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1. INTRODUCTION

Endogenous ketone bodies, including D-β- hydroxybuty- 

rate (D-βHB), are produced by the liver and can be utilized 

by cells as fuel when glucose is not readily available ( Krebs, 

 1960). Accumulating evidence suggests that ketone 

metabolism may confer important neurological benefits 

( Barañano  &  Hartman,  2008;  Henderson  et  al.,  2009; 

 Maalouf  et  al.,  2007;  Vanltallie  et  al.,  2005). D- βHB has 

been found to increase ATP production and cardiac 

 efficiency from 10% to 24% when added to a perfusion of 

glucose ( Sato  et  al.,  1995). Moreover, ketone uptake 

bypasses the insulin- dependent glucose transporter 

GLUT4, and thus can be metabolized as fuel even after 

neurons become insulin resistant ( Sapolsky,  1986).

Insulin- independent metabolic pathways may be criti-

cal in the context of brain aging, as Type 2 diabetes mel-

litus and its associated decrease in GLUT4- dependent 

neuronal glucose utilization are linked to age- related 

brain hypometabolism ( Baker  et al.,  2011;  Soares  et al., 
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 2019) and cognitive decline ( Antal  et  al.,  2022;  Beeri 

 et al.,  2004). Even in the face of impaired glucose metab-

olism, aging brains can still metabolize ketone bodies 

( Cunnane  et al.,  2016). Furthermore, ketones also influ-

ence cerebral metabolism by modulating glucose uptake 

in astrocytes ( Valdebenito  et al.,  2016) and directly affect-

ing neuronal excitability ( Cauli  et  al.,  2023;  Karagiannis 

 et al.,  2021). Thus, supplementing ketone bodies as an 

alternative fuel source may have the potential to slow or 

arrest neurodegeneration ( Zilberter  &  Zilberter,  2017).

Recent findings provide evidence supporting the ability 

of exogenous D-βHB to ameliorate mechanisms and 

biomarkers associated with brain aging. At the spiking- 

neuron scale, insulin and ketone bodies modulate 

neuronal excitability through the regulation of K+ ion gra-

dients ( Ma  et al.,  2007;  Sweeney  &  Klip,  1998). At the cir-

cuit scale, direct application of D-βHB to the mouse 

hippocampal CA3- CA1 circuit reverses insulin resistance- 

induced deficits in neuronal excitability and axon conduc-

tion velocity, showing improvements that exceeded even 

baseline (control) values ( Kula  et al.,  2024). Finally, at the 

whole- brain scale, aging has been linked to the destabili-

zation ( Mujica- Parodi  et al.,  2020) and desynchronization 

( Weistuch  et  al.,  2021) of brain networks identified in 

resting- state functional magnetic resonance imaging 

(rsfMRI). Ketosis, induced by either diet or exogenous 

D- βHB administration, improved these measures of brain- 

wide coordination, even in young, healthy adults. Despite 

the theoretical relationships suggested between these 

independent results, the direct linking across scales— of 

mechanism with its emergent effects— has yet to be 

tested due to the technical constraints inherent in each 

experimental approach.

To address these challenges, we employ a novel 

experimental- computational approach for evaluating the 

contribution of individual biophysical components on 

brain- wide coordinated behaviors. To link fMRI- derived 

brain network instability and synchrony specifically to the 

postsynaptic potentials of pyramidal neurons, we estab-

lished an EEG- derived biomarker for brain aging by analyz-

ing a publicly available Lifespan resting- state EEG (rsEEG) 

dataset (ages 20- 80 years, N = 201). To test how this bio-

marker changes with metabolism, we conducted a new 

Metabolic rsEEG experiment (µage = 26.9 ± 11.2  years, 

N = 36) (Table  S1) (Fig.  1A). Administering individually 

weight- dosed D-βHB versus calorically- matched glucose 

orally, we measured the effects of fuel type on synchrony 

(Fig. 1B) and brain network instability (Fig. 1C). To identify 

the set of mechanistic parameters consistent with our data, 

we then used our EEG results as emergent constraints 

on the Larter- Breakspear model, a conductance- based 

multiscale neural mass model ( Breakspear  et al.,  2003). By 

simulating this model across a full range of key mechanistic 

parameters and simultaneously testing 3
8
 hypotheses in 

parallel (three types of trends, eight parameters), we were 

able to test whether measured differences in EEG- derived 

neural synchrony at the macroscale were consistent with 

effects expected following modulation of K+ at the neuronal 

micro- scale (Fig. 1D). Equally important, however, by test-

ing alternative plausible hypotheses in parallel, we were 

able to assess not only the sensitivity but also the specific-

ity of our results.

2. METHODS

2.1. Bolus study experimental design

To determine whether stabilization of brain networks as 

modulated by fuel source seen in rsfMRI ( Mujica- Parodi 

 et  al.,  2020;  Weistuch  et  al.,  2021) implicates neuronal 

synchrony, we conducted resting- state EEG scans on a 

cohort of healthy adults (N = 36, µage = 26.9 ±11.2  years, 

18 female) who were tested under both a ketotic (ketone 

burning) and glycolytic (glucose burning) condition. Inclu-

sion/exclusion criteria were screened using a survey com-

pleted before enrollment in the study. Potential participants 

were excluded for any of the following reasons: chronic 

usage of alcohol (7 drinks/week for women, 14 drinks/

week for men), recreational drug use, use of psychotropic 

medication within the past 30 days, use of medications 

that affect glucose and/or insulin utilization, a history of 

kidney disease, heart attack, stroke, myxedema, epilepsy, 

dementia, or other neurological disorders, difficulty when 

swallowing, current pregnancy or breastfeeding, or inabil-

ity to provide informed consent. Scanning occurred at 

Stony Brook University’s Health Science Center. The 

study was approved by the Institutional Review Board of 

Stony Brook University (IRB2021- 00018), and all partici-

pants provided informed consent.

All subjects were tested twice (1– 14 days apart), both 

times following an overnight fast (subjects were 

instructed to eat no food for at least 8 hours before test-

ing but were allowed unrestricted water). Following a 

baseline resting- state EEG scan, subjects drank either 

of two fuel sources. In the ketotic session, subjects 

drank a ketone sports drink, deltaG® Sports Supple-

ment (TdeltaS Ltd, Thame, UK), dosed at 395  mg/kg. 

During the glycolytic session, the same subjects drank a 

bolus of glucose (Glucose Tolerance Test Beverages, 

Fisher Scientific, Inc.; Hampton NH) calorie- matched to 

the ketone bolus. The order of the bolus (whether a sub-

ject received a glucose bolus first or a ketone bolus first) 

was pseudo- randomized, with approximately half of all 

female subjects (N = 9) and exactly half of all male sub-

jects (N = 8) drinking the glucose bolus during the first 

scanning day. The resting- state EEG scans were then 
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Fig. 1. Schematic of experimental design and methods. (A) Design of within- subject, time- locked targeted metabolic 

resting- state EEG (rsEEG) experiment. To confirm the robustness of increased brain network instability and synchrony 

across measurement modalities, N = 36 young (µage = 26.9 ± 11.2 years), healthy participants underwent four rsEEG 

scans separated over 2 days. Following an overnight fast, participants were scanned at baseline and again 30 minutes 

after consuming a weight- dosed (395 mg/kg) ketone ester or calorie- matched glucose bolus. The rsEEG scans were 

then repeated using the opposite (ketotic or glycolytic) condition on the second day. (B) An example Global Field 

