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Abstract 

We provide the first polynomial-time convergence guarantees for the probability 

flow ODE implementation (together with a corrector step) of score-based 

generative modeling with an OU forward process. Our analysis is carried out in 

the wake of recent results obtaining such guarantees for the SDE-based 

implementation (i.e., denoising diffusion probabilistic modeling or DDPM), but 

requires the development of novel techniques for studying deterministic 

dynamics without contractivity. Through the use of a specially chosen corrector 

step based on the underdamped Langevin diffusion, we obtain better dimension 

dependence than prior√ 

 

works on DDPM (O( d) vs. O(d), assuming smoothness of the data distribution), 

highlighting potential advantages of the ODE framework. 

1 Introduction 

Score-based generative models (SGMs) [Soh+15; SE19; HJA20; DN21; Son+21a; Son+21b; VKK21] 

are a class of generative models which includes prominent image generation systems such as 

DALL·E 2 [Ram+22]. Their startling empirical success at data generation across a range of application 

domains has made them a central focus of study in the literature on deep learning [Aus+21; DN21; 

Kin+21; Shi+21; CSY22; Gna+22; Rom+22; Son+22; BV23; WHZ23]. In this paper, we aim to provide 

theoretical grounding for such models and thereby elucidate the mechanisms driving their 

remarkable performance. 

Our work follows in the wake of numerous recent works which have provided convergence 

guarantees for denoising diffusion probabilistic models (DDPMs) [De +21; BMR22; De 22; LLT22; 

Liu+22; Pid22; WY22; Che+23a; CLL23; LLT23] and denoising diffusion implicit models (DDIMs) 

[CDD23]. We briefly recall that the generating process for SGMs is the time reversal of a certain 

diffusion process, and that DDPMs hinge upon implementing the reverse diffusion process as a 

stochastic differential equation (SDE) whose coefficients are learned via neural network training 

and the statistical technique of score matching [Hyv05; Vin11] (more detailed background is 

provided in §2). Among these prior works, the concurrent results of [Che+23a; LLT23] are 

remarkable because they require minimal assumptions on the data distribution (in particular, they 

do not assume log-concavity or similarly restrictive conditions) and they hold when the errors 

incurred during score matching are only bounded in an L2 sense, which is both natural in view of 

the derivation of score matching (see [Hyv05; Vin11]) and far more realistic.7 Subsequently, the 

work of [CLL23] significantly sharpened the analysis in the case when no smoothness assumptions 

are imposed on the data distribution. 
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 7 ∞ 
It is unreasonable, for instance, to assume that the score errors are bounded in an L sense, since we 

cannot hope to learn the score function in regions of the state space which are not well-covered by the 

training data. 

37th Conference on Neural Information Processing Systems (NeurIPS 2023). 

Taken together, these works paint an encouraging picture of our understanding of DDPMs which 

takes into account both the diversity of data in applications (including data distributions which are 

highly multimodal or supported on lower-dimensional manifolds), as well as the non-convex 

training process which is not guaranteed to accurately learn the score function uniformly in space. 

Besides DDPMs, instead of implementing the time reversed diffusion as an SDE, it is also possible 

to implement it as an ordinary differential equation (ODE), called the probability flow ODE 

[Son+21b]; see §2. The ODE implementation is often claimed to be faster than the SDE 

implementation [Lu+22; ZC23], with the rationale being that ODE discretization is typically more 

accurate than SDE discretization, so that one could use a larger step size. Indeed, the discretization 

error usually depends on the regularity of the trajectories, which is C1 for ODEs but only  for 

SDEs (i.e., Hölder continuous with any exponent less than ) due to the roughness of the Brownian 

motion driving the evolution. 

Far from being able to capture this intuition, current analyses of SGMs cannot even provide a 

polynomial-time analysis of the probability flow ODE. The key issue is that under our minimal 

assumptions (i.e., without log-concavity of the data distribution), the underlying dynamics of either 

the ODE or SDE implementation are not contractive, and hence small errors quickly accumulate and 

are magnified. The aforementioned analyses of DDPMs managed to overcome this challenge by 

leveraging techniques specific to the analysis of SDEs, through which we now understand that 

stochasticity plays an important role in alleviating error accumulation. It is unknown, however, how 

to carry out the analysis for the purely deterministic dynamics inherent to the probability flow ODE. 

Our first main contribution is to give the first convergence guarantees for SGMs with OU forward 
dynamics in which steps of the discretized probability flow ODE—referred to as predictor steps—
are interleaved with corrector steps which runs the overdamped Langevin diffusion with 
estimated score, as pioneered in [Son+21b]. Our results are akin to prior works on DDPMs in that 
they hold under minimal assumptions on the data distribution and under L2 bounds on the score 
estimation error, and our guarantees scale polynomially in all relevant problem parameters. Here, 
the corrector steps inject stochasticity which is crucial for our proofs; however, we emphasize that 
the use of corrector steps does not simply reduce the problem to applying existing DDPM 
analyses. Instead, we must develop an entirely new framework based on Wasserstein–to–TV 
regularization, which is of independent interest; see §4 for a detailed overview of our techniques. 
Our results naturally raise the question of whether the corrector steps are necessary in practice, 
and we discuss this further in §5. 

When the data distribution is log-smooth, then the dimension dependence of prior results on 

DDPMs, as well as our first result for the probability flow ODE with overdamped corrector, both 

scale as O(d). 

Does this contradict the intuition that ODE discretization is more accurate than SDE discretization? 
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The answer is no; upon inspecting our proof, we see that the discretization error of the probability 

flow ODE is indeed smaller than what is incurred by DDPMs, and in fact allows for a larger step√ 

 

size of order 1/ d. The bottleneck in our result stems from the use of the overdamped Langevin 

diffusion for the corrector steps. Taking inspiration from the literature on log-concave sampling 

(see, e.g., [Che22] for an exposition), our second main contribution is to propose corrector steps 

based on the underdamped Langevin diffusion (see §2) which is known to improve the dimension 

dependence of sampling. In particular, we show that the probability flow ODE with underdamped 

Langevin√ 

 
corrector attains O( d) dimension dependence. This dependence is better than what was obtained 
for DDPMs in [Che+23a; CLL23; LLT23] and therefore highlights the potential benefits of the ODE 
framework. We note that the benefit to which we refer is at generation time, and not at training 
time. 

Previously, [JP22] have proposed a “noise–denoise" sampler using the underdamped Langevin 

diffusion, but to our knowledge, our work is the first to use it in conjunction with the probability 

flow ODE. Although we provide preliminary numerical experiments in the Appendix, we leave it as 

a question for future work to determine whether the theoretical benefits of the underdamped 

Langevin corrector are also borne out in practice. 

