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GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS
SATISFYING THE NULL CONDITION

MICHAEL FACCI AND JASON METCALFE

Communicated by Shiferaw Berhanu

ABSTRACT. We explore the global existence of solutions to systems of quasi-
linear wave equations satisfying the null condition when the initial data are
sufficiently small. We adapt an approach of Keel, Smith, and Sogge, which
relies on integrated local energy estimates and a weighted Sobolev estimate
that yields decay in |z|, by using the rP-weighted local energy estimates of
Dafermos and Rodnianski. One advantage of this approach is that all time-
dependent vector fields can be avoided and the proof can be readily adapted
to address wave equations exterior to star-shaped obstacles.

1. INTRODUCTION

This article focuses on re-examining the proof of small data global existence
for systems of wave equations satisfying the classical null condition in (1 4 3)-
dimensions. The proof relies only on the translational and rotational symmetries
of the d’Alembertian. No explicit decay in time is required. Instead, in the
spirit of the almost global existence proofs of [5] and [14], a weighted Sobolev
estimate that provides decay in |x| is paired with a local energy estimate. In this
case, however, for the “good” derivatives that the null condition promises, we
use the rP-weighted local energy estimate of [2]. When considering quasilinear
equations one in essence has geometry that depends on the solution while the
solution in turn depends on the geometry. The highest order estimates need to
be adapted to this geometry. Upon performing the typical manipulations for
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the rP-weighted estimates, the possibility that the “good” derivative from the
multiplier and the “good” derivative from the null condition land on the same
factor is encountered. Our method introduces a simple approach to this issue,
which [7] calls “the problem of multiple good derivatives”, by allowing for different
choices of p in the rP-weighted estimate.

Specifically, we will consider

Ou! = A%2P9,u” 9gu® + BLI*P o u’ 9,05u

uw(0, <) =f, (0, )=g.
Here (t,z) € Ry xR3, I =1,2,...,M, and u = (u',...,u™). Repeated Greek
indices are implicitly summed from 0 to 3 where dy = 0y, lower case Latin indices

are summed from 1 to 3, and repeated upper case indices are summed from 1 to
M. The coefficients of the quasilinear terms are assumed to satisfy the symmetries

(1.1)

(1.2) Bineb — plabe _ pKaef

We have truncated (1.1) at the quadratic level. As is well-known, for problems
with small initial data, higher order terms are typically better behaved.

Even for small, sufficiently regular and decaying initial data, solutions to (1.1)
can only be ensured to exist almost globally, which means that the lifespan of the
solution grows exponentially as the size of the initial data shrinks. In [1] and [8],
the null condition was identified as a sufficient condition for guaranteeing global
solutions to (1.1) for small initial data. We assume the same here, which requires
that

(1.3) A'0Pe e5 =0, and B *Pe 656, = 0, whenever €2 — €2 — €2 — €2 = 0.

These conditions promise that at least one factor of each nonlinear term is a
“good” derivative, which are directional derivatives in directions that are tangent
to the light cone t = |z| and are known to have more rapid decay. We will fix the
notation and more explicitly describe these in the next subsection.

The main result of this paper establishes global existence for (1.1) subject to
(1.3) for sufficiently small initial data.

Theorem 1.1. Fiz 0 < p < 2, and suppose f,g € C=(R?) satisfy
@4) 3 (I E Mol + 1) Mg e + 1) o f 1) <
[pI<N

for e > 0 sufficiently small and N sufficiently large. Then provided that (1.2) and
(1.3) hold, (1.1) admits a global solution u € C*°(Ry x R3).
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Here we have used (r) = v/1 + r2. We note that the assumption (1.4) could be
refined after we introduce some additional notation.

A common approach in proofs of long-time existence for nonlinear wave equa-
tions is to rely on the method of invariant vector fields and the Klainerman-
Sobolev inequality [9]. Motivated by a desire to study similar wave equations in
exterior domains, with multiple speeds, and with nontrivial background geometry,
multiple approaches now exist that do not necessitate the use of the full set of
invariant vector fields. A sample of such results includes [16], [6], [15, 13], [11, 12],
[10].

