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The probability flow ODE is provably fast

Sitan Chen* Sinho Chewif Holden Lee# Yuanzhi Li§ Jianfeng LuT Adil Salim!l

Abstract

We provide the first polynomial-time convergence guarantees for the probability
flow ODE implementation (together with a corrector step) of score-based
generative modeling with an OU forward process. Our analysis is carried out in
the wake of recent results obtaining such guarantees for the SDE-based
implementation (i.e., denoising diffusion probabilistic modeling or DDPM), but
requires the development of novel techniques for studying deterministic
dynamics without contractivity. Through the use of a specially chosen corrector
step based on the underdamped Langevin diffusion, we obtain better dimension
dependence than prior\/

works on DDPM (O( d) vs. O(d), assuming smoothness of the data distribution),
highlighting potential advantages of the ODE framework.

Introduction

Score-based generative models (SGMs) [Soh+15; SE19; HJIA20; DN21; Son+21a; Son+21b; VKK21]
are a class of generative models which includes prominent image generation systems such as
DALL-E 2 [Ram+22]. Their startling empirical success at data generation across a range of application
domains has made them a central focus of study in the literature on deep learning [Aus+21; DN21;
Kin+21; Shi+21; CSY22; Gna+22; Rom+22; Son+22; BV23; WHZ23]. In this paper, we aim to provide
theoretical grounding for such models and thereby elucidate the mechanisms driving their
remarkable performance.

Our work follows in the wake of numerous recent works which have provided convergence
guarantees for denoising diffusion probabilistic models (DDPMs) [De +21; BMR22; De 22; LLT22;
Liu+22; Pid22; WY22; Che+23a; CLL23; LLT23] and denoising diffusion implicit models (DDIMs)
[CDD23]. We briefly recall that the generating process for SGMs is the time reversal of a certain
diffusion process, and that DDPMs hinge upon implementing the reverse diffusion process as a
stochastic differential equation (SDE) whose coefficients are learned via neural network training
and the statistical technique of score matching [Hyv05; Vin11l] (more detailed background is
provided in §2). Among these prior works, the concurrent results of [Che+23a; LLT23] are
remarkable because they require minimal assumptions on the data distribution (in particular, they
do not assume log-concavity or similarly restrictive conditions) and they hold when the errors
incurred during score matching are only bounded in an L2 sense, which is both natural in view of
the derivation of score matching (see [Hyv05; Vin11]) and far more realistic.” Subsequently, the
work of [CLL23] significantly sharpened the analysis in the case when no smoothness assumptions
are imposed on the data distribution.
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It is unreasonable, for instance, to assume that the score errors are bounded in an L sense, since we
cannot hope to learn the score function in regions of the state space which are not well-covered by the
training data.

37th Conference on Neural Information Processing Systems (NeurlPS 2023).

Taken together, these works paint an encouraging picture of our understanding of DDPMs which
takes into account both the diversity of data in applications (including data distributions which are
highly multimodal or supported on lower-dimensional manifolds), as well as the non-convex
training process which is not guaranteed to accurately learn the score function uniformly in space.

Besides DDPMs, instead of implementing the time reversed diffusion as an SDE, it is also possible
to implement it as an ordinary differential equation (ODE), called the probability flow ODE
[Son+21b]; see §2. The ODE implementation is often claimed to be faster than the SDE
implementation [Lu+22; ZC23], with the rationale being that ODE discretization is typically more
accurate than SDE discretization, so that one could use a larger step size. Indeed, the discretization
error usually depends on the regularity of the trajectories, which is C! for ODEs but onIyCé’ for

1
SDEs (i.e., Holder continuous with any exponent less than 2) due to the roughness of the Brownian
motion driving the evolution.

Far from being able to capture this intuition, current analyses of SGMs cannot even provide a
polynomial-time analysis of the probability flow ODE. The key issue is that under our minimal
assumptions (i.e., without log-concavity of the data distribution), the underlying dynamics of either
the ODE or SDE implementation are not contractive, and hence small errors quickly accumulate and
are maghnified. The aforementioned analyses of DDPMs managed to overcome this challenge by
leveraging techniques specific to the analysis of SDEs, through which we now understand that
stochasticity plays an important role in alleviating error accumulation. It is unknown, however, how
to carry out the analysis for the purely deterministic dynamics inherent to the probability flow ODE.

Our first main contribution is to give the first convergence guarantees for SGMs with OU forward
dynamics in which steps of the discretized probability flow ODE—referred to as predictor steps—
are interleaved with corrector steps which runs the overdamped Langevin diffusion with
estimated score, as pioneered in [Son+21b]. Our results are akin to prior works on DDPMs in that
they hold under minimal assumptions on the data distribution and under LZbounds on the score
estimation error, and our guarantees scale polynomially in all relevant problem parameters. Here,
the corrector steps inject stochasticity which is crucial for our proofs; however, we emphasize that
the use of corrector steps does not simply reduce the problem to applying existing DDPM
analyses. Instead, we must develop an entirely new framework based on Wasserstein—to—-TV
regularization, which is of independent interest; see §4 for a detailed overview of our techniques.
Our results naturally raise the question of whether the corrector steps are necessary in practice,
and we discuss this further in §5.

When the data distribution is log-smooth, then the dimension dependence of prior results on
DDPMs, as well as our first result for the probability flow ODE with overdamped corrector, both

scale as O(d).
Does this contradict the intuition that ODE discretization is more accurate than SDE discretization?



The answer is no; upon inspecting our proof, we see that the discretization error of the probability
flow ODE is indeed smaller than what is incurred by DDPMs, and in fact allows for a larger step\/

size of order 1/ d. The bottleneck in our result stems from the use of the overdamped Langevin
diffusion for the corrector steps. Taking inspiration from the literature on log-concave sampling
(see, e.g., [Che22] for an exposition), our second main contribution is to propose corrector steps
based on the underdamped Langevin diffusion (see §2) which is known to improve the dimension
dependence of sampling. In particular, we show that the probability flow ODE with underdamped
Langevin\/

corrector attains O( d) dimension dependence. This dependence is better than what was obtained
for DDPMs in [Che+23a; CLL23; LLT23] and therefore highlights the potential benefits of the ODE
framework. We note that the benefit to which we refer is at generation time, and not at training
time.

Previously, [JP22] have proposed a “noise—denoise" sampler using the underdamped Langevin
diffusion, but to our knowledge, our work is the first to use it in conjunction with the probability
flow ODE. Although we provide preliminary numerical experiments in the Appendix, we leave it as
a question for future work to determine whether the theoretical benefits of the underdamped
Langevin corrector are also borne out in practice.

1.1 Our contributions
In summary, our contributions are the following.

e We provide the first convergence guarantees for the probability flow ODE with
overdamped Langevin corrector (DPOM; Algorithm 1).

¢ We propose an algorithm based on the probability flow ODE with underdamped Langevin
corrector (DPUM; Algorithm 2).

¢ We provide the first convergence guarantees for DPUMY. These convergence guarantees
show

improvement over (i) the complexity of DPOM (O( d) vs O(d)) and (ii) the complexityV’

of DDPM:s, i.e., SDE implementations of score-based generative models (again, O( d) vs

0(d)).

¢ We provide preliminary numerical experiments in a toy example showing that DPUM can
sample from a highly non log-concave distribution (see Appendix). The numerical
experiments are not among our main contributions and are provided for illustration only.
The Python code can be found in the Supplementary material.

Our main theorem can be summarized informally as follows; see §3 for more detailed statements.

