nash equilibrium for each of the price bins is roughly the same (∼ 0.87) while the price
of anarchy for the performatively stable equilibrium decreases as the base bin value increases.
Looking at the revenue, the social cost (i.e. the total height of the bar) is higher in all of the
bins. Lyft makes progressively more moving from performatively stable (PS) to Nash (NE)
to the social optimum (SO) thereby indicating that taking into account performative effects
is good for Lyft. This is in part because Lyft is the “smaller” player: since there is less
demand for Lyft on average than Uber in the base demand Pi, accounting for performative
effects is strategically advantageous. Uber also does marginally better moving from PS to NE
to SO, however the gain is smaller than that of its competitor. This suggests investigating
how market power (size of the base market) plays a role in whether or not firms should
invest in accounting for performativity, versus the simpler repeated retraining process.

In the same vein as Lemma 6, in Appendix D we have included theoretical results
bounding the gaps between the Nash equilibrium, the performatively stable equilibrium, the
social optimum, and the stable equilibrium reached when some players run the repeated
stochastic gradient method (Section 4) and others run a Nash seeking algorithm (Section 6).
We use these bounds to obtain bounds on the suboptimality gaps for players relative to
the social optimum. Numerical results exploring these gaps, and the impact on the losses
experience by players are incorporated in Appendix E.

8. Discussion

The new class of games in this paper motivates interesting future work at the intersection of
statistical learning theory, optimization, and game theory. For instance, it is of interest to
extend the present framework to handle more general parametric forms of the distributions
Di. Many multiplayer performative prediction problems exhibit a hierarchical structure
such as a governing body that presides over an institution; hence, a Stackelberg variant
of multiplayer performative prediction is of interest. Along these lines, the multiplayer
performative prediction problem is also of interest for mechanism design problems arising
in applications such as recommender systems. For instance, the recommendations that
platforms select at the Nash equilibrium influence the preferences of consumers (data-
generators). A mechanism designer (e.g., the government) can place constraints on platforms
to prevent them from manipulating users’ preferences to make their prediction tasks easier.

38

Multiplayer Performative Prediction

Appendix A. Stochastic gradient method with bias

In this section, we consider a variational inequality

0 ∈ G(x) +NX (x), (36)

where X ⊂ R
d is a closed convex set and G : Rd → R

d is an L-Lipschitz continuous and
α-strongly monotone map. We will analyze the stochastic gradient method, which in each
iteration performs the update:

xt+1 = projX (x
t − ηgt), (37)

where η > 0 is a fixed stepsize and gt is a sequence of random variables, which approximates
G(xt). In particular, it will be crucial for us to allow gt to be a biased estimator of G(xt).
Formally, we make the following assumption on the randomness in the process. Throughout,
x? denotes the unique solution of (36).

Assumption 12 (Stochastic framework) Suppose that there exists a filtered probability
space (Ω,F ,F,P) with filtration F = (Ft)t≥0 such that F0 = {∅,Ω}. Suppose moreover that
gt is Ft+1-measurable and there exist constants B, σ ≥ 0 and Ft-measurable random variables
Ct, σt ≥ 0 satisfying the bias/variance bounds

(Bias) ‖Etg
t −G(xt)]‖ ≤ Ct +B‖xt − x∗‖,

(Variance) Et‖gt − Et[g
t]‖2 ≤ σ2t +D2‖xt − x?‖2,

where Et = E[· | Ft] denotes the conditional expectation.

The following is a one-step improvement guarantee for the stochastic gradient method
in the two conceptually distinct cases Ct = 0 and B = 0. In the case Ct = 0 , the bias
Etg

t − G(xt) shrinks as the iterates approach x?. The theorem shows that as long as
B/α < 1, with a sufficiently small stepsize η, the method can converge to an arbitrarily small
neighborhood of x?. In the case B = 0, one can only hope to convergence to a neighborhood
of the minimizer whose radius depends on {Ct}t≥0.

Theorem 24 (One step improvement) The following are true.

• (Benign bias) Suppose Ct ≡ 0 for all t. Set ρ := B/α and suppose that we are in

the regime ρ ∈ (0, 1). Then with any η < α(1−ρ)
8L2 , the stochastic gradient method (37)

generates a sequence xt satisfying

Et‖xt+1 − x?‖2 ≤ 1 + 2ηαρ+ 4η2D2 + 2η2α2ρ2

1 + 2ηα(1+ρ
2)

‖xt − x?‖2 + 4η2σ2t
1 + 2ηα(1+ρ

2)
. (38)

• (Offset bias) Suppose B ≡ 0. Then with any η ≤ α
4L2 , the stochastic gradient method

(37) generates a sequence xt satisfying

Et‖xt+1 − x?‖2 ≤ 1 + 2η2D2

1 + ηα
‖xt − x?‖2 + 2η2σ2t

1 + ηα
+

2ηC2
t

α(1 + ηα)
. (39)

Moreover, in the zero bias setting B ≡ Ct ≡ 0, the estimate (39) holds in the slightly
wider parameter regime η ≤ α

2L2 .

39

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Proof We begin with the first claim. To this end, suppose Ct ≡ 0 for all t. Set ρ := B/α
and suppose that we are in the regime ρ ∈ (0, 1). Fix three constants ∆1,∆2,∆3 > 0 to
be specified later. Noting that xt+1 is the minimizer of the 1-strongly convex function
x 7→ 1

2‖xt − ηgt − x‖2 over X , we deduce

1

2
‖xt+1 − x?‖2 ≤ 1

2
‖xt − ηgt − x?‖2 − 1

2
‖xt − ηgt − xt+1‖2.

Expanding the squares on the right hand side and combining terms yields

1

2
‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − η〈gt, xt+1 − x?〉 − 1

2
‖xt+1 − xt‖2

=
1

2
‖xt − x?‖2 − η〈gt, xt − x?〉 − 1

2
‖xt+1 − xt‖2 − η〈gt, xt+1 − xt〉.