The majority of the above results still rely on the scaling vector field t0; + r0,.
Works such as [4], [7], [18] have pioneered methods for quasilinear equations
that do not rely on any time dependent vector field. These methods rely on
other means of obtaining t-decay. In the case of, e.g., [7] this is accomplished by
considering a null foliation.

In the current paper, we explore a technique that is more akin to [5], [14].
Rather than relying on decay in ¢, this approach couples decay in |z| with local
energy estimates for the wave equation in order to obtain almost global existence
without assuming special structures on the nonlinearity. In order to take advan-
tage of the good derivatives that the null condition ensures, we will employ the
rP-weighted local energy estimate of [2]. We note that our method can immedi-
ately be adapted to prove the same result for Dirichlet-wave equations exterior
to star-shaped obstacles.

In [3], this same approach was explored for semilinear wave equations. The
current result is a bit more involved. In order to avoid a loss of regularity at the
highest order, the estimates need to be adapted to allow for small, time-dependent
perturbations of 0. Upon doing so, “the problem of multiple good derivatives”
as described in [7, Section 1.5.4] is encountered. In a typical term encountered
within the rP-weighted local energy estimate, there is a cubic interaction. Two fac-
tors arise from the quadratic nonlinearity and one from the multiplier. Amongst
these factors, the multiplier contributes a good derivative and the null condition
promises at least one additional good derivative. If these good derivatives fall on
different factors, the method of [3] applies easily. When adapting the estimates
to allow for the perturbations, the manipulations allow for these good derivatives
to both fall on the same factor. We propose an alternative to the methods of [7]
for subverting this problem. In particular, we consider separately a lower order
energy and a high order energy, which on its surface is commonplace. When doing
so, however, we consider different choices of p in the rP-weighted estimates, and
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this will allow us to avoid the use of time dependent vector fields to obtain the
additional decay needed for these terms.

1.1. Notation. Here fix the notation that will be used throughout the paper.
We let v = Ou = (dyu, V,u) denote the space-time gradient. The notation

O = (2903 — 2302, w301 — £105, 2102 — 2201)
is used for the generators of rotations. And
Z = (00,01, 02, 03,821,824, 23)
will denote our collections of admissible vector fields. We will use the shorthand
1ZNul = Y |Zru|, [0SNul= ) [0Mul.
lu| <N lu|<N

The (spatial) gradient will be frequently (orthogonally) decomposed into its
radial and angular parts:

x
e ;ar + W
Here, as is standard, r = |z| and 0, = £ - V,. The components of Ju that are

tangent to the light cone are known to have better decay properties. We will
abbreviate these “good” derivatives as

7= (0 + 0. 7).
A key property of the admissible vector fields is that they satisfy:
[O,Z] =0.

We also need to understand how they interact with 0 and ¢@. In particular, we
have

(15) .00l <10ul, 12,9 < 1|Zul, [0, 9ul < +loul.

In the second computation, we use the fact that |Wu| < |Zu|, which follows from

Y =—%xQ
2. LocAL ENERGY ESTIMATES

In order to handle the quasilinear nature of the problem, we will rely on linear
estimates for the wave equation on geometries that are a small, though time-
dependent, perturbation of Minkowski space. In particular, we consider solutions
to

(Opu)’ = FT,

@1) U(O, =1 875“(07 =g
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where
(@nu)" = (7 = A’ + h™ 9, 05u"

and the perturbations are assumed to satisfy

(2.2) hheb — ploed — pl b
For a differential operator D, we use the following notation
M 3 M
DRl =" Y [DhP(ta)l,  [D(hPwaws)l = Y ID(hE (t w)waws)].
I,K=1a,f=0 I,K=1

In [15], the integrated local energy estimate was established for O, and used to
prove global existence for systems of wave equations satisfying the null condition
in exterior domains. We will utilize the notation

ulce = zsag Ril/z”u”LfLi([O,oo)x{%g(z)gR})7 lullLer = 10w, u/r)|LE
and record the following immediate corollary of [15, Proposition 2.2].