Theorem 1 (Informal). Assume that the score function along the forward process is L-Lipschitz,\/

and that the data distribution has finite second moment. Assume that we have access to Oe(e/ L)

L2-accurate score estimates. Then, the probability flow ODE implementation of the reversed
Ornstein—



Uhlenbeck process, when interspersed with either the overdamped Langevin corrector (DPOM;
Algorithm 1) or with the underdamped Langevin corrector (DPUM; Algorithm 2), outputs a sample
whoseV

law is e-close in total variation distance to the data distribution, using Oe(L3d/€?) or Oe(L3
d/¢) iterations respectively.

Our result provides the first polynomial-time guarantees for the probability flow ODE
implementation of SGMs, so long as it is combined with the use of corrector steps. Moreover, when
the corrector steps are based on the underdamped Langevin diffusion, then the dimension
dependence of our resulty/

is significantly smaller (O( d) vs. O(d)) than prior works on the complexity of DDPMs, and thus
provides justification for the use of ODE discretization in practice, compared to SDEs.

Our main assumption on the data is that the score functions along the forward process are
Lipschitz continuous, which allows for highly non-log-concave distributions, yet does not cover
non-smooth distributions such as distributions supported on lower-dimensional manifolds.
However, as shown in [Che+23a; CLL23; LLT23], we can also obtain polynomial-time guarantees
without this smoothness assumption via early stopping (see Remark 1).

(OU) process,
d = oy = —a; dt +V2dB;, Ty~ Qs q; =
law(x:), (1)

1.2 Related works

The idea of using a time-reversed diffusion for sampling has been fruitfully exploited in the
logconcave sampling literature via the proximal sampler [TP18; LST21; CE22; LC22; FYC23; LC23], as
put forth in [Che+22], as well as through algorithmic stochastic localization [EMS22; MW23].
Although we do not aim to be comprehensive in our discussion of the literature, we mention, e.g.,
[ABV23; Che+23b] for alternative approaches for diffusion models. We also note that the recent
work of [CDD23] obtained a discretization analysis for the probability flow ODE (without corrector)
in KL divergence, though their bounds have a large dependence on d and are exponential in the
Lipschitz constant of the score integrated over time.

Since the original arXiv submission of this paper, there have been further works studying the
probability flow ODE. The work of [BDD23] also studied the probability flow ODE, but without
providing discretization guarantees (and with possibly exponential dependencies). The work
[Li+23] provides polynomial-time guarantees for the probability flow ODE (without corrector
steps), at the cost of larger polynomial dependencies and more stringent score assumptions
(namely, bounds on the Jacobian of the score). Also, [PMM23] study another variant of the
predictor-corrector framework.

2 Preliminaries

31 Score-based generative modeling

Let gu denote the data distribution, i.e., the distribution from which we wish to sample. In score-

based generative modeling, we define a forward process (qt")fzo withdo™ = 4x, which transforms
our data distribution into noise. In this paper, we focus on the canonical choice of the Ornstein—
Uhlenbeck
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where (Bc):zo is a standard Brownian motion in Re. It is well-known that the OU process mixes rapidly
(exponentially fast) to its stationary distribution, the standard Gaussian distribution y.

Once we fix a time horizon T > 0, the time reversal of the SDE defined in (1) over [0,T] is given by
dqrs = (z7 +2Ving (z7)) dt + V2 dB; ~ (2)

where?; = ’1-17)4, and the reverse SDE is a generative model: when initialized atTy ™~ 6'5_, then

Xr~q. Sinceds =41 ~ ’Yd, the reverse SDE transforms samples from y4(i.e., pure noise) into
approximate samples from ga. In order to implement the reverse SDE, however, one needs to
estimate the score functions Ving:- for t € [0, T] using the technique of score matching [Hyv05;
Vin11]. In practice, the score estimates are produced via a deep neural network, and our main
assumption is that these score estimates are accurate in an L2sense (see Assumption 4). This
gives rise to the denoising diffusion probabilistic modeling (DDPM) algorithm.

Notation. Since the reverse process is the primary object of interest, we drop the arrow «
from the notation for simplicity; thus, 4t = 7. We will always denote the forward process with the
arrow —.

For each t € [0,T], let stdenote the estimate for the score Ving:= Ving:-.

2.2 Probability flow ODE (predictor steps)

Instead of running the reverse SDE (2), there is in fact an alternative process (xt)te[o,r which evolves
according to an ODE (and hence evolves deterministically), and yet has the same marginals as (2).
This alternative process, called the probability flow ODE, can also be used for generative modeling.

One particularly illuminating way of deriving the probability flow ODE is to invoke the celebrated
theorem, due to [JKO98], that the OU process is the Wasserstein gradient flow of the KL
divergence functional (i.e. relative entropy) KL(- |l y4). From the general theory of Wasserstein
gradient flows (see [AGS08; San15]), the Wasserstein gradient flow (u¢)e0 of a functional F can be
implemented via the dynamics

z'e= ~[Vw:F(ue)](2), Z0~ fo,

in that z: ~ ucfor all t =2 0. Applying this to F := KL(- || y9), we arrive at the forward process

T, = —Vln(g)(mé) =—x;" —Vng (z;”)
t A t e (&) )

Setting®t = “Y-’J_"Lr, it is easily seen that the time reversal of (3) is
X'e= xe+ VInge(xd), ie, Tt=z+Vingy () (4)

which is called the probability flow ODE. In this paper, the interpretation of the probability flow
ODE as a reverse Wasserstein gradient flow is only introduced for interpretability, and the reader
who is unfamiliar with Wasserstein calculus can take (4) to be the definition of the probability flow
ODE. Crucially, it has the property that if xo ~ qo, then x:~ g:for all t € [0, T].

We can discretize the ODE (4). Fixing a step size h > 0, replacing the score function VIng: with the
estimated score given by s, and applying the exponential integrator to the ODE (i.e., exactly
integrating the linear part), we arrive at the discretized process

ok

Typ = Ty + / Ty AU+ hosy(x) = exp(h) zp + (exp(h) — 1) s¢(x4) )
Jo . 5

2.3 Corrector steps

Let g be a distribution over R9, and write U as a shorthand for the potential -Ingq.



Overdamped Langevin. The overdamped Langevin diffusion with potential U is a stochastic process
(xc)e=0 over Rigiven by

v
dxe=-VU(x:)dt + 2dB:.

The stationary distribution of this diffusion is g < exp(-U).

We also consider the foIIowng discretized process where —VU is replaced by a score estimate s.
Fix a step size h > 0 and let (Z1)1>0 over Ribe given by V_
dxbt = s(xb|e/njn)dt + 2dBt.

Underdamped Langevin. Given a friction parameter y > 0, the corresponding underdamped
Langevin diffusion is a stochastic process (z;Vt):=0 over R4 x R?given by

dz:=vede,

dve= -(VU(zc) + yve)dt + p2y dB:.
The stationary distribution of this diffusion is ¢ @ y“.

We also consider the following discretized process, where —VU is replaced by a score estimate s.
Let (Z1: Ut )t>0 over Rex Ribe given by

dzb:= vbedt,

Oy = ((Z|e/n) 1) — ¥0) dt + /2y d B, _
(6)
d.

Diffusions as corrector steps. At time ¢, the law of the ideal reverse process (4) initialized at go
is gqt. However, errors are accumulated through the course of the algorithm: the error from
initializing at y?rather than at qo; errors arising from discretization of (4); and errors in estimating
the score function. That’s why the law of the algorithm’s iterate will not be exactly g:. We propose
to use either the overdamped or the underdamped Langevin diffusion with stationary distribution
q:and estimated score as a corrector, in order to bring the law of the algorithm iterate closer to g:.
In the case of the underdamped Langevin diffusion, this is done by drawing an independent

Gaussian random variable vbo ~ y4, running the system (6)starting from (zbo,vbo) (where zho is
the current algorithm iterate) for some time t, and then keepingZt. In our theoretical analysis, the
use of corrector steps boosts the accuracy and efficiency of the SGM.

