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Abstract

We consider a molecular channel, in which messages are encoded to the frequency of objects (or concentration
of molecules) in a pool, and whose output during reading time is a noisy version of the input frequencies, as
obtained by sampling with replacement from the pool. We tightly characterize the capacity of this channel using
upper and lower bounds, when the number of objects in the pool of objects is constrained. We apply this result to
the DNA storage channel in the short-molecule regime, and show that even though the capacity of this channel

is technically zero, it can still achieve a large information density.

I. INTRODUCTION

In molecular communication [1], information is encoded into the presence of objects from various possible
types in some restricted physical domain. As a prominent example, in DNA storage systems [2]—[12], information
is encoded to K molecules, each is a strand of length L composed from the four possible nucleotides, denoted
by A :={A,C,G,T}. The K molecules are stored in a pool, and the distinctive aspect of this system is that the
order of the K molecules in the pool cannot be preserved. So, while the total of K L symbols can be considered
as the blocklength of the codeword, unlike standard channel coding, the codeword is, in fact, partitioned to
K out-of-order segments of length L each. Given the pool, the message is decoded by randomly sampling
molecules from the pool, sequencing each of them to obtain a noisy read of the sequence of nucleotides in the
strand, and using the out-of-order output strands to decode the message.

A simple method to resolve the lack of order of the encoded molecules is to devote the first log 4 K
symbols of the molecule to encode its index. This requires that the molecule length will be large enough to
accommodate both the index and the message encoding. Indeed, in [13]] it was established that the regime of

interest is . = flog K for some 5 > 0, and it was shown that indexing achieves the capacity of the DNA

! Yuval Gerzon and Nir Weinberger are with the Viterbi Faculty of Electrical and Computer Engineering, Technion-Israel Institute
of Technology, Haifa 3200004, Isracl (Emails: gerzon.yuval @campus.technion.ac.il, nirwein@technion.ac.il.). ? Tlan Shomorony is with
the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (Email:
ilans @illinois.edu). This paper was accepted in part to the 2024 IEEE International Symposium on Information Theory. The research of
N. W. was supported by the Israel Science Foundation (ISF), grant no. 1782/22. The work of I. S. was supported in part by the National
Science Foundation under CCF grants 2007597 and 2046991.



storage channel when the sequencing is noiseless. Conversely, if the molecule length L is short in comparison
to their number K, and so there is not enough symbols to encode the index in the molecule, concretely, if
B8 < m, then the capacity is zero. Consequently, in this regime, the log-cardinality of the optimal codebook
(which is the total number of stored bits) scales at most sub-linearly with the total number of nucleotides K L.

Nonetheless, the DNA storage medium has an extreme information density, and a huge number of nucleotides
can be stored in tiny pools. As noted in [14, Sec. 7.3], the amount of stored information can be large even for
channels with asymptotically vanishing maximal rate. This observation serves as a strong motivation to study
the log-cardinality of the optimal codebook in the short-molecule regime, that is, for g < IO;W. In this regime,
the number of molecules in a codeword K is larger than the number of possible strands of length L from the
alphabet A, to wit, K > |A|*. Accordingly, each codeword must contain multiple copies of the same strand
(at least for one strand). Hence, in the short-molecule regime, the message is actually encoded by the number
of times each of the |.A|” possible strands of length L appears in the pool. The encoded codeword can thus be
represented by the frequency vector that measures the frequency of each type of strands in the pool. We refer
to this type of channel as frequency-based channel. During reading, molecules are sampled from the pool (with
replacement) and so the output is a also a frequency vector. This vector is a noisy version of the input vector
for two reasons: First, the frequency of the strands in the codeword is not preserved by the sampling. Second,
the synthesis and the sequencing processes are possibly noisy [15].

In this paper, we formulate a general frequency-based channel. We focus on the effect of random sampling,
which we model as a multinomial distribution, and thus assume noiseless sequencing. In this channel model, the
blocklength n models the number of different types of objects. Each codeword has a total count of ng,, objects
from the different types, and which are sampled nr, times in total. For example, in the DNA storage channel
n= \A|L , as this is the number of different molecules of length L from an alphabet A, and ng,, = K, as this is
the total number of molecules. In [[14, Sec. 7.3] a slightly different Poisson sampling channel was considered,
which assumes g, = r,, and a conjecture was made on the scaling of the log-cardinality of the optimal codebook
[14) Conjecture 4]. Concretely, based on the capacity of the average-power-constrained Poisson channel [16] it
was conjectured that the capacity scales as %log Tn + on(1).

Main contribution: In this work, we address that conjecture. Though our multinomial sampling is slightly
different, its analysis is, in fact, based on a reduction to a Poisson channel, and so in this sense the multinomial
model subsumes the Poisson model. That being said, the reduction itself complicates the analysis of the resulting
Poisson channel, and the latter is non-standard from two aspects. First, the total number of counts in the codeword
must be common to all codewords in the codebook in order for an input count to accurately model frequencies.
Second, since the input symbols also measure the count of a possible objects in the codeword, they must be
integer-valued, and so the input distribution must be supported on the integers. Our main result (Theorem [2) is an

approximate solution of the conjecture of [14, Conjecture 4]: Our converse bound shows that the capacity is less



then %log[rn A (egn)] + on(1). That is, increasing 7, beyond g, may increase capacity, but asymptotically only
up to 3 [nats]. Our achievable bound requires the condition 7 = w(g,), and when the ratio r,, /g,, is optimized, it
is given by 31og(gn) —1.295+ 0, (1) nats]. Interestingly, the optimum of the lower bound occurs at 7, & 0.4,
i.e., when sampling less objects than there are in the codeword.

The implication of this result to the DNA storage channel is valid when the molecules are not very short,
and specifically, in the regime 5 € (m, Fllfll)' The result shows that the log-cardinality of the optimal

codebook increases as
1 — Blog|A|
28

up to terms negligible with K. A simple numerical example then shows that the resulting information density

. KBloglAl log K, (1)

(in nats per gram) could still be huge, which remarkably reinforces the importance of this, strictly speaking,
zero capacity, channel.

Related work: The analysis of the DNA-storage channel is an active research area, both from an information-
theoretic point of view [13]], [14], [17]-[21] and from coding-theoretic point of view [10]], [11]], [22[, [23[]]. Our
channel model is closely-related to the permutation channel. Using our formulation, the input to the permutation
channel is also a frequency vector, however, it is assumed that each object is sampled exactly once, and the
output vector is noisy due to noisy sequencing (in our terms). This channel was considered in [24]], [25] with
codes termed multiset codes. Constructions of such codes were proposed, and combinatorial bounds on the size
of optimal codes for a given detection or correction capability were derived. An information-theoretic version
of the channel was introduced in [26], with sharp converse bounds obtained in [27]. However, compared to
our results, and in our terminology, the blocklength in [26], [27] is considered fixed, whereas in our model it
increases without bound (with a certain scaling). A multi-user model of this channel was recently explored in
[28]]. Another related model for DNA storage is based on composite DNA letters [29], [30], in which many
copies of a single molecule are generated, and each letter in the molecule is a composite letter, i.e., it is randomly
chosen from a subset of {A,C, G, T}, chosen according to the encoded information. In this channel model too,
information is stored in the frequency of each DNA letter at the output, though the randomness of each letter
is created during synthesis. This leads to a somewhat different mathematical model, of a multinomial channel,
and its capacity is discussed, e.g., in [31].

We rely on the analysis of the Poisson channel under an average-power constraint. The capacity of this
channel was extensively explored (e.g., [16], [32]-[42]), but for the frequency-based channel we mainly rely
on the asymptotic expression of [[16]. On its own, the entropy of a Poisson random variable (RV) was also
extensively explored [43]]-[45]], along with ample study of related properties, e.g., [41]], [43], [46]—[50].

Paper outline: The paper is organized as follows. In Sec. [l we shortly describe the DNA storage channel,

and then formulate the more general frequency-based channel. In Sec. [lIl) we state our main result and outline



its proof. In Sec. we provide detailed proofs, and in Sec. |V| we conclude the paper with a summary and

future research directions.

II. PROBLEM FORMULATION

Notation conventions: For an integer n € N4, let [n] := {1,2,...n}. For a,b € R, let a V b := max{a, b}
and a A b := min{a,b}. Logarithms and exponents are taken to the natural base. Standard notation for
information-theoretic quantities is used [51], e.g., the entropy H(Px) or H(X) for a discrete RV X with
probability mass function (PMF) Py, the mutual information /(X;Y’) between two RVs X and Y, and
Dxkr,(P || Q) for the KL divergence between the probability measures P and (). The binary entropy function
is denoted by hp;n(+).

Although our results are valid under general molecular storage settings, the DNA storage channel is our main
motivation, and so we next briefly review its model, and explain how it translates in the short-molecule regime

to a frequency-based channel [14, Sec. 7.3].

A. The DNA Storage Channel Model

The DNA storage model, also called the multi-draw noisy shuffling channel |14]], is as follows. Let an
alphabet A be given, e.g., A = {A,C,G, T} in the case of an actual DNA-based storage system. A codeword
is al® = (al,...al), where af € AL for all k € [K] is called a molecule or a strand. Thus, there are
K molecules in a codeword, each of which is a length-L vector from the alphabet .A. A codebook is a set
of different codewords, C = {a*¥ ()} je(ar)- The codeword is read in a noisy way comprised of two stages.
In the first stage, N molecules are uniformly sampled from the K molecules of a’¥, independently, with
replacement. Letting {U; };cn] be independent and identically distributed (IID) such that U; ~ Uniform[K], the
output of this stage is {a{jl, ceey aﬁN}. In the second stage, each of the sampled molecules a& is sequenced,
and the output molecule b; € B* is obtained, where 5 is an output alphabet, and * indicates varying length
B* = Ui, B¢. Thus, the length of b; may be different from L, and vary from one molecule to the other. The
possibly noisy sequencing is modeled as a noisy channel V7, from A" to B*. For example, this channel may
include substitutions of a letter from A with a different letter, deletions, and insertions [[52]]. The channel output
is then (b7,...,b%).

Remark 1. It may seem more natural to model the channel output as obtained via sampling without replacement,
since each sampled molecule is removed from the DNA pool in order to be sequenced. The reason why we model
the channel as performing sampling with replacement is because in practical DNA storage systems, polymerase
chain reaction (PCR) amplification is used to replicate each molecule in the pool a large (but roughly fixed)
number of times. Hence, the relative frequency of each DNA molecule in the pool remains roughly fixed, but

sampling from this amplified DNA pool is essentially sampling with replacement from the original pool.



We let the length of each molecule scale as L = Ly, the number of sampled molecules to scale as N = Nk,
and denote the maximal cardinality of a codebook with codewords of K molecules and maximal error probability
ex as Miua(Lk, VL, Nk, €K). As a codeword is composed from a total K L symbols from A, the rate of a
codebook of cardinality M is defined as R := ﬁ log M. The capacity is the maximal rate with vanishing error
probability, that is, ﬁ log Miya (LK, Vi, Nk, i) with e — 0 as K — oc.

