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ABSTRACT

Aging is associated with impaired signaling between brain regions when measured using resting-state functional
magnetic resonance imaging (fMRI). This age-related destabilization and desynchronization of brain networks
reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic
basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets
acquired from resting-state EEG (Lifespan: standard diet, 20-80 years, N = 201; Metabolic: individually weight-
dosed and calorically-matched glucose and ketone ester challenge, W, = 26.9 £11.2 years, N = 36). Then, using
a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters con-
sistent with our clinical data. Together, our results implicate potassium (K*) gradient dysregulation as a mechanism
for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with
direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain
activity and cellular-level mechanisms.
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1. INTRODUCTION efficiency from 10% to 24% when added to a perfusion of
glucose (Sato et al., 1995). Moreover, ketone uptake
bypasses the insulin-dependent glucose transporter
GLUT4, and thus can be metabolized as fuel even after
neurons become insulin resistant (Sapolsky, 1986).
Insulin-independent metabolic pathways may be criti-
metabolism may confer important neurological benefits  ca in the context of brain aging, as Type 2 diabetes mel-
(Barafiano & Hartman, 2008; Henderson et al., 2009; litus and its associated decrease in GLUT4-dependent
Maalouf et al., 2007; Vanltallie et al., 2005). D-3HB has neuronal glucose utilization are linked to age-related
been found to increase ATP production and cardiac brain hypometabolism (Baker et al., 2011; Soares et al.,

Endogenous ketone bodies, including D-B-hydroxybuty-
rate (D-BHB), are produced by the liver and can be utilized
by cells as fuel when glucose is not readily available (Krebs,
1960). Accumulating evidence suggests that ketone
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2019) and cognitive decline (Antal et al., 2022; Beeri
et al., 2004). Even in the face of impaired glucose metab-
olism, aging brains can still metabolize ketone bodies
(Cunnane et al., 2016). Furthermore, ketones also influ-
ence cerebral metabolism by modulating glucose uptake
in astrocytes (Valdebenito et al., 2016) and directly affect-
ing neuronal excitability (Cauli et al., 2023; Karagiannis
et al., 2021). Thus, supplementing ketone bodies as an
alternative fuel source may have the potential to slow or
arrest neurodegeneration (Zilberter & Zilberter, 2017).

Recent findings provide evidence supporting the ability
of exogenous D-BHB to ameliorate mechanisms and
biomarkers associated with brain aging. At the spiking-
neuron scale, insulin and ketone bodies modulate
neuronal excitability through the regulation of K* ion gra-
dients (Ma et al., 2007; Sweeney & Klip, 1998). At the cir-
cuit scale, direct application of D-BHB to the mouse
hippocampal CA3-CA1 circuit reverses insulin resistance-
induced deficits in neuronal excitability and axon conduc-
tion velocity, showing improvements that exceeded even
baseline (control) values (Kula et al., 2024). Finally, at the
whole-brain scale, aging has been linked to the destabili-
zation (Mujica-Parodi et al., 2020) and desynchronization
(Weistuch et al., 2021) of brain networks identified in
resting-state functional magnetic resonance imaging
(rsfMRI). Ketosis, induced by either diet or exogenous
D-BHB administration, improved these measures of brain-
wide coordination, even in young, healthy adults. Despite
the theoretical relationships suggested between these
independent results, the direct linking across scales—of
mechanism with its emergent effects—has yet to be
tested due to the technical constraints inherent in each
experimental approach.

To address these challenges, we employ a novel
experimental-computational approach for evaluating the
contribution of individual biophysical components on
brain-wide coordinated behaviors. To link fMRI-derived
brain network instability and synchrony specifically to the
postsynaptic potentials of pyramidal neurons, we estab-
lished an EEG-derived biomarker for brain aging by analyz-
ing a publicly available Lifespan resting-state EEG (rsEEG)
dataset (ages 20-80 years, N = 201). To test how this bio-
marker changes with metabolism, we conducted a new
Metabolic rsEEG experiment (u,5=26.9 + 11.2 years,
N =36) (Table S1) (Fig. 1A). Administering individually
weight-dosed D-BHB versus calorically-matched glucose
orally, we measured the effects of fuel type on synchrony
(Fig. 1B) and brain network instability (Fig. 1C). To identify
the set of mechanistic parameters consistent with our data,
we then used our EEG results as emergent constraints
on the Larter-Breakspear model, a conductance-based
multiscale neural mass model (Breakspear et al., 2003). By
simulating this model across a full range of key mechanistic

parameters and simultaneously testing 38 hypotheses in
parallel (three types of trends, eight parameters), we were
able to test whether measured differences in EEG-derived
neural synchrony at the macroscale were consistent with
effects expected following modulation of K* at the neuronal
micro-scale (Fig. 1D). Equally important, however, by test-
ing alternative plausible hypotheses in parallel, we were
able to assess not only the sensitivity but also the specific-
ity of our results.