1.1 Our contributions 

In summary, our contributions are the following. 

• We provide the first convergence guarantees for the probability flow ODE with 

overdamped Langevin corrector (DPOM; Algorithm 1). 

• We propose an algorithm based on the probability flow ODE with underdamped Langevin 

corrector (DPUM; Algorithm 2). 

• We provide the first convergence guarantees for DPUM√. These convergence guarantees 

show 

 

improvement over (i) the complexity of DPOM (O( d) vs O(d)) and (ii) the complexity√ 

 

of DDPMs, i.e., SDE implementations of score-based generative models (again, O( d) vs 

O(d)). 

• We provide preliminary numerical experiments in a toy example showing that DPUM can 

sample from a highly non log-concave distribution (see Appendix). The numerical 

experiments are not among our main contributions and are provided for illustration only. 

The Python code can be found in the Supplementary material. 

Our main theorem can be summarized informally as follows; see §3 for more detailed statements. 

Theorem 1 (Informal). Assume that the score function along the forward process is L-Lipschitz,√ 

 

and that the data distribution has finite second moment. Assume that we have access to Oe(ε/ L) 

L2-accurate score estimates. Then, the probability flow ODE implementation of the reversed 

Ornstein– 
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Uhlenbeck process, when interspersed with either the overdamped Langevin corrector (DPOM; 

Algorithm 1) or with the underdamped Langevin corrector (DPUM; Algorithm 2), outputs a sample 

whose√ 

 

law is ε-close in total variation distance to the data distribution, using Oe(L3d/ε 2 ) or Oe(L 3

 d/ε) iterations respectively. 

Our result provides the first polynomial-time guarantees for the probability flow ODE 

implementation of SGMs, so long as it is combined with the use of corrector steps. Moreover, when 

the corrector steps are based on the underdamped Langevin diffusion, then the dimension 

dependence of our result√ 

is significantly smaller (O( d) vs. O(d)) than prior works on the complexity of DDPMs, and thus 

provides justification for the use of ODE discretization in practice, compared to SDEs. 

Our main assumption on the data is that the score functions along the forward process are 
Lipschitz continuous, which allows for highly non-log-concave distributions, yet does not cover 
non-smooth distributions such as distributions supported on lower-dimensional manifolds. 
However, as shown in [Che+23a; CLL23; LLT23], we can also obtain polynomial-time guarantees 
without this smoothness assumption via early stopping (see Remark 1). 

(OU) process, 

 =  d

law(x→t ), (1) 

 

1 .2 Related works 

The idea of using a time-reversed diffusion for sampling has been fruitfully exploited in the 
logconcave sampling literature via the proximal sampler [TP18; LST21; CE22; LC22; FYC23; LC23], as 
put forth in [Che+22], as well as through algorithmic stochastic localization [EMS22; MW23]. 
Although we do not aim to be comprehensive in our discussion of the literature, we mention, e.g., 
[ABV23; Che+23b] for alternative approaches for diffusion models. We also note that the recent 
work of [CDD23] obtained a discretization analysis for the probability flow ODE (without corrector) 
in KL divergence, though their bounds have a large dependence on d and are exponential in the 
Lipschitz constant of the score integrated over time. 

Since the original arXiv submission of this paper, there have been further works studying the 
probability flow ODE. The work of [BDD23] also studied the probability flow ODE, but without 
providing discretization guarantees (and with possibly exponential dependencies). The work 
[Li+23] provides polynomial-time guarantees for the probability flow ODE (without corrector 
steps), at the cost of larger polynomial dependencies and more stringent score assumptions 
(namely, bounds on the Jacobian of the score). Also, [PMM23] study another variant of the 
predictor-corrector framework. 

2 Preliminaries 

3 .1 Score-based generative modeling 

Let q⋆ denote the data distribution, i.e., the distribution from which we wish to sample. In score-

based generative modeling, we define a forward process (q
t→)

t≥0 with , which transforms 
our data distribution into noise. In this paper, we focus on the canonical choice of the Ornstein–
Uhlenbeck 
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where (Bt
)

t≥0 is a standard Brownian motion in Rd. It is well-known that the OU process mixes rapidly 

(exponentially fast) to its stationary distribution, the standard Gaussian distribution γd. 

Once we fix a time horizon T > 0, the time reversal of the SDE defined in (1) over [0,T] is given by 

 d ,  (2) 

where , and the reverse SDE is a generative model: when initialized at , then 

x←T ∼ q. Since , the reverse SDE transforms samples from γd (i.e., pure noise) into 
approximate samples from q⋆. In order to implement the reverse SDE, however, one needs to 
estimate the score functions ∇lnqt← for t ∈ [0,T] using the technique of score matching [Hyv05; 
Vin11]. In practice, the score estimates are produced via a deep neural network, and our main 
assumption is that these score estimates are accurate in an L2 sense (see Assumption 4). This 
gives rise to the denoising diffusion probabilistic modeling (DDPM) algorithm. 

Notation. Since the reverse process is the primary object of interest, we drop the arrow ← 

from the notation for simplicity; thus, . We will always denote the forward process with the 

arrow →. 

For each t ∈ [0,T], let st denote the estimate for the score ∇lnqt = ∇lnqt←. 

2.2 Probability flow ODE (predictor steps) 

Instead of running the reverse SDE (2), there is in fact an alternative process (xt)t∈[0,T] which evolves 

according to an ODE (and hence evolves deterministically), and yet has the same marginals as (2). 

This alternative process, called the probability flow ODE, can also be used for generative modeling. 

One particularly illuminating way of deriving the probability flow ODE is to invoke the celebrated 
theorem, due to [JKO98], that the OU process is the Wasserstein gradient flow of the KL 
divergence functional (i.e. relative entropy) KL(· ∥ γd). From the general theory of Wasserstein 
gradient flows (see [AGS08; San15]), the Wasserstein gradient flow (µt)t≥0 of a functional F can be 
implemented via the dynamics 

 z˙t = −[∇W2F(µt)](zt), z0 ∼ µ0 , 

in that zt ∼ µt for all t ≥ 0. Applying this to F := KL(· ∥ γd), we arrive at the forward process 

 . (3) 

Setting , it is easily seen that the time reversal of (3) is 

 x˙t = xt + ∇lnqt(xt), i.e., , (4) 

which is called the probability flow ODE. In this paper, the interpretation of the probability flow 

ODE as a reverse Wasserstein gradient flow is only introduced for interpretability, and the reader 

who is unfamiliar with Wasserstein calculus can take (4) to be the definition of the probability flow 

ODE. Crucially, it has the property that if x0 ∼ q0, then xt ∼ qt for all t ∈ [0,T]. 