Proposition 2.1. Suppose that h satisfies (2.2) and

M 3
(2.3) = > > |hpfta) <i<1

I,K=1a,=0

with § > 0 sufficiently small. Then if uw € C* solves (2.1) and for every t,
|0=tu(t,z)| — 0 as |x| — oo, then

> U
@)l + 100l S 10w, )+ [ [ (|au|+u)|mhu|dxdt

ol

aahﬁé“’gasuK](IauIHM) dodt + / h / [(@hg?)05u" Dy | dr
r 0

[T ol (loul + 1) asa

The spatial portion of the LE! norm considers the local energy of u in an

inhomogeneous annulus with a weight that is dictated by the radii of the annulus.
The estimate captures the fact that this local energy decays at a sufficiently rapid
rate to permit L2-integrability in time with a bound that (essentially) matches
that provided by the energy estimate (for perturbations of O).

The proof of this proposition follows upon pairing (Oxu)! with a multiplier of

the form

ul,

T
coul + ——ou!
e +7‘+R Y +’I“+R
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integrating over [0, 7] x R3, and integrating by parts. See also [17] and [14].
If we set w = (—1,2/r), in order to take advantage of the null condition in the

sequel, we note
239 Aah kP 85u" =(0, — wad, )P B5u" + wa 0, WL (85 — wpd, )uls
. + &(wao.)ghﬁ{’aﬁ)aruf(

and
(2.6)
LB gut D ul =L (85 — wpd, Ju Duu! + Oh"Puwpdu® (B — wady)u'
+ (wawﬁahl’o‘ﬁ)aruKarul.

Using these, we observe that (2.4) implies that
1) Nl +10ul gz £ 1000, e+ [ [ (00l + 25 Baul doat

= [T [ tonligul (10wl + 1) e
/ / P 19|+ 0ot ) 0ul (0] + 2 o .

We next consider a variant of the rP-weighted local energy estimate of [2].
To, e.g., readily control commutators involving vector fields and @, the following
estimate that is akin to a Hardy inequality is convenient.

Lemma 2.2. Suppose that u € C*([0,00) x R3) and that for each t € [0,00),
rP/2|u(t, x)| = 0 as |z| — co. Then, provided 0 < p < 2,

28) "7 ullpperz + 1T wlzre S "7 u(0, )z + 0 @) Las-

PROOF. We consider

T T e
/ /7"”*3u2 dzdt = L / / / (0 + 0p)(rP %) (ru)® dr do dt.
0 p=2Jo Js2Jo

Upon integrating by parts, this is
1

1
=-— P2 (T, x) do — — rP=2u?(0, x) dx
b= b=

% ' OOTP_?(TU)(&&+37-)(ru)drdadt.
pJo Js2Jo
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If we apply the Schwarz inequality to the last term, the above two equations yield
(where the norms in time are taken over [0,T7)

p=3 p=2 p=2 p=3 p=3
[lr2 U||2L%L%+||T 2 U(Tv)”ig < llr 2 w(0, )||ig+H7’ 2 “HL%L%”T 2 (at'i‘ar)(Tu)HLng-

Using that ab < ca® 4+ ;5b* for any ¢ > 0, the first factor of the last term can be
absorbed into the left side. The proof is then completed by taking a supremum
over T'. O

The next result is the main linear estimate used in our proof of global existence.
It is based on the rP-weighted local energy estimates of [2]. Here we have adapted
the proof to allow for small, time-dependent perturbations of the geometry in
order to accommodate the quasilinear nature of the problem. Due to the “problem
of multiple good derivatives,” we do so in two different ways. The first estimate,
which will be applied with the highest order of vector fields, uses integration by
parts on the perturbation in the most standard way. Upon doing so, it is possible
that both good derivatives will land on the perturbation. To handle this, the
second estimate, which will be used at a lower order and with a higher p, will
be employed. In this second case, if neither of the derivatives in the quasilinear
term are good derivatives, no further integration by parts will be applied. This
will keep the two good derivatives on separate terms, which will each be at this
lower order.