The short-molecule regime: The capacity of the DNA storage channel for discrete memoryless sequencing
channels was analyzed in [13]l, [17], [18], [20]]. Specifically, it was shown in [[13]] that even for noiseless
sequencing channels, the capacity of DNA storage is strictly positive only if the molecule length scales as Ly =
Blog K and 8 > bg}W' Intuitively, the lack of order in the codeword can be resolved by using log| 4 K = 110%@
symbols from each molecule to encode its index in the codeword, and using the rest of the symbols to encode
the message. However, if 5 < m then the length of a molecule does not allow for encoding the index, let
alone for encoding the message. It can be shown that indexing is optimal for noiseless sequencing channels
(though not necessarily for noisy channels), and that no positive rate can be achieved when 5 < m. We thus
refer to this regime as the short-molecule regime. From a different point of view, we may note that the number
of distinct molecules of length L is |A|L. As K > |A|L in the short-molecule regime, each codeword must
contain more than a single copy of the same molecule. Since the molecules of the codeword lack any order, the
message is actually encoded in the number of copies of each of the n = |.A|* possible molecules in A”, or in
their frequencies. Let us order the A’ strings representing the possible molecules in some arbitrary order [n].
Then, the input codeword can be equivalently represented by the vector " := (z1,...,z,) € N” where z; is
the count of the ith string in A”. Thus, it holds that > &, x; = K. Similarly, let us denote the number of counts
of each of the strings in A" at the output codeword by y™ := (y1,...,¥,) € N”. Due to the randomness in the
sampling stage, y™ is a noisy version of z"* even for noiseless sequencing channels. We refer to this equivalent
channel model as a frequency-based channel, and formally define it in the next subsection, in greater generality.
In the rest of the paper we will analyze the capacity of that channel model, which, in turn, leads to bounds on
Mjsa(Li, Vi, Nk, ek ) for DNA storage channels. The capacity is zero in the short-molecule regime, and
so log Ma(Lk, Vi, Nk, €x) scales sub-linearly with K L. However, it is still a monotonic non-decreasing

function of K, for which our goal it to characterize the optimal asymptotic scaling.

B. The Frequency-based Channel Model

Consider a set of n distinguishable types of objects (e.g., molecules). An input message is encoded as a
pool of unordered objects from the various types. Thus, the channel input is represented by the count vector
z" = (z1,...,2,) € N, where x; is the number of objects of the ith type in the pool of objects. It is
assumed that > "' | x; is constant for all possible messages. Thus, &; = x;/(D>_;" | z;) is a frequency-vector

(or concentration) of the ith type in the codeword pool. It is further assumed that the total number of objects
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Figure 1. An illustration of the channel model with n = 6, g, = 2 and r, = 3. Top: The message is encoded to the codeword
z% = (3,4,1,0,2,2). Middle: The ng, = 12 objects are stored in a pool, and then sampled with replacement nr,, = 18 times. At each
sample the object type is recorded as S;. Bottom: The output vector is the histogram of S™"", given by y" = (5,5, 2,0,4, 2).

is restricted as Z?:l z; < ngn, for some given g,. To read the message, nr, samples are taken, where for
each i € [nry], an object is randomly chosen uniformly at random from the set of ;" | 2; objects in the pool,
with replacement. Then, the type of the object is read, by a possibly noisy mechanism. Let W,, € R™*" be a
Markov kernel, so that W, (7, %) represents the probability that an object of type i is determined to be of type j
(hence W, (j,7) > 0 and 2?21 Wy (4,4) = 1). Thus, the ith object is S; ~ Categorical(z"W,,), where "W,
represents the standard multiplication of row vector by a matrix, and S := (Sy,---, Sy, ) is a vector of 1ID
RVs. Conditioned on input z”, the output is equivalently a noisy count vector Y := (Y7,...,Y,,) € N where
Y™ ~ Multinomial(nr,, "W,,). A noiseless setting is illustrated in Fig.

A code is a set of M input count vectors Cps := {z"(1),...,2" (M)} for which Y ;" | z;(m) is constant for all
m € [M]. The size of the largest code for n object types, normalized total count of input objects g,,, normalized
number of sampled objects 7,, a reading kernel W,,, under a given error probability ¢, € (0,1) is denoted

by M*(n | €n,gn,Tn, Wy). Our goal is to accurately determine the growth rate of M™*(n | €, gn,7n, W),



or the rate of the codebook, given by %bg M*(-). We assume that both g,,r, are monotonic non-decreasing
functions of n, and aim to accurately characterize the dependency of M*(n | €, gn, rn, Wy,) on these sequences.
For reasons that will be clear in what follows, we focus on the regime 7, = O(gy). In this paper, we focus on
the randomness stemming from the sampling channel, and thus assume that W,, = I,,, the noiseless kernel for
all n (we discuss possible extensions to noisy channels in Sec. [V). For the error probability, we just assume
that €,, — 0 as n — oo, though in possibly arbitrarily slow rate. Our main theorem provides upper and lower
bounds on the rate 1 log M*(-) in this regime.

In [14, Sec. 7.3], a closely-related channel model was considered, in which r, = g,, the sequencing is
noiseless W,, = I,,, and the output is Z" = (Z1,...,Z,) is such that conditioned on X" = z", it holds that
Z; ~ Poisson(z;), and the Z;’s are independent. Based on the known asymptotic capacity expression of the
Poisson channel under an average-power constraint [[16, Thm. 7], it was conjectured that the capacity of the
frequency-based channel whose output is Z" is given by % log 7, + 0,,(1). However, the capacity of the Poisson
channel is asymptotically achieved by a gamma distributed input X,, ~ Gamma(%, 2gyn) [16], [36], which is a
continuous distribution, whereas the frequency-based channel only allows for integer inputs. Our bounds will be
proved by modifying the multinomial output to a Poisson output. However, the analysis of the resulting Poisson

channel, along with integer-input constraints will require additional technical steps.

III. MAIN RESULT

Assume that reading operation is noiseless, and so W = I,,. The channel is given by

1
Y™ ~ Multinomial | nr,, —=—2a" | . 2)
( ! D i1 T )
For € R4, let
1
U(p) = 1) - hpin | —— 3
()= et 1) b (7). ®

which, as is well known, is the maximum entropy for non-negative integer-supported RVs with mean bounded

by 1 (see Lemma [14).

Theorem 2. Assume W,, = I,,, that g, — oo, and that cg, < r, < egy,, for some c € (0,e).

o A (weak) converse bound: For any €, — 0

1 . 1

ﬁ IOgM (n ‘ €ns9n,Tn, Wn) < 5 10g [Tn A (egn)] + On(l)' (4)
o An achievability bound: Further assume that n = Q(g}fc) for some ¢ > 0. Then,

1 1 n
—log M*(n | €n, gns Ty Wy) > 3 log(ry,) — W <r> + o, (1). ®)
n gn



Comparison to the standard Poisson channel: For a Poisson channel with an average-power input constraint
E[X] < gnE and gain ;—:, that is, Z | X = = ~ Poisson(%x), the capacity is asymptotically given by
% log , + 0,(1), [16, Thm. 7]E Nonetheless, this rate is achieved with input distribution X ~ Gamma(%, 20n),
which is a continuous distribution, and is unsuitable for the frequency-based channel, which accepts non-negative
integer inputs. This restriction on the input affects both the converse and the achievability bound. For the converse
part, it leads to an upper bound %log(egn) on the maximal rate, which, as we discuss in what follows, is a
result of the log-cardinality of the set of possible inputs. Thus, unlike the standard, continuous-input, Poisson
channel, there is no motivation to increase r,, beyond eg,, at least in terms of rate. For the achievability bound,
the restriction of the input to be integer valued leads to the loss additive term \11(2—2) This leads to a delicate
issue: For the decoder, increasing r,, the number of samples from the pool of objects, only leads to higher
mutual information and rate, since due to the data-processing theorem, the decoder can always ignore output
observations. However, in our model increasing r, also put a more restrictive constraint on the input integer
constraint, and this has the opposite effect on the mutual information, as it does not allow to achieve the output

entropy obtained as in the standard case. Thus, it is not obvious that increasing r,, also increases the mutual

information. To further inspect this, let us write the lower bound, without the asymptotically vanishing terms,

1 1 Tn Tn
ilog(gn) + ilog <9n> - v <gn> . (6)

We may then optimize it over r, < eg,. Interestingly, the function yu — %log(u) — U(u) has a unique global

as

maximum at p ~ 0.398 and equals —1.295[nats|, which is better than its value at u = 1, given by —1.386|nats].
Thus, to optimize the lower bound of Theorem [2| the optimal choice is r,, ~ 0.4g,, that is, surely not sampling

some of the objects in the pool optimizes this bound. The optimized lower bound is then (in nats)

1 . 1
- log M™*(n | €ny Gny Ty W) > §log(gn) —1.295 + 0, (1). @)

Naturally, an interesting open question is whether the rate can go beyond %log(gn), and if it can match the
upper bound, and what is the optimal value of r,.

Implication on the data stored in DNA storage systems: As discussed, strictly speaking, the capacity of
the DNA storage channel in the regime of interest is zero. Following [14, Sec. 7.1], let the pseudo-rate of a

DNA storage be defined as
log M

K BloglA|]’ ®)

Rpna =

"For the Poisson channel, the average input power is modeled as E[X], as opposed to the more common Gaussian channel, in which
the average input power is E[X 2].

n [[16, Thm. 7], the Poisson channel is assumed to have unity gain, i.e., % = 1. The capacity expression can be easily generalized
to non-unity gain by scaling of input codewords.



and the pseudo-capacity be defined as the maximal achievable pseudo-rate such that exr — 0 as K — co. We

thus obtain the following corollary:

Corollary 3. Assume that 3 > m. Then,

- 1— Blog|A
RDNA=i5g| |

Specifically, this settles [14, Conjecture 4], under the more demanding multinomial channel, yet under the

©))

restrictive constraint on 3 € (m, 1og1\ Al ), which excludes very short molecules.

Proof: For the DNA storage channel, the number of unique objects is the number of unique molecules of
length Ly = flog K, given by n = |A|Lx= KPgll and the total number of objects is ng, = K, that is,

gn = K 1-BloglAl whereas N K = 1. The converse bound of Theorem [2| then implies that

log M3na(Lk, Vi, Nk, €x)
K Blogl Al

< Zlog [NK A (eKlfﬁloglAl)] +ox(1). (10)

1
2

If, e.g., Ng = K'=PloglAl (that is, r, = gn) We get

IOgMDNA(LK,VLK,NK,GK) < 1—610g|A| +o 1 ‘ (11)
LKBlog|A] 203 log K
The achievability bound of Theorem [2| requires the condition n = Q(g}ﬁg), which translates into 5 > m,
and then implies that
IOgMSNA(LK,VLK,NK,GK) 1 log(NK) NK 1
> — - — .
LI Blogl Al =98 gk L\ xpeedl ) 7O\ log & (12)
Using Ni = K1-Plogll regults
log Mpa (Lic, Vi Nicy €x) 1 log(K!'=Pleshl) — w(1) 1 13)
LK BloglA| — 28 log K Blog K log K
11— Blog| Al _ 2.773 1 o 1 (14)
N 203 268  logK logK )~

Thus, in this regime for 3 the converse and achievable bounds only differ in O(log™! K) term. It should be
mentioned that using the approximately optimized value of N = 0.4K'~8108lAl glightly improves the factor

of 1/log K from 227% to %. [ |

Example 4. Consider a DNA storage system with | A|= 4. We compare the number of achievable bits, that
is, the asymptotic lower bound on log M\s(Lk, Vi, Nk, €x) of (without the o(log™! K) term) to the

total number of nucleotides, in the short-molecule regime. As mentioned in [14, Sec. 1], just 5[grams| of DNA

contain about KL = 4 - 10?! nucleotides. Thus, e.g., if 3 = lgé;??l) then Fig. 2| shows that these 5[grams] store

over 1.253 - 10'%[nats] = 1.8 - 10'6[bits], while L = 3 W (£}) ~ 26, where here W is the Lambert W function.