We can discretize the ODE (4). Fixing a step size h > 0, replacing the score function ∇lnqt with the 

estimated score given by st, and applying the exponential integrator to the ODE (i.e., exactly 

integrating the linear part), we arrive at the discretized process 

 . (5) 

2.3 Corrector steps 

Let q be a distribution over Rd, and write U as a shorthand for the potential −lnq. 
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Overdamped Langevin. The overdamped Langevin diffusion with potential U is a stochastic process 

(xt)t≥0 over Rd given by 

√  

 dxt = −∇U(xt)dt + 2dBt . 

The stationary distribution of this diffusion is q ∝ exp(−U). 

We also consider the following discretized process where −∇U is replaced by a score estimate s. 

Fix a step size h > 0 and let  over Rd be given by √  

 dxbt = s(xb⌊t/h⌋h)dt + 2dBt . 

Underdamped Langevin. Given a friction parameter γ > 0, the corresponding underdamped 

Langevin diffusion is a stochastic process (zt,vt)t≥0 over Rd × Rd given by 

dzt = vt dt, 

 

dvt = −(∇U(zt) + γvt)dt + p2γ dBt . 

The stationary distribution of this diffusion is q ⊗ γd. 

We also consider the following discretized process, where −∇U is replaced by a score estimate s. 

Let  over Rd × Rd be given by 

dzbt = vbt dt, 

 
 (6) 

d. 

Diffusions as corrector steps. At time t, the law of the ideal reverse process (4) initialized at q0 

is qt. However, errors are accumulated through the course of the algorithm: the error from 
initializing at γd rather than at q0; errors arising from discretization of (4); and errors in estimating 
the score function. That’s why the law of the algorithm’s iterate will not be exactly qt. We propose 
to use either the overdamped or the underdamped Langevin diffusion with stationary distribution 
qt and estimated score as a corrector, in order to bring the law of the algorithm iterate closer to qt. 
In the case of the underdamped Langevin diffusion, this is done by drawing an independent 

Gaussian random variable vb0 ∼ γd, running the system (6)starting from (zb0,vb0) (where zb0 is 
the current algorithm iterate) for some time t, and then keeping . In our theoretical analysis, the 
use of corrector steps boosts the accuracy and efficiency of the SGM. 

3 Results 

3.1 Assumptions 

We make the following mild assumptions on the data distribution q⋆ and on the score estimate s. 

Assumption 1 (second moment bound). We assume that m . 

Assumption 2 (Lipschitz score). For all t ∈ [0,T], the score ∇lnqt is L-Lipschitz, for some L ≥ 1. 

Assumption 3 (Lipschitz score estimate). For all t for which we need to estimate the score function 

in our algorithms, the score estimate st is L-Lipschitz. 

Assumption 4 (score estimation error). For all t for which we need to estimate the score function in 

our algorithms, 

 . 

Assumptions 1, 2, and 4 are standard and were shown in [Che+23a; CLL23; LLT23] to suffice for 
obtaining polynomial-time convergence guarantees for DDPMs. The new condition that we 
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 ,h  ,s  

 ,h  ,s  

require in our analysis is Assumption 3, which was used in [LLT22] but ultimately shown to be 
unnecessary for DDPMs. We leave it as an open question whether this can be lifted in the ODE 
setting. 

Remark 1. As observed in [Che+23a; CLL23; LLT23], Assumption 2 can be removed via early 

stopping, at the cost of polynomially larger iteration complexity. The idea is that if q⋆ has compact 

support but does not necessarily satisfy Assumption 2 (e.g., if q⋆ is supported on a compact and 

lower-dimensional manifold), then qδ→ will satisfy Assumption 2 if δ > 0. By applying our analysis up 

to time T − δ instead of time T, one can show that a suitable projection of the output distribution 

is close in Wasserstein distance to q⋆ (see [CLL23, Corollary 2.4] or [Che+23a, Corollary 5]). For 

brevity, we do not consider this extension of our results here. 

3.2 Algorithms 

We provide the pseudocode for the two algorithms we consider, Diffusion Predictor + Overdamped 

Modeling (DPOM) and Diffusion Predictor + Underdamped Modeling (DPUM), in Algorithms 1 and 

2 respectively. The only difference between the two algorithms is in the corrector step, which we 

highlight in Algorithm 2. For simplicity, we take the total amount of time T to be equal to N0/L + 

hpred for an integer N0 ≥ 1, and we assume that 1/L is a multiple of hpred and that hpred is a multiple 

of . 

We consider two stages: in the first stage, which lasts until time N0/L = T − hpred, we intersperse 

predictor epochs (run for time 1/L, discretized with step size√hpred) and corrector epochs (run for 

 

time Θ(1/L) for the overdamped corrector or for time Θ(1/ L) for the underdamped corrector, and 

discretized with step size hcorr). The second stage lasts from time T − hpred to time T − δ, and we 

incorporate geometrically decreasing step sizes for the predictor. Note that this implies that our 

algorithm uses early stopping. 

Algorithm 1: DPOM(T,h 

Input: Total time T, predictor step size hpred, corrector step size hcorr, score estimates s 

Output: Approximate sample from the data distribution q⋆ 

1 Draw . 

2 for n = 0,1,...,N0 − 1 do 

3 Predictor:  , run the discretized probability flow ODE (5) from time   to 

 with step size hpred and estimated scores to obtain . 

4 Corrector: Starting from  , run overdamped Langevin Monte Carlo for total time 

Θ(1/L) with step size hcorr and score estimate s(n+1)/L to obtain . 

5 Predictor: Starting from xbT−hpred, run the discretized probability flow ODE (5) with step sizes 

hpred/2,hpred/4,hpred/8,...,δ and estimated scores to obtain . 

6 Corrector: Starting from , run overdamped Langevin Monte Carlo for total time Θ(1/L) 

with step size hcorr and score estimate sT−δ to obtain . 

7 return xbT−δ 

Algorithm 2: DPUM(T,h 

Input: Total time T, predictor step size hpred, corrector step size hcorr, score estimates s 

Output: Approximate sample from the data distribution q⋆ 

1 Draw . 

2 for n = 0,1,...,N0 − 1 do 
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3 Predictor:  , run the discretized probability flow ODE (5) from time   to 

hpred and estimated scores to obtain .   with step size 

4Corrector: Starting from, run underdamped Langevin Monte Carlo for total 

time 

√  

Θ(1/ L) with step size hcorr and score estimate s(n+1)/L to obtain . 