Theorem 2.3. Suppose h € C?([0,00) x R3) satisfies (2.2). Let u € C?([0,00) x
R?) be so that for each t >0,

r%|8§1u(t,x)| — 0 as |z| = oo.
Then, for any 0 < p < 2,
(2.9)
p_1 p—3 4 p—2
"2 GulZa s + "2 wl2a e + I8 P2 g2 + 102 ull 3o o

P p=2
< IrE g0, I + 77 u(0, )13

+ stip(/ rP|h||Ou| (|8u| + r_l\u|) dx)

+/Ooo/rp|3hu|(au+|1;|) dxdt+Aw/rp|8h||au|(@u+|1ﬂ) da dt

> h
+/ /TP(U+|ah|+|a(wawﬂhaﬁ)|) 0ul(|0u] + |u|>dxdt,
0 r

r
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and
(2.10)
—1 —3 o=
I pullZy o + Ir"= wllFags + Irf Pullfess + "= ullf ey

< I (0, I + 17 (0, )
+Slip(/rp\h|<|8u|+|r—‘)(\ﬁ -+ 1Y )
+/OO/7“”|Dhu| |&u|—|—M) d dt
[T [rtmou(igul+ M) dvdes [ [rionigul(gu+ ) de a

/ /Tp |h| + |h"5waw5|)\88<1u|<|au| + i |> dx dt

+/ /rH (rion] + 1)l
0

The reader should have in mind that in the sequel we will choose the perturba-
tion to have the form hi* = —B1*9 u’. We note that the last term in (2.9)
could potentially have multiple good derivatives when the perturbation h is itself
based in a good derivative. As indicated above, to remedy this, we will later use
(2.10) with its p chosen to be more than twice that used in (2.9). We also point
out that the second to last term of (2.10) has a factor containing more derivatives
than what appear in the left, which requires that this estimate be applied with a
lower number of vector fields so this loss of regularity can be overcome.

PRrOOF. We consider

r 1

/ /rpDhuI <8t + 0, + f)ul dx dt.

0 r

To start, we argue as in [3] and note that
T p I 1 I
r’0Ou 3t + 0y + 7)u dx dt
/ / 8t + Or )( H-w. W(TUI)] (6t + 8r) (ru’) dr do dt.

Integrating by parts and using [V, d,] = %W, we see that the right side is

[ [l

(atm )(ru)’zdrdadt
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e )
+ 3 rP (@ + (‘37») |V (ru)|® dr do dt
0

T
+/ /rp_1|W(ru)\2drdadt.
0

Subsequent integrations by parts give that this is
1 =2 2 1 p—2 2
= 5 lr = dru)(T, L2 — 5llr™= §ru)(0, -)liz.
T 2
+B/ /Tp_1‘<8t+8r)(ru)‘ dr do dt
2 Jo
p T 1 2
_£ p—
+ (1 2)/0 /r |V (ru)|” dr do dt.

Provided that 0 < p < 2, we can combine this with (2.8) to obtain

p—1 p=3 ) p=2
(211) lr = Gullzops +Ir T ullze + Ir2 Ju(T, lzz +Ir = w(T, )72

, p—2 r 1
S 1B g0, s + 1w, M + [ [ 0w’ (0040, + L)l dwat].
0

We now consider the perturbation terms. Using, again, that [V, 0,] = %W and
the symmetries (2.2), we obtain

T
1
/ /rphﬁ(’aﬁaaﬁguK (8t + 0, + ;)ul dx dt
0
= /r”hl’oﬁa uK(a + 0, + 1)u[ dx‘T
K 8 prET =0
T .
*/0 /TpflhkjﬁﬁguKWqu dx dt
T .
+/ /Tp_ijhﬁ(’j'BaﬂuKuI dz dt
0
I pilaB 1 Ko I
—5 PRy (@—F&»—l—;) [aﬁu &Xu}dxdt
0
T 1
— / /rpaahﬁfﬁaguf( (&g + 0, + f)uI dx dt
O T

T , 1
_ p/ /rp_lehkjﬁaguK (@ +0r + ;)ul dx dt,
0
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where, as above, we have set w = (—1,z/r). And thus, arguing as in (2.5) and
(2.6) and integrating by parts, this is

1 T 1 T
= /rphﬁ(’oﬂaguK <3t +0r + ;)ul dx tzo—g/rphﬁ(’aﬁﬁguf{aaul dx o
T T
_/ /rp_lhﬁ(’j’@é)guKWqu dx dt+/ /rp_ghﬁgjﬁulagul( dx dt
0 0