This is a huge amount of stored data, while the molecule length is rather short and thus amenable for efficient
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Figure 2. The lower bound on log Mns(Lk, Vi, Nk, €x) of (14) vs. KL. A darker line corresponds to larger 5.

synthesis and sequencing.

The assumptions of the theorem:

1) A simple application of the data-processing theorem implies that the converse bound is valid for any Markov
kernel W,,, not just noiseless.

2) The condition n = Q(gn") can be relaxed to just n = w(g,). We have used the polynomial factor

n

= Q(g%) for simplicity of exposition.

A. Proof Outline of the Converse Bound of Theorem

The proof follows the standard Fano’s inequality, which requires bounding I(X";Y™). The frequency-based
channel from X™ to Y™ is a multinomial channel Y ~ Multinomial(nr,,Z™), which is not a memoryless
channel, and so a direct analysis of the mutual information is difficult. Nonetheless, as is well known, the
multinomial distribution can be converted into a Poisson distribution (see Appendix [B). The Poisson distribution
is memoryless, and so the resulting mutual information is amenable for evaluation. Specifically, we consider
Z™ to be the output of a memoryless Poisson channel, with the same input X", and then relate I(X™;Y™)
to I(X™; Z™). An optimal input distribution for the Poisson channel is memoryless Px~. = PY", which, in
turn, requires bounding a single-letter 1(X; Z). This is bounded using the known bounds on the average-power-
constrained Poisson channel [16, Thm. 7], in the asymptotic regime of high power. This results in the term
$1og(ry) + on(1) in the upper bound. Next, we also note that [(X";Y™) < H(X™), and that since X" is
non-negative integer-valued and > ; X; < ngy, this puts an immediate constraint on the cardinality of the
alphabet of X", and thus on its entropy. Stirling’s bound then shows that it is bounded as % log(eg;,), which

results the term £ log(egy) + on(1) in the upper bound.
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B. Steps of the Proof of the Achievability Bound of Theorem [2]

The proof of achievability Theorem [2| is based on the three propositions that will be described next. Here
we will state these propositions, and briefly outline their proofs. The detailed proof will appear in Sec.
The proof is based on Feinstein’s maximal coding bound [53[], which bounds the maximal error probability of
the optimal codebook of a given cardinality via the cumulative distribution function (CDF) of the information
density of the channel (i.e., the information spectrum). Concretely, we use the extended version stated in [54}
Thm. 20.7], which also takes into account input constraints. Let Py x» denote the Markov kernel from the
input X™ to the output Y™, for which Y | X" = 2" ~ Multinomial(nry,,2"). Let Px~ denote the input
distribution, and Py~ be the corresponding output distribution. Let the information density be

PY"|X" (y" [ z")
Py (y™)

i(z";y") = log (15)

The extended Feinstein bound assures the following: For any v > 0 and M € N, there exists a code Cp; =

{z"(1),...,2™(M)} such that 2"(j) € F,, for all j € [M], and whose maximal error probability is €,, where
- n
en Py (Fa) < (X" V™) < logn] + 2. (16)
~

Here too, the fact that the channel from X" to Y" is not memoryless makes a direct analysis of the information
spectrum challenging, and similarly, it is altered to a memoryless Poisson distribution. To obtain a useful
bound, however, it is required to restrict the input distribution to a finite support. The result is that we show that
there exists a codebook whose number of codewords is roughly M ~ e™/(Xi%) | where I(X; Z) is the mutual
information of the Poisson channel, and the error probability upper bounded, by a bound which can be made

vanishing. This first step is summarized in the following proposition.

Proposition 5. Let Px be a distribution such that supp(Px) C [sp] = {1,2,...,s,} for some s, € N. Let
Fp = {a" € Nm: 13" 2, = g,} be a set of input vectors. Also let Z | X = x ~ Poisson({>x), and let

o € (0, %sn), where %sn > 12me2. Then, there exists a code Cyy C F, of M codewords with
1
logM =nl(X;Z) — 3nd, — 3 log(6mnry,), (17)

whose maximal error probability e, on the multinomial channel from X™ to Y™ is bounded as

. n
e <M
"7 PR (F)

2
/Ny, exp [—néi' ( e In >

log 2 197, s, log2 Sn

+ 6”5"] . (18)

Proof outline of Prop. [5; Feinstein’s bound is based on the information spectrum P[i(X"; V") < log ]

for v > 0. In order to relate this to the information spectrum of a memoryless Poisson channel (X", Z") we
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first relate the information density i(x";y™) to that of Poisson, i.e., to

Ppepxe( | a7)
PZn (Zn)

i(z";2") = log

(19)

We show that the modification of the information density leads to an additive loss term in log M given by
%log(Gﬂnrn), which will be negligible after normalizing by n. Second, we replace the randomness over
(X™ Y™) in the information spectrum with that of (X", Z"), using the Poissonization of the multinomial
effect (see Fact 20). As a result, the analysis of the information spectrum of the channel from X" to Y™
is altered to the analysis of the information spectrum P[i(X™; Z") < log~|. Since the Poisson channel is
memoryless, if we further restrict Px~» to a product distribution P2" then Z(X ™. Z™) is a sum of I1ID RVs,
for which tail bounds can be readily derived. Before discussing the derivation of this bound, we highlight
that the required bound should decay faster than its decay for standard analysis of memoryless channels. In
the standard analysis, v is chosen so that P[i(X™; Z") < logy] — 0 as n — oo, albeit with an arbitrary
slow rate (e.g., in the proof of [54, Thm. 19.8]). Here, this probability is multiplied by a term that scales as
P ()

O Péf(rF”n) ), and so obtaining a vanishing upper bound on ¢, requires a bound which is O(W). To obtain

the desired upper bound, we separate the analysis of the randomness of Z” conditioned on X" = 2™ from
the randomness of X”. To analyze the randomness over Z" conditioned on X™ = 2", we note that i(z"; Z")
is a function of n independent Poisson RVs. We show that under the restricted support assumption, that is,
supp(Px) C [sy], it holds that 7(z™; Z") is a Lipschitz function with semi-norm log s,,. In turn, this allows us
to use the concentration bound of Lipschitz functions of Poisson RVs due to Bobkov and Ledoux [55, Prop.
11] (see Appendix @ for a brief overview). Thus we show that i(z™; Z™) is close to its expected value, denoted
as J(z") = Y1 Ellog Pyx (Zi | o) | Xi = @] = Y0, J(%)E Hence, under the choice of memoryless
input distribution, J(z™) is also a sum of independent RVs. We then prove that J(x) € [— log St 0], that is,
J(X™) is a sum of bounded RVs. An application of Hoeffding’s inequality then shows that J(X™) concentrates
to its expected value —H(Z | X). Combining the concentration results of both .J(X™) and i(z"; Z") leads to
an upper bound on P[i(X™; Z™) < log~], then to an upper bound on P[i(X™;Y") < log+|, and finally, to the
claimed upper bound on the error probability €,, via Feinstein’s bound. [ ]

Further evaluation of the Feinstein-based bound in Prop. |5|requires two tasks: First, evaluating the mutual
information I(X; Z) over the Poisson channel, and second, evaluating the probability that a randomly chosen
codeword meets the constraint, that is P%”(Fn). This is the content of the next two propositions, beginning
with the former.

Let X be a continuous input RV. As mentioned, under the average-power input constraint IE[X | < gn, the

optimal input distribution for a Poisson channel is X ~ Gamma(%,an) [16], [36]. This is a continuous

*With a slight abuse of notation, we use .J(-) for both scalar and vector inputs, with the common convention that the value of vector
inputs is the sum of the value of the scalar function of the coordinates.
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distribution supported on R, and thus unsuitable to the frequency-based channel, which accepts non-negative
integer inputs. Furthermore, the bound of Prop. |5| is based on the assumption that supp(Px) C [s,], where
sn € N, is finite. In order to obtain a valid lower bound on the mutual information, we modify the gamma
distribution of X by first truncating (or restricting) it to a judicious choice of interval S,,, and then rounding
it to be integer valued so that the resulting RV is supported on [s,]. We will use the following definition for

truncation:

Definition 6. Let A be a real RV, and let S C R be such that P[A € S] > 0. The truncation of A to a support
S is the RV A|s which satisfies that for any Borel set A € B(R),

P[ABGAQS]
P[A € S]

P[As € Al = (20)

Proposition 7. Assume that g, — oo, and that cg,, < r, < eg, for some c € (0,e). Let p € (0,1) be given,

and consider the interval

1
Sn = |:1+3p’g7%b+p:| € R+. (21)
dn

Let X ~ Gamma(%, 2gy), and let X = [X]SJ, i.e., X is first truncated to S,, and then rounded upward to
the nearest integer. Further let Z | X = x ~ Poisson(%x) for x € Ry. Then, there exists ng (which depends
on (¢, p) and {gn}), such that for all n > ng

I(X;2) >

_;%m—w<”>—%m. (22)

In

Proof outline of Prop. ' The proof bounds the loss in the achievable mutual information I(X; Z) when
the asymptotically ideal X ~ Gamma(%, 2gy,) is truncated to S,, and then upward rounded to an integer. We
begin by analyzing X := X s, A direct analysis of the reduction in mutual information when modifying X to
X appears to be cumbersome, and we thus take an indirect route, which exploits the relation between mutual
information and optimal estimation over the Poisson channel [37], [41], [42], [49], [50], [56], [57], [58, Ch. 8],
which we next briefly review. Let £(u,v) = lpoi(u,v) := v — u + ulog = be the Poisson error function. For a
positive random variable U, we let V | U = u ~ Poisson(u). Let U be an estimator of U based on V. Then,
since ¢(u,v) is the Bregman divergence [59] associated with the Poisson distribution, it holds that the minimal

estimation error is obtained by the expected mean E[U | V] and the minimum mean Poisson error (MMPE) is

mmdw:%?EMMm] (23)
=R [¢(U,E[U | V])] (24)

U
=E [U log [U|V]] . (25)

The following relation between the MMPE and the mutual information was established in [56, Corollary 1]:
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Theorem 8 (I-MMPE relation [56, Corollary 1]). Assume that E[UlogU] < oo and let V, | U = u ~

Poisson(au) for a > 0. Then,
da

I(U; V) = /07 mmpe(al) - - (26)

Following a similar analysis for the Gaussian channel [60, Lemma 2], we analyze the difference between
mmpe(al/) and mmpe(all), where U is a truncated version of U (Lemma [12). We show that this difference

is controlled by three terms

v+ Smax - P[U € [0, $min)] + YE[UlogU - 1 {U € (Smax,0)}] +7E |U log

- 1{U € (Smax,0)}| 27)

Smin
where S := [Smin, Smax] 18 the set used for truncation. Accordingly, we show that this difference is small for the
specific gamma distribution of X and the truncation set of interest (Lemma when U follows the distribution
of X ~ Gamma(%, 29,). The difference between the MMPE of X and X is then translated, via the -MMPE
relation in Theorem (8] to a difference between their mutual information, which is eventually shown to be a
negligible 0, (1) term in the regime of interest. Thus, there is no essential loss in mutual information due to the
truncation of the gamma distribution.
Next, we consider the influence of rounding X to the integer X = [X]. In contrast to truncation, it appears
that the rounding operation leads to a loss in the mutual information, and we upper bound this loss as \I/(;—")
T'n
gn

Specifically, from I(X;Z) = H(Z) — H(Z | X) and I(X;Z) = H(Z) - H(Z | X) with Z | X =T ~

(Lemma . This is the source of the additive loss term W (=) that appears in the statement of the proposition.