5 Predictor: Starting from xbT−hpred, run the discretized probability flow ODE (5) with step sizes 

hpred/2,hpred/4,hpred/8,...,δ and estimated scores to obtain . 

6 Corrector: Starting from , run underdamped Langevin Monte Carlo for total time 

 with step size hcorr and score estimate sT−δ to obtain xbT−δ. 

7 return xT−δ 

 

3.3 Convergence guarantees 

Our main results are the following convergence guarantees for the two predictor-corrector schemes 

described in §3.2: 

Theorem 2 (DPOM). Suppose that Assumptions 1–4 hold. If q denotes the output of DPOM b 

(Algorithm 1) with , then 

 TV  (7) 

In particular, if we set  , and if the score 

estimation error satisfies   , then we can obtain TV error ε with a total iteration 

complexity 

of  steps. 

The five terms in the bound (7) correspond, respectively, to: the convergence of the forward (OU) 
process; the discretization error from the predictor steps; the discretization error from the 
corrector steps; the score estimation error; and the early stopping error. 

Theorem 2 recovers nearly the same guarantees as the one in [Che+23a; CLL23; LLT23], but for the 

probability flow ODE with overdamped Langevin corrector instead of the reverse SDE without 

corrector. Recall also from Remark 1 that our results can easily be extended to compactly supported 

data distributions without smooth score functions. This covers essentially all distributions 

encountered in practice. Therefore, our result provides compelling theoretical justification 

complementing the empirical efficacy of the probability flow ODE, which was hitherto absent from 

the literature. 

However, in Theorem 2, the iteration complexity is dominated by the corrector steps. Next, we show 

that by replacing the overdamped LMC with underdamped LMC, we can achieve a quadratic 

improvement in the number of steps, considering the dependence on d. As discussed in the 

Introduction, this highlights the potential benefits of the ODE framework over the SDE. Theorem 3 

(DPUM). Suppose that Assumptions 1–4 hold. If q denotes the output of DPUM b 

(Algorithm 2) with , then 

√  

TV(q,q⋆) ≲ ( d ∨ m2)exp(−T) + L2Td1/2hpred + L3/2Td1/2hcorr + L1/2Tεsc + ε. b 

In particular, if we set  pred corr , and if the 

score estimation error satisfies , then we can obtain TV error ε with a total iteration 
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complexity of  steps. 

4 Proof overview 

Here we give a detailed technical overview for the proof of our main results, Theorems 2 and 3. As 

in [Che+23a; CLL23; LLT23], the three sources of error that we need to keep track of are (1) 

estimation of the score function; (2) discretization of time when implementing the probability flow 

ODE and corrector steps; and (3) initialization of the algorithm at γd instead of the true law of the 

end of the forward process, . It turns out that (1) is not so difficult to manage as soon as we 

can control (2) and (3). Furthermore, as in prior work, we can easily control (3) via the data-

processing inequality: the total variation distance between the output of the algorithm initialized 

at q0 versus at γd is at most TV(qT→,γd), which is exponentially small in T by rapid mixing of the OU 

process. So henceforth in this overview, let us assume that both the algorithm and the true process 

are initialized at q0. It remains to control (2). 

Failure of existing approaches. In the SDE implementation of diffusion models, prior works handled 

(2) by directly bounding a strictly larger quantity, namely the KL divergence between the laws of 

the trajectories of the algorithm and the true process; by Girsanov’s theorem, this has a clean 

formulation as an integrated difference of drifts. Unfortunately, in the ODE implementation, this KL 

divergence is infinite: in the absence of stochasticity in the reverse process, these laws over 

trajectories are not even absolutely continuous with respect to each other. 

In search of an alternative approach, one might try a Wasserstein analysis. As a first attempt, we 

could couple the initialization of both processes and look at how the distance between them 

changes over time. Ifthe score function allows us to naïvely bound(xb
t)0≤t≤T and (xt)0≤t≤T denote the 

algorithm and true process, then smoothness of∂t E[∥xbt − xt∥2] by O(L)E[∥xbt − xt∥2]. While this 

ensures that the processes are close if run for time ≪ 1/L, it does not rule out the possibility that 

they drift apart exponentially quickly after time 1/L. 

Restarting the coupling—first attempt. What we would like is some way of “restarting” this coupling 

before the processes drift too far apart, to avoid this exponential compounding. We now motivate 

how to achieve this by giving an argument that is incorrect but nevertheless captures the intuition 

for our approach. Namely, let pt := law(  denote the law of the algorithm, let PODEt0,h denote the 

result of running the ideal probability flow ODE for time h starting from time t0, and  

denote the same but for the discretized probability flow ODE with estimated score. For h ≲ 1/L, 

consider the law of the two processes at time 2h, i.e., 

 p2h = q0PbODE0,2h and . (8) 

The discussion above implies that q0PODE0,h and are close in 2-Wasserstein distance, 

so by the data-processing inequality, this implies that  and  are also 

close. To 

show that p2h and q2h in Eq. (8) are close, it thus suffices to show that and b 

are close. But these two distributions are given by running the algorithm and the true process for 

time h, both starting from . So if we “restart” the coupling by coupling the processes based 

on their locations at time h, rather than time 0, of the reverse process, we can again apply the naïve 

Wasserstein analysis. 

At this juncture, it would seem that we have miraculously sidestepped the exponential blowup 
and shown that the expected distance between the processes only increases linearly over time! 
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The issue of course is in the application of the “data-processing inequality,” which simply does not 
hold for the Wasserstein distance. 

Restarting the coupling with a corrector step. This is where the corrector comes in. The idea 
is to use short-time regularization: if we apply a small amount of noise to two distributions which 
are already close in Wasserstein, then they become close in KL divergence, for which a data-
processing inequality holds. The upshot is that if the noise doesn’t change the distributions too 
much, then we can legitimately restart the coupling as above and prove that the distance 
between the processes, now defined by interleaving the probability flow ODE and its 
discretization with periodic injections of noise, increases only linearly in time. 

It turns out that naïve injection of noise, e.g., convolution with a Gaussian of small variance, is 

somewhat wasteful as it fails to preserve the true process and leads to poor polynomial 

dependence in the dimension. On the other hand, if we instead run the overdamped Langevin 

diffusion with potential chosen so that the law of the true process is stationary, then we can recover 

the linear in d dependence of Theorem 2. Then by replacing overdamped Langevin diffusion with 

its underdamped counterpart, which has the advantage of much smoother trajectories, we can 

obtain the desired quadratic speedup in dimension dependence in Theorem 3. 