2. METHODS

2.1. Bolus study experimental design

To determine whether stabilization of brain networks as
modulated by fuel source seen in rsfMRI (Mujica-Parodi
et al.,, 2020; Weistuch et al., 2021) implicates neuronal
synchrony, we conducted resting-state EEG scans on a
cohort of healthy adults (N =36, Wage =26.9£11.2 years,
18 female) who were tested under both a ketotic (ketone
burning) and glycolytic (glucose burning) condition. Inclu-
sion/exclusion criteria were screened using a survey com-
pleted before enroliment in the study. Potential participants
were excluded for any of the following reasons: chronic
usage of alcohol (7 drinks/week for women, 14 drinks/
week for men), recreational drug use, use of psychotropic
medication within the past 30 days, use of medications
that affect glucose and/or insulin utilization, a history of
kidney disease, heart attack, stroke, myxedema, epilepsy,
dementia, or other neurological disorders, difficulty when
swallowing, current pregnancy or breastfeeding, or inabil-
ity to provide informed consent. Scanning occurred at
Stony Brook University’s Health Science Center. The
study was approved by the Institutional Review Board of
Stony Brook University (IRB2021-00018), and all partici-
pants provided informed consent.

All subjects were tested twice (1-14 days apart), both
times following an overnight fast (subjects were
instructed to eat no food for at least 8 hours before test-
ing but were allowed unrestricted water). Following a
baseline resting-state EEG scan, subjects drank either
of two fuel sources. In the ketotic session, subjects
drank a ketone sports drink, deltaG® Sports Supple-
ment (TdeltaS Ltd, Thame, UK), dosed at 395 mg/kg.
During the glycolytic session, the same subjects drank a
bolus of glucose (Glucose Tolerance Test Beverages,
Fisher Scientific, Inc.; Hampton NH) calorie-matched to
the ketone bolus. The order of the bolus (whether a sub-
ject received a glucose bolus first or a ketone bolus first)
was pseudo-randomized, with approximately half of all
female subjects (N=9) and exactly half of all male sub-
jects (N=28) drinking the glucose bolus during the first
scanning day. The resting-state EEG scans were then
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Fig. 1. Schematic of experimental design and methods. (A) Design of within-subject, time-locked targeted metabolic
resting-state EEG (rsEEG) experiment. To confirm the robustness of increased brain network instability and synchrony
across measurement modalities, N = 36 young (lL,ge = 26.9 £ 11.2 years), healthy participants underwent four rsEEG
scans separated over 2 days. Following an overnight fast, participants were scanned at baseline and again 30 minutes
after consuming a weight-dosed (395 mg/kg) ketone ester or calorie-matched glucose bolus. The rsEEG scans were
then repeated using the opposite (ketotic or glycolytic) condition on the second day. (B) An example Global Field
Synchronization (GFS) spectrum computed using human rsEEG. The real and imaginary components of Fourier-
decomposed rsEEG time-series are plotted on the complex plane for each frequency value. The spread of these points
is quantified using principal component analysis. The more the signals are in phase or anti-phase, the greater the
difference in magnitude between the first and second principal components of the scatter plot cloud, and the greater
the synchrony value (which can range from 0 to 1). The scatter points of individual electrodes are color-coded by
location on the scalp for illustrative purposes. (C) Schematic characterization of brain network instability. To calculate
brain network instability, non-overlapping sliding window correlations are calculated over the entire rsEEG time-series,
with strong correlations defining networks. The instability of the networks is then defined as the degree to which these
networks fluctuate over time (in units of 1). (D) Schematic of the conductance-based neural mass model. Microscale
parameters (listed in Table 1), along with intra-/inter- region coupling (c) and subcortical excitatory inputs (/) govern the
dynamics of the model output: simulated excitatory post-synaptic potentials (EPSPs). The mean EPSPs are multiplied
with an EEG lead field to generate simulated EEG time-series, which are used to determine the effects of model
parameter variation on synchrony.



H. van Nieuwenhuizen, A.G. Chesebro, C. Polizu et al.

Imaging Neuroscience, Volume 2, 2024

repeated 30 minutes after the administration of the bolus,
as prior experiments using magnetic resonance spec-
troscopy (MRS) showed peak glucose and ketone con-
centration in the brain approximately 30 minutes after
consumption of the bolus (see Fig. S2 in Mujica-Parodi
et al. (2020)). Blood glucose and ketone levels were mea-
sured three times throughout the experiment: at baseline,
10 minutes following the bolus, and 62 minutes following
the bolus using a Precision Xtra Blood Glucose & Ketone
Monitoring System (Abbott Laboratories). Our data anal-
yses quantify network reorganization and neural phase
synchrony changes in response to changing energy con-
straints (i.e., cognitive demand, fuel).