Poisson(%f), we may compare the mutual information values by separately comparing the conditional entropy
values and the output entropy values. First, we use properties of the entropy of the Poisson PMF and the
input gamma distribution to show that H(Z | X) < H(Z | X) + o,(1). Second, we show that H(Z) is
only larger than H(Z) by at most \I/(Z—“) The proof of this result relies on the infinite divisibility property of
the Poisson distribution. By writing X = X + D, where D € [0,1], we may also write Z = Z + 7 where
Z|D=d~ Poisson({>d) (note, however, that Z are Z are not independent). We then use the bounding

method used, e.g., in [61, Prop. 8]. We relate H(Z) — H(Z) to the maximum entropy that is possible for a
non-negative integer-valued RV whose expectation is less than E[Z — Z]. This maximum entropy is well-known
to be the entropy of a proper geometric RV (Lemma , given by the function (1), assuming that the allowed
mean is p. Combining the comparison between the values of the conditional entropy and the values of the output
entropy leads to the required comparison between the mutual information values. The final bound is obtained
by combining the effects of both the truncation and the rounding. [ ]

Following the analysis of I(X; Z) for a proper choice of X, it remains to bound Py~ (F},). Since the term
multiplying Px«(F,) in decays super-polynomially with n, the error probability €, may decay to zero,

even if Px«(F,,) decays to zero, although polynomially.
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Proposition 9. Let ( > 0 and p € (0,% V %C) be given. For i € [n], let {Xi}ie[n] be IID with X; ~
Gamma(3,2g,), and let X; = [X\Sﬂ where S,, = [gg(1+3p),g,11+p]. Let Fo(1) :=={2" e Nu 15" 2, =1}

Assume that n = Qg ™). Then, there exists a sequence <, = on(1) and 7, € [gn(1 + <n)] such that

1

P"Fn n 2
o [Fu()) 2 3 -

(28)

for all n sufficiently large.

Proof outline of Prop. @ The main technical aspect of the proof is to find a right-tail bound on ) " , X,
where {X};cp,) are 1ID, and each is distributed according to the Gamma(3, 2g,) distribution fruncated to
Sn = [gn (1+3p ), gt |. The gist of the proof is to define a proper generative model for {Yi}ie[n}. To this end,
we define { X ; }ie[n),jen, to be a double-index array of IID RV, distributed according to X~ Gammay(3, 2gy,).
We then define X; = X J-(i) Where J*(i) € N is the minimal index such that X j € S,. Evidently, {Xi}icm
are IID, and have the required truncated gamma distribution. Now, using the fact that S,, is a high probability
set, we show that, with high probability, Xi,l is in S,, for most indices, and so X; = X 1 for most indices, which
we denote by n — /. For the remaining ¢ indices, it holds that X; < g,lﬁp , and so their effect on %Z?:l X,
is controlled. Consequently, loosely speaking, > ; X; is dominated by Y7 ; Xi,l, up to terms which are
eventually negligible. Taking into account the number of possibilities for {.J*(7) }c[,) (under the high probability
event), and using standard tail bounds on the gamma distribution, we show that Y 7 ; X; < ng,(1 +5,) with
probability larger than, say, 1/2. In turn, this is also true for the upward rounded X; = [X;] with <, replaced
by ¢, which is essentially the same. Since y ;' ; X; is an integer, roughly upper bounded by ngy,, there must
exists nt, € Ny, with 7, < ¢,(1 4+ ¢,) such that the probability of F,,(7,), as defined in the proposition, is
Q(%), as claimed. [

The proof of the achievability bound of Theorem |2| then directly combines the above propositions: First, Prop.
5] leads to a Feinstein-based bound on the number of codewords M and error probability €,,, which depends on
I(X; Z) of the Poisson channel with integer inputs, and the probability of an input vector with a fixed sum 7,
below ngy. Prop. [T lower bounds I(X;Z), and Prop. [0 bounds Px«[F},(,)]. Analyzing the leading terms in

the resulting mutual information and error probability leads to the claimed result.

IV. PROOF OF THEOREM [2
A. Proof of the converse bound of Theorem

Proof of the converse bound of Theorem [2; Let Cy be a code of cardinality M, whose maximal error

probability is €,, and for which each codeword 2™ (j) € Cys satisfies > i 2i(j) = ng, for some g < gy. By
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Fano’s inequality (e.g. [54, Thm. 20.6]) it holds that

1
log M < hpin(€r) + sup In(xmym) (29)
1 - €n Pxn:supp(Pxn)CN", PXn(i . Xi:gn)zl

where Y ~ Multinomial(nr,, %X ). We evaluate this bound by further analyzing I(X™;Y™). Setn € (0,1),

1
17791‘1)

We next relate [(X™; Z") to I(X™;Y™). Let Q := Y 1" | Z; ~ Poisson(flnnrn) be the random number of
output objects in the Poisson model. Let {S;}3°, be drawn as in the problem formulation (Sec. [lI-B), and

and let Z" = (Z1, ..., Zy,) be a vector of independent components, such that Z; | X; = x; ~ Poisson(

with a slight abuse of notation, let Y"(q) ~ Multinomial(q, giX ) be a sequence of RVs, with the coupling
that Y (q) is the histogram of S9. Thus, Y g Y"(nry). Furthermore, since P[S1,S2,...,5, | X" = 2"] =
P[Sx(1); Sx(2)s - -+ »Sr(g) | X = "] for any permutation 7 in the symmetric group of degree ¢, it holds that

I(X™;8%) = I(X™;Y"™(q)). The data-processing inequality then implies that for any ¢; < g2
I(X™Y™(qr) = 1(X"87) < I(X™; 8%) = [(X™ Y (q2)). (30)

Now, from the Poissonization of the multinomial distribution effect (Fact it holds that Z™ | X™,Q = ¢
Y"(q) | X™ for any ¢ € N. Hence,

(X" 2% = I(X™, 2", Q) 31)
= [(X™Q) + (X" 27 | Q) (32)
> (X" 2" | Q) (33)
— S B[Q =g - I(X™ Y(9)) (34)
q:0
> Z PlQ = q] - I(X"™;Y"(q)) (35)
q=nr,
DO > nra) - 1(X" Y7 36)
9 <1 - ) (XY, 37

where (a) follows from the monotonicity property in , and (b) from Chernoff’s bound for Poisson RVs
(Lemma , which implies that P[Q > nr,] > 1 — exp[—3 (1 17) nry] for any n € (0,1). Therefore,

sup I(xXmy"m)
Pxn:supp(Pxn)CN", Pxn (L3070, Xi=g )=1

< sup I(xX™ym) (38)
Pxn:supp(Pxn)CN», L 377 | E[X;]=g

n

< sup I(X™Y™) (39)
Pxn:supp(Pxn)CN", % > ]E[X,Jggn



—
S
N

1

< — sup (X" 2"
1 — e 2a=m"" Pxn:supp(Pxn)CR", L 37" | E[X;]<g

b 1 A

© sup nxmzm)

1

2
__n? .
1 — e 2a-m """ Pxn:supp(Pxn)CR", DN E[Xi]gﬁ

__n?
1—e 2a-n"m

1 1
(2 n\— ——=—"|" |: IOg <7’n> -+ O',«n(l):|

n sup I(X;2)

Px:supp(Px)CR™, E[X]< =

1

1 1
=n| ——— | [2 log(r,) — ilog(l —-n)+ oTn(l)]
1—e 20-p"n

= N -

2

1 el 1
o log(rn) + - 2 5 10g Tn — (2

__n- __n-
1—e¢ 20— 2 1—e¢ 2a-n"m

)

1
3 log(1—n)+o,,(1)],
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(40)

(41)

(42)

(43)

(44)

(45)

where (a) follows from (13_7[), in (b) we have defined Z, as a Poisson channel with a unity gain, that is

7 | X; = x; ~ Poisson(z;), (c) follows from the asymptotic expression of the mean-constrained Poisson

channel capacity in [16, Thm. 7, Eq. (23)]. Choosing n = 7,, = (nrn)1/2_p for some p € (0,1/2) shows that

if ¢, — 0 as as n — oo then it must hold that

Next, it also holds that

log M < %n [log(ryn) + on(1)].

sup I(X™y")

Pxn:supp(Pxn)CN", Pxn (L3070, Xi=g )=1

< sup H(X™)

Pxn:supp(Pxn)CN", Pxn (L3070, Xi=g )=1
1 n
" CN™" — g Ti=g
n =n
i=1

(a) <ng +n— 1)
= log | =n
n—1

<log

(c) <(ngn +n— 1)e>n1 1 (
n—1 2n(n — 1)

< n[logegn +o(1)],

(n—1)*(1+ 0(1))>
2(ngn +n—1)

+o(1)

(46)

(47)

(48)

(49)

(50)

D

(52)

where (a) follows from the stars and bars model, (b) follows since g < g, and the monotonicity of the

binomial coefficient, (¢) follows from Stirling’s approximation of the binomial coefficient (see (A.2) in Fact
Appendix [A). Combining both and in Fano’s inequality results the claimed bound.
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B. Proof of the Achievability Bound of Theorem

In this section, we prove the achievability bound of Theorem [2] To this end, we prove Props. and [9] one
after the other, and then combine them in order to complete the proof of the bound.