1 [T
+ Zi/ /rpflhﬁéaﬁagul(aaul dx dt
0

2
1 /7T
+ 7/ /T‘p (Bt + 3r> hﬁ(’aﬁaguK&qu dx dt
2 Jo
T 1
— / /Tpﬁahﬁ(’aﬁ(aﬂ — wply)ul <8t +0, + ;)ul dz dt
0
S 0, 0, )WL 0, (9, + 0 + ~ ) u! da dt
/0/rw5<a war)K ru<t+ T+r)u X
T ; 1
- / / rPupuadrh g0 (9, 4+ 0, + —)ul d dt
B T
T _ 1
—p/ /Tpflehﬁ(’jﬁﬁgu[( (& + 0, + ;)ul dx dt.
0

From this, when combined with (2.11), the bound (2.9) follows immediately.
We next consider (2.10). We write

P00 = wawaORu® + P00 (95 — wad, JuF
+ h? (8oz - waﬁr)wﬁaruK-

For (2.10), we need not further modify the terms involving hﬁ(’o‘ﬂ wawgd2u. For
those that remain, we notice that

/OT /rphé(’aﬁ ((%35 — wawlaaf)UK (31‘, +0r + %)UI dx dt

1 T
= /rphﬁ(’oﬁaﬁuK (at + 0 + ;)ul dx .
t=

T , 1
_ p/ /Tp_lehﬁ(’m’agul( (815 +0r + ;)UI dx dt
0

- /0 ’ / 0L (35— ws0, )u (0 + 0, + - )ul dedr
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T 1
— / /7’”(8@ — wa&.)hé(’aﬁwgaruK (8,5 + 0, + f)ul dx dt
0 r
T 1
+(p+ 2)/ /rp_lhﬁ(’aﬁwawgaruK (Bt + 0, + f)ul dx dt
O r
T . T .
- /o /Tp—lhﬁ(’]ﬂaﬂuKWjul dr dt + /o /Tp_?:hﬁ%mwjulasui( dz dt
T
—/ /rp’Qhﬁ(’aﬁwawguI&auK dz dt
0

1 [T s 1
_ pp 0B . o K 1
2/0 /7‘ hK (at + 0, + T) {(85 W5ar)u Ol
+ wgaruK((?a - waar)ul} dx dt.

A subsequent integration by parts gives that

1 T I,a8 1 K I
_ D ) _ _
: /O / P (8, + 0.+ ) [(05 — 50w D

+ wg&nuK(@a - waar)ul] dx dt
= —% /Tphﬁ(’aﬂ [((9,3 — w0y )u Opu’
T
+ w0 (9 — wa&,)ul} dm‘o
1t p Iap K I
+ 5/0 /r (8 + 0,)hL: [(ag — wgd ) Dau

+ wlgﬁruK (O — woﬁr)ul} dx dt

1 /7
+ pf—;— / /rp_lhﬁ{’aﬁ {(85 — wpd,y ) u Dpul
0

+ wgaruK (O — woﬁr)uq dx dt.

Moreover,

T T
/ /rp_Qh%’J*BwquaguK dz dt —/ /rp_2h§(’a6waw5u1(‘9ruK dx dt
0 0

1 _9.,1.50 T
=— [P 2hK’J uful! dx‘
2 0

p—1 (T p—3 Il K. I e p—3115j. K. I
— 5 rPPwiwh g ut u dxdtfi rP7hYut vt dr dt
0 0
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» [T
- f/ /rp 20;05h P ut Ul da dt + 5/ /rpfghé(’aﬁwawﬁuKuI dx dt
0

/ / P20, WP wawpuul da dt.

Combining (2.11) with the preceding three equations yields (2.10). O

The main source of decay that we rely upon is the following weighted Sobolev
estimate that originates from [8]. It is proved by localizing and applying standard
Sobolev embeddings in the r,w variables. The decay results upon adjusting the
volume element dr do(w) to match that of R3 in spherical coordinates.