3 Results
3.1 Assumptions

We make the following mild assumptions on the data distribution gmand on the score estimate s.

2. 2
Assumption 1 (second moment bound). We assume that m2 = Eq. [II-%] < o0,
Assumption 2 (Lipschitz score). For all t € [0,T], the score Ving:is L-Lipschitz, for some L = 1.

Assumption 3 (Lipschitz score estimate). For all t for which we need to estimate the score function
in our algorithms, the score estimate s:is L-Lipschitz.
Assumption 4 (score estimation error). For all t for which we need to estimate the score function in

our algorithms,
Eq.[llse = VIng|’] < e

Assumptions 1, 2, and 4 are standard and were shown in [Che+23a; CLL23; LLT23] to suffice for
obtaining polynomial-time convergence guarantees for DDPMs. The new condition that we
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require in our analysis is Assumption 3, which was used in [LLT22] but ultimately shown to be
unnecessary for DDPMs. We leave it as an open question whether this can be lifted in the ODE
setting.

Remark 1. As observed in [Che+23a; CLL23; LLT23], Assumption 2 can be removed via early
stopping, at the cost of polynomially larger iteration complexity. The idea is that if gm has compact
support but does not necessarily satisfy Assumption 2 (e.g., if qu is supported on a compact and
lower-dimensional manifold), then gs~ will satisfy Assumption 2 if § > 0. By applying our analysis up
to time T - ¢ instead of time T, one can show that a suitable projection of the output distribution
is close in Wasserstein distance to qa (see [CLL23, Corollary 2.4] or [Che+23a, Corollary 5]). For
brevity, we do not consider this extension of our results here.

3.2 Algorithms

1
2

1
2

We provide the pseudocode for the two algorithms we consider, Diffusion Predictor + Overdamped
Modeling (DPOM) and Diffusion Predictor + Underdamped Modeling (DPUM), in Algorithms 1 and
2 respectively. The only difference between the two algorithms is in the corrector step, which we

in Algorithm 2. For simplicity, we take the total amount of time T to be equal to No/L +

hpred for an integer No = 1, and we assume that 1/L is a multiple of hpred and that hpred is @ multiple
2

ofd = Oz ravmyy)

We consider two stages: in the first stage, which lasts until time No/L = T - hpred, We intersperse
predictor epochs (run for time 1/L, discretized with step sizev/hpred) and corrector epochs (run for

time ©(1/L) for the overdamped corrector or for time ©(1/ L) for the underdamped corrector, and
discretized with step size hcorr). The second stage lasts from time T — hprea to time T — §, and we
incorporate geometrically decreasing step sizes for the predictor. Note that this implies that our
algorithm uses early stopping.

Algorithm 1: DPOM(Th  pred,h corr,S )

Input: Total time T, predictor step size hpred, cOrrector step size hcorr, Score estimates s
Output: Approximate sample from the data distribution gz
DrawZo ~ 'Td.
forn=0,1,.,No—1do
3 Predictor: Starting from I Zn/L, run the discretized probablllty flow ODE (5) from timeT to

-n+
7. with step size hpred and estimated scores to obtain’ (n+l)/
=~

4 Corrector: Starting froml('ﬂH)/L, run overdamped Langevin Monte Carlo for total time
0(1/L) with step size hcorr and score estimate S(n+1)/to obtain"’[’(ﬂH)/-'a.
Predictor: Starting from Xbr-peeq, run the discretized probability flow ODE (5) with step sizes
hpred/2, hored/4, hored/8B,.. ,6 and estimated scores to obtain®7—s.

Corrector: Starting fromZ7— 5, run overdamped Langevm Monte Carlo for total time 0(1/L)
with step size heorr and score estimate s7-sto obtain?7—s.

return xbr-s

pred,h corr,S )

Algorithm 2: DPUM(Th
Input: Total time T, predictor step size hpred, cOrrector step size hcorr, Score estimates s
Output: Approximate sample from the data distribution ga

Draw®o ~ ’?’d.

forn=0,1,.,No- 1 do



3 Predictor: Starting from Z. ZIn/L, run the discretized probability flow ODE (5) from timeT to

ntl
.. with step size - hpred and estimated scores to obtain (ﬂ+' /L,

4Corrector: Starting L(n+1)/L  from, run for

with step size heor and score estimate s(n+1)/2 to obtain®(n+1)/L.,

5 Predictor: Starting from xbr-npreq, run the discretized probablllty flow ODE (5) with step sizes
hored/2,hpred/4, hpred/8,.. ,6 and estimated scores to obtain®7—s.
6 Corrector: Starting fromZ7— 3, run for

../ with step size hcorrand score estimate sr-sto obtain xbT-s.
7 return Xr-s

3.3 Convergence guarantees

Our main results are the following convergence guarantees for the two predictor-corrector schemes
described in §3.2:
Theorem 2 (DPOM). Suppose that Assumptions 1-4 hold. If q denotes the output of DPOM b

r:

(Algorithm 1) Witho L2 (dvm3) then
W@ ) S (Vdvmg) cxp(—T) + L*Td P hyrea + LPTd PR + L P Teee +2. (7

¢ 2 = &
T = O(In(252)), hped = O(75577)s heor = O(555)

e <0( 57)

—
—

In particular, if we set , and if the score

estimation error satisfies , then we can obtain TV error € with a total iteration

comp/exity

ofO 2 steps.

The five terms in the bound (7) correspond, respectively, to: the convergence of the forward (OU)
process; the discretization error from the predictor steps; the discretization error from the
corrector steps; the score estimation error; and the early stopping error.

Theorem 2 recovers nearly the same guarantees as the one in [Che+23a; CLL23; LLT23], but for the
probability flow ODE with overdamped Langevin corrector instead of the reverse SDE without
corrector. Recall also from Remark 1 that our results can easily be extended to compactly supported
data distributions without smooth score functions. This covers essentially all distributions
encountered in practice. Therefore, our result provides compelling theoretical justification
complementing the empirical efficacy of the probability flow ODE, which was hitherto absent from
the literature.

However, in Theorem 2, the iteration complexity is dominated by the corrector steps. Next, we show
that by replacing the overdamped LMC with underdamped LMC, we can achieve a quadratic
improvement in the number of steps, considering the dependence on d. As discussed in the
Introduction, this highlights the potential benefits of the ODE framework over the SDE. Theorem 3
(DPUM). Suppose that Assumptions 1—4 hold. If q denotes the output of DPUM b

2

[

L2 (dvm3 ), then

—
—

Vo
TV(q,q7) < (dV m2)exp(-T) + L2Td1/2hpred + L3/2Td1/2hcorr + L1/2Tesc + €. b

(Algorithm 2) Witho

dvm: Py -0 £
In particular, if we set! = O(In("5")), ]"7pred Ol ) Py = O(L:‘/?d]”), and if the

. . o Ese L O(== . . . .
score estimation error scn:'lsﬁescsc < O VL ), then we can obtain TV error € with a total iteration
8



S L2d'/?
complexityofo( < )steps.

4 Proof overview

Here we give a detailed technical overview for the proof of our main results, Theorems 2 and 3. As
in [Che+23a; CLL23; LLT23], the three sources of error that we need to keep track of are (1)
estimation of the score function; (2) discretization of time when implementing the probability flow
ODE and corrector steps; and (3) initialization of the algorithm at yinstead of the true law of the
end of the forward process,%0 = 47’ It turns out that (1) is not so difficult to manage as soon as we
can control (2) and (3). Furthermore, as in prior work, we can easily control (3) via the data-
processing inequality: the total variation distance between the output of the algorithm initialized
at qoversus at y?is at most TV(qr~,y9), which is exponentially small in T by rapid mixing of the OU
process. So henceforth in this overview, let us assume that both the algorithm and the true process
are initialized at qo. It remains to control (2).