Proof of Prop.[5: Our goal is to analyze the probability on the right-hand side of (I6), which is typically
simple whenever i(X";Y") is a sum of IID RVs. To approach this, we further choose a scalar distribution
Px, and, as common, restrict Py~ to be the product distribution Py» = ng". However, even under this
choice, i(X";Y") is not a sum of IID RVs, since Py« x~ is not a memoryless channel. We will transform the
analysis of this probability to the analysis of sum of IID RVs in two steps, first by relating i(z";y") to the
information density of a memoryless Poisson channel, and second, by relating the probability of events under
the original channel to the probability of events under this Poisson channel. Concretely, let Z" be the output
of a channel, such that conditioned on X™ = 2™ it holds that Z; ~ Poisson(%:m), and where the components
of Z™ are independent. Let Pz» x» denote the Markov kernel from the input X™ to the output Z™. Recall that
Q=>1"1,Z,and ) ! ,Y; = nr, with probability 1. Then, for any 2" € N and y" with )" | y; = nry, it
holds that

Pyujxn(y" [ 2") (@) Pznixn " | 2", nrn)

= (53)
Py xn(y" | 2™) Pgnixn(y" | 2™)
Pynixn " x™ nr

S S UL (54)
> a0 Poix~(q | 2") - Pgujxn o(y™ [ 2™, q)

®) 1

= (55)
PQ\X" (TLTn ‘ xn)

9t} (56)
(nrn)nrn e—Nrn

where (a) follows from the Poissonization of the multinomial (Fact 20), (b) follows since
Pguixnqy™ | 2",q) =0 (57)

if ¢ # > ", yi = nry, and (c) follows since @ | X" = 2" ~ Poisson(nry,) (i.e., @ is independent of X™).
Now, Stirling’s bound (Fact [16| in Appendix |A) implies that, with probability 1

PYn\Xn(yn | z™)
Py xn (y™ | 2™)
Then using > a;/> b; > min;(a;/b;) for reals {(a;, b;)}, we also have

Pgn(y") _ 2an Pxr (@) Pgoixn (" |2") 1
PYn (yn) an PXn (I‘n)PYnLX’n (yTL | xn) - M

V2rnr, < < +bmnr,. (58)

(59)
So, for any nr, > 2,

Pli(X™Y™) < log]
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Pynxn (Y™ | XT) ]
=P|lo <lo 60
[ Py (vm) = 87 (60)
Pnxn (Y™ [ X7) Pyojxn (Y™ | X7) Py (Y") }
—Pl o +1lo <lo (61)
[ Pz (Y™) : Pnjxn (Y™ | X7) ® Pra(Y7) &7
(a) PanXn (Yn ’ Xn) 1
<Pl — o <1 62
< {og Py (V) 5 log(6mnirn) < logy (62)
(b) P n n ZTL XTL 1
< ey/nr,P [log Z |}§ZE(Z”‘) ) ~3 log(6mnry,) < log 7] (63)
(© - Pyx(Zi | Xi) 1
= e/nr,P Z log W <log~vy + B log(6mnry,) | , (64)
=1

where (a) follows since log+/2mnr, > 0, (b) follows since the probability of any event of a multinomial is
upper bounded, with a proper factor, by the probability of that event under its Poissonized version [62, Thm.

5.7 and Corollary 5.9] (see Lemma [21} H in Appendix |§) and (c) holds since Pznx»(Z" | X™) is a product

Pzn‘xn(Z | X™)

Markov kernel, which combined with the restriction Py~ = P®” results that log o (77)

is decomposed
to a sum of IID RVs.

We continue to upper bound the probability in over (X", Z™). Due to the pre-factor ©(y/nr,,), we will
need to show that this probability decays sufficiently fast in order to obtain a sufficiently strong bound on the
probability in the extended Feinstein bound (16). We again bound in two steps. First, we condition on X" = z",
and analyze the probability with respect to (w.r.t.) the randomness of Z™ and second, we analyze the resulting
upper bound w.r.t. the randomness of X".

We begin with the first step, for which we recall that the supp(Px) C [sn] = {1,2,...,s,}, and specifically,
that Py (0) = 0. We use this assumption to establish that for any 2™ € supp(PY"), the RV

concentrates fast around its expected value

(7" X" =2"):=) E

= [ Py x(Zi | ;)
Jog —ZXAZE 1)
=1

We achieve this using a concentration bound of Lipschitz functions of Poisson RVs due to Bobkov and Ledoux

(55 Prop. 11] stated in Lemma [27] (Appendix [D). The result is as follows:
Lemma 10. Assume that supp(Pyx) C [s,] for some s, € Ny. Let ™ € ([s,])®™. Then, for any § € (0, )

gn52

Pfen(Z") <I(Z™" X" =2") —nd | X" =2"] <exp |-n—75—
197, s, log* s,

(67)

Proof: To establish this, we begin by showing that if 2™ € ([s,,])®™ then f,~(2") is Lipschitz with semi-

norm S = log s,, as follows. We denote by €"(i) = (0,0,...,1,0..) the ith standard basis vector in R™. Let
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Z | X =z ~ Poisson(z*x). Then, it holds for any z € Ry and z € N that

—Tn/gn [ TnT =+l
Pyx(z+1]z) ¢ " (7) 2! (68)
Pyix(z | z) (z+ 1! e—TnT/gn (M)Z
gn
Tn X
= ) 69
R (69)
Let Pz be the marginal resulting from Px ® Py x. Then, similarly,
PZ(Z) . Ziéesupp(PX) PX(‘%)PZ\X(Z | Z) (70)
PZ(Z+1) Z:{:esupp(PX)PX('%)PZ\X(Z—Fl | j)
p -
Zesupp(Px) PZ|X(Z +1 ‘ :L’)
1
= max gfnZ—i— . (72)
Zesupp(Px) Tn T
Hence,
P z+1|z) P
Z|X( | 2) 2(2) < max g < sp. (73)
Pyix(2|x) Pz(z+1) ~ sesupp(Px) T
Analogously, we can prove that
P z+1|z) P
71x( | 2) _Pa(2) > min 2 >1. (74)
PZ|X(Z ’ .%') Pz(Z + 1) Zesupp(Px) T
Thus, for any x € supp(Px) C [sy] and z € N
Pyix(z+1|x) Pzix (2| x)
lo —log ——————| < log sy,. 75
ST Pz +1) TPz | B (75)
The additive form of f,»(2") then implies that
max |for (27 + €"(0)) = fun (2")] < logsn. (76)
Z’Vle n

This Lipschitz property results in a left-tail concentration of f,»(Z™), by invoking a variant of the Bobkov—
Ledoux concentration inequality [[55, Prop. 11] (see Lemma on the function — f;»(Z™) of the Poisson
RVs Z; | Xi = « ~ Poisson({*x;). Specifically, since implies that f,~(2") is Lipschitz with semi-norm
B = log s,,, Lemma [27] results
52

1682\ + 385 77)

Plfern(Z") —1(Z™ X" =2") < —nd | X" = 2"] < exp [—n

where \ < MaX;e n] ;—"a:i < g—"sn. The concentration result stated in the lemma then follows by utilizing the
assumption that z; € [s,] for all ¢ € [n], and by slightly loosening the bound, using the assumption § < o5n.
|

We continue to the second step in analyzing the probability in (64), which is the analysis of the randomness
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of X™. To this end, we denote

n

J(a") = ZE [log Py x(Zi | 2:) | Xi = a] (78)
=1

= I(Zi; Xi = z;) — H(Z)). (79)
=1

Lemma 11. Assume that supp(Px) C [s,], and 1,5, > 127e%g,. Then,

10g2 TnSn

2
PlJ(X™)+ H(Z") < I(X"; Z") — nd] < exp [—n%] . (80)
9n

Proof: We note that E[J(X")] = —H(Z" | X™), and show that J(X") concentrates to its expected value
using Hoeffding’s inequality (Fact[I8] Appendix [A). We begin by noting that it holds that

E [log Pyx(Zi | @) | Xi = 2] <O0. (81)
Also,
z!
—log P7jx(» | ) = log i (82)
e—rnx/gn (M)
9gn
< In® + log 2! +2 - log <gn> . (83)
In T'nT
For z > 1, using Stirling’s bound (Fact [16]in Appendix
1
logz! < zlogz — 2z + 3 log(67z), (84)
and for z = 0 it holds that log z! = 0. Hence, for Z | X = x ~ Poisson(;—zx)
Eflog Z!| X = z]
1
§E[<ZlogZ—Z+210g(67rZ)> -1{Z>0}‘X:x} (85)
(a) 1
<E ZlogZ—Z+§log(67r(Z+1)) X==x (86)
®) r,z T TR 1
< —log(l+— ) ——+E|;log6n(Z+1))| X =2 (87)
9n 9n dn 2
(C) n n n 1 n
§mlog<1+m>—m+log<67r<m+1>>, (88)
n 9n 9n 2 In

where (a) follows by analytically completing Z log Z = 0 for Z = 0, and upper bounding log Z < log(Z + 1),
(b) follows since if V' ~ Poisson(\) then, E[V log V] < Alog(1 + A) (see Lemma [24] in Appendix [B for a
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proof), (c¢) follows from Jensen’s inequality for the concave logarithm function. So,

E [—log Py x(Z | i) | X = 4] (89)

:Tn%—i—E[logZ!]X:xi]—l—E[Z]x:xi]-log<gn) (90)
gn T'nTy

=% B llog 21| X = zi] + 2 1og ( In ) 1)
n n T'nZj

(a) n4iq n n4iq n4iq ndiq 1 ndiq

er[l+log<g >]+”51 <1+””>—”C+ 10g<67r<rx+1>> (92)
In Tn; 9n In 9n 2 In
n4i 1 n4q

—”Hg<1+ >+1og<67r<”+1>> 93)
gn T'nZj 2 9n

(b) 1 ndi

§1+log<67r<r ’ +1>> (94)

2 gn

1 o [ TnSn

< —log|6me | — +1 (95)
2 gn

< Liog (127re2”> | (96)

(e)

< log 2", 97)

where (a) follows from (88), (b) follows from log(1 4 t) < ¢, (¢) follows since under the assumption of the
lemma z; < s,, and both (d) and (e) follow by the assumption 2% > 12me? > 1.