Score perturbation lemma. In addition to the switch from SDE to ODE and the use of the 

underdamped corrector, a third ingredient is essential to our improved dimension dependence. The 

former two ensure that the trajectory of our algorithm is smoother than that of DDPMs, so that 

even√ 

 
over time windows that scale with 1/ d, the process does not change too much. By extension, as 
the score functions are Lipschitz, this means that any fixed score function evaluated over iterates 
in such a window does not change much. This amounts to controlling discretization error in space. 

It is also necessary to control discretization error in time, i.e., proving what some prior works 

referred to as a score perturbation lemma [LLT22]. That is, for any fixed iterate x, we want to show 

that the score function ∇lnqt(x) does not change too much as t varies over a small window. 

Unfortunately, prior works were only able to establish this over windows of length√ 1/d. In this 

work, we improve 

 

this to windows of length 1/ d (see Lemma 3 and Corollary 1). 

In our proof, we bound the squared L2 norm of the derivative of the score along the trajectory of 

the ODE. The score function evaluated at y can be expressed as EP0|t(·|y)[∇U]; here, the posterior 

distribution P0|t(· | y) is essentially the prior q⋆ tilted by a Gaussian of variance O(t). Hence we need 

to bound the change in the expectation when we change the distribution from P0|t to P0|t+∆t; 

because ∇U is L-Lipschitz, we can bound this by the Wasserstein distance between the distributions. 

For small enough t, P0|t is strongly log-concave, and a transport cost inequality bounds this in terms 

of KL divergence, which is more easily bounded. Indeed, we can bound it with the KL divergence 

between the joint distributions P0,t and P0,t+∆t, which reduces to bounding the KL divergence 

between Gaussians of unequal variance. 
However, since our score perturbation lemma degrades near the beginning of the forward 
process, we require better control of the discretization error during this part of the algorithm, 
hence leading to our choice of geometrically decreasing step sizes. Alternatively, we could use a 
two-stage step size schedule, see Remark 4. 

5 Conclusion 

In this work, we have provided the first polynomial-time guarantees for the probability flow ODE 

implementation of SGMs with corrector steps and exhibited improved dimension dependence of 
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the ODE framework over prior results for DDPMs (i.e., the SDE framework). Our analysis raises 

questions relevant for practice, of which we list a few. 

• Although we need the corrector steps for our proof, are they in fact necessary for the 

algorithm to work efficiently in practice? 

• Is it possible to obtain even better dimension dependence, perhaps using higher-order 

solvers and stronger smoothness assumptions? 

• Can we obtain improved dimension dependence even in the non-smooth setting, 

compared to the result of [CLL23]? 

We also list several limitations of our work, namely: 

• Our analysis only covers the probability flow ODE corresponding to the OU forward 

process. We leave the study of more general dynamics for future study. 

√  

• Our guarantees require the score function to be learned to L2 accuracy Oe(ε/ L), which is 

more stringent than the prior works [Che+23a; CLL23; LLT23] and may be an technical 

artefact of our proof. 

• We have not validated our theoretical findings with large-scale experiments. In particular, 
it is still unclear whether flow-based methods can outperform the standard DDPM 
algorithm in practical, high dimensional settings. 
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A Notation and overview 

In this section, we collect together the notation used throughout the proofs and provide a road 

map for the end-to-end analysis in §E. 

Throughout the analysis, Assumptions 1–4 are in full force. 

We will reserve q for the law of the reverse process (and denote the forward process by q→ when 

needed). In §E, the law of the algorithm is denoted by p. 

We use the following Markov kernels: 

1.  is the output of running the ODE for time h, starting at (reverse) time t. 
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2. PLD (resp. PULD) is the output of running the continuous-time overdamped (resp. 

underdamped) Langevin diffusion for time h. In this notation, we have suppressed 

mention of the stationary distributions of the diffusion, which will be provided by context. 

3.  and PbLMC (resp. PbULMC) are the corresponding processes once discretized and using 

the estimated score. 

For the ODE, we are more precise with the notation because even within a single epoch of predictor 

steps, the kernel for the probability flow ODE depends on time (as opposed to the kernels for the 

diffusions, which are constant within any epoch of corrector steps); moreover, for our analysis in 

§E, we also need to take time-varying step sizes for the predictor steps. We will omit the 

dependencies on t and h when clear from context. When P = PODE or PbODE, we use Pt,h1,...,hN to denote 

Pt,h1Pt+h1,h2 ···Pt+h1+···+hN−1,hN (we compose kernels on the right). 

We refer to §4 for a high-level description of the proof strategy. We begin in §B with our improved 

score perturbation lemma (Corollary 1); this is the only section of the analysis which is indexed by 

forward time (instead of reverse time). In Lemma 5 in §C, we establish our main result for the 

predictor steps, which combines together standard ODE discretization analysis with the score 

perturbation lemma of §B. Since Corollary 1 degrades near the end of the reverse process (or 

equivalently, near the start of the forward process, when the regularization has not yet kicked in), 

our analysis requires a geometrically decreasing step size schedule, which leads to the two-stage 

Algorithms 1 and 2. 

In §D, we prove our main regularization results for the overdamped corrector (Theorem 4) and 
the underdamped corrector (Theorem 5). Finally, we put together the various constituent results 
in the end-to-end analysis in §E. 

B Score perturbation 

In this section, we prove a score perturbation lemma which refines that of [√ LLT22]. This improved 

 

lemma is necessary in order to obtain O( d) dependence for the probability flow ODE. 

Lemma 1 (Score perturbation). Suppose pt = p0 ∗ N(0,tI) and  . 

Suppose that for all x. Then 

. 

Proof. Without loss of generality, we may assume  , as otherwise, noting that

 
Suppose p0(x) = e−V (x). Let P0,t denote √  , we may replace p0 with. 

the joint distribution of (X0,Xt) where Xt = X0 + tZ with Z ∼ N(0,I) independent of X0, and let P0|t(· | 

xt) denote the conditional distribution of X0 given Xt = xt. We first note that since 

 

we have the following calculations: 

, 

∇2 lnpt(y) = CovP0|t(·|y)(∇V ) − EP0|t(·|y)(∇2V ). 