Failure of existing approaches. In the SDE implementation of diffusion models, prior works handled
(2) by directly bounding a strictly larger quantity, namely the KL divergence between the laws of
the trajectories of the algorithm and the true process; by Girsanov’s theorem, this has a clean
formulation as an integrated difference of drifts. Unfortunately, in the ODE implementation, this KL
divergence is infinite: in the absence of stochasticity in the reverse process, these laws over
trajectories are not even absolutely continuous with respect to each other.

In search of an alternative approach, one might try a Wasserstein analysis. As a first attempt, we

could couple the initialization of both processes and look at how the distance between them

changes over time. Ifthe score function allows us to naively bound(xbc)ogsrand (xt)ostsTdenote the

algorithm and true process, then smoothness ofd: E[llxbt — x:lI2] by O(L)E[llxbt — x:lIZ]. While this

ensures that the processes are close if run for time << 1/L, it does not rule out the possibility that
they drift apart exponentially quickly after time 1/L.
Restarting the coupling—first attempt. What we would like is some way of “restarting” this coupling
before the processes drift too far apart, to avoid this exponential compounding. We now motivate
how to achieve this by giving an argument that is incorrect but nevertheless captures the intuition
for our approach. Namely, let p¢:= law(-'f’t) denote the law of the algorithm, let Popetoh denote the
Hto.h
result of running the ideal probability flow ODE for time h starting from time to, and let Pope

denote the same but for the discretized probability flow ODE with estimated score. For h < 1/L,
consider the law of the two processes at time 2h, i.e.,

o P(J.Qh
pzh = qoPbobeo2n  and 42h = 904 °0DE. (8)

50,k
. . T qo P . s
The discussion above implies that qoPope®" and 10TODE _are close in 2-Wasserstein distance,

Lo . - . a P“"‘" Ph,l ﬁ[).h p’“h.h
so by the data-processing inequality, this implies that%0{ obe! oDE and?0+ oDE+ ODE are also
close. To
. . . P0.2h POJI Ph.h
show that pzrand gznin Eq. (8) are close, it thus suffices to show that?0{ obeand 40+ 0DE* ODED

are close. But these two distributions are given by running the algorithm and the true process for

0,h
time h, both starting from?L0DE. So if we “restart” the coupling by coupling the processes based
on their locations at time h, rather than time 0, of the reverse process, we can again apply the naive
Wasserstein analysis.

At this juncture, it would seem that we have miraculously sidestepped the exponential blowup
and shown that the expected distance between the processes only increases linearly over time!



The issue of course is in the application of the “data-processing inequality,” which simply does not
hold for the Wasserstein distance.

Restarting the coupling with a corrector step. This is where the corrector comes in. The idea
is to use short-time regularization: if we apply a small amount of noise to two distributions which
are already close in Wasserstein, then they become close in KL divergence, for which a data-
processing inequality holds. The upshot is that if the noise doesn’t change the distributions too
much, then we can legitimately restart the coupling as above and prove that the distance
between the processes, now defined by interleaving the probability flow ODE and its
discretization with periodic injections of noise, increases only linearly in time.

It turns out that naive injection of noise, e.g., convolution with a Gaussian of small variance, is
somewhat wasteful as it fails to preserve the true process and leads to poor polynomial
dependence in the dimension. On the other hand, if we instead run the overdamped Langevin
diffusion with potential chosen so that the law of the true process is stationary, then we can recover
the linear in d dependence of Theorem 2. Then by replacing overdamped Langevin diffusion with
its underdamped counterpart, which has the advantage of much smoother trajectories, we can
obtain the desired quadratic speedup in dimension dependence in Theorem 3.

Score perturbation lemma. In addition to the switch from SDE to ODE and the use of the
underdamped corrector, a third ingredient is essential to our improved dimension dependence. The
former two ensure that the trajectory of our algorithm is smoother than that of DDPMs, so that
eveny

over time windows that scale with 1/ d, the process does not change too much. By extension, as
the score functions are Lipschitz, this means that any fixed score function evaluated over iterates
in such a window does not change much. This amounts to controlling discretization error in space.

It is also necessary to control discretization error in time, i.e., proving what some prior works
referred to as a score perturbation lemma [LLT22]. That is, for any fixed jterate x, we want to show
that the score function Ving:(x) does not change too much as ¢t varies over a small window.
Unfortunately, prior works were only able to establish this over windows of lengthv/ 1/d. In this
work, we improve

this to windows of length 1/ d (see Lemma 3 and Corollary 1).

In our proof, we bound the squared L2 norm of the derivative of the score along the trajectory of
the ODE. The score function evaluated at y can be expressed as Epo.(-;)[VU]; here, the posterior
distribution Poj(- | ) is essentially the prior gatilted by a Gaussian of variance O(t). Hence we need
to bound the change in the expectation when we change the distribution from Pojc to Poje+ac;
because VU s L-Lipschitz, we can bound this by the Wasserstein distance between the distributions.
For small enough ¢, Po|:is strongly log-concave, and a transport cost inequality bounds this in terms
of KL divergence, which is more easily bounded. Indeed, we can bound it with the KL divergence
between the joint distributions Po: and Po:+a:, Which reduces to bounding the KL divergence
between Gaussians of unequal variance.

However, since our score perturbation lemma degrades near the beginning of the forward
process, we require better control of the discretization error during this part of the algorithm,
hence leading to our choice of geometrically decreasing step sizes. Alternatively, we could use a
two-stage step size schedule, see Remark 4.

5 Conclusion

In this work, we have provided the first polynomial-time guarantees for the probability flow ODE
implementation of SGMs with corrector steps and exhibited improved dimension dependence of
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the ODE framework over prior results for DDPMs (i.e., the SDE framework). Our analysis raises
questions relevant for practice, of which we list a few.

¢ Although we need the corrector steps for our proof, are they in fact necessary for the
algorithm to work efficiently in practice?

e |s it possible to obtain even better dimension dependence, perhaps using higher-order
solvers and stronger smoothness assumptions?

e Can we obtain improved dimension dependence even in the non-smooth setting,
compared to the result of [CLL23]?

We also list several limitations of our work, namely:

e Our analysis only covers the probability flow ODE corresponding to the OU forward
process. We leave the study of more general dynamics for future study.

Vo

e Our guarantees require the score function to be learned to LZaccuracy Oe(g/ L), which is
more stringent than the prior works [Che+23a; CLL23; LLT23] and may be an technical
artefact of our proof.

¢ We have not validated our theoretical findings with large-scale experiments. In particular,

it is still unclear whether flow-based methods can outperform the standard DDPM
algorithm in practical, high dimensional settings.
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A Notation and overview

In this section, we collect together the notation used throughout the proofs and provide a road
map for the end-to-end analysis in §E.

Throughout the analysis, Assumptions 1-4 are in full force.

We will reserve q for the law of the reverse process (and denote the forward process by g~ when
needed). In §E, the law of the algorithm is denoted by p.

We use the following Markov kernels:

t.h
1. Fobeis the output of running the ODE for time h, starting at (reverse) time t.

14



2. P (resp. Puw) is the output of running the continuous-time overdamped (resp.
underdamped) Langevin diffusion for time h. In this notation, we have suppressed

mention of the stationary distributions of the diffusion, which will be provided by context.

ot h
3. Fobe and Pbumc (resp. Pbuwmc) are the corresponding processes once discretized and using

the estimated score.