We deduce from and that J(X™) is a sum of n independent RVs E, x, [log Py x(Z; | X;)], each
of which is bounded, with probability 1, in [— log %,0]. Consequently, Hoeffding’s inequality (Fact in
Appendix [A)) implies that

PJ(X") + H(Z™ | X™) < —nd] < exp [—n . 252] , (98)

10g2 T;Sn

which then implies the claim of the lemma, by adding 7(X™; Z™) to both sides in the inequality defining the
event of interest. [ |

Setting oy, € (0, 7*sn), and then logy = nl(X; Z) — 2ndy, — 3 log(6mnry,). Let us define the event

En(x™) = {for (Z™) < I(Z™; X™ = 2™) — nb), } . (99)
Then,
anl PZ'XZ‘)X) <log~ + ;log((iﬂnrn)]
=P [anl PZXZ’)X) < nI(X";Z") — 2n5n] (100)
= Y PX"=a"]-P[fe(Z") < nI(X"; Z") - 206, | X" = 2" (101)

I"G[Sn}n
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< Y PIX"=a" - P[{fr(Z27) < nI(X™ Z7) — 206,} N {ES(")} | X7 = 2]

] P[Ep(x") | X = 2" (102)

+
2N
|
>
3
I

2" 1THI(Z™ X" =2") — nd, < nl(X™ Z™) — 2nd, }]

A\
fM
=

>

3
Il

T E[sn]
+ Y PX"=2a"exp|-n: —5 2 — (103)
].Og TnSn
ZE"E[SH}" gn
202
0g? Tzt
(0) 262 Gnd>
< —pe—=n | . I 105
< 2exp | —nd2 - 2, In , (106)
- log? % 197,55, log? sy,

where (a) follows from the concentration bound in Lemma (10} and (b) follows from Lemma |11} We substitute
this back into (64), and then in the extended Feinstein’s bound to obtain

M
eTLI(X”’;Z")72n5n7é log(6mnry,)

_|_

2
enPY" (Fy) < dey/nry, exp [—n&i- ( sy In ) (107)

log . 197, s, log2 Sn

The claim of the proposition is then proved by choosing M = exp [nl(X; Z) — 3né, — %log(67mrn)], and
performing minor algebraic simplifications. [ ]
We now turn to prove Prop.
Proof of Prop. [/: We analyze the reduction in mutual information over the Poisson channel, resulting
from modifying the ideal gamma distribution of X to the truncated X := X |5,.» and then to upward rounded

X := [X]. We begin by analyzing the reduction in mutual information due to the truncation operation, using

the I-'MMPE relation (Theorem [8). We begin with the following general result.

Lemma 12. Let U be a non-negative RV, which satisfies E[U? log? U | < oo, and let U = Uis be distributed as
U truncated to an interval S := [Smin, Smax] C R4, as in Definition @ where Spmin < 1 < Smax. Let a > 0 be

given, assume that V, | U = u ~ Poisson(au), and let V, | U = u ~ Poisson(au). Then, for any v > 0

I(U; V’Y) < I(U, V’Y) + 7 Smax - P [U € [O’ Smin)]

+9E[UlogU - 1{U € ($max, 00)}]

+~E |Ulog - 1{U € (Smax, )} (108)

Smin

Proof: Let a > 0 be given. Let alU/ (v) = E[aU | V, = v] be the MMPE estimator of aU based on

—

the measurement V. Similarly, let aU(v) = E[aU | V, = v] be the MMPE estimator of aU based on the



measurement V. Recall that £(u,v) = v — u + ulog % is Poisson error function. Then,

mmpe(al)
—E [ﬁ (aU, CTU(VG))}

U €S| PlU €S| +aE ¢ (Uﬁ
Dk [0 (T, ﬁm))] PIU € 8]+ aE [¢ (T, ﬁ(va)) U ¢ 5Y]

< mmpe(al) + ok [¢ (U, ﬁ(va)) U ¢ 5Y]

= mmpe(all) + aE [¢ (U, ﬁ(va)) S1{U € [0, sin)}] + o [¢ (U, ﬁ(va)) 1{U € (Smax, 50}

(%) mmpe(al) + aE [£ (U, $max) - 1{U € [0, $min) }] + aE [€ (U, $min) - 1 {U € (Smax, 00)}]

(f) _
< mmpe(al) + aSmax - P[U € [0, $min)] + @ - E [U log v

Smin

-1{U € (smax,oo)}} ,

—
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(109)

(110)
(111)
(112)
(113)
(114)
(115)
(116)

(117)

where (a) follows from the sub-optimality of aU for estimating aU, (b) follows from the homogeneity property

of the loss function ¢(au,av) = al(u,v) for a > 0, (¢) follows since conditioned on U € S, the distribution

of U equals that of U and the distribution of V,, equals that of V,, (d) follows again from the homogeneity

property and P[U € S| < 1 and the term multiplying P[U € S] is non-negative (the expected value of the

Poisson loss function), (e) follows since U(Vy) € S = [Smin, Smax] and since the loss function v — £(u,v) is

monotonic increasing (resp. decreasing) for v > wu (resp. v < w), (f) follows since for u < spin < 1 it holds

that
U
(U, Smax) = Smax — 4 + ulog < Smax + ulog < Smax,
Smax Smax
and for u > Syax > 1 > Smin it holds that
i U U
£ (U, Smin) = Smin — U + ulog < Smin — u + ulog < ulog .
Smin Smin Smin

(118)

(119)

Using twice the I-'MMPE relation (Theorem [8), and the bound (117) directly leads to the stated claim of the

lemma, as
v d
I(U;Vy) = / mmpe(aU);a
0

g _d
< / mmpe(aU)£+
0 a

1{U € (SmaX>Oo)}:| } %

v U
/ {asmax ‘P[U € [0, $min)] + a - E |U log
0

Smin

(120)

(121)
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- U
I(UQV”/) ""Y'Smax']P)[U € [O’Smi")] +VE Ulog

min

- 1{U € (Smax,0)}| - (122)

|
Lemma shows that the difference in mutual information between the input U and its truncated version
consists of three terms. Our next goal is to specifically evaluate these terms for the distribution and support of

interest, and show that they are negligible o, (1).

Lemma 13. Let X ~ Gamma(%, 2gy), and let Spmin = 91%3,, and Smax = gqlfp for some p € (0,1). Then,

~ 1
Sman P [ X € [0, 5mn) | < — . (123)
/2
dn
Also, there exists ny(p) such that for all n > ny(p)
~ ~ ~ gp
E [X log X - 1 {X e (smax,oo)}] < exp [—:] , (124)
and
E [Xlog — -1 {X € (smax,oo)}] < exp [—gﬂ . (125)

Proof: We begin with the first term in (123). From the properties of the gamma probability distribution
function (PDF) of consideration (Lemma in Appendix [C), it holds that

) o
S+ P [ X € [0, 50n) | = 9177 - P [X < gl+3p] (126)
14p 1
In (127)

= g S g

We now move on to the second term in (124). For ¢ € [g}frp ,00), using the expression for the gamma PDF
(see Appendix [C)

- - - oo 1 .
. > it | — —%/(29n) |, 5 7 . d7
E [XlogX ]l{X > g }] /g*ﬂ me zlogzx - dx (128)
(a) [0 % .
< 29” e/ . 4z (129)
r A\ 2Tgn
_ / / e—3/(200) 47 (130)
1+4p 2gn
)32
(2 se_s -ds (131)
f
590
. 3/2 .
© (29\;7)? (;gﬁ + 1) 39 (132)
(d) 1, 3
< dexp—ogn+(5+p log gn | » (133)

Z_(c) by solving

where (a) follows since logZ < v/ for & € R, (b) is using the change of variables s = 50
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the integral [se™®-ds = —(s+ 1)e*, and (d) follows since g, > 1. We finally move to the third term in
(124). It holds that

E [X 1 {X > g}f"H Vg [X?’/? 1 {X e (smax,oo)}] (134)
2 exp [—935] , (135)

where (a) holds since Smax = gn+p > 1, and (b) holds as for the second term. The third term is bounded as

(124) since

1
8 12

- = (1+3p)log g, < 4logg, < exp [—gﬂ (136)

|

Up until now we have considered the effect on the mutual information of the Poisson channel when truncating

the asymptotically optimal input X ~ Gamma(%, 2g,) to X = X |s- We next consider the effect on the mutual

information of upward rounding a continuous input X to an integer input X = [X]. To this end, we will

decompose the mutual information I(X;Z) = H(Z)— H(Z | X) and analyze how each of these terms changes
due to the rounding operation.

Let U(u) : Ry — R4 be the maximum entropy for non-negative integer distributions, under a mean constraint

. With a slight abuse of the notation in we denote
U(p) = max {H(A):supp(P4) C N, E[A4] < u}. (137)
A

Lemma 14. ¥(u) = (u+1) - hyip (u +1) The function j — V(u) is monotonic non-decreasing and concave
n p.
Proof: Tt is well known that the maximum entropy distribution among distributions over the non-negative

integers with a mean constraint is geometric. For completeness, a standard proof is as follows. Let A ~ Py

where p; := P4(i) for i € N. Assume that P4 satisfies the mean constraint. Let Q 4 be a distribution defined
by
(138)

for ¢ € N. Then, for any A > 0

H(PA) <Y —pilogp; + A (u -3 zp) (139)
1=0 ]
Apu—1)

= ipi log (
=0
Z Di log

(140)

+ log | Y et (141)
J
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= Dr(Pa || Q§) +log | Y Xy (142)
J

<log [ S0, (143)

J
where equality holds if both Ep[A] = Y°7° ip; = pn and Py = QE:‘) holds. Now, QE:‘) is readily identified as
a geometric distribution over N = {0, 1,2, ..}. Using the standard parametrization of the geometric distribution,

if A~ Geo(d) then E[A] = 152 and H(A) = "2 Thus, H(Py) = (1 + 1) - hpjn(2

o+7)» and this is the

maximum entropy. Monotonicity is trivial, and concavity is assured by the concavity of the entropy, or directly
from the closed-form expression of W(pu). [ |

Lemma will next be used to compare the output entropy of the Poisson channel when the input is a
continuous X, to that entropy when the input is an integer rounded version of X. We will then also compare
the conditional entropy H(Z | X) under the different input distributions can be easily compared, and combining

these two results we obtain a relation between the mutual information values. Concretely:

Lemma 15. Assume that cg, < r, < egy, for some c € (0,e) and let p € (0,1) be given, and assume that
Gn — 00 as n — oo. Let X ~ Gamma(%, 20,), X = X‘Sn with S, = [gE(H?’p),g}f”] and let X = [X ] be its

upward rounding to the nearest integer. Let Z ~ Poisson(z X) and let Z ~ Poisson(%Y). Then,

I(X:2)>I(X;Z) - (;Z) — on(1). (144)

Proof: First, we compare the conditional entropy values H(Z | X) and H(Z | X). Let f5 denote the
density of X w.r.t. the Lebesgue measure A, and let Py denote the PMF of X. We have that

[o.¢]
H(Z|X) = / fo(@) - H(Z | X = 7) - \(d) (145)
0
where H(Z | X = T) is the entropy of a Poisson RV, and, similarly,

H(Z|X)= ZPX H(Z| X =1). (146)

We show that the contribution to this sum by “small” indices 7 € nglfp |] is negligible. Indeed, by Lemma l@l,
it holds that for any i € [|gn ”]]

1 Tn 1
=)< = P
H(Z|X=1)< 21 g |:27T6 <Zgn + 12)] (147)
1 Tn 1
< ;log [27re <2£ + 12)] (148)
1
< 51 0g(351y) (149)
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assuming that p is sufficiently small so that 2’”—,7 > iz Now, Lemma 25| (Appendix E) implies that it holds that

P[X ¢ S,] = P[X < g, "] + P[X > g;7] (150)
| o
S 14'730/2 + 2e g/ (151)
gn
1
< —
=5 (152)

for all n > ng(p). Hence, using again (C.5) Lemma [25] it holds that

P[X <o ?]] =P[X < g,"]] (153)
o,
P[Xﬁ an ] (154)
PX € S,)]
< e (155)
PX € S,]
2
< ek (156)

Furthermore, assume that ¢ > g,lfp . Then, for any T € [i — 1, 1] it holds from the asymptotic expression for the

Poisson entropy in Lemma [23] (Appendix [B) that

H(Z|X =1i)— =7) (157)
= 1log 27161— i } 27763:] +0 1 (158)
2 gZ 2! In s
1 7
= = log } + O (T ) (159)
2 T
< Liog x“] Lot ) (160)
2 | T T
=0 <1> (161)
cT
1
_ 0< _ ) , (162)
cgn "’
Thus,
lgn"] 0o
H(Z|X)= Y Px(i)-HZ|X=i+ Y Px(i)-H(Z|X=1i) (163)
=0 i=lgn "]
(a) >
<SPX <|gp Pl HZ|X =gy "))+ Y. Px(i)-H(Z|X =4) (164)

i=[gn""]

2 1 d , .
< W : §log(357"n) + Z Px (1) - H(Z ’ X = 2) (165)
" izl—grlzip]

—~
=
=
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= piﬂ : %108§(357"n) + Z [ 'Zl fX(a:))\(da;)] -H(Z | X =1) (166)
o =g 1 -7
@9 2 1 o0 - _ B 1
< e 5 108(35m) + /{gM f<@) - -H(Z|X =7)-\dz) + O (C 37"> (167)
< on(1) + h (@) - H(Z | X =7) - \(d7) (168)
0
=on(1) + H(Z | X), (169)

where (a) follows from the monotonicity of the Poisson entropy as a function of its parameter, (b) follows from
and (149), (c) follows from (162).