Using , we calculate 

 . (9) 
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We bound each term above separately. For the first term, a quick calculation shows that ∂t∇lnpt(y) 

= −Cov is finite a.s.: by Cauchy–Schwarz, it suffices to show EP0|t(·|y)[∥y − ·∥4] 

and EP0|t(·|y)[∥∇V ∥2] are finite for all y, and this follows because for  the measure P0|t(· | y) is 

strongly log-concave and ∥∇V ∥2 can be bounded by a quadratic. Because ∇V is L-Lipschitz, 

  (10) 

Now P0|t(· | y) has density  so if ∥∇2 lnp0∥op ≤ L and , then 

-strongly log-concave. By Talagrand’s transport cost inequality, 

 . 

Plugging this back in (10) and using Fatou’s lemma and the chain rule for KL, 

KL  

KL  

 . (11) 

Now 

KL(P0,t+∆t ∥ P0,t) = Ex∼P0 KL KL  

. 

Plugging into (11) gives 

 . (12) 

For the second term, by assumption we have ∥∇2 lnpt∥op ≤ L. Then, since xt ∼ pt, 

 E[∥∇2 lnpt(xt)∇lnpt(xt)∥2] ≤ L2 Ept[∥∇lnpt∥2] ≤ L3d (13) 

using the fact Eµ[∥∇lnµ∥2] ≤ Ld for any measure µ such that lnµ is L-smooth, which follows from 

integration by parts. From (9), (12), and (13), and the elementary inequality ⟨a,b⟩ ≤ ∥a∥2 + 4∥b∥2, 

we get 

 

The above result holds for the dynamics  for which (pt)t≥0 follows the heat flow; 

this corresponds to the variance-exploding SGM. In this paper, since we wish to consider the SGM 

based on the variance-conserving Ornstein–Uhlenbeck (OU) process, we can apply the following 

reparameterization lemma. 

Lemma 2 (Reparameterization). Suppose that (xt
)

t≥0 satisfies the probability flow ODE for Brownian 

motion starting at p0; that is, letting pt = p0 ∗ N(0,tI), we have . 

Then, if we set 
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yt = e−t xe2t−1 , 

then (yt)t≥0 satisfies the probability flow ODE for the OU process starting at p0; that is, letting qt→ be 

the density of the OU process at time t, we have . 

Proof. By direct calculation, one can check that for any y ∈ Rd, it holds that qt→(y) ∝ pe2t−1(ety). The 

claim follows from the chain rule.  

Lemma 3 (Score perturbation for OU). Suppose qt→ is the density of the OU process at time t, started 

at , and . Suppose for all t and all , 

where L ≥ 1. Then, 

. 

Proof. Using the relationship qt→(y) ∝ pe2t−1(ety), 

∇lnqt→(y) = et ∇lnpe2t−1(ety), 

∂t∇lnqt→(yt) = et ∇lnpe2t−1(xe2t−1)+et ∂s∇lnps(xs)|s=e2t−1 · 2e2t . 

 
 | {z } | {z } 
 =:A =:B 

If ∥∇2 lnqt→∥op ≤ L, then ∥∇2 lnpe2t−1∥op ≤ e−2tL. By Lemma 1, 

. 

Hence 

. 

Next, 

E[A2] ≤ e2t E[∥∇lnpe2t−1(xe2t−1)∥2] ≤ e2t e−2tLd ≤ Ld. 

The result follows.  

Finally, we use Lemma 3 to derive a bound on how much the score changes along the trajectory of 

the probability flow ODE. 

Corollary 1. Consider the setting of Lemma 3, and suppose 0 < s < t, h = t − s. 

1. If s,t ≳ 1/L, then 

 . 

2. , then 

 . 

Proof. By Lemma 3, 

 

In the first case, this is bounded by O(L3dh2). In the second case, this is bounded by 
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t 
 .

  
C Predictor step 

Next, we need an ODE discretization analysis. 

Lemma 4. Suppose the score function satisfies Assumption 2. Assume that L ≥ 1, h ≲ 1/L, and 

. Then 

 . 

Proof. We have the ODEs 

x˙t = xt + ∇lnqt(xt), 

xb˙t = xbt + st0(xbt0), 

for t0 ≤ t ≤ t0 + h, with xt0 = xbt0 ∼ q, xt0+h ∼ qPODE, and xbt0+h ∼ qPbODE. Then, 

. 

By Grönwall’s inequality, noting that h = O(1), 

  (14) 

We split up the error term as 

∥∇lnqt(xt) − st0(xbt0)∥2 ≲ ∥∇lnqt(xt) − ∇lnqt0(xt0)∥2 + ∥∇lnqt0(xt0) − st0(xbt0)∥2 . 

By Corollary 1, the expectation of the first term is bounded by 

. 

The second term is bounded in expectation by ε2sc. Plugging back into (14) gives 

. 

The Wasserstein distance is bounded by the square root of this quantity, and the lemma follows.  

Lemma 4 suggests that focusing on the dependence on d, we will be able to take h ≍ d−1/2 (we need 

to keep one factor of h in the bound, as we need to sum up the bound over 1/h iterations). 

Remark 2. Our improved score perturbation lemma is necessary to obtain this d1/2 dependence. 
The original score perturbation lemma [LLT22, Lemma C.11–12] combined with a space 
discretization bound gives a bound of 

 

in place of Corollary 1. Note this is a -Hölder continuity bound rather than a Lipschitz bound. The 

bound in Lemma 4 then becomes 

 , 
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and we would only be able to take h ≍ d−1. We also note that our bound has an extra factor of 

max{L1/2,(T − t0)−1/2}; we do not know if this extra factor is necessary. 

We now iterate Lemma 4 to obtain the following result. Note that we now need to also assume that 

the score estimate is L-Lipschitz. 

Lemma 5. Suppose that both Assumptions 2 and 3 hold. Let h1,...,hN > 0 be a sequence such that 

letting tN = h1 + ··· + hN, we have tN ≤ 1/L. Let hmax = max1≤n≤N hn. 

1. If T − (t0 + tN) ≳ 1/L, then 

 . 

2. If T − t0 ≲ 1/L and  for each n, then 

 2

 ODE ODE max sc max

 L . 

Proof. We abbreviate PODEN := PODEt0,h1,...,hN and PbODEN := PbODEt0,h1,...,hN. Using the triangle inequality, 

W2(qPODEN ,qPbODEN ) ≤ W2(qPODEN ,qPODEN−1PbODE) + W2(qPODEN−1PbODE,qPbODEN ) 

≤ O(Ld1/2h2N max{L1/2,(T − t0 − tN)−1/2} + hNεsc) + 

exp(O(LhN))W2(qPODEN−1,qPbODEN−1) 

where the bound on the first term is by Lemma 4. By induction, 

 

× exp(O(L(hn+1 + ··· + hN))). By 

assumption, hn+1 + ··· + hN ≤ tN ≤ 1/L. In the first case, we get 

 . 