Lemma 2.4. For h € C*®°(R3) and R > 1, we have
(2.12) 10l Lo (Ry2<izl<r) S BT Z52R| 12 (R /a< 2)<2R)-

We now use the smallness of i to absorb some perturbative terms and first
undertake (2.9). The following proposition largely addresses the problem of mul-
tiple good derivatives. In the sequel, the perturbation will be a lower order term.
When this lower order term is small in a weighted space with the p more than
twice the choice of p for the higher order factors, we are able to absorb the pertur-
bative factors, including the last term in (2.9), which is the possible occurrence
of multiple good derivatives. The resulting estimate is then quite similar to that
used in [3] for the semilinear case. The issue with multiple good derivatives barely
appears in the next section as it is entirely reduced to demonstrating hypothesis
(2.13) below.

Proposition 2.5. Fiz 0 < p < 1. Assume that h € C%([0,00) x R?) satisfies
(2.2). Moreover, for p > 2p, suppose

(2.13) |1 Z5%h] e zz + (1) Z52 00| 2z + (1) 253 (wawsh®)l|zpz <6
for & > 0 sufficiently small. Let u € C?([0,00) x R3) be so that for each t > 0,
P T |01 Z5Nu(t, x)| — 0,  as || — oc.
Then
(214) (52 Nul| ez + H(ﬂprZZSNUHL;ng 1025 u]| o2
) 92wl + 100 2Nz + 125Vl
S EIZ=Nu(0, Iz + 17T Z5Vu(0, )llz2

pt1

H10Z5Nu(0, llzz + I1(r) > OnZ=Nul 122
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PROOF. We first apply (2.9) to x>1(|z|)Z<Nu where x~1(r) is a smooth function
that vanishes for » < 1 and is identically 1 for » > 2. Using a Sobolev embedding,
H?(R3?) C L*(R3), and the bound for the first term in (2.13), it follows that

/ [ 10n 125N 001 25V )] dad
L+ 105" e L) 25N ul L S 125N ul|E pa-
Thus by subsequently applying (2.7) to Z<Nu, we see that the square of the left
side of (2.14) is bounded by
P p=2
(2.15)  (r)2@Z=Nu(0, - )II72 + {r) = Z=Nu(0, -)|1Z2 + 11025 u(0, -)|12:

+s1t1p/< )P |h|(|aZ<N |+ Z< ?“') dz

—|—/ /(<r>p|g?Z§Nu| +10Z5Nu| + <7‘>p_1|ZSNu|)|DhZSNu\ dz dt

0
+/Oo/(r)p|8h| 9Z<Nu| + |Z<§:u|)2dxdt

/ /|ah||aZ<N (1025 u| + 1Z=7 |>dxdt
<N ‘

S 2
/ / o(ln |+|ah|+|8(wawgha5)|) (|azﬁNu|+u) dz dt.

By the Cauchy—Schwarz inequality and the fact that p > 0, we obtain
/ / WNPZENu| + 102N | + (r >P‘1|ZSNu|) |0, Z5Nu| dx dt

p—1 p=3
< 3 (147 925N ulZy 1y + 125Nl o + 1) T 25l )
ptl
+Cr) T 0z =N, .

The first three terms in the right side can be absorbed by the square of the left
side of (2.14).

We will proceed to showing that the fourth, sixth, seventh, and eighth terms of
(2.15) can be bounded by a constant that can be chosen sufficiently small times
the square of the left side of (2.14). These terms can again be absorbed, which
will complete the argument.

Since p < 1, using (2.12), a standard Hardy inequality

(2.16) Ir ull 2gey S IVull 2y,
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and (2.13) results in

<N 2
u
|> dl’ﬁ‘sHaZSNUHQLg@Lg,

sup [ 077 1hl((02=ul +

which suffices for the fourth term in (2.15).
Proceeding to the sixth term in (2.15), we apply (2.12) and (2.13) to get

/ " [ erion (197 + |Z<<T]:u|)2dxdt

p=1 p=3
So(In) T 92Nl + 10T 25N ul3y ).

Similarly, since p > 0,

<N
7“') da dt
"

/ /|6h||aZ§Nu|(|8ZSNu| L2
0

p—1
SOl 7 925Nl 2 2 125N ul| Lr.
And since p < 1, (2.12) and (2.13) give

/ / ) (o2l + 2 = D dwdt < 612 ul .