Setting µt := Et[g
t], we successively compute

1

2
Et‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − η〈Etg

t, xt − x?〉 − 1

2
Et‖xt+1 − xt‖2 − ηEt〈gt, xt+1 − xt〉

≤ 1

2
‖xt − x?‖2 − η〈µt, xt − x?〉 − 1

2
Et‖xt+1 − xt‖2 − ηEt〈gt, xt+1 − xt〉

=
1

2
‖xt − x?‖2 − ηEt〈G(xt+1), xt+1 − x?〉 − 1

2
Et‖xt+1 − xt‖2

+ η Et〈gt − µt, xt − xt+1〉︸ ︷︷ ︸
P1

+η Et〈µt −G(xt+1), x? − xt+1〉︸ ︷︷ ︸
P2

]. (40)

Taking into account strong monotonicity ofG, we deduce 〈G(xt+1), xt+1−x?〉 ≥ α‖xt+1−x?‖2
and therefore

1 + 2ηα

2
Et‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − 1

2
Et‖xt+1 − xt‖2 + η(P1 + P2). (41)

Using Young’s inequality, we may upper bound P1 and P2 by:

P1 ≤
σ2t +D2‖xt − x?‖2

2∆1
+

∆1Et‖xt+1 − xt‖2
2

. (42)

Next, we decompose P2 as

P2 = 〈µt−G(xt), x?−xt〉+Et〈µt−G(xt), xt−xt+1〉+Et〈G(xt)−G(xt+1), x?−xt+1〉. (43)

We bound each of the three products in turn. The first bound follows from our assumption
on the bias:

〈µt −G(xt), x? − xt〉 ≤ B‖xt − x?‖2. (44)

The second bound uses Young’s inequality and the assumption on the bias:

Et〈µt −G(xt), xt − xt+1〉 ≤ ∆2‖µt −G(xt)‖2
2

+
Et‖xt − xt+1‖2

2∆2

≤ ∆2B
2‖xt − x?‖2

2
+

Et‖xt − xt+1‖2
2∆2

(45)

40

Multiplayer Performative Prediction

The third inequality uses Young’s inequality and Lipschitz continuity of G:

Et〈G(xt)−G(xt+1), x? − xt+1〉 ≤ ∆3‖G(xt)−G(xt+1)‖2
2

+
Et‖x? − xt+1‖2

2∆3

≤ ∆3L
2‖xt − xt+1‖2

2
+

Et‖x? − xt+1‖2
2∆3

(46)

Putting together all the estimates (41)-(46) yields

1 + 2ηα− 2η∆−1
3

2
Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1

1 + 2ηB + η∆2B
2

2
‖xt − x?‖2

− 1− η∆1 − η∆−1
2 − η∆3L

2

2
Et‖xt+1 − xt‖2 + ησ2t

2∆1
.

(47)
Let us now set

∆−1
3 =

(1− ρ)α

2
, ∆1 =

1

4η
, ∆−1

2 := η−1 −∆1 −∆3L
2.

Notice ∆1 ≤ 1
2η −∆3L

2 by our assumption that η ≤ α(1−ρ)
8L2 . In particular, this implies ∆−1

2 ≥
1
2η . Notice that our choice of ∆2 ensures that the the fraction multiplying Et‖xt+1 − xt‖2 in
(47) is zero. We therefore deduce

Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1
1 + 2ηB + η∆2B

2

1 + 2ηα− 2η∆−1
3

‖xt − x?‖2 + ησ2t
∆1(1 + 2ηα− 2η∆−1

3)

≤ 1 + 2ηαρ+ 4η2D2 + 2η2α2ρ2

1 + 2ηα(1+ρ
2)

‖xt − x?‖2 + 4η2σ2t
1 + 2ηα(1+ρ

2)
,

thereby completing the proof of (38).
We next prove the second claim. To this end, suppose B = 0. All of the reasoning leading

up to and including (42) is valid. Continuing from this point, using Young’s inequality, we
upper bound P2 by:

P2 ≤
Et‖µt −G(xt+1)‖2

2∆2
+

∆2Et‖xt+1 − x?‖2
2

. (48)

Next observe

Et‖µt −G(xt+1)‖2 ≤ 2Et‖µt −G(xt)‖2 + 2Et‖G(xt)−G(xt+1)‖2,
≤ 2C2

t + 2L2‖xt − xt+1‖2
(49)

and therefore

P2 ≤
2C2

t + 2L2‖xt − xt+1‖2
2∆2

+
∆2Et‖xt+1 − x?‖2

2
(50)

Putting the estimates (41), (42), and (50) together yields:

1 + η(2α−∆2)

2
Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1

1

2
‖xt − x?‖2

+
ησ2t
2∆1

+
2ηC2

t ∆
−1
2

2
− 1− 2ηL2∆−1

2 − η∆1

2
Et‖xt+1 − xt‖2

(51)

41

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Setting ∆2 = α and ∆1 = η−1 − 2L2

α ensures that the last term on the right is zero. Notice
that our assumption η ≤ α

4L2 ensures ∆1 ≥ 1
2η . Rearranging (51) directly yields (39). In

the case B ≡ Ct ≡ 0, instead of (49) we may simply use the bound Et‖µt − G(xt+1)‖2 =
Et‖G(xt) − G(xt+1)‖ ≤ L2‖xt − xt+1‖2. Continuing in the same way as above yields the
improved estimate.

Appendix B. Technical results on sequences

The following lemma is standard and follows from a simple inductive argument.

Lemma 25 Consider a sequence Dt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a > 0 satisfying

Dt+1 ≤ (1− 2
t+t0

)Dt +
a

(t+t0)2
(52)

Then the estimate holds:

Dt ≤
max{(1 + t0)D1, a}

t+ t0
∀t ≥ 1. (53)

We will need the following more general version of the lemma.

Lemma 26 Consider a sequence Dt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a, b > 0 satisfying

Dt+1 ≤ (1− 2
t+t0

)Dt +
a

(t+t0)2
+ b

(t+t0)3
. (54)

Then the estimate holds:

Dt ≤
max{(1 + t0)D1/2, a}

t+ t0
+

max{(1 + t0)
3/2D1/2, b}

(t+ t0)3/2
∀t ≥ 1. (55)

Proof Clearly the recursion (54) continues to hold with a and b replaced by the bigger
quantities max{(1 + t0)D1/2, a} and max{(1 + t0)D1/2, b}, respectively. Therefore abusing
notation, we will make this substitution. As a consequence, the claimed estimate (55) holds
automatically for the base case t = 1. As an inductive assumption, suppose the claim (55)
is true for Dt. Set s = t+ t0. We then deduce

Dt+1 ≤
(
1− 2

s

)
Dt +

a

s2
+

b

s3

≤
(
1− 2

s

)(
a

s
+

b

s3/2

)
+
a

s2
+

b

s3

≤ a

(
1

s
− 1

s2

)
+ b

(
1

s3/2
− 2

s5/2
+

1

s3

)
.