Synchronization (GFS) spectrum computed using human rsEEG. The real and imaginary components of Fourier- 

decomposed rsEEG time- series are plotted on the complex plane for each frequency value. The spread of these points 

is quantified using principal component analysis. The more the signals are in phase or anti- phase, the greater the 

difference in magnitude between the first and second principal components of the scatter plot cloud, and the greater 

the synchrony value (which can range from 0 to 1). The scatter points of individual electrodes are color- coded by 

location on the scalp for illustrative purposes. (C) Schematic characterization of brain network instability. To calculate 

brain network instability, non- overlapping sliding window correlations are calculated over the entire rsEEG time- series, 

with strong correlations defining networks. The instability of the networks is then defined as the degree to which these 

networks fluctuate over time (in units of τ ). (D) Schematic of the conductance- based neural mass model. Microscale 

parameters (listed in Table 1), along with intra- /inter-  region coupling (c) and subcortical excitatory inputs (I0 ) govern the 

dynamics of the model output: simulated excitatory post- synaptic potentials (EPSPs). The mean EPSPs are multiplied 

with an EEG lead field to generate simulated EEG time- series, which are used to determine the effects of model 

parameter variation on synchrony.
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repeated 30 minutes after the administration of the bolus, 

as prior experiments using magnetic resonance spec-

troscopy (MRS) showed peak glucose and ketone con-

centration in the brain approximately 30  minutes after 

consumption of the bolus (see Fig. S2 in  Mujica- Parodi 

 et al.  (2020)). Blood glucose and ketone levels were mea-

sured three times throughout the experiment: at baseline, 

10 minutes following the bolus, and 62 minutes following 

the bolus using a Precision Xtra Blood Glucose & Ketone 

Monitoring System (Abbott Laboratories). Our data anal-

yses quantify network reorganization and neural phase 

synchrony changes in response to changing energy con-

straints (i.e., cognitive demand, fuel).

During the resting- state portion of the EEG scan, sub-

jects underwent a total of 16 blocks, each lasting 60 sec-

onds, with 8 EO blocks and 8 EC blocks. The blocks were 

interleaved. During the EO blocks, subjects fixated on a 

white orienting cross on a black background. Before the 

resting- state scan, subjects were instructed not to blink to 

minimize ocular artifacts and to keep motion to a mini-

mum. The resting- state stimulus (a white cross in the 

center of a black background) was presented on a com-

puter screen placed in front of the seated subject using 

PsychoPy v3.0 ( Peirce,  2007). All data were collected in a 

shielded, dark, soundproofed Faraday cage using the 

ActiveTwo Biosemi™ electrode system from 65 (64 scalp, 

1 ocular) electrodes arranged according to the interna-

tional standard 10– 20 system ( Oostenveld  &  Praamstra, 

 2001) at a sampling frequency of 4096  Hz. The ocular 

(VOEG) electrode was placed below the left eye. Our 

experimental and pre- processing designs, especially 

those of the resting- state EEG scans, were modeled after 

the paradigm used by Leipzig’s LEMON rsEEG dataset 

group ( Babayan  et al.,  2019) to be able to minimize con-

founding factors when directly comparing results between 

our experiment and this large- scale neuroimaging dataset.

2.2. Resting- state EEG pre- processing

2.2.1. Metabolic dataset

The EEG pre- processing was performed using EEGLab 

(version 2020.0) ( Delorme  &  Makeig,  2004). Full resting- 

state data were downsampled from 4096 Hz to 512 Hz 

and bandpass filtered between 0.1 and 40 Hz using a 

Hamming- windowed FIR filter. The data were then sep-

arated into the eyes open (EO) and eyes closed (EC) 

conditions. These two conditions were pre- processed 

separately from this point on due to the differences in 

ocular artifacts in each condition; however, the pre- 

processing steps performed were identical. Bad channels 

were removed, and noisy portions of data were identi-

fied and removed using EEGLab’s Artifact Subspace 

Reconstruction (ASR) algorithm. Independent component 

analysis (ICA) was performed on the data using the info-

max algorithm in EEGLab (runica), and non- neural com-

ponents of the time- series were identified and removed 

using ICLabel ( Pion- Tonachini  et  al.,  2019). The refer-

ence was then set to average. The data were separated 

into frequency bands and time- series extracted using 

MNE- Python (version 0.21.1) ( Gramfort  et al.,  2013).

2.2.2. Leipzig LEMON dataset

Lifespan rsEEG data from the Leipzig LEMON dataset were 

obtained in already pre- processed form. Raw data were 

downsampled from 2500 Hz to 250 Hz and bandpass fil-

tered between 1 and 45 Hz using an 8th order Butterworth 

filter. The data were separated into EO and EC conditions 

for subsequent pre- processing. Outlier channels were 

rejected, and data intervals containing high peak- to- peak 

fluctuations or high- frequency noise were identified and 

removed by visual inspection. Data dimensionality was 

reduced using principal component analysis before the use 

of independent component analysis (ICA) to identify and 

remove components reflecting eye-  or heartbeat- related 

artifacts. Further pre- processing details may be found in 

the dataset documentation ( Babayan  et al.,  2019).

2.3. Global field synchronization

Global Field Synchronization (GFS) was first introduced 

by  König  et al.  (2001) to estimate differences in functional 

connectivity of brain processes in EEG frequency bands 

between a population of neuroleptic- naive schizophrenic 

patients and healthy controls. In contrast to other mea-

sures of phase synchrony such as phase- locking value, 

which can only measure synchrony between two time- 

series, GFS is a global measure of neural phase syn-

chrony that does not rely on the a priori selection of brain 

regions to be studied. When applied to EEG data, GFS 

has the added benefit of being reference- independent 

and more easily interpretable without the use of source 

models ( Michels  et al.,  2012). Further research using the 

measure has found changes in GFS in those with Alzhei-

mer’s disease and mild cognitive impairment ( König  et al., 

 2005), during REM sleep ( Achermann  et al.,  2016), and 

during general anesthesia ( Nicolaou  &  Georgiou,  2014).

To calculate GFS values for EEG, the data were first 

pre- processed. Following pre- processing, sensor- level 

EEG time- series were divided into non- overlapping, con-

secutive 2- second epochs. Each epoch was frequency 

transformed using a fast Fourier transform (FFT, Tukey 

window, taper size α = 0.2), which yields the real and 

complex component of the signal of each electrode for 

each frequency value (1– 40 Hz, step size = 0.1 Hz). These 
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components are then plotted as vectors on the complex 

plane, with the magnitude of the vector representing the 

power of the signal at that frequency, the angle of the 

vector as measured from the real axis representing the 

phase, and the vector origin representing the reference of 

all EEG signals. Subsequently, a scatter plot of vector 

endpoints in the complex plane is generated for each fre-

quency value, a representative of which can be seen in 

Figure  1B. The more these endpoints approximate a 

straight line, the more the signals are in phase or anti- 

phase. The more scattered the endpoints, the less the 

signals are in phase or anti- phase. To quantify the shape 

of the cloud formed by the vector endpoints, the points 

are entered into a two- dimensional principal component 

analysis, as principal components are orthogonal by defi-

nition. The resulting GFS value per epoch for a particular 

frequency f  is then determined by calculating the ratio of 

the eigenvalues (λ1(f ) and λ2(f )) of these two principal 

components, as expressed in Equation 1.

 
GFS(f ) =

λ1(f ) − λ2(f )

λ1(f ) + λ2(f )  
(1)

Finally, the overall GFS value for a particular frequency 

is obtained by taking the mean of the GFS values of all 

consecutive epochs for that frequency, creating a spec-

trum as shown in Figure 1B. To examine differences in GFS 

across age (using the Leipzig LEMON rsEEG dataset) and 

condition (ketotic vs. glycolytic), overall GFS values were 

categorized into their corresponding, classically- accepted 

frequency bands ( da  Silva,  2013), with endpoints adjusted 

to accommodate the filtering performed in pre- processing: 

δ (1– 3.5 Hz), θ (4– 7.5 Hz), α (8– 13 Hz), β (14– 30 Hz), low γ  

(30– 40 Hz), and broad (1– 40 Hz).