In the second case we get 

 

by interpreting the summation as a Riemann sum, and noting that the condition 

implies that this is a constant-factor approximation of the integral .  

Choice of step sizes. In the first case, we can take all the step sizes to be equal, but in the second 

case, we may need to take decreasing step sizes. Given a target time T − t0 − tN = δ, by taking h1 = 

hmax and then 

, 

we can reach the target time in 

  steps. 
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D Corrector step 

In §D.1 (resp. §D.2), we will show that if p, q are close in Wasserstein distance, then running the 

corrector step based on the overdamped (resp. underdamped) Langevin diffusion starting from p 

and from q for some amount of time results in distributions which are close in total variation 

distance. In the end-to-end analysis in §E, we combine this “total variation to Wasserstein” 

regularization with the Wasserstein discretization analysis of the predictor step in §C in order to 

establish our final results. 

D.1 Corrector via overdamped Langevin 

We will take the potential and score estimate defining the Markov kernels PLD and PbLMC from §2.3 

to be U and s respectively. Recall that these correspond respectively to running the overdamped 

Langevin diffusion with stationary distribution q ∝ exp(−U) and running the discretized diffusion 

with score estimate s, both for time h. 

The main result of this section is to show that pPbLMCN and q are close in total variation if p 

and q are close in Wasserstein. 

Theorem 4 (Overdamped corrector). For any Tcorr := Nh ≲ 1/L, 

TV . 

In particular, for Tcorr ≍ 1/L, 

TV  

We will bound TV  and TV  separately. For the former, we use the following 

short-time regularization result: 

Lemma 6 ([BGL01, Lemma 4.2]). If Tcorr ≲ 1/L, then 

TV . 

Proof. The first inequality is Pinsker’s inequality. The second inequality is a consequence of [BGL01, 

Lemma 4.2], which gives a bound of KL . The claim 

then follows from simplifying by using Tcorr ≲ 1/L.  

For the latter term, we introduce notation for two stochastic processes. 

d 

√ dxt = −∇U(xt)dt + 2dBt ,

 x0 ∼ p. 

Note that for any integer k ≥ 0, 

 . 

Observe that marginally, for any k ≥ 0 because q is the stationary distribution of the 
Langevin diffusion. The three processes are coupled by using the same Brownian motion and by 

coupling optimally. 

Before we proceed to bound TV , we need the following simple lemma. Lemma 

7. If Tcorr ≲ 1/L, then 

 

for all 0 ≤ t ≤ Tcorr. 

x 
◦ 
t = ∇ − U ( x 

◦ 
t ) d t + 

√ 
2 d B t x , 

◦ 
0 ∼ q, 
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Proof. By Itô’s formula, 

d(  . 

By Grönwall’s inequality, 

 , 

so that if we couple the two processes by coupling x0 and  optimally, we conclude that 

, 

recalling that t ≤ Tcorr ≲ 1/L by hypothesis.  

It remains to bound TV . 

Lemma 8. If Tcorr ≲ 1/L, then 

TV . 

Proof. As x and x are driven by the same Brownian motion, by Girsanov’s theorem4 and the data b 
processing inequality we have 

KL  

We can decompose the integrand as follows: 

 

  (15) 

where we used Lemma 7 to bound . It 

remains to bound . Note that 

 

where in the last step we used that . Substituting this into (15), we obtain 

KL  . 

The claimed bound on TV  follows by Pinsker’s inequality. 

Proof of Theorem 4. This is immediate from Lemma 6 and Lemma 8, recalling that Tcorr ≲ 1/L so 

that the bound in Lemma 6 dominates the W2(p,q) term in Lemma 8. 

D.2 Corrector via underdamped Langevin 

Throughout, we set the friction parameter to 

√ γ ≍

 L. 

We will take the potential and score estimate defining the Markov kernels PULD and PbULMC from §2.3 

to be U and s respectively. Recall that these correspond respectively to running the underdamped 

 

4 Although the validity of Girsanov’s theorem typically requires Novikov’s condition to be satisfied, this 

can be avoided via an approximation argument as in [Che+23a]. 
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Langevin diffusion with stationary distribution q and running the discretized diffusion with score 

estimate s, both for time h. 

Given probability measures p and q, we write p := p ⊗ γd and q := q ⊗ γd, where γd is the standard 

Gaussian measure in Rd. 

The main result of this section is to show that pPbULMCN and q are close in total variation if p 
and q are close in Wasserstein. Compared to §D.1, the discretization error for the underdamped 
Langevin diffusion is smaller. 

√  

Theorem 5 (Underdamped corrector). For Tcorr ≲ 1/ L, 

√ 

We will bound TV  and TV  separately. For the former, we use the short-

time regularization result of [GW12]: 

√  

Lemma 9. If Tcorr ≲ 1/ L, then 

TV  . 

L1/4Tcorr 

Proof. This is a consequence of [GW12, Corollary 4.7 (1)]. The condition to check therein is their 

Eq. (3.6), which in our setting is satisfied by the constants K1 = L and K2 = γ. The Corollary then 

states that for the cost function 

 , 

√  

we have KL . For v = v′ and Tcorr ≲ 1/ L, note that 

 , 
corr 

so the claim follows by Pinsker’s inequality.  

Next, we define the following processes: dzt◦ = vt◦ dt, dzt = vt dt, 

 d  ,  , 

 dvt = −γvt dt − ∇U(zt)dt + p2γ dBt , (z0,v0) ∼ p. 

It follows that for any integer k ≥ 0, 

  ,  . 

We couple these processes by using the same Brownian motion and coupling q ⊗ γd and p ⊗ γd 

optimally (in particular,  

Before we proceed to bound TV b, we start with the following lemma. 

√  

Lemma 10. If Tcorr ≲ 1/ L, then for all 0 ≤ t ≤ Tcorr, 

 (  b P N 
 ,  )  W 2 ( p,q ) 

L 1 / 4 T 
3 / 2 

 
+ 

ε  T 
1 / 2 

 

L 1 / 4 + L 3 / 4 T 1 / 2 
 d 1 / 2 h. 

In particular, if we take T  ≍ 1 / L  

 (  b P N 
 ,  )  

√ 
LW 2 ( p,q )+ ε  / 

√ 
L + 

√ 
Ldh. 

v 
◦ 
t = −  v 

◦ 
t d t ∇ − U ( z 

◦ 
t ) d t + p 2  d B t 
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. 

Proof. We have 

, 

and the operator Ht satisfies 

∥Ht∥op ≤ L. 