Second, we compare the output entropy H(Z) and H(Z). To this end, we decompose X = X + D where
D € [0, 1] (note, however, that X and D are statistically dependent). Conditioned on X = x, or equivalently, on
(X, D) = (z,d), it holds that Z ~ Poisson(;—:(f + d)). By the infinite divisibility of the Poisson distribution,
we may write 7 L7+ 7, where Z ~ Poisson(£=7) and 7~ Poisson(g=d) are statistically independent. We
thuslet Z = Z + 7 , and then note that that Z > Z, with probability 1, and that both are integer valued discrete

RVs. We continue similarly to the bound in [61, Prop. 8]. It holds that

H(Z)— H(Z) < H(Z,Z) — H(Z) (170)
=H(Z|Z) (171)
=H(Z-7\|2) (172)
YE[w(E[z-7|2) (173)
2uE[z- 7)) (174)
— T (TZIEE (X - X]> (175)
2y T:) , (176)

where (a) follows from the operational definition of W(u), (b) follows since p — W(u) is concave (Lemma
14) along with Jensen’s inequality, and (c) follows since p — ¥(u) is monotonic non-decreasing in p (Lemma
) andas 0 < X — X < 1.
Concluding, utilizing both and we obtain the claimed bound. [ |
We may now conclude the proof of Prop. 7| Let p € (0,1) be given, and let S,, = [gn (1+3p ), g,lﬁp |. Let
X ~ Gamma(3,2g,), let X = )N(|5n, and let X = [X]. Let Z | X = & ~ Poisson (), Z|X =7~

n

Poisson(g27), and Z | X = x ~ Poisson({*x). It then holds for all n > ng (which depends on ¢ p, {gn}).

n

I(X;2) ¢ I(X;2)- 0 <> — op(1) (177)
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(b) ~ o~ Tn 1 1,0 Tn
. . R —29n _ )
2 1(X%:2) - ( 7 42 > v <gn> on(1) (178)
—I(X;2)— ¥ (”‘) — on(1) (179)
n
(©)
> %logrn — v <T”> —on(1), (180)

where (a) follows from Lemma [15] (b) follows from from Lemmas [12] and13] and (c) follows from the known
lower bound [16, Thm. 7] on the average-power-constrained Poisson channel. [ ]
We continue with the proof of Prop. [0t

Proof of Prop. @ Essentially, our goal is to analyze the probability that % Yo, X, is significantly larger
than its non-truncated mean (that is, the mean of Gamma(3,2g,) distribution). Recall that {X;} are drawn
from a rounded and truncated Gamma distribution. We next mainly discuss the truncation operation, as this has
larger effect on the analysis of that probability than the rounding operation. Let us describe a generative model
for RVs whose distribution is the truncated gamma. Let {5(2] }ie[n],jeN . be a double-index array of IID RVs,

where X ; ~ Gamma(3,2g,). Let

J*(4) := min {j € Ny: Xij eSn} (181)
—(143p) _1+4p

where S,, = [gn, ,gn'?], and let X; = X J-(1)- Then, X is distributed according to the Gammal(3, 2g,)
distribution, truncated to S, as required. Now, using Lemma [25| (Appendix |§), it holds for any fixed (i, j) that

P[Xiy ¢ 8] =P [Xiy <, 49)] + P[Xi; > 6h7) < +oe9t2 < 2

< - < —, (182)
g711+5p/2 g711+5p/2

where the last inequality holds for all n sufficiently large. Let L := Y ", 1{J*(¢) > 1} be the number of
indices for which X’il ¢ S, and so also X; # X’il. Hence, E[L] < W’ that is, J*(i) = 1 for almost
all i € [n]. More sharply, the event G := {L > p +3p —+&75 } has low probability, and indeed, the relative Chernoff
inequality (setting & = 5 in Fact |19|in Appendlx implies that

PG| =P

3n 1 n
gn In

So, letting ¢ > 0, we may decompose the probability of interest as

P[TILZH:Xi—gn>t] H EX gnZt}ﬂgc

+P[G] (184)

(Tp/ﬂ

1 o~ n
i=1 n
[W1 n
< P[{lin—gnZt}ﬂ{Lzﬁ} + on(1), (186)
n
=0 i=1
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where (a) follows from the assumption n = Q(gh") and p < 23—C We focus on a single term in the summation
above. Given that L = ¢ there are ¢ indices for which X; %+ XM. There are (ZL) possible ways to choose those

indices, and further conditioning on one specific choice, all the conditional probabilities are the same. Hence,

i=1
@ /n 1 ¢ o n _ ¢ o ~ no ~
< 0 -P - ZXH-.Z Xii| —gan >t mn{Xi?éXi,l}m‘ﬂ {Xi=Xi1} (187)
=1 i=0+1 =1 i=f+1
n 1 L n
< Pl = X; i1 | —gn >
< <€> P [n <ZX1+_ X,71> gn > t] (188)
i=1 i=0+1
® (n 1< % gn'"
< P|= g >
< <€> - (Z Xia | +¢ gn >t (189)
i=0+1
n 1 = - g™ — gn) n
- P Xi1 — gn > t 1
<e> [n—f, (K= gn) + = -’ (190)
i=0+1
Qe LS (% >t—1 191
=\y) mz ( z,l_gn>_ - (191)
i=0+1
@) (n (n—20)(t—1) (n—0)(t—1)?
< : TR B Udh/A S 192
R e | e
(e) 15n (n—=0)(t—1) (n—0)(t—1)?
< exp [W log(gn)] : {GXP [—4%} + exp [—89%} } ; (193)
where (a) follows from the union bound, (b) follows since X; € S, = [gn (1+3p ),g}f” ] with probability 1, (c)
follows since n = (gy,) and so
L+p 3 g
— egn) e 72 : ;=1 (194
n-= n- gLt3er? QZ gl

for all n large enough (which depends on {g,}) as g, — 0o, (d) holds since -1, Yoo Xiq~ Gamma("T_g, 29_ )

so that E[ﬁ > et Xi1] = gn, and using the tail inequality of sub-gamma RVs in Lemma [26| (Appendix |§),

(e) follows since ¢ < %, and as (?) is monotonic non-increasing for £ < 5; Then, by Stirling’s bound (Fact

in Appendix
n 3 15n
<£> < exp [n - hpin (W)] < exp [W log(gn)] ) (195)

where the last inequality assumes that p € (0,1), and uses hy;, (t) < —2tlogt for ¢ € [0, %], which is valid

since gH%/Q < % for all n > no(p) as g, — oo. So, choosing ¢t = g?/“p +1:=¢ in (193) assures that

feesfove-s
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15n n(l - g n(1 = £)g
< [E— . .~ n/ _ n
< exp [ T372 log(gn)] {exp [ 10, + exp 892 (196)
n
<exp |—c—7— |, (197)
[ gl p]
where the last inequality holds since (1 — %) — 1 as n — oo assuming ¢ < (glf’ig"p/ﬂ = o(n). Hence, from
(186)
1SS o5 M o| <p3n L 198
EZ i—gn >t <[l e | —c, | = on(l), (198)
i=1 gn In
which, by substituting back to then implies that
1 n
P [ZXi—gn zt] = on(1). (199)
n
i=1
Consequently, and as p € (0,1/4) was assumed, it holds for all n sufficiently large that
n
SOXi < (gn+ g/ 1) = nga(145,) (200)
i=1
with probability larger than 1/2, where <, := gy, Vate | g;' = 0,(1). Now, the upward integer rounding implies

that X; = [X;] for all i € [n]. Letting ¢, := gn /™" + 2¢-1 = 0,,(1), it also holds that

n

Y X <> (Xi+1) < nga(l+a) (201)
=1 =1

with probability larger than 1/2. Since > " ; X; is integer, there must exists £ € N such that 0 < k < ng,(1+¢,)

such that

Pl di=h= e 202
!zzl ] ~ 2ngn(1+¢,) — 3ngn (202)

for all n large enough. [ ]
We are now ready to prove the achievability bound of Theorem
Proof of the achievability bound of Theorem|2|: Recall the assumption n = Q(g}frg). Choose p € (0, i/\%),

and x € (0,1) and set g = 1€:x' Then, using Prop. Efor g, instead of g, implies that there exists 7, € [gn]

such that

1
Pxn [Fp(mh)] > @ (203)

for all n sufficiently large. We also note that the input distribution of X used by Prop. @ is supported on [1, s,,]

1+p ¢/8

with s, = [gn'"]. Let us choose 0, = gn """ = 0n(1). Then, under the theorem assumptions d,, € (0, 7*sn)

as and so the condition of Prop. |5|is fulfilled. It then implies that there is a codebook of cardinality M which
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satisfies
1 1
—logM > I(X;Z) — 30, — — log(6mnry,) (204)
n 2n
(@) 1 -
> —logr, —o,(1) — ¥ (7’) (205)
2 9,
® 1 n
> —logry — on(1) — U <T> , (206)
2 g,
where the last inequality follows from Prop. |7, At the same time, the maximal error probability of the codebook
satisfies
@ 33 52 2 A 1 +e ™ (207)
en < 33ng_ |\/nrpexp | —nd,, - e "on
I log? (rngg) 197,97 (1 + p)? log? g
® [ 52
< n* exp [_C?-i-gp' + e_”é”] (208)
L 9n J
@ ,r
< n' |exp [—cgg_Qpéi-] + e_ms"} (209)
@
< n* |exp [—692/2(5721-] + e_"é"} (210)
< o, (1), @11)

where (a) is obtained from 1i and setting s,, = Qif”, (b) follows by simplifying with n > g > g”,and
n > \/r, as well as n > 33 and r, < eg, < e(1 4+ x)gn, which all hold for sufficiently large n, and some
numerical constant ¢ > 0, (c) holds since n = Qg5 ™) for some ¢ > 0, (d) holds due to the choice p < %, and