Elementary algebraic manipulations show 1
s − 1

s2
≤ 1

s+1 . Define the function φ(s) =
1

s3/2
− 2

s5/2
+ 1

s3
− 1

(1+s)3/2
. Elementary calculus shows that φ is increasing on the interval

s ∈ [1,∞). Since φ tends to zero as s tends to infinity, it follows that φ is negative on the
interval [1,∞). We therefore conclude Dt+1 ≤ a

s+1 + b
(1+s)3/2

as claimed.

42

Multiplayer Performative Prediction

Appendix C. Online Least Squares

In this appendix section, we record basic and well-known results on estimation in online
least squares, following (Dieuleveut et al., 2017).

Lemma 27 Fix a probability space (Ω,F ,P) with two sub-σ-algebras G1 ⊂ G2 ⊂ F . Define
the function

f(B) =
1

2
‖By − b‖2,

where B : Ω → R
m1×m2, b : Ω → R

m1, and y : Ω → R
m2 are random variables. Suppose

moreover that there exist random variables V : Ω → R
m1×m2 and σ : Ω → R satisfying the

following.

1. B, V , and σ1 are G1-measurable.

2. y is G2-measurable.

3. The estimates, E[b | G2] = V y and E[‖V y − b‖2 | G2] ≤ σ2 ,hold.

4. There exist constants λ1, λ2, R > 0 satisfying

λ1I � E[yy> | G1], E[‖y‖2 | G1] ≤ λ2, and E[‖y‖2yy> | G1] � R2
E[yy>].

Then for any constant ν ∈ (0, 2
R2), the gradient step B+ = B − ν(By − b)y> satisfies the

bound:
1

2
E[‖B+ − V ‖2F | G1] ≤

1− λ1ν(2− νR2)

2
‖B − V ‖2F +

ν2σ2λ2
2

.

Proof Expanding the squared norm yields:

1

2
‖B+ − V ‖2F =

1

2
‖B − V − ν(By − b)y>‖2F =

1

2
‖B − V ‖2F − ν〈B − V, (By − b)y>〉

+
ν2

2
‖(By − b)y>‖2F .

Taking conditional expectations, we conclude

1

2
E[‖B+ − V ‖2F | G2] =

1

2
‖B − V ‖2F − ν〈B − V, (By − E[b | G2])y

>〉+ ν2

2
E[‖(By − b)y>‖2F | G2]

=
1

2
‖B − V ‖2F − ν‖(B − V)y‖2F +

ν2

2
‖y‖2E[‖By − b‖2F | G2].

(56)
Next, observe

‖By − b‖2F = ‖(B − V)y‖2 + ‖V y − b‖2 + 2〈By − V y, V y − b〉.

Taking the conditional expectation E[· | G2], the last term vanishes, and therefore we deduce
E[‖By − b‖2F | F ′] ≤ ‖(B − V)y‖2 + σ2. Combining this with (56) we compute

1

2
E[‖B+ − V ‖2F | G2] ≤

1

2
‖B − V ‖2F − ν‖(B − V)y‖2F +

ν2

2
‖y‖2‖(B − V)y‖2 + ν2σ2

2
‖y‖2.

43

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Taking expectations with respect to G1 and using the tower rule, we deduce

1

2
E[‖B+ − V ‖2F | G1] ≤

1

2
‖B − V ‖2F − ν E[‖(B − V)y‖2F | G1] +

ν2

2
E[‖y‖2‖(B − V)y‖2 | G1]

+
ν2σ2λ2

2
.

Observe next

E[‖y‖2‖(B − V)y‖2 | G1] = 〈(B − V)(B − V)>,E[‖y‖2yy> | G1]]〉 ≤ R2
E[‖(B − V)y‖2F | G1],

and therefore

1

2
E[‖B+ − V ‖2F | G1] ≤

1

2
‖B − V ‖2F − (ν − ν2R2

2
)E[‖(B − V)y‖2F | G1] +

ν2σ2λ2
2

Note that ν ≥ ν2R2

2 . Next we estimate

E[‖(B − V)y‖2F | G1] = tr((B − V)>(B − V)E[yy> | G1]]〉 ≥ λ1‖B − V ‖2F .

This completes the proof.

Appendix D. Efficiency of Different Equilibrium Outcomes

In practice, players may not all be accounting for performativity (i.e., running Nash seeking
algorithms from Section 6). It is more likely the case that some players are behaving
myopically. For example, some players may not take any performativity into account (i.e.,
run a repeated retraining algorithm such as repeated stochastic gradient method from
Section 4), or they may only take into account their own performative effects and not those
of their competitors in which case they may be running a stochastic gradient method that
accounts only for decision dependence as a function of xi—i.e., such players model Di(xi) as
opposed to Di(xi, x−i).

Recall from Section 3 that the gradient of Li(xi, x−i) = Ezi∼Di(xi,x−i) `i(xi, zi) is

∇iLi(xi, x−i) = E
zi∼Di(x)

[∇i`i(xi, x−i, zi)]

︸ ︷︷ ︸
Gi,x

+∇ui

(
E

zi∼Di(ui,x−i)
[`i(xi, x−i, zi)]

) ∣∣∣
ui=xi︸ ︷︷ ︸

Hi,x

, (57)

When player i is running repeated stochastic gradient descent they are only using an estimate
of Gi,x. On the other hand, when a player is running stochastic gradient descent on Li they
are using and estimate of Gi,x(x) +Hi,x(x).

In each of these cases it is the Hi,x term which is changing depending on the decision
model of the player: either they ignore it completely, or take it into account fully. We
comment on the partial information case (partially myopic) below.

44

Multiplayer Performative Prediction

Mixed Myopic-Strategic Dynamics. Consider an n–player game where n2 players
are myopic and employing a repeated stochastic gradient method (cf. §4), and the other
n1 = n − n2 players are strategic, accounting for performative effects and using a Nash
seeking algorithm (cf. §6). With appropriately chosen step sizes the combined dynamics will
converge to a stable point. Indeed this follows from Theorem 24 under the assumption that
the mapping

G̃x(x) = Gx(x) + (H1,x(x), . . . , Hn1,x(x), 0, . . . , 0)︸ ︷︷ ︸
H̃x(x)

is strongly monotone and the appropriate statistical assumptions hold for individual players
as required by the method of individual gradient play they are employing.12

Let x̃ be the solution to the following variational inequality:

〈−G̃x̃(x̃), x− x̃〉 ≤ 0 ∀x ∈ X . (58)

That is x̃ is an asymptotically stable attractor of the mixed myopic-strategic dynamics
described above.