2.4. Modeling effects of microscale parameter 

changes on global field synchronization

We used a conductance- based neural mass model 

( Breakspear  et al.,  2003) to test the effect of ion gradient 

dynamics and excitatory- inhibitory subpopulation cou-

pling on GFS. This neural mass model has been previ-

ously validated to capture properties of fMRI and EEG 

resting- state activity ( Endo  et al.,  2020) while incorporat-

ing both local ion dynamics and interregional connectiv-

ity. Following the mathematics of prior work ( Endo  et al., 

 2020), we built a 78- region whole- brain simulation using 

Neuroblox, a Julia library optimized for high- performance 

computing of dynamical brain circuit models (https://

github . com / Neuroblox / Neuroblox . jl). Within the model, 

we varied ion (Na+, K+, Ca2+) gradients and conduc-

tances, intraregional connectivity (excitatory- excitatory/

inhibitory), and interregional connectivity across a range 

of biophysically plausible values ( Chesebro  et al.,  2023; 

 Endo  et al.,  2020;  Roberts  et al.,  2019). Ion parameters 

were changed because metabolic changes have been 

shown to alter ion dynamics in microscale experiments 

( Baeza- Lehnert  et  al.,  2019). Excitatory- excitatory/

inhibitory and global connectivity parameters were var-

ied as a control to ensure that the effects in the model do 

not arise from just any changes to inter-  or intra- regional 

connectivity. The ranges of the values changed can be 

found in Table  1. The whole- brain simulation for each 

parameter set was repeated with 10 different sets of ini-

tial conditions to sample across the distribution of simu-

lation outcomes. The simulated membrane potentials of 

excitatory neurons were averaged within each region to 

generate 78 neural mass signals, which were transformed 

into EEG signals through multiplication with an average 

lead field (63 EEG channels × 78 model ROIs) generated 

by  Endo  et  al.  (2020). Each 10- minute simulation was 

sampled at a rate of 1000  Hz and took ∼2  minutes to 

generate. The first 1 minute of each simulated EEG signal 

was discarded before calculating GFS to allow the simu-

lation to equilibrate.

2.5. Brain network instability

Brain network instability (described for use with fMRI data 

in  Mujica- Parodi  et  al.  (2020)) is a measure used to 

describe the persistence of brain networks over time. It 

can be considered a measure of dynamic functional con-

nectivity ( Hutchison  et al.,  2013), or a quantification of the 

frequency of switching between metastable brain states 

over various temporal scales ( Roberts  et al.,  2019). To cal-

culate brain network instability values for EEG, the data 

were first pre- processed as described above. Following 

pre- processing, sensor- level EEG time- series were divided 

into non- overlapping, consecutive epochs, or windows, 

with a 10 second window chosen for the results shown in 

Figures 2C and 2D. Within each window Wi an all- to- all, 

signed correlation matrix between all time- series is cal-

culated, meaning these resulting matrices have a size of 

n× n, with n being the number of clean channels remain-

ing after pre- processing. Distance (in units of window 

size) between window pairs is decided by a value of τ  

chosen for the instability calculation. Instability is then cal-

culated for each possible value of τ by taking the Frobe-

nius, or L2, norm of the difference in correlation matrices 

of window pairs, and then taking the average of all norms. 

In the form of an equation, instability is written as

 

Instability τ,τmax( ) = i=1

τmax−τ∑ corr Wi+τ( )− corr Wi( ) F

τmax − τ
 
(2)
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Instability τ = 2,τmax = 5( ) = i=1

3∑ corr Wi+2( )− corr Wi( ) F

3  
(3)

=
corr W3( )− corr W1( ) F + corr W4( )− corr W2( ) F + corr W5( )− corr W3( ) F

3  

(4)

where τmax is the number of windows available, defined 

as the length of the time- series divided by the window 

size rounded down to the nearest multiple of the window 

size. For example, an EEG recording with a length of 

Table 1. Parameter values used in the conductance- based neural mass model.

Parameter Description Default value Variation range Step size

Nernst potentials

* VNa Na
+ reversal potential 0.53 [0.42, 0.54] 0.005

* VK K
+ reversal potential - 0.7 [- 0.75, - 0.6575] 0.0025

* VCa Ca
2+ reversal potential 1.0 [0.95, 1.01] 0.0025

VL Leak channels reversal potential - 0.5

Channel conductances

* gNa Na
+ conductance 6.70 [6.6, 6.8] 0.01

* gK K
+ conductance 2.00 [1.95, 2.05] 0.0025

* gCa Ca
2+ conductance 1.00 [0.95, 1.01] 0.0025

gL Leak channels conductance - 0.50

Channel voltage thresholds

TNa Na
+ channel threshold 0.30

TK K
+ channel threshold 0.00

TCa Ca
2+ channel threshold - 0.01

Channel voltage threshold variances
δNa Na

+ channel threshold variance 0.15

δK K
+ channel threshold variance 0.30

δCa Ca
2+ channel threshold variance 0.15

Excitatory & inhibitory population parameters

VT Excitatory neuron threshold voltage 0.00

ZT Inhibitory neuron threshold voltage 0.00

δV ,Z Variance of excitatory/inhibitory thresholds 0.66

QVmax
Excitatory population maximum firing rate 1.00

QZmax
Inhibitory population maximum firing rate 1.00

* aee Excitatory → excitatory synaptic strength 0.36 [0.33, 0.39] 0.005

* aei Excitatory → inhibitory synaptic strength 2.00 [1.95, 2.05] 0.005

aie Inhibitory → excitatory synaptic strength 2.00

ane Non- specific → excitatory synaptic strength 1.00

ani Non- specific → inhibitory synaptic strength 0.40

Other parameters

I0 Subcortical excitatory input 0.30

b Time scaling factor 0.10

φ Temperature scaling factor 0.70

τK K
+ relaxation time 1.00

rNMDA NMDA/AMPA receptor ratio 0.25

c ROI- to- ROI coupling constant 0.35

The “Default Value” column lists the default parameter values used in the conductance- based neural mass model, following  Endo  et al. 
 (2020) and  Chesebro  et al.  (2023). If a parameter was varied to examine the effects on synchrony, it is labeled with an asterisk (*) in the 
first column and the range of parameter values tested is listed in the “Variation Range” column. Likewise, the step size used to sample 
between lowest and highest possible varied parameter value is listed in the “Step Size” column.

55  seconds divided into window sizes of 10  seconds 

means τmax = 5. Computing instability for τ = 2 for this 

example recording would yield
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When calculating instability, the window sizes within 

which correlation matrices are calculated and eventually 

subtracted from one another set a natural limit to the 

timescale at which changes in global network connectiv-

ity can be seen. As the temporal resolution of EEG is 

notably greater than that of fMRI, the window sizes used 

in the calculation of instability for the majority of this work 

are smaller than the windows used for our previous work 

(10 seconds as compared to 24 seconds) as more time 

points are available for calculation. By varying the win-

dow sizes used to calculate network instability, we deter-

mined that brain networks destabilize as a function of 

age only for networks whose detectable correlation dif-

ferences persist for ≥10 seconds (Fig. S2), and as such 

Fig. 2. Global Field Synchronization, a global measure of neural synchrony, decreases with age and increases under 

ketosis. Brain network instability, a measure of dynamic functional connectivity, increases with age, and decreases under 

ketosis. (A) Mean synchrony is lower in the older (N = 63, 55 to 80 years) cohort than the younger (N = 138, 20 to 40 years) 

cohort in the broad, δ, α, and β bands of Leipzig’s LEMON EO, rsEEG scans. (B) Baseline- corrected synchrony is greater 

following acute administration of D-  βHB when compared to acute administration of glucose in all classically defined 

frequency bands of EO, rsEEG scans: broad, δ, θ, α, β, and low γ , measured using a cohort of young, healthy individuals 