For the ODE, we are more precise with the notation because even within a single epoch of predictor
steps, the kernel for the probability flow ODE depends on time (as opposed to the kernels for the
diffusions, which are constant within any epoch of corrector steps); moreover, for our analysis in
§E, we also need to take time-varying step sizes for the predictor steps. We will omit the

dependencies on t and h when clear from context. When P = Pope or Phoog, we use Pthi-hvto denote
PthiPt+hi,hz =+ Pe+hi+--+hv-1,hv (We compose kernels on the right).

We refer to §4 for a high-level description of the proof strategy. We begin in §B with our improved
score perturbation lemma (Corollary 1); this is the only section of the analysis which is indexed by
forward time (instead of reverse time). In Lemma 5 in §C, we establish our main result for the
predictor steps, which combines together standard ODE discretization analysis with the score
perturbation lemma of §B. Since Corollary 1 degrades near the end of the reverse process (or
equivalently, near the start of the forward process, when the regularization has not yet kicked in),
our analysis requires a geometrically decreasing step size schedule, which leads to the two-stage
Algorithms 1 and 2.

In §D, we prove our main regularization results for the overdamped corrector (Theorem 4) and
the underdamped corrector (Theorem 5). Finally, we put together the various constituent results
in the end-to-end analysis in §E.

B Score perturbation

In this section, we prove a score perturbation lemma which refines that of [\/ LLT22]. This improved

lemma is necessary in order to obtain O( d) dependence for the probability flow ODE.
" ; P | -
Lemma 1 (Score perturbation). Suppose p: = po * N(0,tI) and®0 ~ Po» Tt = —3 Vinp ()
2 .
Suppose thatl V™ 10 PG 3 yvo(@)lop < Lfor all x. Then
: 1
E[[|0,V Inp;(2,)||*] < L*d (L + ?)

L <

1
Proof. Without loss of generality, we may assume 2L, as otherwise, noting that

.ITV(O1 ZI) Dt =Dy 21L *7

. s 1
, we may replace po with. Py, and t with 57 Suppose po(x) = eV ™. Let Pocdenote v_

the joint distribution of (Xo,X:) where X:= Xo + tZ with Z ~ N(0,I) independent of Xo, and let Poj:(- |
xt) denote the conditional distribution of Xo given X: = xt. We first note that since

Inp;(y) =In / exp(—V(x) — % ly — ;;:HQ) dz,
we have the following calculations:
Vinp(y) = *% Epy. (1w (y—)= *EF’W('I.U)(VV)
V2Inpe(y) = Covror(-1)(VV') — EPoi(-1) (V2V). ’
Using®t = -3 Vhlpr(”t), we calculate

1 _.
OV Inp(x,) = [0,VInp,(y)||y=s, — 5 V2 npy(z,) Vinp, (x;,) 9)
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We bound each term above separately. For the first term, a quick calculation shows that 0:VInp¢(y)

Hﬁ II®
= —Covtop(- ) (P> VV )|s finite a.s.: by Cauchy—Schwarz, it suffices to show Eru(p)[lly — -114]

1
and Ery(-)[lIVV [I2] are finite for all y, and this follows because fort = 37 the measure Poe(- | y) is
strongly log-concave and |[VV ||2 can be bounded by a quadratic. Because VVis L-Lipschitz,

106 1 py ()]l II* = 1102 By (1) (VY= I
2
‘AI%HJ()E Er’n|f+m ly) [VV] ]EPU“(.“,)[VVH |y=,r,‘ ’
1 .
< L liminf —— W} (Po|t+m(' | ¢), Poje(- | ’Lr)) .
At=0. (At)? (10)

_lz—w)®
Now P0|t( | ¥) has densitypﬂlt z|y) o<po(z)e 2 i IV2Inpollop < L and’ < zL then
Poe is 55

Zz‘ strongly log-concave. By Talagrand’s transport cost inequality,
W (Posac(- [ @), Pop (- | 1)) < 4KL(Popgac(- | @) || Pop(- [ 24))

Plugging this back in (10) and using Fatou’s lemma and the chain rule for KL,

E[|[6, ¥ In py ()] y=a, I’] < L* Elim inf —— 4¢
' ' / At—=0 (At)2 KL(PU\HN(' | 2¢) ” Foje(- | rt))

1
< L?liminf —— 4tE
At—=0 (At) ki (Pojeac( [ ze) || Pop(- | 24))

) 1
< 2 liminf 4t KL( P, P,
< grrlilll) (At)g (Pot+ac |l O,L)' (11)

Now
KL(Pocvac | Pog) = Evpokl( Prratio(- | 2), Pro(- | 2)) = (N0, (¢ + A)T) || (0, 41))
d tH ALt AL d At o At.:
:5(_1“ T 1) 4(t) O((T);)

Plugging into (11) gives
L%d

1009 1 ()=o) < =55 )

For the second term, by assumption we have [IV2Inptllop < L. Then, since x:~ px,
E[IVZ2Inpe(x:)Vinp:(x:) 2] < LZEp[lIVInp:ll?] < L3d (13)

using the fact Ex[lIVInull2] < Ld for any measure p such that Inu is L-smooth, which follows from
integration by parts. From (9), (12), and (13), and the elementary inequality (a,b) < llall? + 4IIblI?,
we get

E[|0:V npe(2:)[I”] < B2V npe ()] ly=z, ] + ELIVZ Inpi () V Inpe ()]

gLQd(LJr%). O

The above result holds for the dynamics®t = —3 VInpi(2) for which (pd)e=ofollows the heat flow;
this corresponds to the variance-exploding SGM. In this paper, since we wish to consider the SGM
based on the variance-conserving Ornstein—Uhlenbeck (OU) process, we can apply the following
reparameterization lemma.

Lemma 2 (Reparameterization). Suppose that (Xt)tzo satisfies the probability flow ODE for Brownian

R o (e
motion starting at po; that is, letting p:= po* N(0,tI), we have®0 ~ Po. £t = —3 Vinp(ze),
Then, if we set
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Yt=e-tXexn-1,

then (y:)e=0 satisfies the probability flow ODE for the OU process starting at po; that is, letting q:> be
the density of the OU process at time t, we have¥o ~ Po = 90" U =~y — VIng” (),

Proof. By direct calculation, one can check that for any y € R¢, it holds that g (y) « pez-1(ety). The

claim follows from the chain rule.[]

Lemma 3 (Score perturbation for OU). Suppose q: is the density of the OU process at time t, started
atdo’, and¥o ~ 4"+ Y =~y —V'Inag” (w). suppose for all t and all that IV Ing,* (z)llop < L,
where L = 1. Then,

E[I0.V Ing;” ()] S 124 (LV 7)

Proof. Using the relationship q:=(y) & pez-1(ety),
Ving:~(y) = et Vinpea-1(ety),

0tVIngt-(yt) = et Vinpez-1(Xezc-1) +et OsVInps(xs) |s=ezc-1 + 2e2t.

I {z b {z }
=A =B
If IV2Ing:llop < L, then IVZInpez-1llop < e72tL. By Lemma 1,
[0,V Inp, (2. meae 17 S e L2 (e LV o)

Hence

E[B* < L?d (L vV %)
Next, ;

E[Az] < e2¢E[lIVInpez-1(xex-1)12] < e2¢e-2¢Ld < Ld.
The result follows. U

Finally, we use Lemma 3 to derive a bound on how much the score changes along the trajectory of
the probability flow ODE.