During the resting-state portion of the EEG scan, sub-
jects underwent a total of 16 blocks, each lasting 60 sec-
onds, with 8 EO blocks and 8 EC blocks. The blocks were
interleaved. During the EO blocks, subjects fixated on a
white orienting cross on a black background. Before the
resting-state scan, subjects were instructed not to blink to
minimize ocular artifacts and to keep motion to a mini-
mum. The resting-state stimulus (a white cross in the
center of a black background) was presented on a com-
puter screen placed in front of the seated subject using
PsychoPy v3.0 (Peirce, 2007). All data were collected in a
shielded, dark, soundproofed Faraday cage using the
ActiveTwo Biosemi™ electrode system from 65 (64 scalp,
1 ocular) electrodes arranged according to the interna-
tional standard 10-20 system (Oostenveld & Praamstra,
2001) at a sampling frequency of 4096 Hz. The ocular
(VOEG) electrode was placed below the left eye. Our
experimental and pre-processing designs, especially
those of the resting-state EEG scans, were modeled after
the paradigm used by Leipzig’s LEMON rsEEG dataset
group (Babayan et al., 2019) to be able to minimize con-
founding factors when directly comparing results between
our experiment and this large-scale neuroimaging dataset.

2.2. Resting-state EEG pre-processing

2.2.1. Metabolic dataset

The EEG pre-processing was performed using EEGLab
(version 2020.0) (Delorme & Makeig, 2004). Full resting-
state data were downsampled from 4096 Hz to 512 Hz
and bandpass filtered between 0.1 and 40 Hz using a
Hamming-windowed FIR filter. The data were then sep-
arated into the eyes open (EO) and eyes closed (EC)
conditions. These two conditions were pre-processed
separately from this point on due to the differences in
ocular artifacts in each condition; however, the pre-
processing steps performed were identical. Bad channels
were removed, and noisy portions of data were identi-
fied and removed using EEGLab’s Artifact Subspace

Reconstruction (ASR) algorithm. Independent component
analysis (ICA) was performed on the data using the info-
max algorithm in EEGLab (runica), and non-neural com-
ponents of the time-series were identified and removed
using ICLabel (Pion-Tonachini et al., 2019). The refer-
ence was then set to average. The data were separated
into frequency bands and time-series extracted using
MNE-Python (version 0.21.1) (Gramfort et al., 2013).

2.2.2. Leipzig LEMON dataset

Lifespan rsEEG data from the Leipzig LEMON dataset were
obtained in already pre-processed form. Raw data were
downsampled from 2500 Hz to 250 Hz and bandpass fil-
tered between 1 and 45 Hz using an 8th order Butterworth
filter. The data were separated into EO and EC conditions
for subsequent pre-processing. Outlier channels were
rejected, and data intervals containing high peak-to-peak
fluctuations or high-frequency noise were identified and
removed by visual inspection. Data dimensionality was
reduced using principal component analysis before the use
of independent component analysis (ICA) to identify and
remove components reflecting eye- or heartbeat-related
artifacts. Further pre-processing details may be found in
the dataset documentation (Babayan et al., 2019).

2.3. Global field synchronization

Global Field Synchronization (GFS) was first introduced
by Konig et al. (2001) to estimate differences in functional
connectivity of brain processes in EEG frequency bands
between a population of neuroleptic-naive schizophrenic
patients and healthy controls. In contrast to other mea-
sures of phase synchrony such as phase-locking value,
which can only measure synchrony between two time-
series, GFS is a global measure of neural phase syn-
chrony that does not rely on the a priori selection of brain
regions to be studied. When applied to EEG data, GFS
has the added benefit of being reference-independent
and more easily interpretable without the use of source
models (Michels et al., 2012). Further research using the
measure has found changes in GFS in those with Alzhei-
mer’s disease and mild cognitive impairment (Kénig et al.,
2005), during REM sleep (Achermann et al., 2016), and
during general anesthesia (Nicolaou & Georgiou, 2014).
To calculate GFS values for EEG, the data were first
pre-processed. Following pre-processing, sensor-level
EEG time-series were divided into non-overlapping, con-
secutive 2-second epochs. Each epoch was frequency
transformed using a fast Fourier transform (FFT, Tukey
window, taper size a.=0.2), which yields the real and
complex component of the signal of each electrode for
each frequency value (1-40 Hz, step size = 0.1 Hz). These
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components are then plotted as vectors on the complex
plane, with the magnitude of the vector representing the
power of the signal at that frequency, the angle of the
vector as measured from the real axis representing the
phase, and the vector origin representing the reference of
all EEG signals. Subsequently, a scatter plot of vector
endpoints in the complex plane is generated for each fre-
quency value, a representative of which can be seen in
Figure 1B. The more these endpoints approximate a
straight line, the more the signals are in phase or anti-
phase. The more scattered the endpoints, the less the
signals are in phase or anti-phase. To quantify the shape
of the cloud formed by the vector endpoints, the points
are entered into a two-dimensional principal component
analysis, as principal components are orthogonal by defi-
nition. The resulting GFS value per epoch for a particular
frequency f is then determined by calculating the ratio of
the eigenvalues (A¢(f) and A,(f)) of these two principal
components, as expressed in Equation 1.

|[A1(F) = Ao (F)

= L+ e

1)

Finally, the overall GFS value for a particular frequency
is obtained by taking the mean of the GFS values of all
consecutive epochs for that frequency, creating a spec-
trum as shown in Figure 1B. To examine differences in GFS
across age (using the Leipzig LEMON rsEEG dataset) and
condition (ketotic vs. glycolytic), overall GFS values were
categorized into their corresponding, classically-accepted
frequency bands (da Silva, 2013), with endpoints adjusted
to accommodate the filtering performed in pre-processing:
8 (1-3.5 Hz), 6 (4-7.5 Hz), o (8-13 Hz), B (14-30 Hz), low Y
(80-40 Hz), and broad (1-40 Hz).