D.1 Bounding the Error to Performatively Stable and Nash Equilibrium

We first bound the distance of the point x̃ to the other equilibrium concepts.

Lemma 28 (Deviation between stable and Nash equilibria) Suppose that Assump-
tions 1 and 2 hold and that we are in the regime ρ < 1. Moreover, suppose that the expression
(57) is valid and the loss functions `i(·, x−i, zi) are Li-Lipschitz continuous on Xi. Consider
an n–player game such that n2 players are myopic and n1 = n − n2 players are strategic
as described above. Let x̃ solve (58), and let xps and xne be, respectively, a performatively
stable equilibrium and a Nash equilibrium. Then the following estimates hold:

‖x̃− xne‖ ≤

√∑n
i=1 L

2
i γ

2
i +

√∑n1

i=1 L
2
i γ

2
i

α−
√∑n

i=1 β
2
i γ

2
i

and ‖x̃− xps‖ ≤

√∑n1

i=1 L
2
i γ

2
i

α−
√∑n

i=1 β
2
i γ

2
i

.

Proof We tackle each claimed bound separately.

Bound on deviation from Nash equilibrium. Using strong monotonicity of Gx(x)
and the fact that x̃ solves (58), we compute

α‖x̃− xne‖2 ≤ 〈Gx̃(x
ne)−Gx̃(x̃), x

ne − x̃〉,
≤ 〈Gx̃(x

ne), xne − x̃〉+ 〈H̃x̃(x̃), x
ne − x̃〉,

≤ 〈Gx̃(x
ne)−Gxne(x

ne) +Gxne(x
ne), xne − x̃〉+

√√√√
n1∑

i=1

L2
i γ

2
i · ‖xne − x̃‖,

≤

√√√√
n∑

i=1

β2i γ
2
i · ‖xne − x̃‖2 + 〈Gxne(x

ne), xne − x̃〉+

√√√√
n1∑

i=1

L2
i γ

2
i · ‖xne − x̃‖,

(59)

12. We do not repeat all of these cases here; the reader can look back to Sections 4–6.

45

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

where the last inequality follows from Lemma 5. Next recall that by definition of Nash
equilibrium and the expression (6) we have

0 ∈ Gxne(x
ne) +Hxne(x

ne) +NX (x
ne). (60)

Note that the Kantorovich-Rubenstein dual representation for W1 distance directly implies

‖Hxne(x
ne)‖ ≤

√∑n
i=1 L

2
i γ

2
i . Therefore we deduce that

〈Gxne(x
ne), xne − x̃〉 ≤

√√√√
n∑

i=1

L2
i γ

2
i · ‖xne − x̃‖.

Combining (59)-(60) and rearranging and dividing by ‖xne − x̃‖ gives the claimed bound on
‖xne − x̃‖.
Bound on deviation from performatively stable equilibrium. Using strong mono-
tonicity of Gx(x) and the fact that x̃ solves (58), we compute

α‖x̃− xps‖2 ≤ 〈Gx̃(x
ps)−Gx̃(x̃), x

ps − x̃〉,
≤ 〈Gx̃(x

ps), xps − x̃〉+ 〈H̃x̃(x̃), x
ps − x̃〉,

≤ 〈Gx̃(x
ps)−Gxps(x

ne) +Gxps(x
ps), xne − x̃〉+

√√√√
n1∑

i=1

L2
i γ

2
i · ‖xps − x̃‖,

=

√√√√
n∑

i=1

β2i γ
2
i · ‖xps − x̃‖2 +

√√√√
n1∑

i=1

L2
i γ

2
i · ‖xne − x̃‖.

where we used the fact that 〈−Gxps(x
ps), x̃−xps〉 ≤ 0. Rearranging and dividing by ‖xps−x̃‖

yields the claimed bound.

Note that players may have partial information about Qi. For instance, consider a player
is running stochastic gradient descent only accounting for their own performative effects
they are using an estimate of

E
zi∼Di(x)

[∇i`i(xi, x−i, zi)] +∇ui

(
E

zi∼D̃i(ui)
[`i(xi, x−i, zi)]

)∣∣∣
ui=xi

, (61)

where notice that this player is using an estimate D̃i(ui) of Di(xi, x−i). For example, if Di is
a location-scale distribution such that zi = ζi +Aixi +A−ix−i, then D̃i may be modeled as
z̃i = ζi +Aixi. Analogous results can be stated for this case as well under some assumptions
on D̃i—i.e., that it satisfies Assumption 5. For the sake of brevity we do not include this
case.

D.2 Bounding the Distance to the Social Optimum

Under further regularity conditions we can also bound the distance between the social
optimum and the different equilibrium. In particular, we need that the losses `i are not just

46

Multiplayer Performative Prediction

Li-Lipschitz continuous on Xi but on all of X . First, let us define the social optimum. The
social cost (amongst the players, not including any abstracted utility of the users represented
by the decision dependent distribution) is the sum of the losses of all the players—i.e.,

C(x) =
n∑

i=1

Li(xi, x−i)

and a social optimum is a minimizer of C(x). When this loss is strongly convex, the social
optimum is unique. Let

x∗ ∈ argmin
x∈X

C(x).

In particular x∗ solves the variational inequality

〈−Sx∗(x∗), x− x∗〉 ≤ 0 ∀ x ∈ X , (62)

where Sx(x) = Gx(x) +Hx(x) +G′
x(x) +H ′

x(x) such that

G′
x(x) =

(
E

zi∼Di(x)
∇−i`i(x, zi)

)n

i=1

H ′
x(x) =

(
∇u−i

(
E

zi∼Di(xi,u−i)
[`i(xi, x−i, zi)]

∣∣
uj=xj

))

Lemma 29 (Distance to social optimum) Suppose that Assumptions 1, 2, and 5 hold
and that we are in the regime ρ < 1/2. Moreover, suppose that the expression (57) is valid
and the loss functions `i(·, x−i, zi) are Li-Lipschitz continuous on X . Let xso solve (62), and
let xps and xne be, respectively, a performatively stable equilibrium and a Nash equilibrium.
Then the following estimates hold:

‖xso − xne‖ ≤

√∑n
i=1 L

2
i γ

2
i +

√∑n
i=1 L

2
i

(1− 2ρ)α−
√∑n

i=1 β
2
i γ

2
i

, and ‖xso − xps‖ ≤
2
√∑n

i=1 L
2
i γ

2
i +

√∑n
i=1 L

2
i

(1− 2ρ)α−
√∑n

i=1 β
2
i γ

2
i

.