(N = 36, µage = 26.9 ±11.2 years). Descriptive statistics for (A) and (B) have been outlined in Table 2. (C) Brain network 

instability (window size = 10 seconds) is significantly greater in the older cohort than the younger cohort in the broad 

band of Leipzig’s LEMON EC, rsEEG scans for 27 out of 39 possible values of τ, with p- values ranging from p = 0.005 to 

p = 0.045  and t- values ranging from t = 2.023 to t = 2.846. When comparing across bandwidths, brain network instability 

(window size = 10 seconds, τ = 1) of the older cohort is significantly greater in the broad (t = 2.278, p = 0.024), δ (t = 3.581,  

p < 0.001), θ (t = 2.323, p = 0.021), and low γ  (t = 3.513, p < 0.001) bands (all tested using independent t- tests). Error bars 

are SEM. When treating all values of instability per τ per cohort as separate distributions, the mean instability in the older 

cohort is significantly greater than that of the younger cohort (mean difference = 0.011, p < 0.001, t = 10.277, tested using 

an independent t- test). (D) Baseline- corrected brain network instability (window size = 10 seconds) is significantly greater 

after acute administration of glucose when compared to acute administration of ketones in the broad (1– 40 Hz) band of 

EC, resting- state EEG scans performed on a cohort of young, healthy individuals (N = 36, µage = 26.9 ±11.2 years) for 

15 out of 40 possible values of τ, with p- values ranging from p = 0.009  to p = 0.047 and t- values ranging from t = 2.055 

to t = 2.744 (all tested using paired t- tests). The stabilization of brain networks under ketosis was not dominated by a 

particular frequency band. Baseline correction for both metrics was performed by subtracting the pre- bolus (fasting) 

condition value from the post- bolus (either glucose or D-  βHB) condition value within each respective metric. Error bars 

are SEM. When treating all values of instability per τ per condition as separate distributions, the mean ∆ instability in the 

GLC– Fast condition is significantly greater than that of the D-  βHB– Fast condition (mean difference = 0.032, p < 0.001, 

t = 33.031, tested using a paired t- test).
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made the choice of window size to be 10  seconds for 

subsequent analyses. Furthermore, to ensure the increase 

in instability with age seen in the Leipzig LEMON dataset 

was not due to motion (as subject motion tends to 

increase with age ( Seto  et al.,  2001)), we examined the 

relationship between the mean frame displacements (in 

mm) measured during the subjects’ corresponding rsfMRI 

scan and their brain network instability (τ = 1, window 

size = 10 seconds) within the broad (1- 40 Hz) frequency 

band of the subjects’ EC, rsEEG scan. We found no cor-

relation between these two variables.

2.6. Statistics

Two- sided independent t- tests were used to determine 

whether mean GFS and instability differed significantly 

between the younger and older cohorts of the Leipzig 

LEMON rsEEG dataset within frequency bands (for GFS, 

Fig. 2A) and within τ values (for instability, Fig. 2C). Two- 

sided paired t- tests were used to determine whether 

mean GFS and instability differed significantly between 

the glucose and ketone conditions within frequency 

bands (for GFS, Fig. 2B) and within τ values (for instabil-

ity, Fig. 2D). As instability values per τ (Fig. 2C, D) are by 

definition not independent, no multiple- comparisons cor-

rection was applied to these results. All other statistics 

(Fig.  2A, B) were corrected for multiple comparisons 

using the Benjamini– Hochberg procedure with a signifi-

cance level set at α = 0.05.

2.7. Conductance- based neural mass model:  

single neural mass

Using the physiological and mathematical boundary 

conditions discussed in  Chesebro  et al.  (2023) to inform 

the model, the model equations are constructed as a 

system of three variables: mean excitatory membrane 

voltage V (t), mean inhibitory membrane voltage Z(t), and 

the proportion of potassium channels open at a given 

time W (t). Note that while V (t), Z(t), and W (t) are all 

time- dependent, we omit this dependence in the following 

equations for ease of reading. Given this understanding, 

the neural mass model is defined as:

 

dV

dt
= − gCa + rNMDAaeeQV{ }mCa V −VCa( )

− gNamNa + aeeQV{ } V −VNa( )
−gKW V −VK( )− gL V −VL( )
−aieZQZ + aneI0  (5)

 

dZ

dt
= b ani I0 + aeiVQV( )

 
(6)

 

dW

dt
= φmK −W

τK  

(7)

In these equations, QV and QZ are the mean firing rates 

for excitatory and inhibitory cell populations, respectively. 

These are computed as

 
QV = 0.5QVmax

1+ tanh
V −VT
δV

⎛
⎝⎜

⎞
⎠⎟  

(8)

 
QZ = 0.5QZmax

1+ tanh
V −VZ
δZ

⎛
⎝⎜

⎞
⎠⎟  

(9)

The individual ion channel gating functions (mNa, mK 

and mCa) take the form

 
mion = 0.5 1+ tanh

V −Tion
δion

⎛
⎝⎜

⎞
⎠⎟  

(10)

where mion is the fraction of voltage- dependent channels 

open at any given time. Default values and descriptions 

for all constants in these equations are given in Table 1. 

Note that parameter values are unit- less to scale to a rea-

sonable modeling range (i.e., V,Q ∈ −1,1( ) and W ∈ 0,1( )), 
and the integration time step dt  is in milliseconds.

We note that the three ions of interest are modeled in 

three different manners. Sodium serves as the dominant 

shape determinant of the neural mass spiking activity as 

it has the highest net positive conductance coupled to 

its ion channel gating function. Calcium serves as a sec-

ondary support of the spiking activity, providing some of 

the amplitude to the spiking activity. However, because the 

calcium gating function is also coupled to the excitatory 

population firing rate and the ratio of NMDA/AMPA 

receptors, calcium more importantly provides feedback 

to the neural mass firing rate. Finally, due to its more 

detailed modeling as a separate differential equation, 

potassium plays a unique role in determining the fre-

quency of spiking activity (at larger reversal potentials) 

and the duration of the refractory period (at smaller 

reversal potentials). As a consequence of this extra mod-

eling step, potassium also has a different ion gradient 

landscape than sodium and calcium.

While the excitatory (pyramidal) cell population V t( ) is 

modeled using the ion dynamics described above, the 

inhibitory population Z t( ) is a purely phenomenological 

model, receiving only the excitatory input via aei  and a 

background current via ani . Although this serves to model 

the relationship between inhibitory interneurons and the 

excitatory pyramidal cells (as in  Larter  et  al.  (1999)), it 

does imply a caveat when interpreting the effects of 

altered ion gradients.
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Since the model is a hybrid of a biophysically detailed 

excitatory neuron population and a phenomenological 

inhibitory population, claims regarding how closely this 

model resembles true biological neurons are necessarily 

constrained. However, the advantage of this neural mass 

model is that it produces physiologically interesting 

dynamics (e.g., burst- spiking) that are more common in 

next- generation neural mass models ( Taher  et  al.,  2022) 

than in traditional (e.g., Wilson- Cowan) oscillatory models.