2.4. Modeling effects of microscale parameter
changes on global field synchronization

We used a conductance-based neural mass model
(Breakspear et al., 2003) to test the effect of ion gradient
dynamics and excitatory-inhibitory subpopulation cou-
pling on GFS. This neural mass model has been previ-
ously validated to capture properties of fMRI and EEG
resting-state activity (Endo et al., 2020) while incorporat-
ing both local ion dynamics and interregional connectiv-
ity. Following the mathematics of prior work (Endo et al.,
2020), we built a 78-region whole-brain simulation using
Neuroblox, a Julia library optimized for high-performance
computing of dynamical brain circuit models (https://
github.com/Neuroblox/Neuroblox.jl). Within the model,
we varied ion (Na*, K*, Ca?) gradients and conduc-
tances, intraregional connectivity (excitatory-excitatory/
inhibitory), and interregional connectivity across a range

of biophysically plausible values (Chesebro et al., 2023;
Endo et al., 2020; Roberts et al., 2019). lon parameters
were changed because metabolic changes have been
shown to alter ion dynamics in microscale experiments
(Baeza-Lehnert et al., 2019). Excitatory-excitatory/
inhibitory and global connectivity parameters were var-
ied as a control to ensure that the effects in the model do
not arise from just any changes to inter- or intra-regional
connectivity. The ranges of the values changed can be
found in Table 1. The whole-brain simulation for each
parameter set was repeated with 10 different sets of ini-
tial conditions to sample across the distribution of simu-
lation outcomes. The simulated membrane potentials of
excitatory neurons were averaged within each region to
generate 78 neural mass signals, which were transformed
into EEG signals through multiplication with an average
lead field (63 EEG channels x 78 model ROls) generated
by Endo et al. (2020). Each 10-minute simulation was
sampled at a rate of 1000 Hz and took ~2 minutes to
generate. The first 1 minute of each simulated EEG signal
was discarded before calculating GFS to allow the simu-
lation to equilibrate.

2.5. Brain network instability

Brain network instability (described for use with fMRI data
in Muijica-Parodi et al. (2020)) is a measure used to
describe the persistence of brain networks over time. It
can be considered a measure of dynamic functional con-
nectivity (Hutchison et al., 2013), or a quantification of the
frequency of switching between metastable brain states
over various temporal scales (Roberts et al., 2019). To cal-
culate brain network instability values for EEG, the data
were first pre-processed as described above. Following
pre-processing, sensor-level EEG time-series were divided
into non-overlapping, consecutive epochs, or windows,
with a 10 second window chosen for the results shown in
Figures 2C and 2D. Within each window W; an all-to-all,
signed correlation matrix between all time-series is cal-
culated, meaning these resulting matrices have a size of
nxn, with n being the number of clean channels remain-
ing after pre-processing. Distance (in units of window
size) between window pairs is decided by a value of ©
chosen for the instability calculation. Instability is then cal-
culated for each possible value of t by taking the Frobe-
nius, or L2, norm of the difference in correlation matrices
of window pairs, and then taking the average of all norms.
In the form of an equation, instability is written as

Z:Z:X_Tncorr(vv,-ﬂ) —corr (W;)||F

Tmax — 7T

Instability (T, T gy ) =

@
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Table 1. Parameter values used in the conductance-based neural mass model.
Parameter Description Default value Variation range Step size
Nernst potentials
*Wa Na™ reversal potential 0.53 [0.42, 0.54] 0.005
*Wk K* reversal potential -0.7 [-0.75, -0.6575] 0.0025
*Vea Ca®* reversal potential 1.0 [0.95, 1.01] 0.0025
v Leak channels reversal potential -0.5
Channel conductances
“ONa Na* conductance 6.70 [6.6, 6.8] 0.01
*Ok K* conductance 2.00 [1.95, 2.05] 0.0025
*9ca Ca?* conductance 1.00 [0.95, 1.01] 0.0025
aL Leak channels conductance -0.50
Channel voltage thresholds
TNa Na* channel threshold 0.30
Tx K* channel threshold 0.00
Tca Ca?* channel threshold -0.01
Channel voltage threshold variances
ONa Na™ channel threshold variance 0.15
Ok K* channel threshold variance 0.30
dca Ca?* channel threshold variance 0.15
Excitatory & inhibitory population parameters
Vr Excitatory neuron threshold voltage 0.00
Zr Inhibitory neuron threshold voltage 0.00
dy 7 Variance of excitatory/inhibitory thresholds 0.66
QVmax Excitatory population maximum firing rate 1.00
Z Inhibitory population maximum firing rate 1.00
*8ge Excitatory — excitatory synaptic strength 0.36 [0.33, 0.39] 0.005
*8g; Excitatory — inhibitory synaptic strength 2.00 [1.95, 2.05] 0.005
= Inhibitory — excitatory synaptic strength 2.00
ape Non-specific — excitatory synaptic strength 1.00
an; Non-specific — inhibitory synaptic strength 0.40
Other parameters
Iy Subcortical excitatory input 0.30
b Time scaling factor 0.10
o Temperature scaling factor 0.70
K K* relaxation time 1.00
NMDA NMDA/AMPA receptor ratio 0.25
c ROI-to-ROI coupling constant 0.35