Proof We show the proof for the distance between the Nash equilibrium and the social
optimum and note that the proof for bounding the distance between xps and x∗ is analogous.

From Theorem 13 that the game G (defined in (5)) is (1− 2ρ)α strongly monotone. Let
Ḡx(x) := Gx(x) +Hx(x). Using strong monotonicity of Ḡx(x) and the fact that xso solves
(62), we compute

(1− 2ρ)α‖xso − xne‖2 ≤ 〈Ḡxne(x
so)− Ḡxne(x

ne), xso − xne〉,
≤ 〈Ḡxne(x

so)− Ḡxso(x
so) + Ḡxso(x

so), xso − xne〉
≤ 〈Gxne(x

so)−Gxso(x
so) +Hxne(x

so)−Hxso(x
so), xso − xne〉

+ 〈Ḡxso(x
so), xso − xne〉

≤

√√√√
n∑

i=1

β2i γ
2
i · ‖xso − xne‖2 + 〈Ḡxso(x

so), xso − xne〉,

47

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

where the last inequality holds since Hx(y) is strongly monotone in x. Now since xso satisfies
(62), we have that

(1− 2ρ)α‖xso − xne‖2 ≤

√√√√
n∑

i=1

β2i γ
2
i · ‖xso − xne‖2 +




√√√√
n∑

i=1

L2
i +

√√√√
n∑

i=1

L2
i γ

2
i


 ‖xso − xne‖

so that rearranging and dividing through by ‖xso − xne‖, the claimed bound holds.

Finally we can also bound the distance between the social optimum and the myopic-
strategic equilibrium x̃ defined in the preceding subsection.

Lemma 30 (Distance to social optimum) Suppose that Assumptions 1, 2, and 5 hold
and that we are in the regime ρ < 1/2. Moreover, suppose that the expression (57) is valid
and the loss functions `i(·, x−i, zi) are Li-Lipschitz continuous on X . Consider an n–player
game such that n2 players are myopic and n1 = n − n2 players are strategic as described
above. Let xso solve (62), and let x̃ solve (58). Then the following estimate holds:

‖xso − x̃‖ ≤
2
√∑n

i=1 L
2
i γ

2
i +

√∑n
i=1 L

2
i

(1− 2ρ)α−
√∑n

i=1 β
2
i γ

2
i

.

D.3 Bounding Player Losses

We can theoretically bound how much worse off a player is in terms of their loss using the
lemmas in the proceeding section and Lemma 28.

Corollary 31 Suppose that Assumptions 1 and 2 hold and that we are in the regime ρ < 1.
Moreover, suppose that the expression (57) is valid and the loss functions `i(·, x−i, zi) are
Li-Lipschitz continuous on Xi. Let x̃ solve (58) (in the setting where n2 players are myopic
and the rest are strategic), and let xps, xne, and xso be, respectively, a performatively stable
equilibrium, a Nash equilibrium, and a social optimum. Suppose player i plays x

ps
i while the

others play is consistent with xne−i. Then the following hold:

a. A player myopically playing any strategy x′i other than xnei including xsoi , x̃i, and x
ps
i

is worse off than in the Nash equilibrium assuming all other players play is consistent
with xne.

b. If x′i ∈ {xsoi , x
ps
i , x̃i}, the difference between the experienced loss and the loss at the

Nash equilibrium for all other (strategic) players is bounded.

c. If x′i ∈ {xnei , x
ps
i , x̃i}, the difference between the experienced loss and the loss at the

social optimum for all other (strategic) players is bounded.

Proof To see that a. holds recall the definition of Nash. Indeed, by the definition of a Nash
equilibrium, if player i plays x′i and all other players play xne−i, then

Li(x
ne) ≤ Li(x

′
i, x

ne
−i).

48

Multiplayer Performative Prediction

That is, they are worse off. To see that b. holds, for the strategic players j 6= i we have that

|Lj(x
ne)− Lj(x

ne
−i, x

′
i)| ≤ Lj‖x′i − xne−i‖ ≤ Lj · cj ,

where

cj =





√∑n
i=1

L2

i γ
2

i

α−
√∑n

i=1
β2

i γ
2

i

, x′i = x
ps
i√∑n

i=1
L2

i γ
2

i +
√∑n1

i=1
L2

i γ
2

i

α−
√∑n

i=1
β2

i γ
2

i

, x′i = x̃i
√∑n

i=1
L2

i γ
2

i +
√∑n

i=1
L2

i

(1−2ρ)α−
√∑n

i=1
β2

i γ
2

i

, x′i = xsoi .

(63)

To see that c. holds, for the strategic players j 6= i we have that

|Lj(x
so)− Lj(x

so
−i, x

′
i)| ≤ Lj‖x′i − xso−i‖ ≤ Lj · c′j ,

where

c′j =





2
√∑n

i=1
L2

i γ
2

i +
√∑n

i=1
L2

i

(1−2ρ)α−
√∑n

i=1
β2

i γ
2

i

, x′i = x
ps
i

2
√∑n

i=1
L2

i γ
2

i +
√∑n

i=1
L2

i

(1−2ρ)α−
√∑n

i=1
β2

i γ
2

i

, x′i = x̃i
√∑n

i=1
L2

i γ
2

i +
√∑n

i=1
L2

i

(1−2ρ)α−
√∑n

i=1
β2

i γ
2

i

, x′i = xnei .