2.8. Conductance- based neural mass model: 

coupled neural masses

Equations 5– 7 describe a single neural mass comprising 

two subnetworks. Coupling between pairs of neural masses 

(i and j ) can also be achieved through connection terms:

 
cQi

network
= c

j∑ ui, jQVj

∑ui, j  
(11)

Here, c is the coupling constant, QVj
 is the mean excit-

atory firing rate of region j, and ui, j  is the strength of 

connection between regions i and j. To ensure that over-

all input current is approximately constant, the balancing 

between interregional and self- coupling takes the form 

of competitive agonism, where c is the weight of interre-

gional coupling and 1− c( ) is self- coupling. The associ-

ated multi- regional neural mass model equations are 

then given by:

dVi
dt

= − {gCa + rNMDAaee[ 1− c( )QV

+cQi
network ]}mCa Vi −VCa( )

− gNamNa + aee 1− c( )QV + cQi
network⎡⎣ ⎤⎦{ }

Vi −VNa( )− gKWi Vi −VK( )− gL Vi −VL( )
− aieZ iQZ + aneI0  (12)

 

dZ i

dt
= b ani I0 + aeiViQV( )

 
(13)

 

dWi

dt
= φmK −Wi

τK  
(14)

In this work, we use Equations  12– 14, varying the 

microscale parameters (Table 1) therein to observe the 

effects on macroscale neural synchrony. Following prior 

work ( Endo  et  al.,  2020), we computed a 78 region 

whole- brain model. To determine connectivity between 

regions, we used a DTI- derived structural connectivity map 

averaged across healthy individuals. This connectivity 

has previously been shown to produce simulations with 

the conductance- based neural mass model used in this 

work that are consistent with both EEG and fMRI scale 

measurements ( Endo  et al.,  2020). This map is the same 

as in  Endo  et  al.  (2020), having been provided by the 

authors as supplemental data. This is the standard 

approach employed by toolboxes such as The Virtual 

Brain ( Sanz  Leon  et al.,  2013).

3. RESULTS

3.1. Age modulates neural signaling

Using the Leipzig LEMON rsEEG dataset, a comparison 

of Global Field Synchronization (GFS, see Methods) 

between the younger (aged 20 to 40  years, N  =  138) 

and older (aged 55 to 80 years, N = 63) cohorts within 

classically defined frequency bands (δ (1– 3.5 Hz), θ  (4– 

7.5 Hz), α (8– 13 Hz), β (14– 30 Hz), low γ  (30– 40 Hz), and 

broad (1– 40  Hz), ( da  Silva,  2013)) showed age to 

decrease neural synchrony in the broad, θ , α, and low γ  

bands (Fig. 2A, Table 2). Likewise, older brains showed 

destabilization of their networks (Fig. 2C).

3.2. Metabolism modulates neural signaling

Changes in GFS values (ΔGFS) for the metabolic study 

cohort (N = 36, µage =  26.9 ± 11.2 years) were calculated 

by subtracting the average fasting condition GFS from 

Table 2. Descriptive statistics of data underlying 

Figures 2A and 2B.

Lifespan dataset (N = 201)

Band t p (corr.) Mean Difference

Broad - 3.260 0.004 - 0.0126
δ - 3.001 0.005 - 0.0130
θ - 1.097 0.274 - 0.004
α - 5.119 4.33e- 06 - 0.018
β - 2.965 0.005 - 0.014

Low γ - 1.923 0.067 - 0.011

Metabolic dataset (N = 36)

Band t p (corr.) Mean difference

Broad 2.659 0.018 0.029
δ 2.763 0.018 0.035
θ 3.184 0.018 0.036
α 2.693 0.018 0.028
β 2.331 0.031 0.027

Low γ 2.235 0.032 0.027

For the Lifespan Dataset, independent t- tests (with FDR correction) 
were performed to test for mean differences between the older 
(55– 80 YO) and younger (20– 40 YO) cohorts. For the Metabolic 
Dataset, paired t- tests (with FDR correction) were performed to 
test for mean differences in ΔGFS between the D-  βHB– Fast and 
GLC– Fast conditions.
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the average experimental (glycolytic or ketotic) condition 

GFS within each band. Comparing the pre-  and post- 

bolus synchrony values showed decreased synchrony 

after administration of the glucose bolus and increased 

synchrony after administration of the ketone bolus for all 

frequency bands in the rsEEG eyes- open (EO) condition 

(Fig.  2B, Table  2). Following glucose challenge, brain 

networks destabilized; in contrast, following ketone chal-

lenge, brain networks stabilized (Fig. 2D) in rsEEG. Both 

results were observed in the broad (1– 40 Hz) frequency 

band of eyes- closed (EC) rsEEG.

3.3. Identifying candidate mechanisms using 

multiscale modeling

We next sought to identify the mechanistic basis for age 

and metabolism- related changes observed in rsEEG 

GFS. To do so, we used a bottom- up approach by vary-

ing microscale parameters in the neural mass model to 

generate 2082 simulated rsEEG signals, from which we 

computed GFS and instability. We observed high sensi-

tivity of GFS to changes in all (Ca2+, K+, and Na+) Nernst 

potentials, Ca2+ and K+ channel conductances, and 

excitatory → inhibitory synaptic strength (Fig. 3B). Only 

variation of the K+ Nernst potential within this model 

explained both the magnitude of the changes seen with 

older age (2.5% decrease) and following D-  βHB con-

sumption (5.6% increase) in broadband GFS (Fig. 3C). 

Sensitivity of brain network instability to the parameter 

changes was binary: either it was not sensitive to 

changes in parameters, or network instability changed in 

non- consistent ways and with large magnitudes that did 

not reflect the smaller magnitudes seen in human data 

(Fig. S1). Furthermore, brain network instability was found 

to be uncorrelated with GFS within the broad (1- 40 Hz) 

frequency band of Leipzig’s LEMON rsEEG dataset 

(p = 0.090, r2 = 0.014, N = 201).

4. DISCUSSION

It has been hypothesized that brain aging results from an 

“energy crisis” in the brain, in which decreased glucose 

oxidation capability leads to constrained ATP availability 

for neurons ( Jensen  et al.,  2020;  Hoyer,  1982), disrupting 

neuronal signaling and thus dysregulating the neural cir-

cuits that underlie cognitive processing. The fact that 

metabolism modulated both our EEG-  and fMRI- derived 

biomarkers for brain aging provides robust support for 

this hypothesis. Our findings, based on a conductance- 

based neural mass model, suggest that the dysregulation 

of K+ ion gradients, crucially governed by ATP, is the pri-

mary driver of the observed changes in brain- wide EEG 

synchronization.

Dysfunction of Na+/K+- ATPase causes depolarization 

of the membrane potential, and thus desynchronization 

between brain regions ( Chesebro  et al.,  2023). Ion pumps 

are a sink of metabolic resources in the brain, and thus 

Na+/K+- ATP- ase dysregulation is also expected under 

metabolic constraints, which would further exacerbate 

ion gradient dysregulation ( Baeza- Lehnert  et  al.,  2019). 

Changes in potassium reversal potential have been 

implicated in a number of different age- related processes 

( Scott  et al.,  1988;  Sesti  et al.,  2010). The depletion of the 

potassium gradient can stem from damage to potassium 

channels by reactive oxygen species ( Sesti  et al.,  2010) 

or from calcium signaling dysregulation ( Farajnia  et  al., 

 2015;  Power  et al.,  2002), or by a combination of accu-

mulated insults, leading to impairment.

This conductance- based neural mass model provides 

a biophysically detailed simulation of ion dynamics while 

allowing for a whole- brain simulation by abstracting away 

population details. While this derivation preserves local 

ion dynamics ( Larter  et al.,  1999), it does not fully capture 

emergent properties of neural populations (e.g., the model 

preserves cortical wave dynamics ( Roberts  et al.,  2019), 

but not power spectra). We found that GFS was sensitive 

to changes in the biophysical model parameters (Fig. 3B), 

reflecting changes that were on the same scale of mag-

nitude as the changes in GFS seen in the human (non- 

simulated) data. However, the absolute magnitude of the 

spectra produced using our modeling approach did not 

match that of spectra produced from our human rsEEG 

data. Furthermore, brain network instability was either 

not sensitive at all to changes in parameters, or for those 

parameters that did alter network instability, changed it in 

non- consistent ways and with large magnitudes of change 

that did not accurately reflect the smaller magnitudes 

seen in human data (Fig. S1). These limitations may be 

due to the inability of this neural mass model to capture 

certain emergent properties of neural populations and 

have been partially addressed in next- generation neural 

mass models ( Byrne  et al.,  2020). Brain network instabil-

ity and neural synchrony were found to be uncorrelated, 

implying the two metrics quantify distinct neural features, 

of which the features of the latter are better captured by 

the conductance- based neural mass model used in this 

work. There are several potential advances in the field 

which may lead to better capturing of both neural features. 