Corollary 1. Consider the setting of Lemma 3, and suppose 0 <s<t, h=t-s.
1. Ifst= 1/L, then
E[|VIng” (z) — VIng. (z,)|°] S L*dh*

] . 1
2. If S“’Sfcsaf,then

bIl=

. L2dh?
E[|VIng;* (a0) - Ving: (@)|’] S —5—
Proof. By Lemma 3,

t 2
E[|VIng” (z;) — Ving.’ (z,)|*] = IEH /q 0,V In q,f(:su)duH }

ot
<(t—s) j B[]0, In g3’ (2,)[[2] du
t . ’ 1
< h/ L*dmax{L, -} du.
8 ”

In the first case, this is bounded by O(L3dh?). In the second case, this is bounded by
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C

T

O(L*dh [. L du) = O(L*dhIn(t/s)) = O(L*dh*/t) ¢

O
Predictor step

Next, we need an ODE discretization analysis.

Lemma 4. Suppose the score function satisfies Assumption 2. Assume that L 21, h S 1/L, and
T—(to+h)= Tgm. Then

1

T to,h Hto.h 2
WalaPast, aPast) < Ld'/?h? (L2 v (T — 1)
— b

) + héese
Proof. We have the ODEs

X't= xe+ VInge(xe),

xb’t= xbe + st(xbew),

for to< t < to+ h, with xto= xbto~ q, Xto+h ~ qPopg, and xbt+h ~ gPbope. Then,
Allze — To||? = 2 {ze — B, 0 — T4)
=2 (“.’E{ - Et”z + (l'f - Ets Vin qt(.l'rJ + 'Stn(itn»)

1 —~ ~ 1
< (24 E) llz: — T || + 2|V Inge(z:) — 4, (T4,)|?
By Grénwall’s inequality, noting that h = 0(1),

N ) 1 to+h N )
Elllztg+n — Zrprnll*] < exp((2+ 5) h) / hE[|VIn g (z;) — s1,(Ts,) |1 dt
ty

to+h )
S ﬂ/ E[[|V In g () — 510 (Teo)[|*] dt -
to (14)

We split up the error term as

IVIng:(x:) = sto(xbto) 1> S 1VInge(xe) — VIngeo(xeo) 12 + 1VInGeo(xt0) — sto(xbto) lI%.

By Corollary 1, the expectation of the first term is bounded by
)
T —ty7,

E[||V Inge(z:) — VIngy, (z4,)]1*] S L*dh?* (L v

The second term is bounded in expectation by 2. Plugging back into (14) gives

—~ 1
E[”win%—h - i'iu-}—h-l‘z] S., h? (deh2 (L v T — [”) + Egc)

he Wasserstein distance is bounded by the square root of this quantity, and the lemma follows. [

Lemma 4 suggests that focusing on the dependence on d, we will be able to take h =< d-1/2 (we need
to keep one factor of h in the bound, as we need to sum up the bound over 1/h iterations).
Remark 2. Our improved score perturbation lemma is necessary to obtain this d1/2 dependence.
The original score perturbation lemma [LLT22, Lemma C.11-12] combined with a space

discretization bound gives a bound of
E[|VIng (x,) — Ving,” (z,)|*] < L*dh

1
in place of Corollary 1. Note this is a 2-Holder continuity bound rather than a Lipschitz bound. The
bound in Lemma 4 then becomes
WaaPase, aPope) S Ld/?h*? + heee
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and we would only be able to take h = d-1. We also note that our bound has an extra factor of
max{L¥2 (T - to)~1/2}; we do not know if this extra factor is necessary.

We now iterate Lemma 4 to obtain the following result. Note that we now need to also assume that
the score estimate is L-Lipschitz.

Lemma 5. Suppose that both Assumptions 2 and 3 hold. Let hi,..,.hn> 0 be a sequence such that
letting tv= h1+ -+ + hn, we have tyn< 1/L. Let hmax = maXi<nsn hn.

1. If T - (to+ tn) = 1/L, then

Wa(aPape' "™ aPope™ ") < L¥d" *haxt + excty < L0 i +

T tg—t,
2. IfT-tos 1/L and/tn+1 < =5 for each n, then

W (qPr,._].h......h.N-lqﬁig.hl.....hm) S L1/2dl/2h +e ty < L1/2d1/2h + Escz

ODE ODE max sc max
_ L.
Proof. We abbreviate Poben  := PopEto,hs,...hvand Pbopen := PbobEto,hs,..,av. Using the triangle inequality,

W2(gqPooen,qPbopen ) < W2(qPopen,qPopen-1Pbope) + W2(qPopen-1Pbopg,gPboben )
< O(Ldizhevmax{L1/2,(T - to - tn)-1/2} + hNesc) +
exp(O(Lhn))W2(qPoben-1,qPboben-1)

where the bound on the first term is by Lemma 4. By induction,
\T

Wa(aPpe. aPdpe) S Z(Ldl/?hﬁ max{L'/? (T —to — t,)""/*} + hnesc)

n=1
x exp(O(L(hn+1 + -+ + hn))). By
assumption, hp+1+ +++ + hv< tn< 1/L. In the first case, we get
Ifﬁ/’g(qP(‘)\,r)E, qﬁg,\bE) < L3242t v + EsclN |
In the second case we get

N
IL’V?((IP&)NDE‘ qPC;ISE) 5 Ldl/Qh‘max Z

n=1

h n

m +é&sctn S_, Ll/gdl/thmx + St
- t() —1n

T—tg—ty
by interpreting the summation as a Riemann sum, and noting that the condition hnp1 < 2

—tg ﬁdfg VI —1g O

T
implies that this is a constant-factor approximation of the integralﬁi'—tn—fw

Choice of step sizes. In the first case, we can take all the step sizes to be equal, but in the second
case, we may need to take decreasing step sizes. Given a target time T - to— tv= §, by taking h1 =
hmaxand then

T — 1‘0 — f,,,_l }

h,, = 111'11'1{()': [ — 5

we can reach the target time in

];"'IIIHX

1
N = O( + In )
Lhyax 4 steps.
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D Corrector step

In §D.1 (resp. §D.2), we will show that if p, q are close in Wasserstein distance, then running the
corrector step based on the overdamped (resp. underdamped) Langevin diffusion starting from p
and from g for some amount of time results in distributions which are close in total variation
distance. In the end-to-end analysis in §E, we combine this “total variation to Wasserstein”
regularization with the Wasserstein discretization analysis of the predictor step in §C in order to
establish our final results.

D.1 Corrector via overdamped Langevin

We will take the potential and score estimate defining the Markov kernels P.o and Pbivc from §2.3
to be U and s respectively. Recall that these correspond respectively to running the overdamped
Langevin diffusion with stationary distribution g o exp(-U) and running the discretized diffusion
with score estimate s, both for time h.

The main result of this section is to show that pPbimcV and q are close in total variation if p
and q are close in Wasserstein.

Theorem 4 (Overdamped corrector). For any Teorr:= Nh S 1/L,
TV(PﬁE}\:ﬂC,- Q') S W (p-, (])/ Teorr + €sc \/Tcorr + L\/(HLTcnrr_

In particular, for Teorr = 1/L,
TV(PﬁIfK/le q) SVLWa(p.q) + e /VL + VLdh.

N PN N
We will bound TV(PF'D: @) and TV(PPinme, PRB) separately. For the former, we use the following
short-time regularization result:

Lemma 6 ([BGLO1, Lemma 4.2]). If Teorr S 1/L, then
PFRD: @) S/ KLPPY [l a) S Walp,a)/ v/ Teor

Proof. The first inequality is Pinsker’s inequality. The second inequality is a consequence of [BGLO1,
Lemma 4.2], which gives a bound of kLR la) S L (14 1/(e2H e —1)) WE(p,4). The claim
then follows from simplifying by using Teorr < 1/L. 01

For the latter term, we introduce notation for two stochastic processes.