(64)

Appendix E. Numerical Examples

E.1 Revenue Maximization: Competition in Ride-Share Markets

In this section, we explore is semi-synthetic competition between two ride-share platforms
seeking to maximize their revenue given that the demand they experience is influenced by
their own prices as well as their competitors. We use data from a prior Kaggle competition
to set up the semi-synthetic simulation environment.13

E.2 Game Abstraction

We repeat the game abstraction for the ride-share example here for ease of access. The
abstraction for the game can be described as follows. Consider a ride-share market with two
platforms that each seek to maximize their revenue by setting prices for their rides given by
a vector xi ∈ R

mi . The vector of demands zi ∈ R
mi containing demand information for mi

locations that each ride-share platform serves is influenced not only by the prices they set
but also the prices that their competitor sets. Suppose that platform i’s loss is given by

`i(xi, zi) = −1

2
z>i xi +

λi
2
‖xi‖2

where λi ≥ 0 is some regularization parameter, and xi ∈ R
mi represents the vector of price

differentials from some nominal price for each of the mi locations. Observe that this game is

13. The data used in this paper is publicly available (https://www.kaggle.com/brllrb/
uber-and-lyft-dataset-boston-ma).

49

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

separable since the losses `i do not explicitly depend on x−i. Moreover, let us suppose that
the random demand zi takes the semi-parametric form zi = ζi + Aixi + A−ix−i, where ζi
follows some base distribution Pi and the parameters Ai and A−i capture price elasticities
to player i’s and its competitor’s change in price, respectively; naturally, the price elasticity
for player i to its own price changes is negative while the price elasticity for player i’s
demand given changes in its competitors actions is positive. Namely, we have that Ai � 0
and A−i � 0 capturing that an increase in player i’s prices results in a decrease in demand,
while an increase in its competitor’s prices results in a increase in demand. Moreover, we
showed in Example 1 that the mapping x 7→ Hx(y) is trivially monotone. Hence, the game
between ride-share platforms is strongly monotone and admits a unique Nash equilibrium.
Throughout the remainder of this section we set λ1 = λ2 = 1.

E.3 Semi-Synthetic Data Construction

There are eleven locations that we consider in our simulation, and each element in xi
represents the price difference (set by platform i) from a nominal price at each location.
We aggregate the rides into bins of $5 increments; this is done by taking the raw data and
rounding the price to the nearest bin as follows: pnominal = 5 · bp5c where p is the actual price
of a particular ride. Then, for each bin j we have an empirical distribution Pi,j for each
player i ∈ {1, 2} which is just the collection of rides in the data set for the location and price
range specified by that bin.

Ride-Share Simulation Parameter Estimation. In the experiments presented, we
estimate the matrices Ai and A−i that govern the performative effects from the data. We
estimate the price elasticity matrices Ai for each player from the data using the heuristic
that an increase in price by a factor of a by either firm leads to a decrease by a factor of b
in their own demand. In order to achieve this behavior, the diagonal elements of Ai are set
as follows in terms of the price for the bin and the expected base demand taken from the
empirical distribution for the bin. That is,

[Ai]jj · a · pj = (1− b)ξ̄j =⇒ [Ai]jj =
(1− b)ξ̄j
a · pj

, (65)

where pj is the nominal price assigned to bin j and ξ̄j is the expected value of the base
demand sampled from the empirical distribution of rides in bin j.

We construct A−i using a similar heuristic and the empirical average demands for each
bin. In the experiments, we started with the assumption that a 50% increase in prices
by one firm would decrease that firm’s demand by 75% while increasing the competitor’s
demand by 37.5%. This can be interpreted as an assumption that when one firm increases
prices they will lose some customers, half of whom will switch services, and half of whom
will not use either service. Therefore, for the matrix A−i, the diagonal elements are half
the size of the diagonal elements of Ai. In the linked code base, we provide a mechanism to
set the off-diagonals to simulate correlation between locations, however, we do not include
simulations in the paper due to length.

In the code base it is possible to vary the values of a and b in (65) to achieve more
or less competition between the players; when the values on the diagonal of A−i are large
relative to the elements on the diagonal of Ai, the effects of the players on each other are

50

Multiplayer Performative Prediction

Lyft Uber Total
16000

14000

12000

10000

8000

6000

4000

2000

0

Lo
ss

SO

Lyft Uber Total

NE

Lyft Uber Total

PS

(a) Loss

Lyft Uber Total0

2000

4000

6000

8000

10000

12000

14000

16000

Re
ve

nu
e

SO

Lyft Uber Total

NE

Lyft Uber Total

PS

(b) Revenue

PS NE0.0

0.2

0.4

0.6

0.8

pr
ice

 o
f a

na
rc

hy
 (P

oA
)

(c) PoA

Figure 4: Competition in Ride-Share Markets: Experiment 2. (a) Loss and (b)
revenue at the social optimum obtained via stochastic gradient descent on the social cost
(sum of players’ costs), Nash equilibrium obtained via the stochastic gradient method, and
performatively stable equilibrium obtained via the repeated stochastic gradient method.
The overall (sum of both players) loss and revenue are worse at the performatively stable
equilibrium. Note that the loss is the negative of the revenue plus some small (λ1 = λ2 = 1)
regularization term. (c) Average price of anarchy (PoA) at the Nash equilibrum versus
the performatively stable equilibrium. A value closer to one is better, and hence the Nash
equilibrium (by a small margin) has a better PoA.

© Mapbox © OpenStreetMap

Uber
Lyft

0

1

2

3

4

5

0

1

2

3

4

5

(a) Price change by location.

© Mapbox © OpenStreetMap

Uber
Lyft

−80

−60

−40

−20

0

20

40

60

80

−80

−60

−40

−20

0

20

40

60

80

(b) Demand change by location.

© Mapbox © OpenStreetMap

Uber
Lyft

−20

−10

0

10

20

30

−20

−10

0

10

20

30

(c) Revenue change by location.

Figure 5: Competition in Ride-Share Markets: Experiment 3. Effects due to myopic
decision-making. Change in (a) price, (b) demand and (c) revenue from nominal by location
for $10 nominal price bin due to ignoring performative effects: players run stochastic gradient
descent, and the image shows the change in demand (respectively, revenue) when both
players model decision-dependence as compared to when they both do not model decision-
dependence. The size of the circles shows the magnitude of the change, while the color
indicates the raw value. The majority of locations see a decrease in demand, but due to
an increase in price at the Nash equilibrium relative to the myopic outcome, there is an
increase in revenue for both players.

larger than their effects on themselves, so the competition dominates. On the other hand, if
the elements of A−i are zero or negligible compared to Ai, the game reduces to separate
performative prediction problems for the two players.

51

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

Lyft Uber
2000

1000

0

1000

2000

3000

4000

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber0

50

100

150

200

250

Ch
an

ge
 in

 D
em

an
d

Lyft Uber

6

5

4

3

2

1

0

Av
g.

 C
ha

ng
e

in
 P

ric
e

(a) Both Myopic

Lyft Uber
4000

2000

0

2000

4000

6000

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber

50

0

50

100

150

200

250

Ch
an

ge
 in

 D
em

an
d

Lyft Uber
6

5

4

3

2

1

0

Av
g.