The “Default Value” column lists the default parameter values used in the conductance-based neural mass model, following Endo et al.
(2020) and Chesebro et al. (2023). If a parameter was varied to examine the effects on synchrony, it is labeled with an asterisk (*) in the
first column and the range of parameter values tested is listed in the “Variation Range” column. Likewise, the step size used to sample
between lowest and highest possible varied parameter value is listed in the “Step Size” column.

where 1,,,, is the number of windows available, defined
as the length of the time-series divided by the window
size rounded down to the nearest multiple of the window
size. For example, an EEG recording with a length of

3
2. leorr (W) - cor (W, )|

55 seconds divided into window sizes of 10 seconds
means T,,=95. Computing instability for t=2 for this
example recording would yield

Instability (T =2, pa =5) = 3

\[corr (W3)— corr (W4 )|| +|corr (W, ) — corr (W, )||¢ +||corr (Ws ) — corr (W5 )| |

@

3
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Fig. 2. Global Field Synchronization, a global measure of neural synchrony, decreases with age and increases under
ketosis. Brain network instability, a measure of dynamic functional connectivity, increases with age, and decreases under
ketosis. (A) Mean synchrony is lower in the older (N = 63, 55 to 80 years) cohort than the younger (N = 138, 20 to 40 years)
cohort in the broad, 8, o, and B bands of Leipzig’s LEMON EO, rsEEG scans. (B) Baseline-corrected synchrony is greater
following acute administration of D- BHB when compared to acute administration of glucose in all classically defined
frequency bands of EO, rsEEG scans: broad, 8, 9, o, B, and low v, measured using a cohort of young, healthy individuals
(N = 36, Hage =26.9£11.2 years). Descriptive statistics for (A) and (B) have been outlined in Table 2. (C) Brain network
instability (window size = 10 seconds) is significantly greater in the older cohort than the younger cohort in the broad
band of Leipzig’s LEMON EC, rsEEG scans for 27 out of 39 possible values of 1, with p-values ranging from p = 0.005 to
p =0.045 and t-values ranging from t = 2.023 to t = 2.846. When comparing across bandwidths, brain network instability
(window size = 10 seconds, t = 1) of the older cohort is significantly greater in the broad (t = 2.278, p =0.024), § (t = 3.581,
p < 0.001), 6 (t=2.323, p =0.021), and low v (t = 3.513, p < 0.001) bands (all tested using independent t-tests). Error bars
are SEM. When treating all values of instability per T per cohort as separate distributions, the mean instability in the older
cohort is significantly greater than that of the younger cohort (mean difference = 0.011, p < 0.001, t =10.277, tested using
an independent t-test). (D) Baseline-corrected brain network instability (window size = 10 seconds) is significantly greater
after acute administration of glucose when compared to acute administration of ketones in the broad (1-40 Hz) band of
EC, resting-state EEG scans performed on a cohort of young, healthy individuals (N =36, 44 =26.9111.2 years) for

15 out of 40 possible values of 1, with p-values ranging from p =0.009 to p =0.047 and t-values ranging from t = 2.055
to t =2.744 (all tested using paired t-tests). The stabilization of brain networks under ketosis was not dominated by a
particular frequency band. Baseline correction for both metrics was performed by subtracting the pre-bolus (fasting)
condition value from the post-bolus (either glucose or D- BHB) condition value within each respective metric. Error bars
are SEM. When treating all values of instability per t per condition as separate distributions, the mean A instability in the
GLC-Fast condition is significantly greater than that of the D- BHB-Fast condition (mean difference = 0.032, p < 0.001,

t = 33.031, tested using a paired t-test).

When calculating instability, the window sizes within  are smaller than the windows used for our previous work

which correlation matrices are calculated and eventually
subtracted from one another set a natural limit to the
timescale at which changes in global network connectiv-
ity can be seen. As the temporal resolution of EEG is
notably greater than that of fMRI, the window sizes used
in the calculation of instability for the majority of this work

(10 seconds as compared to 24 seconds) as more time
points are available for calculation. By varying the win-
dow sizes used to calculate network instability, we deter-
mined that brain networks destabilize as a function of
age only for networks whose detectable correlation dif-
ferences persist for >10 seconds (Fig. S2), and as such
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made the choice of window size to be 10 seconds for
subsequent analyses. Furthermore, to ensure the increase
in instability with age seen in the Leipzig LEMON dataset
was not due to motion (as subject motion tends to
increase with age (Seto et al., 2001)), we examined the
relationship between the mean frame displacements (in
mm) measured during the subjects’ corresponding rsfMRI
scan and their brain network instability (t=1, window
size = 10 seconds) within the broad (1-40 Hz) frequency
band of the subjects’ EC, rsEEG scan. We found no cor-
relation between these two variables.