Some examples are the incorporation of networks of firing 

neurons that model ion and metabolic kinetics to existing 

models ( Dutta  et al.,  2023), including additional metabolic 

variables when considering the BOLD signal fluctuations 

(as is becoming common in systems pharmacology 

models ( Spiros  et  al.,  2014)), and the development of 

next- generation neural mass models that follow a more 

“human- like” power spectrum ( Byrne  et al.,  2020). As of 
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yet, however, these models do not fully incorporate the 

same biophysical detail coupled with scalability as this 

conductance- based neural mass model does. Fusing 

these approaches is a topic of current interest in the field 

of computational neuroscience.

Prior literature has established ion gradient regulation to 

be the most significant energy sink within the brain 

( Baeza- Lehnert  et al.,  2019;  Meyer  et al.,  2022). This is con-

sistent with our results linking emergent whole- brain net-

work effects to ion gradient regulation. Our further isolation 

of the consistent candidate mechanisms to K+ Nernst 

potentials is also in agreement with in vitro experimental 

evidence that ketosis directly impacts neuronal K+ regula-

tion ( Ma  et al.,  2007). In conclusion, our findings indicate 

promising avenues for future research, directly examining 

the association between age- related hypometabolism and 

disrupted neuronal K+ gradients, and their reversal by keto-

sis. Furthermore, the experimental validation of our findings 

highlights the role of generative models, guided by clinical 

neuroimaging, in connecting molecularly targeted thera-

pies to patient outcomes while simultaneously showcasing 

their utility in mitigating confirmation bias by considering 

multiple hypotheses simultaneously.

DATA AND CODE AVAILABILITY

Data and code are available at our website: https://www 

. lcneuro . org / data / eeg. Leipzig LEMON data are publicly 

Fig. 3. Variation of the K+ Nernst potential within a conductance- based neural mass model uniquely predicts changes 

in Global Field Sychrony (GFS) seen in aging and following acute administration of D-  βHB. (A) An example of the GFS 

spectra for simulated EEG data generated using a conductance- based neural mass model. The color indicates the value 

of the Na+ Nernst potential used in the simulation. (B) Individually varying parameters within the model above and below 

their default values leads to changes in GFS. Parameters varied are color- coded by class (Nernst potentials, channel 

conductances, and excitatory → excitatory/inhibitory synaptic strengths). (C) Heatmap of the relative parameter change 

needed to replicate the magnitude of changes seen in broadband GFS (Fig. 2A, B).
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available at http://fcon _ 1000 . projects . nitrc . org / indi / retro 

/ MPI _ LEMON . html.

AUTHOR CONTRIBUTIONS

L.R.M.- P., C.W., and K.C. designed research. H.v.N. and 

C.P. performed research and collected data. H.v.N. ana-

lyzed data. H.v.N., A.G.C., and H.H.S. performed compu-

tational modeling. K.C. contributed reagents. H.v.N., 

L.R.M.- P., and A.G.C. wrote the paper. H.v.N., A.G.C., 

K.C., H.H.S., C.W., and L.R.M.- P. edited the paper.

FUNDING

The research described in this paper was funded by the 

White House Brain Research Through Advancing Innova-

tive Technologies (BRAIN) Initiative (grants NSFNCS- FR 

1926781 to L.R.M.- P.) and the Baszucki Brain Research 

Fund, United States (L.R.M.- P.). CW acknowledges sup-

port from the Marie- Josée Kravis Fellowship in Quantita-

tive Biology. A.G.C. was also supported by the NIHGM 

MSTP Training Award, United States T32- GM008444.

DECLARATION OF COMPETING INTEREST

The intellectual property covering the uses of ketone 

bodies and ketone esters is owned by BTG Plc., Oxford 

University Innovation Ltd., and the NIH. K.C., as inventor, 

will receive a share of the royalties under the terms pre-

scribed by each institution. K.C. is a director of TΔS Ltd., 

a company spun out of the University of Oxford to 

develop products based on the science of ketone bodies 

in human nutrition.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available with 

the online version here: https://doi . org / 10 . 1162 / imag _ a 

_ 00163.

REFERENCES

Achermann, P., Rusterholz, T., Dürr, R., König, T., & Tarokh, 
L. (2016). Global field synchronization reveals rapid eye 
movement sleep as most synchronized brain state in the 
human EEG. Royal Society Open Science, 3(10), 160201. 
https://doi . org / 10 . 1098 / rsos . 160201

Antal, B., McMahon, L. P., Sultan, S. F., Lithen, A., Wexler, 
D. J., Dickerson, B., Ratai, E.- M., & Mujica- Parodi, L. R. 
(2022). Type 2 diabetes mellitus accelerates brain aging 
and cognitive decline: Complementary findings from UK 
Biobank and meta- analyses. Elife, 11, e73138. https://
doi . org / 10 . 7554 / elife . 73138

Babayan, A., Erbey, M., Kumral, D., Reinelt, J. D., Reiter, 
A. M., Röbbig, J., Schaare, H. L., Uhlig, M., Anwander, 
A., Bazin, P.- L., Horstmann, A., Lampe, L., Nikulin, 
V. V., Okon- Singer, H., Preusser, S., Pampel, A., Rohr, 

C. S., Sacher, J., Thöne- Otto, A., … Villringer, A. (2019). 
A mind- brain- body dataset of MRI, EEG, cognition, 
emotion, and peripheral physiology in young and old 
adults. Scientific Data, 6(1), 1–21. https://doi . org / 10 . 1038 
/ sdata . 2018 . 308

Baeza- Lehnert, F., Saab, A. S., Gutiérrez, R., Larenas, V., 
Díaz, E., Horn, M., Vargas, M., Hösli, L., Stobart, J., 
Hirrlinger, J., Weber, B., & Barros, L. F. (2019). Non- 
canonical control of neuronal energy status by the Na+ 
pump. Cell Metabolism, 29(3), 668–680. https://doi . org 
/ 10 . 1016 / j . cmet . 2018 . 11 . 005

Baker, L. D., Cross, D. J., Minoshima, S., Belongia, D., 
Watson, G. S., & Craft, S. (2011). Insulin resistance 
and Alzheimer- like reductions in regional cerebral 
glucose metabolism for cognitively normal adults 
with prediabetes or early type 2 diabetes. Archives 
of Neurology, 68(1), 51–57. https://doi . org / 10 . 1001 
/ archneurol . 2010 . 225

Barañano, K. W., & Hartman, A. L. (2008). The ketogenic 
diet: Uses in epilepsy and other neurologic illnesses. 
Current Treatment Options in Neurology, 10(6), 410–419. 
https://doi . org / 10 . 1007 / s11940 - 008 - 0043 - 8

Beeri, M. S., Goldbourt, U., Silverman, J. M., Noy, S., 
Schmeidler, J., Ravona- Springer, R., Sverdlick, A., & 
Davidson, M. (2004). Diabetes mellitus in midlife and the 
risk of dementia three decades later. Neurology, 63(10), 
1902–1907. https://doi . org / 10 . 1212 / 01 . wnl . 0000144278 
. 79488 . dd