: o Vs : d
x; = -VU(x,)dt+ 2dB., X0~ q,

Vdxe= -VU(x)dt + 2dB:,
X0~ p.
Note that for any integer k= 0,
oo, ~qPlo, e ~ PP,
Observe that marginally,ﬁ’kaD = ffor any k = 0 because q is the stationary distribution of the

Langevin diffusion. The three processes are coupled by using the same Brownian motion and by
coupling®o = Zo ~ p and &g ~ doptimally.

PN DN . .
Before we proceed to bound TV(pPLD‘pPLMc), we need the following simple lemma. Lemma
7. Ichorr < 1/L, then
E[[lz; — 27%] S W3 (p.q)

forall 0 £t < Teorr.
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Proof. By It6’s formula,
d(le: — =) = =2 @, — 25, VU(2,) — VU(25)) < 2L |}z, — ¢,

By Gronwall’s inequality,

2Lt H-T[) ,0”2

|z — I?HZ <e — Iy

so that if we couple the two processes by coupling xo and®g optimally, we conclude that
Efllz — 27 |%] < e Ell|zo — a5[°] = € W (p,q) S W3 (D, ),

recalling that t < Teorr S 1/L by hypothesis. O

DN N
It remains to bound TV(PFmc: PPD),
Lemma 8. If Teorr S 1/L, then

PPN PPS) S KLGPS | pPe) S Ly Toom Wa(p,q) + £sc/ Teor + L/ dliTeary

Proof. As x and x are driven by the same Brownian motion, by Girsanov’s theorem*and the data b
processing inequality we have

(k+1)h
N 19BN < Z f Ellls(zen) — VU () 7] du.

k=0
We can decompose the integrand as follows:
Ellls(xn) — VU (za)|I?] S E[lls(zkn) — (@)l + [Is(zh,) — VU (2311
+ (VU (2),) = VU (@) [P + VU (27) = VU () |1?]
< L2E[|lzgn — 25 |*) + e2 + L2 E[llaf), — 5 |1*) + L2 E[||25, — 2.]]

S LPW3(p,q) +ex + LPE[||l2), — z3]%] (15)
where we used Lemma 7 to boundJE[H«T-?l - SCHHQ}, It
o 0 (]2
remains to bound ElllZin — Z0lI°]. Note that

u 2 u
Ellleg, — 517 = E| / ~VU() ds + V3 (B, — Bu)|| | £ f E[[[VU (2)[?] ds + dh
kh kh
< Ldh? +dh < dh,

where in the last step we used that]E“‘VU(?Ui)”g] < Ld, Substituting this into (15), we obtain
KLUPPD | pPac) S L Teore W3 (9, @) + 2 Teon + L2 dhTeor |

The claimed bound on TVIPE(Ds PPc) follows by Pinsker’s inequality. O

Proof of Theorem 4. This is immediate from Lemma 6 and Lemma 8, recalling that Teorr S 1/L s0
that the bound in Lemma 6 dominates the W2(p,q) term in Lemma 8. =

D.2 Corrector via underdamped Langevin

Throughout, we set the friction parameter to
Vi_y=
L.

We will take the potential and score estimate defining the Markov kernels Pu.oand Pbuimc from §2.3
to be U and s respectively. Recall that these correspond respectively to running the underdamped

4 Although the validity of Girsanov’s theorem typically requires Novikov’s condition to be satisfied, this
can be avoided via an approximation argument as in [Che+23a].
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Langevin diffusion with stationary distribution g and running the discretized diffusion with score
estimate s, both for time h.

Given probability measures p and q, we write p :=p @ yaand q := q Q ya4, where yais the standard

Gaussian measure in Rd.

The main result of this section is to show that pPbuimc! and g are close in total variation if p
and q are close in Wasserstein. Compared to §D.1, the discretization error for the underdamped
Langevin diffusion is smaller.

Vo

Theorem 5 (Underdamped corrector). For Teor S 1/ L,

1/2
W2 (p, Esc T
iy R A
LY*Teor L
In particular, if we take Tecorr = 1/ L, the J J
TV(pRime @) = LW 2(pq)+ e/ L+ Ldh

N DN N
We will bound V(P Lo @) and TV(PFSLmc: PRiLp) separately. For the former, we use the short-
time regularization result of [GW12]:

Vo
Lemma 9. If Teor S 1/ L, then

N N Wa(p; q)
PPl @) S \/KLpPYp ) £ —5 5

Ll/4Tcorr

TV(pR)ime 9)

Proof. This is a consequence of [GW12, Corollary 4.7 (1)]. The condition to check therein is their

Eqg. (3.6), which in our setting is satisfied by the constants K1 =L and Kz=y. The Corollary then
states that for the cost function

ot (/6 3y 4 ALt 2
1 ((z,0), (¢/,v")) = inf —{(— L —) -2 (f — ) v — "}
crnl(e0), () = it o { (v ) = (G g b))
N
N 17 - ,
we have kL(PPoLo [g)<W T (P ® V2,4 @ M). Forv=v'and Terr S 1/ L, note that

1 ;
3, -~ / 71 . o — "‘" z

n(,0), (2 0) S 7 Iz = 7

7

corr

so the claim follows by Pinsker’s inequality. O]

Next, we define the following processes: dz:* = v:* dt, dz:= vedt,

thu = —yv dt- VU(z)dt+ nzv dB. (z5,v5) ~q
dve= -yvedt - VU(z:)dt + P2y dB:, (zo,v0) ~ p.
It follows that for any integer k= 0,
(2kns Vin) ~ qPLﬁ:LD =4q, (Zkh, Vin) ~ PPLTLD.

We couple these processes by using the same Brownian motion and coupling ¢ @ yesand p @ yu
optimally (in particular,?o = vg).

N  _pN
Before we proceed to bound TV (PPjips pPULMC)b, we start with the following lemma.

Vo
Lemma 10. If Teorr S 1/ L, then for all 0 < t < Teorr,
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Elllz — 22 1I”] £ W3 (p, a),
Proof. We have
1
VU(z) = VU(z}) = (/ VU (2 +u(z — z)) du) (ze — 27) = He(z — 27)
Jo

and the operator H:satisfies
”Ht"ops L

Let a := 2/y. For the vectors 6¢:= (ze+ ave) = (zc* + ave*) and ne:=ze— z¢°, we have

1 2 N2y T (Y—%)[d %(aHt—YId)
§d(||5,|\ + llmll”) = — (8¢, m) [% (oM, =y 1) Ly, (8e,m0)

SVLI67 + el -
By Gronwall’s inequality,

Vo
16¢ll2 + Ninell2 < eoc g (1Sollz + lInoll2),

so if we couple the two processes by coupling zo and?6 optimally and taking?0 = ¥, we obtain
B[l 7] S El6 P+ lmel|?] < e YED ElIoll+lmoll?] S e©YFD WE(p.q) < WE(p.a),
Vo
recalling that ¢t < Teorr S 1/ L by hypothesis. O

DN N
It remains to bound TV(PLUime, PPin).

Vo
Lemma 11. If Teor < 1/ L, then

v

(PPl PPYo) < \KLBPY, | PP )
< LATY2Wo(p, q) + L~ YATY 20 + L3/ATL 24 2.

corr corr =S

Proof. As (zv) and (z°,v") are driven by the same Brownian motion, by Girsanov’s theorem®and
the data processing inequality we have

(k+1)h
(PP)io | PPome) S Z fk E(lls(zkn) — VU (2)[I*] du .