2.6. Statistics

Two-sided independent t-tests were used to determine
whether mean GFS and instability differed significantly
between the younger and older cohorts of the Leipzig
LEMON rsEEG dataset within frequency bands (for GFS,
Fig. 2A) and within T values (for instability, Fig. 2C). Two-
sided paired t-tests were used to determine whether
mean GFS and instability differed significantly between
the glucose and ketone conditions within frequency
bands (for GFS, Fig. 2B) and within t values (for instabil-
ity, Fig. 2D). As instability values per 7 (Fig. 2C, D) are by
definition not independent, no multiple-comparisons cor-
rection was applied to these results. All other statistics
(Fig. 2A, B) were corrected for multiple comparisons
using the Benjamini-Hochberg procedure with a signifi-
cance level set at o = 0.05.

2.7. Conductance-based neural mass model:
single neural mass

Using the physiological and mathematical boundary
conditions discussed in Chesebro et al. (2023) to inform
the model, the model equations are constructed as a
system of three variables: mean excitatory membrane
voltage V/(t), mean inhibitory membrane voltage Z(t), and
the proportion of potassium channels open at a given
time W(t). Note that while V(t), Z(t), and W(t) are all
time-dependent, we omit this dependence in the following
equations for ease of reading. Given this understanding,
the neural mass model is defined as:

av

E = _{gCa + rNMDAaeeQV}mCa (V - VCa)
_{gNamNa + aeeQV }(V - VNa)
—gW(V-W)-g.(V-W)
_aieZQZ + aneIO (5)

% = b(anilo + aeiVQv) (6)

aw my -W

— =0 )

dt Tk

In these equations, Q,, and Q_ are the mean firing rates

for excitatory and inhibitory cell populations, respectively.
These are computed as

Q, =0.5Q, (1+tanhﬂj ®)
max SV

Q; = 0.5C2Zmax [1+tanh%j 9)
z

The individual ion channel gating functions (my,, Mk
and mg,) take the form

Mign = 0.5(1+tanh7‘/_7—i°“] (10)

ion
where m,,, is the fraction of voltage-dependent channels
open at any given time. Default values and descriptions
for all constants in these equations are given in Table 1.
Note that parameter values are unit-less to scale to a rea-
sonable modeling range (i.e., V,Q e(-1,1) and W €(0,1)),
and the integration time step dt is in milliseconds.

We note that the three ions of interest are modeled in
three different manners. Sodium serves as the dominant
shape determinant of the neural mass spiking activity as
it has the highest net positive conductance coupled to
its ion channel gating function. Calcium serves as a sec-
ondary support of the spiking activity, providing some of
the amplitude to the spiking activity. However, because the
calcium gating function is also coupled to the excitatory
population firing rate and the ratio of NMDA/AMPA
receptors, calcium more importantly provides feedback
to the neural mass firing rate. Finally, due to its more
detailed modeling as a separate differential equation,
potassium plays a unique role in determining the fre-
quency of spiking activity (at larger reversal potentials)
and the duration of the refractory period (at smaller
reversal potentials). As a consequence of this extra mod-
eling step, potassium also has a different ion gradient
landscape than sodium and calcium.

While the excitatory (pyramidal) cell population V/(t) is
modeled using the ion dynamics described above, the
inhibitory population Z(t) is a purely phenomenological
model, receiving only the excitatory input via a,; and a
background current via a,,;. Although this serves to model
the relationship between inhibitory interneurons and the
excitatory pyramidal cells (as in Larter et al. (1999)), it
does imply a caveat when interpreting the effects of
altered ion gradients.
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Since the model is a hybrid of a biophysically detailed
excitatory neuron population and a phenomenological
inhibitory population, claims regarding how closely this
model resembles true biological neurons are necessarily
constrained. However, the advantage of this neural mass
model is that it produces physiologically interesting
dynamics (e.g., burst-spiking) that are more common in
next-generation neural mass models (Taher et al., 2022)
than in traditional (e.g., Wilson-Cowan) oscillatory models.