Breakspear, M., Terry, J. R., & Friston, K. J. (2003). 
Modulation of excitatory synaptic coupling facilitates 
synchronization and complex dynamics in a biophysical 
model of neuronal dynamics. Network: Computation in 
Neural Systems, 14(4), 703–732. https://doi . org / 10 . 1088 
/ 0954 - 898x / 14 / 4 / 305

Byrne, Á., O’Dea, R. D., Forrester, M., Ross, J., & 
Coombes, S. (2020). Next- generation neural mass and 
field modeling. Journal of Neurophysiology, 123(2), 
726–742. https://doi . org / 10 . 1152 / jn . 00406 . 2019

Cauli, B., Dusart, I., & Li, D. (2023). Lactate as a 
determinant of neuronal excitability, neuroenergetics and 
beyond. Neurobiology of Disease, 184, 106207. https://
doi . org / 10 . 1016 / j . nbd . 2023 . 106207

Chesebro, A. G., Mujica- Parodi, L. R., & Weistuch, C. 
(2023). Ion gradient- driven bifurcations of a multi- scale 
neuronal model. Chaos, Solitons & Fractals, 167, 113120. 
https://doi . org / 10 . 1016 / j . chaos . 2023 . 113120

Cunnane, S. C., Courchesne- Loyer, A., St- Pierre, V., 
Vandenberghe, C., Pierotti, T., Fortier, M., Croteau, E., 
& Castellano, C.- A. (2016). Can ketones compensate 
for deteriorating brain glucose uptake during aging? 
Implications for the risk and treatment of Alzheimer’s 
disease. Annals of the New York Academy of Sciences, 
1367(1), 12–20. https://doi . org / 10 . 1111 / nyas . 12999

da Silva, F. L. (2013). EEG and MEG: Relevance to 
neuroscience. Neuron, 80(5), 1112–1128. https://doi . org 
/ 10 . 1016 / j . neuron . 2013 . 10 . 017

Delorme, A., & Makeig, S. (2004). EEGLAB: An open 
source toolbox for analysis of single- trial EEG dynamics 
including independent component analysis. Journal of 
Neuroscience Methods, 134(1), 9–21. https://doi . org / 10 
. 1016 / j . jneumeth . 2003 . 10 . 009

Dutta, S., Iyer, K. K., Vanhatalo, S., Breakspear, M., 
& Roberts, J. A. (2023). Mechanisms underlying 
pathological cortical bursts during metabolic depletion. 
Nature Communications, 14(1), 4792. https://doi . org / 10 
. 1038 / s41467 - 023 - 40437 - 0

Endo, H., Hiroe, N., & Yamashita, O. (2020). Evaluation 
of resting spatio- temporal dynamics of a neural 
mass model using resting fMRI connectivity and EEG 



13

H. van Nieuwenhuizen, A.G. Chesebro, C. Polizu et al. Imaging Neuroscience, Volume 2, 2024

microstates. Frontiers in Computational Neuroscience, 
13, 91. https://doi . org / 10 . 3389 / fncom . 2019 . 00091

Farajnia, S., Meijer, J. H., & Michel, S. (2015). Age- related 
changes in large- conductance calcium- activated 
potassium channels in mammalian circadian clock 
neurons. Neurobiology of Aging, 36(6), 2176–2183. 
https://doi . org / 10 . 1016 / j . neurobiolaging . 2014 . 12 . 040

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., 
Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., 
Parkkonen, L., & Hämäläinen, M. S. (2013). MEG and EEG 
data analysis with MNE- Python. Frontiers in Neuroscience, 
7, 267. https://doi . org / 10 . 3389 / fnins . 2013 . 00267

Henderson, S. T., Vogel, J. L., Barr, L. J., Garvin, F., Jones, 
J. J., & Costantini, L. C. (2009). Study of the ketogenic 
agent ac- 1202 in mild to moderate alzheimer’s disease: 
A randomized, double- blind, placebo- controlled, 
multicenter trial. Nutrition & Metabolism, 6(1), 1–25. 
https://doi . org / 10 . 1186 / 1743 - 7075 - 6 - 31

Hoyer, S. (1982). The abnormally aged brain. its blood flow 
and oxidative metabolism. A review— Part ii. Archives of 
Gerontology and Geriatrics, 1(3), 195–207. https://doi . org 
/ 10 . 1016 / 0167 - 4943(82)90021 - 8

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, 
P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, 
J. H., Glover, G. H., Gonzalez- Castillo, J., Handwerker, 
D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de 
Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). 
Dynamic functional connectivity: Promise, issues, and 
interpretations. Neuroimage, 80, 360–378. https://doi . org 
/ 10 . 1016 / j . neuroimage . 2013 . 05 . 079

Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, 
J. (2020). Effects of ketone bodies on brain metabolism 
and function in neurodegenerative diseases. International 
Journal of Molecular Sciences, 21(22), 8767. https://doi 
. org / 10 . 3390 / ijms21228767

Karagiannis, A., Gallopin, T., Lacroix, A., Plaisier, F., 
Piquet, J., Geoffroy, H., Hepp, R., Naudé, J., Le Gac, 
B., Egger, R., Lambolez, B., Li, D., Rossier, J., Staiger, 
J. F. Imamura, H., Seino, S., Roeper, J., & Cauli, B. 
(2021). Lactate is an energy substrate for rodent cortical 
neurons and enhances their firing activity. Elife, 10, 
e71424. https://doi . org / 10 . 7554 / elife . 71424

König, T., Lehmann, D., Saito, N., Kuginuki, T., Kinoshita, 
T., & Koukkou, M. (2001). Decreased functional 
connectivity of EEG theta- frequency activity in first- 
episode, neuroleptic- naıve patients with schizophrenia: 
Preliminary results. Schizophrenia Research, 50(1– 2), 
55–60. https://doi . org / 10 . 1016 / s0920 - 9964(00)00154 - 7

König, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, 
L., John, E., & Jelic, V. (2005). Decreased EEG 
synchronization in Alzheimer’s disease and mild cognitive 
impairment. Neurobiology of Aging, 26(2), 165–171. 
https://doi . org / 10 . 1016 / j . neurobiolaging . 2004 . 03 . 008

Krebs, H. (1960). Biochemical aspects of ketosis. Journal 
of the Royal Society of Medicine, 53(2). https://doi . org / 10 
. 1177 / 003591576005300201

Kula, B., Antal, B., Weistuch, C., Gackière, F., Barre, A., 
Velado, V., Hubbard, J. M., Kukley, M., Mujica- Parodi, 
L. R., & Smith, N. A. (2024). D- β- hydroxybutyrate 
stabilizes hippocampal ca3- ca1 circuit during acute 
insulin resistance. bioRxiv. https://doi . org / 10 . 1101 / 2023 
. 08 . 23 . 554428

Larter, R., Speelman, B., & Worth, R. M. (1999). A 
coupled ordinary differential equation lattice model 
for the simulation of epileptic seizures. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 9(3), 
795–804. https://doi . org / 10 . 1063 / 1 . 166453

Ma, W., Berg, J., & Yellen, G. (2007). Ketogenic diet 
metabolites reduce firing in central neurons by opening 

K(ATP) channels. Journal of Neuroscience, 27(14), 3618–
3625. https://doi . org / 10 . 1523 / jneurosci . 0132 - 07 . 2007

Maalouf, M., Sullivan, P. G., Davis, L., Kim, D. Y., & Rho, 
J. M. (2007). Ketones inhibit mitochondrial production 
of reactive oxygen species production following 
glutamate excitotoxicity by increasing NADH oxidation. 
Neuroscience, 145(1), 256–264. https://doi . org / 10 . 1016 / j 
. neuroscience . 2006 . 11 . 065