Let α := 2/γ. For the vectors δt := (zt + αvt) − (zt◦ + αvt◦) and ηt := zt − zt◦, we have 

 

By Grönwall’s inequality, 

√  

∥δt∥2 + ∥ηt∥2 ≤ eO( Lt) (∥δ0∥2 + ∥η0∥2), 

so if we couple the two processes by coupling z0 and  optimally and taking , we obtain 

, 

√  

recalling that t ≤ Tcorr ≲ 1/ L by hypothesis.  

It remains to bound TV . 

√  

Lemma 11. If Tcorr ≲ 1/ L, then 

TV

 

 

Proof. As (z,v) and (z◦,v◦) are driven by the same Brownian motion, by Girsanov’s theorem5 and 

the data processing inequality we have 
N 

 KL  

=0 We 

can decompose the integrand as follows: 

 

 , (16) 

where we applied Lemma 10. 

It remains to bound . Note that 

 , 

where in the last step we used the fact that . Substituting this into (16), we conclude that 

KL  . 

 

5 Again, we can avoid checking Novikov’s condition using the approximation argument of [Che+23a]. 
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The claimed bound on TV b follows by Pinsker’s inequality. 

√ 

Proof of Theorem 5. This is immediate from Lemma 9 and Lemma 11, recalling that Tcorr ≲ 1/ L so 

that the bound in Lemma 9 dominates the W2(p,q) term in Lemma 11. 

Remark 3. In all other sections of this paper, we abuse notation as follows. Given a distribution p 

on 

Rd, we write pPbULMC to denote the projection onto the z-coordinate of pPbULMC, i.e., we view PbULMC 

as a Markov kernel on Rd rather than on Rd × Rd (and similarly for PULD). 

E End-to-end analysis 

Lemma 12 (TV error after one round of predictor and corrector). Choose predictor step sizes 

h1,...,hNpred as in Lemma 5 with Tpred = h1 +···+hNpred ≤ 1/L. That is, if T −t0 −Tpred ≲ 1/L, then we ensure 

that  for all n, and if T − t0 ≳ 1/L, then we can take 
 (Npred) t0,h1,...,hNpred 

 . Let hpred := max1≤n≤Npred hn and abbreviate PODE := PODE (and 

similarly for PODE). 

1. Consider running the overdamped Langevin corrector for time Tcorr ≍ 1/L, step size hcorr, 

and stationary distribution pred; set Ncorr = Tcorr/hcorr. Then, 

TV  . 

√  

2. Consider running the underdamped Langevin corrector for time Tcorr ≍ 1/ L, step size hcorr, 

and stationary distribution  = qt0+Tpred; set Ncorr = Tcorr/hcorr. Then, 

TV  . 

Proof. By the triangle inequality and the data-processing inequality, 

TV  

TV  

≤ TV(p,qt0) + TV . 

For overdamped Langevin, applying Theorem 4, 

TV  

For the Wasserstein term, Lemma 5 yields 

 . 

Combining these bounds yields the result for the overdamped corrector. For the underdamped 

corrector, we modify (17) by replacing the use of Theorem 4 with Theorem 5.  

We also need the following lemma on the convergence of the OU process. 

Lemma 13. Let (qt→)t≥0 denote the marginal law of the OU process started at . Then, for all 

T ≳ 1, it holds that 

√  

TV(qT→,γd) ≲ ( d + m2)exp(−T). 
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Proof. This follows from [CLL23, Lemma C.4]. Alternatively, using the short-time regularization result 

of [BGL01, Lemma 4.2] for time t0 ≍ 1 and the Wasserstein contraction of the OU process, 

TV . 

√  

The result follows from W2(q⋆,γd) ≤ W2(q⋆,δ0) + W2(δ0,γd) ≤ m2 + d.  

We now prove our main theorems. 

Proof of Theorems 2 and 3. For t ∈ [0,T], let pt := law(xbt). From Lemma 13, 

√  

TV(p0,q0) = TV(qT→,γd) ≲ ( d + m2)exp(−T). 

We divide our analysis according to the two stages of the algorithm. In the first stage, after iterating 

Lemma 12 for N0 ≍ LT steps, 

TV(pT−hpred,qT−hpred) ≤ TV  

sc 

where p =  if we use the overdamped corrector and p = 1 if we use the underdamped corrector. 

Applying the second part of Lemma 12 for the second stage of the algorithm, we then conclude 

that 

TV  . 

Finally, we note that if we take , then by [LLT23, Lemma 6.4], TV(qT−δ,qT) ≤ ε; a triangle 

inequality thus finishes the proof.  

Remark 4. Alternatively, instead of taking geometrically decreasing step sizes and employing early 
stopping, we could split the algorithm into two stages: for time t < T − hpred, we take constant step 
size hpred, and for time t > T − hpred, we use a smaller constant step size h′ as required if working 
with the original score perturbation lemma (see Remark 2). 

F Numerical experiments 

In this section, we provide preliminary numerical experiments to illustrate our theory. We 

implement DPUM on a toy model that is not log-concave (mixture of Gaussians). 

Setup. The target distribution is a mixture of five Gaussians in dimension 5. On Figures 1 and 2, the 

red stars represent the means of the Gaussians and the red ellipses around the stars represent the 

variances of the Gaussians. We start by sampling 500 independent points (in blue) from a standard 

Gaussian. Then, we run DPUM from the blue dots over 300 iterations and plot the two first 

coordinates of the dots at iterations 0, 100, 200 and 300. This is a low-dimensional toy example so 

it does not illustrate our theory, rather we include it as a simple sanity check. 

Parameters. We use a closed form formula for the score along the forward process. In other 
words, the score estimation error is equal to zero. The step size of the predictor is 0.01 and the 
step size of the corrector is 0.001. The corrector consists in 3 steps of the underdamped Langevin 
algorithm. In the latter algorithm, we initialize the velocity as a centered Gaussian random 
variable with standard deviation 0.001 and set the parameter γ to 0.01. 

Observations. We observe the expected behavior: although the target distribution is highly non-

logconcave, DPUM is able to provide samples from a distribution that is close to the target 
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distribution. In particular, the initial Gaussian distribution splits in clusters that will fit each 

component of the target mixture of Gaussians. Recall that we experiment without score error but 

with discretization error: our numerical results illustrate the common wisdom that score knowledge 

along the forward process can replace convexity assumptions. In particular, we observe that even 

isolated, low probability components of the Gaussian mixture, are recovered by DPUM. 

 

 

Figure 1: A realization of DPUM for a mixture of Gaussians. 

 

 

Figure 2: A realization of DPUM for another mixture of Gaussians. 