 C
ha

ng
e

in
 P

ric
e

(b) Uber Myopic Only

Lyft Uber

5000

2500

0

2500

5000

7500

10000

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber
100

0

100

200

300

Ch
an

ge
 in

 D
em

an
d

Lyft Uber

6

5

4

3

2

1

0

Av
g.

 C
ha

ng
e

in
 P

ric
e

(c) Lyft Myopic Only

Lyft Uber0

200

400

600

800

1000

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber
40

35

30

25

20

15

10

5

0

Ch
an

ge
 in

 D
em

an
d

Lyft Uber0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 C
ha

ng
e

in
 P

ric
e

(d) Both Partially Myopic

Lyft Uber0

100

200

300

400

500

600

700

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber
60

40

20

0

20

Ch
an

ge
 in

 D
em

an
d

Lyft Uber0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 C
ha

ng
e

in
 P

ric
e

(e) Uber Partially Myopic Only

Lyft Uber0

200

400

600

800

Ch
an

ge
 in

 R
ev

en
ue

Lyft Uber

60

40

20

0

20

Ch
an

ge
 in

 D
em

an
d

Lyft Uber0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 C
ha

ng
e

in
 P

ric
e

(f) Lyft Partially Myopic Only

Figure 6: Competition in Ride-Share Markets: Experiment 3. Effects of players
being (a)–(c) myopic or (d)–(f) partially myopic relative to Nash (not myopic, and consider
competition). Positive changes in revenue indicate the Nash equilibrium is better for that
player. When a player is myopic, they do not consider any performative effects in their
update—i.e., gti = λix

t
i − 1

2ζ
t
i—and when a player is partially myopic, they consider their

own performative effects, but not those of their competitor—i.e., gti = −(Ai − λiI)
>xti − 1

2ζ
t
i .

In (a)–(c), we observe that when at least one player is completely myopic, then at least one
player is worse off at the Nash equilibrium. In (d)–(f) we observe that when at least one
player is partially myopic, the Nash equilibrium always is better for both players.

Experiment D.1: Effect of Ignoring Performativity. We study the impact of players
ignoring performative effects due to competition in the data distribution. In Figure 6, we
explore the effects of players either being completely myopic—i.e., gti = λix

t
i−1

2ζ
t
i—or partially

myopic—i.e., gti = −(Ai−λiI)>xti− 1
2ζ

t
i—on the change in revenue, demand and average price

(across locations) from nominal at the Nash equilibrium. Recall that players employing the
stochastic gradient method use the gradient estimate gti = −(Ai − λiI)

>xti − 1
2(ζ

t
i +A−ix

t
−i);

we refer to this as the non-myopic case since all performative effects are considered. Even
when the players are myopic or partially myopic, the environment, however, does have these
performative effects, meaning that zi = ζi + Aixi + A−ix−i and hence, the myopic player
is in this sense ignoring or unaware of the fact that the data distribution is reacting to its
competition’s decisions.

In Figure 6 (a)–(c), we observe that when at least one player is completely myopic, then
at least one player is worse off at the Nash equilibrium in the sense that their revenue is
lower. This is theoretical justified by Corollary 31.a. In Figure 6 (d)–(f), on the other hand,
we observe that when at least one player is partially myopic, the Nash equilibrium always is
better for both players in the sense that their individual revenues are higher at the Nash.

52

Multiplayer Performative Prediction

The values in Figure 6 represent the total demand and revenue changes, and average
price change across locations. It is also informative to examine the per-location changes.
Focusing in on the setting considered in Figure 6 (d), we examine the per-location price,
revenue and demand. We see that the relative change depends on the location, however, the
majority of locations see a decrease in demand, yet an increase in price and hence, revenue.
This suggests that modeling performative effects due to competition can be beneficial for
both players.

References

S. Ahmed. Strategic planning under uncertainty: Stochastic integer programming approaches.
University of Illinois at Urbana-Champaign, 2000.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias.
Propublica, 2016. URL https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing.

R. Bartlett, A. Morse, R. Stanton, and N. Wallace. Consumer-lending discrimination in the
fintech era. Technical report, National Bureau of Economic Research, 2019.

Y. Bechavod, K. Ligett, Z. S. Wu, and J. Ziani. Causal feature discovery through strategic
modification. arXiv preprint arXiv:2002.07024, 3, 2020.

M. Bravo, D. Leslie, and P. Mertikopoulos. Bandit learning in concave n-person games.
Advances in Neural Information Processing Systems, 31, 2018.

G. Brown, S. Hod, and I. Kalemaj. Performative prediction in a stateful world. In
International Conference on Artificial Intelligence and Statistics, pages 6045–6061. PMLR,
2022.

B. Chasnov, L. Ratliff, E. Mazumdar, and S. Burden. Convergence analysis of gradient-based
learning in continuous games. In R. P. Adams and V. Gogate, editors, Proceedings of
The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of
Machine Learning Research, pages 935–944. PMLR, 22–25 Jul 2020a.

B. Chasnov, L. J. Ratliff, E. Mazumdar, and S. A. Burden. Convergence analysis of gradient-
based learning with non-uniform learning rates in non-cooperative multi-agent settings.
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2020b.

L. Chen, A. Mislove, and C. Wilson. Peeking beneath the hood of uber. In Proceedings of
the 2015 Internet Measurement Conference, IMC ’15, page 495–508, 2015. doi: 10.1145/
2815675.2815681.

R. Courtland. Bias detectives: the researchers striving to make algorithms fair. Nature,
pages 357–360, 2018. doi: 10.1038/d41586-018-05469-3.

J. Cutler, D. Drusvyatskiy, and Z. Harchaoui. Stochastic optimization under time drift:
iterate averaging, step-decay schedules, and high probability guarantees. Advances in
neural information processing systems, 34:11859–11869, 2021.

53

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

S. Dean, M. Curmei, L. J. Ratliff, J. Morgenstern, and M. Fazel. Multi-learner risk reduction
under endogenous participation dynamics. arXiv preprint arXiv:2206.02667, 2022.

T. Diethe, T. Borchert, E. Thereska, B. Balle, and N. Lawrence. Continual learning
in practice. Continual Learning Workshop of 32nd Conference on Neural Information
Processing Systems (NeurIPS 2018), 2019.

A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence
rates for least-squares regression. The Journal of Machine Learning Research, 18(1):
3520–3570, 2017.