2.8. Conductance-based neural mass model:
coupled neural masses

Equations 5-7 describe a single neural mass comprising
two subnetworks. Coupling between pairs of neural masses
(f and j) can also be achieved through connection terms:

2 by,
C [
2,

CQl_network _

(11)

Here, c is the coupling constant, QV/, is the mean excit-
atory firing rate of region j, and u;; is the strength of
connection between regions i and j. To ensure that over-
all input current is approximately constant, the balancing
between interregional and self-coupling takes the form
of competitive agonism, where c is the weight of interre-
gional coupling and (1-c) is self-coupling. The associ-
ated multi-regional neural mass model equations are
then given by:

av;
o - lgcat fumpAZee[(1-C)Qy
+Colnetwork]}mca (VI _ Vca)
_{gNamNa +8ge [(1 -c)Qy + Canetwork ]}
(VI - VNa)_gKVVi(V,' - VK)_gL(Vi _ VL)
_a,-eZ,-QZ + anelo (1 2)
az;
o = Planh adVQy) (13)
aw; my —W,
R 14

In this work, we use Equations 12-14, varying the
microscale parameters (Table 1) therein to observe the
effects on macroscale neural synchrony. Following prior
work (Endo et al., 2020), we computed a 78 region
whole-brain model. To determine connectivity between
regions, we used a DTI-derived structural connectivity map
averaged across healthy individuals. This connectivity

has previously been shown to produce simulations with
the conductance-based neural mass model used in this
work that are consistent with both EEG and fMRI scale
measurements (Endo et al., 2020). This map is the same
as in Endo et al. (2020), having been provided by the
authors as supplemental data. This is the standard
approach employed by toolboxes such as The Virtual
Brain (Sanz Leon et al., 2013).

3. RESULTS

3.1. Age modulates neural signaling

Using the Leipzig LEMON rsEEG dataset, a comparison
of Global Field Synchronization (GFS, see Methods)
between the younger (aged 20 to 40 years, N = 138)
and older (aged 55 to 80 years, N = 63) cohorts within
classically defined frequency bands (6 (1-3.5 Hz), 6 (4-
7.5 Hz), o (8-13 Hz), B (14-30 Hz), low Yy (30-40 Hz), and
broad (1-40 Hz), (da Silva, 2013)) showed age to
decrease neural synchrony in the broad, 0, a, and low Y
bands (Fig. 2A, Table 2). Likewise, older brains showed
destabilization of their networks (Fig. 2C).

3.2. Metabolism modulates neural signaling

Changes in GFS values (AGFS) for the metabolic study
cohort (N =36, [,ge= 26.9 £ 11.2 years) were calculated
by subtracting the average fasting condition GFS from

Table 2. Descriptive statistics of data underlying
Figures 2A and 2B.

Lifespan dataset (N = 201)

Band t p (corr.) Mean Difference
Broad -3.260 0.004 -0.0126

6 -3.001 0.005 -0.0130

0 -1.097 0.274 -0.004

o -5.119 4.33e-06 -0.018

B -2.965 0.005 -0.014

Low vy -1.923 0.067 -0.011

Metabolic dataset (N = 36)

Band t p (corr.) Mean difference
Broad 2.659 0.018 0.029
) 2.763 0.018 0.035
0 3.184 0.018 0.036
o 2.693 0.018 0.028
B 2.331 0.031 0.027
Low y 2.235 0.032 0.027

For the Lifespan Dataset, independent t-tests (with FDR correction)
were performed to test for mean differences between the older
(55-80 YO) and younger (20-40 YO) cohorts. For the Metabolic
Dataset, paired t-tests (with FDR correction) were performed to
test for mean differences in AGFS between the D- BHB-Fast and
GLC-Fast conditions.
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the average experimental (glycolytic or ketotic) condition
GFS within each band. Comparing the pre- and post-
bolus synchrony values showed decreased synchrony
after administration of the glucose bolus and increased
synchrony after administration of the ketone bolus for all
frequency bands in the rsEEG eyes-open (EO) condition
(Fig. 2B, Table 2). Following glucose challenge, brain
networks destabilized; in contrast, following ketone chal-
lenge, brain networks stabilized (Fig. 2D) in rsEEG. Both
results were observed in the broad (1-40 Hz) frequency
band of eyes-closed (EC) rsEEG.

3.3. Identifying candidate mechanisms using
multiscale modeling

We next sought to identify the mechanistic basis for age
and metabolism-related changes observed in rsEEG
GFS. To do so, we used a bottom-up approach by vary-
ing microscale parameters in the neural mass model to
generate 2082 simulated rsEEG signals, from which we
computed GFS and instability. We observed high sensi-
tivity of GFS to changes in all (Ca?*, K*, and Na*) Nernst
potentials, Ca** and K* channel conductances, and
excitatory — inhibitory synaptic strength (Fig. 3B). Only
variation of the K* Nernst potential within this model
explained both the magnitude of the changes seen with
older age (2.5% decrease) and following D- BHB con-
sumption (5.6% increase) in broadband GFS (Fig. 3C).
Sensitivity of brain network instability to the parameter
changes was binary: either it was not sensitive to
changes in parameters, or network instability changed in
non-consistent ways and with large magnitudes that did
not reflect the smaller magnitudes seen in human data
(Fig. S1). Furthermore, brain network instability was found
to be uncorrelated with GFS within the broad (1-40 Hz)
frequency band of Leipzig’s LEMON rsEEG dataset
(p = 0.090, r? = 0.014, N = 201).