=0 We

N

can decompose the integrand as follows:
Ellls(zkn) — VU (2)I”] S E[lls(zkn) — s(z2u)lI” + Is(20n) — VU ()12
HIVU(2R,) = VUEDI? + VU (27) = VU (2]
< L?E[llzkn — 2Rnll’] + e + L2 E[llzgy, — 22ll] + L2 Elll2; — zu|l’]

SLAW3(p,q) + ek + L2E[l|20, — z011%) (16)

where we applied Lemma 10.
Lo|2
It remains to bound 22, — 22 1I°]. Note that

E(llzpn — 20”1 = H[u vs ds“ < h/ [[[v2||?] ds < dh?

where in the last step we used the fact thatVs ™~ 7, Substituting this into (16), we conclude that
KL( lj\IT_D ” P ULMC) S Lj/QTcorr H/yzg(p: (I) + J‘—'J_l/zTcorrEsz.r_- + LS/thQTcorr ;

5 Again, we can avoid checking Novikov’s condition using the approximation argument of [Che+23a].
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The claimed bound on TV (ppd\[Derd\LMC)b follows by Pinsker’s inequality. O

Vi

Proof of Theorem 5. This is immediate from Lemma 9 and Lemma 11, recalling that Teorr S 1/ L s0
that the bound in Lemma 9 dominates the W2(p,q) term in Lemma 11. H

Remark 3. In all other sections of this paper, we abuse notation as follows. Given a distribution p
on

R4, we write pPbuwmcto denote the projection onto the z-coordinate of pPbumc, i.e., we view Pbuimc
as a Markov kernel on Rérather than on R?x R4 (and similarly for Puip).
E End-to-end analysis

Lemma 12 (TV error after one round of predictor and corrector). Choose predictor step sizes
hi,..,hnpeaas in Lemma 5 with Tpred = h1+++++hnpea< 1 /L. That is, if T —to —Tpred S 1/L, then we ensure

h < T—top—hy1——hy, .
that'*n+1 = 2 foralln, and if T - to = 1/L, then we can take
hy =-- = hy (Npred) to,h1,...,hNpred
- . Let hpred := max1sn<Nerea hn and abbreviate Pope := PobE (and
similarly for Pooe).

1. Consider running the overdamped Langevin corrector for time Tcorr = 1/L, step size hcorr,

(Npred) __ )
and stationary distribut'ion(?thP ODE = (to+1 et S€t Neorr = Teorr/heorr. Then,

5 (Nore corr -
TV( PODPE ! PLTVIC (1?‘()+fpred) < TV(]) qfu) + O(L\/_hpred + v/ Ldhcor + \/SCE)

Vo
2. Consider running the underdamped Langevin corrector for time Tcorr =< 1/ L, step size hcorr,

(Npred)
and stationary distributionto Fobe = = Qto+Toret; S€L Neorr = Teorr/hcorr. Then,

— E
_I_V(p‘DODpred PJ LCK/TC Qtu+Tpred) < TV(p qtu) + O(L\/& hpred +VLd hcorr + %)

Proof. By the triangle inequality and the data-processing inequality,
( ‘p(()l?)ptzyw)PL\IV?%r qur"'pmd)
< TV(pPone” Fiie' . o Pone™ PGE) 1t Pone™ POGE 1o+
<STV(p,qu) + TV(q‘u ﬁéngred)PLﬂrJ\AmC"* Qto+Tprea )
For overdamped Langevin, applying Theorem 4,

»N, (= Af rcorr re
TV(QTn P(()DPE d)‘Pl_\l‘\,dl{; 3 qtn+rn"pred) S \/E W (qpo fored) qin+'-"prgd) + Esc/\E + V th'corr . (17)

For the Wasserstein term, Lemma 5 yields

£
|24 Z(qu POD (IT()+Tpred) =W (qf'()‘PODE’rEd QfUPODWEd < v Ld hpred + EC

Combining these bounds yields the result for the overdamped corrector. For the underdamped
corrector, we modify (17) by replacing the use of Theorem 4 with Theorem 5.1

We also need the following lemma on the convergence of the OU process.

Lemma 13. Let (q:)e=0 denote the marginal law of the OU process started atdo’ = s, Then, for all
T = 1, it holds that

Vo
TV(qr,y9) < (d + m2)exp(-T).

24



Proof. This follows from [CLL23, Lemma C.4]. Alternatively, using the short-time regularization result
of [BGLO1, Lemma 4.2] for time to = 1 and the Wasserstein contraction of the OU process,

Wa(ai 4,,7")

(g7 ,7") S \/KL(g7! |7 < exp(—(T — to)) Wa(ge,v%)

~ Vio
Vo
The result follows from W2(qz,y9) < W2(qa,60) + W2(60,y?) < mz2+ d. O

We now prove our main theorems.

Proof of Theorems 2 and 3. For t € [0,T], let p¢:= law(xbt). From Lemma 13,
Vo
TV(po,qo) = TV(qr~,y) S (d + m2)exp(-T).

We divide our analysis according to the two stages of the algorithm. In the first stage, after iterating
Lemma 12 for No = LT steps,

V(T ) <TV(’P0,- Qo) + O(L\/(_prred + VLdhl,, + 5_\/5%) x Ny
T- pred, T- pred )] =

< (\/E +my) exp(—T) + L*Td" *hpeq + L3*Td"?hE,, + L'/“!TsSc

1
where p = 2 if we use the overdamped corrector and p = 1 if we use the underdamped corrector.
Applying the second part of Lemma 12 for the second stage of the algorithm, we then conclude
that

vrr—s,qr-s) S (\/E + mg) exp(—T) + LQle/Qh,pred + L:5/2Tril/2ia,'c°orr + Ll/QTssc.
§ = proe
Finally, we note that if we take™ ~ L7 (dvm3), then by [LLT23, Lemma 6.4], TV(qr-5qr1) < &; a triangle
inequality thus finishes the proof.[]

Remark 4. Alternatively, instead of taking geometrically decreasing step sizes and employing early
stopping, we could split the algorithm into two stages: for time t < T — hpred, We take constant step
size hpred, and for time t > T - hpred, We use a smaller constant step size h'as required if working
with the original score perturbation lemma (see Remark 2).

F Numerical experiments

In this section, we provide preliminary numerical experiments to illustrate our theory. We
implement DPUM on a toy model that is not log-concave (mixture of Gaussians).

Setup. The target distribution is a mixture of five Gaussians in dimension 5. On Figures 1 and 2, the
red stars represent the means of the Gaussians and the red ellipses around the stars represent the
variances of the Gaussians. We start by sampling 500 independent points (in blue) from a standard
Gaussian. Then, we run DPUM from the blue dots over 300 iterations and plot the two first
coordinates of the dots at iterations 0, 100, 200 and 300. This is a low-dimensional toy example so
it does not illustrate our theory, rather we include it as a simple sanity check.

Parameters. We use a closed form formula for the score along the forward process. In other
words, the score estimation error is equal to zero. The step size of the predictor is 0.01 and the
step size of the corrector is 0.001. The corrector consists in 3 steps of the underdamped Langevin
algorithm. In the latter algorithm, we initialize the velocity as a centered Gaussian random
variable with standard deviation 0.001 and set the parameter y to 0.01.

Observations. We observe the expected behavior: although the target distribution is highly non-
logconcave, DPUM is able to provide samples from a distribution that is close to the target
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distribution. In particular, the initial Gaussian distribution splits in clusters that will fit each
component of the target mixture of Gaussians. Recall that we experiment without score error but
with discretization error: our numerical results illustrate the common wisdom that score knowledge
along the forward process can replace convexity assumptions. In particular, we observe that even
isolated, low probability components of the Gaussian mixture, are recovered by DPUM.
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Figure 2: A realization of DPUM for another mixture of Gaussians.
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