J. Dong, A. Roth, Z. Schutzman, B. Waggoner, and Z. S. Wu. Strategic classification from
revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and
Computation, pages 55–70, 2018.

D. Drusvyatskiy and L. Xiao. Stochastic optimization with decision-dependent distributions.
Mathematics of Operations Research, 48(2):954–998, 2023.

D. Drusvyatskiy, M. Fazel, and L. J. Ratliff. Improved rates for derivative free gradient play
in strongly monotone games. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 3403–3408. IEEE, 2022.

J. Dupacová. Optimization under exogenous and endogenous uncertainty. University of
West Bohemia in Pilsen, 2006.

D. Ensign, S. A. Friedler, S. Neville, C. Scheidegger, and S. Venkatasubramanian. Runaway
feedback loops in predictive policing. In Conference on fairness, accountability and
transparency, pages 160–171. PMLR, 2018.

Y. Ermoliev. Stochastic quasigradient methods. In Y. Ermoliev and R. J.-B. Wets, editors,
Numerical Techniques for Stochastic Optimization, chapter 6, pages 141–185. Springer,
1988.

A. A. Gaivoronskii. Nonstationary stochastic programming problems. Cybernetics, 14:
575–579, 1978.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, ii: shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23(4):2061–2089, 2013.

M. Hardt, N. Megiddo, C. Papadimitriou, and M. Wootters. Strategic classification. In
Proceedings of the 2016 ACM conference on innovations in theoretical computer science,
pages 111–122, 2016.

L. Hellemo, P. I. Barton, and A. Tomasgard. Decision-dependent probabilities in stochastic
programs with recourse. Computational Management Science, 15(3):369–395, 2018.

Z. Huo and H. Huang. Asynchronous mini-batch gradient descent with variance reduction for
non-convex optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31 (1), 2017.

54

Multiplayer Performative Prediction

Z. Izzo, L. Ying, and J. Zou. How to learn when data reacts to your model: performative
gradient descent. Proceedings of the conference on Artificial Intelligence and Statistics
(AIStats), 2022.

T. W. Jonsbr̊aten, R. J. Wets, and D. L. Woodruff. A class of stochastic programs withdecision
dependent random elements. Annals of Operations Research, 82:83–106, 1998.

Q. Li and H.-T. Wai. State dependent performative prediction with stochastic approximation.
In International Conference on Artificial Intelligence and Statistics, pages 3164–3186.
PMLR, 2022.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. Advances in neural information processing systems, 28, 2015.

K. Lum and W. Isaac. To predict and serve? Significance, 13(5):14–19, 2016.

C. Mendler-Dünner, J. Perdomo, T. Zrnic, and M. Hardt. Stochastic optimization for
performative prediction. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
4929–4939. Curran Associates, Inc., 2020.

P. Mertikopoulos and Z. Zhou. Learning in games with continuous action sets and unknown
payoff functions. Mathematical Programming, 173(1):465–507, 2019.

J. Miller, S. Milli, and M. Hardt. Strategic classification is causal modeling in disguise. In
International Conference on Machine Learning, pages 6917–6926. PMLR, 2020.

J. Miller, J. C. Perdomo, and T. Zrnic. Outside the echo chamber: Optimizing the
performative risk. arXiv preprint arXiv:2102.08570, 2021.

J. Perdomo, T. Zrnic, C. Mendler-Dünner, and M. Hardt. Performative prediction. In
International Conference on Machine Learning, pages 7599–7609. PMLR, 2020.

L. J. Ratliff, S. A. Burden, and S. S. Sastry. On the characterization of local nash equilibria
in continuous games. IEEE transactions on automatic control, 61(8):2301–2307, 2016.

M. Ray, L. J. Ratliff, D. Drusvyatskiy, and M. Fazel. Decision-dependent learning in
geometrically decaying environments. In Proceedings of the AAAI International Conference
on Artificial Intelligence (AAAI), 2022.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in neural information processing systems, 24, 2011.

J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person games.
Econometrica: Journal of the Econometric Society, pages 520–534, 1965.

R. Y. Rubinstein and A. Shapiro. Discrete event systems: Sensitivity analysis and stochastic
optimization by the score function method, volume 13. Wiley, 1993.

T. Tatarenko and M. Kamgarpour. Learning nash equilibria in monotone games. In 2019
IEEE 58th Conference on Decision and Control (CDC), pages 3104–3109. IEEE, 2019.

55

Narang, Faulkner, Drusvyatskiy, Fazel, Ratliff

T. Tatarenko and M. Kamgarpour. Bandit online learning of nash equilibria in monotone
games. arXiv preprint arXiv:2009.04258, 2020.

P. Varaiya and R.-B. Wets. Stochastic dynamic optimization approaches and computation.
International Institute for Applied Systems Analysis, Working paper WP-88-087, 1988.

H. Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

K. Wood, G. Bianchin, and E. Dall’Anese. Online projected gradient descent for stochastic
optimization with decision-dependent distributions. IEEE Control Systems Letters, 2021.

Y. Wu, E. Dobriban, and S. Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pages 10355–10366. PMLR,
2020.

Z. Zhou, P. Mertikopoulos, S. Athey, N. Bambos, P. Glynn, and Y. Ye. Learning in
games with lossy feedback. In Proceedings of the 32nd Conference on Neural Information
Processing Systems (NeurIPS), pages 1–11, 2018.

56

	Introduction
	Contributions
	Related Work

	Notation and Preliminaries
	Convex Games and Monotonicity
	Probability Measures and Gradient Deviation

	Decision-Dependent Games
	Algorithms for Finding Performatively Stable Equilibria
	Repeated Retraining
	Repeated Gradient Method
	Repeated Stochastic Gradient Method

	Monotonicity of Decision-Dependent Games
	Algorithms for Finding Nash Equilibria
	Derivative Free Method for Performative Prediction Games
	Stochastic Gradient Method in Performative Prediction Games
	Adaptive Gradient Method in Performative Prediction Games

	Numerical Examples
	Multiplayer Performative Prediction with Strategic Sources
	Revenue Maximization in Ride-Share Markets

	Discussion
	Stochastic gradient method with bias
	Technical results on sequences
	Online Least Squares
	Efficiency of Different Equilibrium Outcomes
	Bounding the Error to Performatively Stable and Nash Equilibrium
	Bounding the Distance to the Social Optimum
	Bounding Player Losses

	Numerical Examples
	Revenue Maximization: Competition in Ride-Share Markets
	Game Abstraction
	Semi-Synthetic Data Construction