(e) holds by the choice 6, = gn /8 = 0n(1). The result then follows by taking n — oo, and then y — 0. H

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we have considered the capacity of frequency-based channel with multinomial sampling, provided
upper and lower bounds on its capacity, and applied it to the log-cardinality scaling of optimal DNA-storage
codebooks in the short-molecule regime. There are multiple avenues for future research. First, while our bounds
are rather tight, there is still a gap between the upper and lower bound, and specifically, it is interesting to
settle the optimal choice of the normalized number of samples r,. Second, the achievable bound of Theorem
is only applicable under the condition n = Q(gifc). This condition is limiting, and specifically, it limits the
application of the achievable bound to the DNA storage channel to 5 > m, that is, very short molecules
are excluded. Inspecting the proof, this condition stems from the concentration inequality for the information
spectrum in the Poisson channel in Prop. [5, which results an upper bound on the concentration probability,
for which one of the terms is exp|[—nd? - m], under the assumption that the input X is supported

on [s,]. However, in order for the truncation of the optimal input of the Poisson channel to [sy] to have a
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negligible effect on the mutual information, Prop. lﬂrequires that s, = [gﬁfrp | for some p > 0. In turn, roughly
speaking, the above probability only decays when n = w(g,), and this is the source of the condition in the
theorem. Consequently, possible removal of this condition requires finding tighter bounds on the concentration
of the information spectrum of the Poisson channel, or a completely different approach. Third, it is of interest
to analyze noisy sequencing channels. Inspecting the proof of Theorem [2| it appears that this would require
analyzing the capacity of a channel with input X” and output Z" | X" ~ Poisson(X "W,,) (where X" is
the normalized version of X™). This is a Poisson channel with non-standard memory between the symbols,
that is, inter-symbol interference [63]], or a multiple-input multiple-output (MIMO) Poisson channel. Informally
speaking, even if W,, is a invertible matrix, there are two differences compared to the noiseless case. First,
the input X" is still restricted as > X; <1, and the channel X"W,, may reduce this sum at the input of the
Poisson channel. Second, the achievable lower bound on the capacity of the Poisson channel is obtained by
lower bounding the output entropy H (Z™) with the differential entropy of the input H(Z") > h(X") |16, Prop.
11]. Here, h(X "W, ) has a reduced differential entropy by log det W,,, which will further reduce the capacity.
A rigorous analysis appears challenging, and thus is left for future work. Finally, as common, a more accurate

analysis of the decay of the error probability €, and establishing a strong converse are also of interest.

APPENDIX A

USEFUL MATHEMATICAL RESULTS

Fact 16 (Stirling’s bound). For n € N
2mn (E)n < n!<V2mwen (2>n (A.1)
e e
Fact 17. For k, = o(n) as n — oo, it holds that

(Z) ~(%) leTk o (‘W) (A2)

where a,, ~ b, means that lim,,_, % = 1. Also,

<Z> < grbuin(k/n) (A3)

Fact 18 (Hoeffding’s inequality [64]). If {Xi}ie[n] are independent RVs and a; < X; < b; with probability 1

then

n 2t2
P X; —E[X;] >t| <exp [—n] . (A4
[; ] > im1(bi — ai)?
Fact 19 (The relative (multiplicative) Chernoff bound). For B; ~ Bernoulli(p) IID for i € [n]
P liB-—p>§p < exp _ & (A.5)
n ! - - 24¢ )




35
for any & > 0.

APPENDIX B

PROPERTIES OF THE POISSON DISTRIBUTION

Fact 20 (Poissonization of the multinomial distribution). Ler M ~ Poisson(M), and let G be a random vector
such that G ~ Multinomial(M, (py, pz, . . .pJ}) conditioned on M, where ZjG[J] pj = 1 and p; > 0. Then,
{G()} jelJ) are statistically independent and G(5) ~ Poisson(Mp;) (unconditioned on M).

Fact [20| can be verified by spelling out the conditional PMF of G' conditioned on M [62, Thm. 5.6] in case
{pj} are all equal, and can be easily extended to the non-uniform case (as in, e.g., [65, Lecture 11, Thm. 3.2]).

The following then follows from [[62, Corollary 5.9]:

Lemma 21. Let G ~ Multinomial(M, (p1,pa, ...ps}), and let G be an independent Poisson vector of the

same dimension so that E|G(j)] = E[G(j)] = Mpj. Then, for any event £
P[GEE]SW-P[@G&’] (B.1)
Lemma 22 (Chernoff’s bound for Poisson RVs [62, Thm. 5.4]). Let Z ~ Poisson(\). Then, for a < 1
P[Z < a)] < e (g)“* _ e Mi—alog(e/a)) < =3(1-a)? (B2)

Lemma 23 (Poisson entropy). Let Z) ~ Poisson(A). Then,

H(Z)) = %log [21e)] + O (i) . (B.3)
Also,
1 1
H(Z)) < 3 log [2716 ()\ + 12)} . (B.4)

Finally, H(Z)) is monotonic non-decreasing in .

Proof: For the first properties, see [[16, Lemma 10, Lemma 17b, Lemma 19]. For the monotonicity property,
note that by the infinite divisibility of the Poisson distribution, if Ay > A; then Z), Lz Tt Z where Z \, and

7~ Poisson(Ag — A1) are independent. As conditioning reduces entropy

H(Z),)=H(Z\ +2)>H(Z\, +Z | 2)=H(Z\, | Z) = H(Zy,). (B.5)

Lemma 24. Let V ~ Poisson(\). Then,

E[ViegV] < Alog(1+ \). (B.6)
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Proof: We follow the idea in [66]]. For any v > 0 and u > 0 it holds that log 7 < = — 1 and so
v v? U
vlogv =vlog — +vlogu < — +vlog —. (B.7)
u U e
Hence,
V2 U
E[ViegV] <E|— + Vlog— (B.8)
U e
A+ A2
— 2T L N og ¥ (B.9)
e
= Alog(1+ M), (B.10)
when choosing v =1+ A. [ ]
APPENDIX C
PROPERTIES OF THE GAMMA DISTRIBUTION
Let X ~ Gamma(k,#) where £ > 0 and 6 > 0. Then, the PDF is
1 1
fGamma (33 | k‘,@) = ka 16 z/0 (C.1
and the CDF is
1 T
FGamma (-’E | ]{3,9) = @V(k/‘a 5) (C2)
where
x
v (k) = / th=te~tdt (C.3)
0

is the incomplete gamma function. For the special case of k = % it holds that F(%) =/, and

1 VI
v (2,x> = yrmerf(yz) = 2/ eV dt, (C4)
0
where erf(z) = 1 — 2Q(v/2x) and Q(z) = \/%7 [2°e¥/2dt is the Q-function (the tail distribution function

of the standard normal distribution). Also recall that for X ~ Gamma(k,#) it holds that E[X] = kf and
Var[X] = k62

Lemma 25. Let X ~ Gammal(3,2g,). Then, for n € (—o0,1)

1
n
P [X < gn] < gr(Ll,n)/Q

(C.5)

and for any p € (0, 00)
P[X > g\ ] < 2e79%/2. (C.6)
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Thus,
1

PX & [gh 921 <L+ 0a(V)] =77 (&)
gn
Proof: 1t holds that
P [X < gZ] = FGamma (gz ’ %7 29n> (CS)

(C.9)

o 2/V 2gg%L eitzdt
\/>
gn
A
\/ 29n (10

77)/2 (C.11)
Next,
1
P[X > g,"] <1— Foamma <g§ﬁ" [ 5 2gn> (C.12)
—1—erf <\/92”> (C.13)
=2Q(g?) (C.14)
< 2792, (C.15)
using Chernoff’s bound on the Q-function. [ ]
Lemma 26. Let X ~ Gamma(k, ) where k > 0 and 6 > 0. Then, for t > 0
P[X > E[X]+t] = P[X > k6 + ] (C.16)
<eH e mm, (C.17)

Proof: Tt holds that Var[X] = k2. Now, [67, Sec. 2.4] states that X — E[X] is sub-gamma RV on the

right tail, with parameters (v, c) = (k62,6). Hence, for any s > 0
P [X CE[X] > V2k62s + 93} <eo (C.18)

Taking t = V2k62s + fs we have that t < 2(v/2k6%s V 0s) (a sum is less than twice the maximum), and so

t
§2 35 A 4k92 Hence,

. t t2 2
e Sexp |:— (20/\4]{;02>:| <€ 29 +€ 4k92. (C19)
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APPENDIX D

POISSON CONCENTRATION OF LIPSCHITZ FUNCTIONS

Assume that V' ~ Poisson(\). Then, Bobkov and Ledoux have shown the following logarithmic Sobolev

inequality [55, Corollary 4]: It holds for any strictly positive function f: N — R, that

Bnt [£(V)] = E[£(V) log(£(V)] — E[f(V)] E [log( (V)] (0.1)
1 2
< AE [f(v) DSV ] , (D2)

where Df(v) := f(v+ 1) — f(v) for v € N is the discrete derivative. Consequently, they have shown that for
any function g: N — R with max,en|Dg(v)|< 7 it holds that [55, Eq. (24)]

Ent [egm] <A .E “Dg(V)|2-eg(V)} . (D.3)

In turn, this implies the following concentration result:
Lemma 27 (Poisson concentration of Lipschitz functions, a variant of [55, Prop. 11]). Let V; ~ Poisson(\;)

for i € [n] be independent, and let \ > max;c(, Ai be given. Also let f:N" — R be such that

max [f(v" +e"(i)) — f(o")| < B (D.4)

v eEN™

where €" (i) is the ith standard basis vector in R™. Then, for any t > 0

(52
Plf(V")=E[f(V")] >nd] <exp |—n - ——="— D.5
FOV) =Bl (V)] > 0] < exp | = ot ®3)
Proof: The condition in the lemma trivially implies that choosing o> = n3? results
D@ (@) = foMP < o (D.6)
i=1

in the notation of [55, Prop. 11]. The proof therein then relies on the tensorization property (subadditivity) of the
entropy functional, which is stated for IID {V}}ie[n], but holds more generally when they are just independent
[[67, Thm. 4.22]. Then, since

Ent [eWi)] <N E [|Dg(v;)|2-eg<vf>} : (D.7)

Herbst argument and the entropy method can be used in the exact same manner to show that
Plf(V") —E[f(V")] > nd] < exp [_né log (1 + 5)} . (D.8)
45 28\
(we set a® =nf?, ¢; = X and ¢ = 2 in the bound therein). Finally, we note that

ulog (1 4+u) = (1 +wu)log(l +u) —u+u—log(l+ u) (D.9)
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(%) u2

S Y log(l D.1

> Sarg) s (D.10)
W D.11
R0 o

where (%) was stated in [67, Exercise 2.8], and (xx) follows from u > log(1 4 u) for u > 0. Using this bound
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[14]

[15]

[16]

[17]

D.8) with u = —0_ egtablishes the claim of the lemma. [ |
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