4. DISCUSSION

It has been hypothesized that brain aging results from an
“energy crisis” in the brain, in which decreased glucose
oxidation capability leads to constrained ATP availability
for neurons (Jensen et al., 2020; Hoyer, 1982), disrupting
neuronal signaling and thus dysregulating the neural cir-
cuits that underlie cognitive processing. The fact that
metabolism modulated both our EEG- and fMRI-derived
biomarkers for brain aging provides robust support for
this hypothesis. Our findings, based on a conductance-
based neural mass model, suggest that the dysregulation
of K* ion gradients, crucially governed by ATP, is the pri-
mary driver of the observed changes in brain-wide EEG
synchronization.
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Dysfunction of Na*/K*-ATPase causes depolarization
of the membrane potential, and thus desynchronization
between brain regions (Chesebro et al., 2023). lon pumps
are a sink of metabolic resources in the brain, and thus
Na*/K*-ATP-ase dysregulation is also expected under
metabolic constraints, which would further exacerbate
ion gradient dysregulation (Baeza-Lehnert et al., 2019).
Changes in potassium reversal potential have been
implicated in a number of different age-related processes
(Scott et al., 1988; Sesti et al., 2010). The depletion of the
potassium gradient can stem from damage to potassium
channels by reactive oxygen species (Sesti et al., 2010)
or from calcium signaling dysregulation (Farajnia et al.,
2015; Power et al., 2002), or by a combination of accu-
mulated insults, leading to impairment.

This conductance-based neural mass model provides
a biophysically detailed simulation of ion dynamics while
allowing for a whole-brain simulation by abstracting away
population details. While this derivation preserves local
ion dynamics (Larter et al., 1999), it does not fully capture
emergent properties of neural populations (e.g., the model
preserves cortical wave dynamics (Roberts et al., 2019),
but not power spectra). We found that GFS was sensitive
to changes in the biophysical model parameters (Fig. 3B),
reflecting changes that were on the same scale of mag-
nitude as the changes in GFS seen in the human (non-
simulated) data. However, the absolute magnitude of the
spectra produced using our modeling approach did not
match that of spectra produced from our human rseEeG
data. Furthermore, brain network instability was either
not sensitive at all to changes in parameters, or for those
parameters that did alter network instability, changed it in
non-consistent ways and with large magnitudes of change
that did not accurately reflect the smaller magnitudes
seen in human data (Fig. S1). These limitations may be
due to the inability of this neural mass model to capture
certain emergent properties of neural populations and
have been partially addressed in next-generation neural
mass models (Byrne et al., 2020). Brain network instabil-
ity and neural synchrony were found to be uncorrelated,
implying the two metrics quantify distinct neural features,
of which the features of the latter are better captured by
the conductance-based neural mass model used in this
work. There are several potential advances in the field
which may lead to better capturing of both neural features.
Some examples are the incorporation of networks of firing
neurons that model ion and metabolic kinetics to existing
models (Dutta et al., 2023), including additional metabolic
variables when considering the BOLD signal fluctuations
(as is becoming common in systems pharmacology
models (Spiros et al., 2014)), and the development of
next-generation neural mass models that follow a more
“human-like” power spectrum (Byrne et al., 2020). As of
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Fig. 3. \Variation of the K* Nernst potential within a conductance-based neural mass model uniquely predicts changes
in Global Field Sychrony (GFS) seen in aging and following acute administration of D- BHB. (A) An example of the GFS
spectra for simulated EEG data generated using a conductance-based neural mass model. The color indicates the value
of the Na* Nernst potential used in the simulation. (B) Individually varying parameters within the model above and below
their default values leads to changes in GFS. Parameters varied are color-coded by class (Nernst potentials, channel
conductances, and excitatory — excitatory/inhibitory synaptic strengths). (C) Heatmap of the relative parameter change
needed to replicate the magnitude of changes seen in broadband GFS (Fig. 2A, B).

yet, however, these models do not fully incorporate the
same biophysical detail coupled with scalability as this
conductance-based neural mass model does. Fusing
these approaches is a topic of current interest in the field
of computational neuroscience.

Prior literature has established ion gradient regulation to
be the most significant energy sink within the brain
(Baeza-Lehnert et al., 2019; Meyer et al., 2022). This is con-
sistent with our results linking emergent whole-brain net-
work effects to ion gradient regulation. Our further isolation
of the consistent candidate mechanisms to K* Nernst
potentials is also in agreement with in vitro experimental
evidence that ketosis directly impacts neuronal K* regula-
tion (Ma et al., 2007). In conclusion, our findings indicate
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promising avenues for future research, directly examining
the association between age-related hypometabolism and
disrupted neuronal K* gradients, and their reversal by keto-
sis. Furthermore, the experimental validation of our findings
highlights the role of generative models, guided by clinical
neuroimaging, in connecting molecularly targeted thera-
pies to patient outcomes while simultaneously showcasing
their utility in mitigating confirmation bias by considering
multiple hypotheses simultaneously.

DATA AND CODE AVAILABILITY

Data and code are available at our website: https://www
.Icneuro.org/data/eeg. Leipzig LEMON data are publicly
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available at http://fcon_1000.projects.nitrc.org/indi/retro
/MPI_LEMON.html.
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