Meyer, D. J., Díaz- García, C. M., Nathwani, N., Rahman, M., 
& Yellen, G. (2022). The Na+/K+ pump dominates control 
of glycolysis in hippocampal dentate granule cells. Elife, 
11, e81645. https://doi . org / 10 . 7554 / elife . 81645

Michels, L., Lüchinger, R., Koenig, T., Martin, E., & 
Brandeis, D. (2012). Developmental changes of bold 
signal correlations with global human EEG power and 
synchronization during working memory. PLoS One, 7(7), 
e39447. https://doi . org / 10 . 1371 / journal . pone . 0039447

Mujica- Parodi, L. R., Amgalan, A., Sultan, S. F., Antal, B., 
Sun, X., Skiena, S., Lithen, A., Adra, N., Ratai, E.- M., 
Weistuch, C., Govindarajan, S. T., Strey, H. H., Dill, K. A., 
Stufflebeam, S. M., Veech, R. L., & Clarke, K. (2020). 
Diet modulates brain network stability, a biomarker for 
brain aging, in young adults. Proceedings of the National 
Academy of Sciences, 117(11), 6170–6177. https://doi 
. org / 10 . 1073 / pnas . 1913042117

Nicolaou, N., & Georgiou, J. (2014). Global field synchrony 
during general anaesthesia. British Journal of 
Anaesthesia, 112(3), 529–539. https://doi . org / 10 . 1093 
/ bja / aet350

Oostenveld, R., & Praamstra, P. (2001). The five percent 
electrode system for high- resolution EEG and ERP 
measurements. Clinical Neurophysiology, 112(4), 713–
719. https://doi . org / 10 . 1016 / s1388 - 2457(00)00527 - 7

Peirce, J. W. (2007). Psychopy— Psychophysics software 
in Python. Journal of Neuroscience Methods, 162(1– 2), 
8–13. https://doi . org / 10 . 1016 / j . jneumeth . 2006 . 11 . 017

Pion- Tonachini, L., Kreutz- Delgado, K., & Makeig, S. 
(2019). Iclabel: An automated electroencephalographic 
independent component classifier, dataset, and website. 
NeuroImage, 198, 181–197. https://doi . org / 10 . 1016 / j 
. neuroimage . 2019 . 05 . 026

Power, J. M., Wu, W. W., Sametsky, E., Oh, M. M., & 
Disterhoft, J. F. (2002). Age- related enhancement of the 
slow outward calcium- activated potassium current in 
hippocampal CA1 pyramidal neurons in vitro. Journal 
of Neuroscience, 22(16), 7234–7243. https://doi . org / 10 
. 1523 / jneurosci . 22 - 16 - 07234 . 2002

Roberts, J. A., Gollo, L. L., Abeysuriya, R. G., Roberts, G., 
Mitchell, P. B., Woolrich, M. W., & Breakspear, M. (2019). 
Metastable brain waves. Nature Communications, 10(1), 
1–17. https://doi . org / 10 . 1038 / s41467 - 019 - 08999 - 0

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, 
L., Mersmann, J., McIntosh, A. R., & Jirsa, V. (2013). 
The virtual brain: A simulator of primate brain network 
dynamics. Frontiers in Neuroinformatics, 7, 10. https://
doi . org / 10 . 3389 / fninf . 2013 . 00010

Sapolsky, R. M. (1986). Glucocorticoid toxicity in the 
hippocampus: Reversal by supplementation with brain 
fuels. Journal of Neuroscience, 6(8), 2240–2244. https://
doi . org / 10 . 1523 / jneurosci . 06 - 08 - 02240 . 1986

Sato, K., Kashiwaya, Y., Keon, C., Tsuchiya, N., King, 
M., Radda, G., Chance, B., Clarke, K., & Veech, R. L. 
(1995). Insulin, ketone bodies, and mitochondrial energy 
transduction. The FASEB Journal, 9(8), 651–658. https://
doi . org / 10 . 1096 / fasebj . 9 . 8 . 7768357

Scott, B., Leu, J., & Cinader, B. (1988). Effects of aging on 
neuronal electrical membrane properties. Mechanisms of 
Ageing and Development, 44(3), 203–214. https://doi . org 
/ 10 . 1016 / 0047 - 6374(88)90022 - x



14

H. van Nieuwenhuizen, A.G. Chesebro, C. Polizu et al. Imaging Neuroscience, Volume 2, 2024

Sesti, F., Liu, S., & Cai, S.- Q. (2010). Oxidation of potassium 
channels by ROS: A general mechanism of aging and 
neurodegeneration? Trends in Cell Biology, 20(1), 45–51. 
https://doi . org / 10 . 1016 / j . tcb . 2009 . 09 . 008

Seto, E., Sela, G., McIlroy, W. E., Black, S. E., Staines, 
W. R., Bronskill, M. J., McIntosh, A. R., & Graham, S. J. 
(2001). Quantifying head motion associated with motor 
tasks used in fMRI. Neuroimage, 14(2), 284–297. https://
doi . org / 10 . 1006 / nimg . 2001 . 0829

Soares, A. F., Nissen, J. D., Garcia- Serrano, A. M., 
Nussbaum, S. S., Waagepetersen, H. S., & Duarte, J. M. 
(2019). Glycogen metabolism is impaired in the brain 
of male type 2 diabetic Goto- Kakizaki rats. Journal of 
Neuroscience Research, 97(8), 1004–1017. https://doi 
. org / 10 . 1002 / jnr . 24437

Spiros, A., Roberts, P., & Geerts, H. (2014). A computer- 
based quantitative systems pharmacology model of 
negative symptoms in schizophrenia: Exploring glycine 
modulation of excitation- inhibition balance. Frontiers 
in Pharmacology, 5, 229. https://doi . org / 10 . 3389 / fphar 
. 2014 . 00229

Sweeney, G., & Klip, A. (1998). Regulation of the Na+/K+- 
atpase by insulin: Why and how? Insulin Action, 182, 
121–133. https://doi . org / 10 . 1007 / 978 - 1 - 4615 - 5647 - 3 _ 13

Taher, H., Avitabile, D., & Desroches, M. (2022). Bursting 
in a next generation neural mass model with synaptic 

dynamics: A slow– fast approach. Nonlinear Dynamics, 
108, 4261–4285. https://doi . org / 10 . 1007 / s11071 - 022 
- 07406 - 6

Valdebenito, R., Ruminot, I., Garrido- Gerter, P., 
Fernández- Moncada, I., Forero- Quintero, L., Alegría, 
K., Becker, H. M., Deitmer, J. W., & Barros, L. F. (2016). 
Targeting of astrocytic glucose metabolism by beta- 
hydroxybutyrate. Journal of Cerebral Blood Flow & 
Metabolism, 36(10), 1813–1822. https://doi . org / 10 
. 1177 / 0271678x15613955

VanItallie, T. B., Nonas, C., Di Rocco, A., Boyar, K., Hyams, 
K., & Heymsfield, S. (2005). Treatment of Parkinson 
disease with diet- induced hyperketonemia: A feasibility 
study. Neurology, 64(4), 728–730. https://doi . org / 10 . 1212 
/ 01 . wnl . 0000152046 . 11390 . 45

Weistuch, C., Mujica- Parodi, L. R., Razban, R. M., Antal, B., 
van Nieuwenhuizen, H., Amgalan, A., & Dill, K. A. (2021). 
Metabolism modulates network synchrony in the aging 
brain. Proceedings of the National Academy of Sciences, 
118(40), e2025727118. https://doi . org / 10 . 1073 / pnas 
. 2025727118

Zilberter, Y., & Zilberter, M. (2017). The vicious circle of 
hypometabolism in neurodegenerative diseases: Ways 
and mechanisms of metabolic correction. Journal of 
Neuroscience Research, 95(11), 2217–2235. https://doi 
. org / 10 . 1002 / jnr . 24064