It remains to establish

@) [ [ (19 10Gawane)) (925 +
< 010255 ul 12 12550l

The left side of (2.17) is bounded by

S [ /
>0 21 -1<(x)<27}

Applying (2.12), the Schwarz inequality, and the Hardy inequality (2.16), this is
controlled by

. B p—1 -1 (&2
(ZZJ(‘IF?))(H@» 3 Zg2ah||Lng+||<7"> 2 ZS28(waw5h B)||L§L§)

Jj=0

|<N

7< 2
7”') da dt
T

|Z<Nu

2
ah\ + |a(wawﬁhaﬂ)|) (|aZSNu| + 7|) dz dt.

NOZ=Nu| pee 2 | 25N ul| poa -
Using the bound on the last two terms of (2.13), as p > 2p, (2.17) follows. O

We next consider a result analogous to Proposition 2.5 for the lower order
energy, which has the larger weight p. The proof proceeds similarly but is based
instead on (2.10). It is this estimate that will allow us to show (2.13) in the
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sequel, which thus addresses the issue with multiple good derivatives. We note
that the following will be applied at a lower order than (2.14), and as such, we
will be able to handle the loss of a vector field that occurs in the last two terms
of the estimate.

Proposition 2.6. Fiz 0 < p < 1. Assume that h € C?([0,00) xR?) satisfies (2.2)
and, for 2p < p < 2, (2.13) with § > 0 sufficiently small. Let u € C?([0,00) x R3)
be so that for each t > 0,

T#WSIZSNu(t,w)\ =0, aslz|— .

Then
(218) 1N EPZ=N L0 poe o + [|() T 25N e s
Pt _ 5=3 _
+ () 7 9Z=N "l pa e + ()T 25N g

5 B2
S 2 @Z=N " (0, )z + [1(r) = 25N (0, )|

~Y
.
+ 1) = On 25N M o + 125V ul iy + 025N | o

PROOF. As in the preceding proof, (2.10) can be applied to control the square of
the left side of (2.18) by

—2

)2 GZ=N" (0, )72 + 1) 2 25V Mu(0, )17.
Z<N-1 Z<N-1

+s1:p(/ (T)f’|h|(|8Z§N_lu\+7| = “‘)(|azSN—1u|+7| ® “‘)dx)
+/Ooo/(r)ﬁ|DhZ§N‘1u|(\aZ§N‘1u\+|ZS<NT;IU|) dax dt
[T [t mloz= (9=l +
0
+ [T [erionozs =t (197 + ot o

‘ZSNfl
|Z§N71
oo B <N-1
+/ /(r)p(\é}hH— 1P aiss]) 02 ul (192 ] + U) do dt
0

u|

——— ) dzdt

)
(r)

+/ /(r)ﬁ_3(r\8h|+\h|)|Z§N_1u|2dxdt+|\Z§N_1u||iE1 + 102N 2o .

; :

Using the Schwarz inequality, we see that

<N-1

/000 / (r}ﬁ\DhZSN’1u|(|aZ§N71u| + |Z<T>u|> dx dt
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<) F BhZ=N Ml g (1097 925l s + 1) T 25N a2 )

and the second factor can be absorbed by the square of the left side of (2.18) after
applying ab < ca® + %CbQ.

As above, we now seek to control the third, fifth, sixth, seventh, and eighth
terms by a small parameter times the square of the left side of (2.18). These
terms can then be absorbed for a sufficiently small choice of the parameter, which

will complete the proof.
|ZSN-1y| |Z<N-1

We first note that
5 Z=N 1y
P Z<N-1 u Z<N-1 -
sup [ )70 (10253ul+ ) (1923 4 )

SNZ=2h| oo 121025 " | Lo p2
5 _ 52 _
(1) 925l gz + 1) T 25N Ml ge)
p—2
S 5(\|8Z<N Yl Fee pa + 1 > §z=N= Yl oo + H<7">TZSN_1UH%§°L§)

where we have used (2.12), (2.16), (2.13), and the assumption that p < 2.
For the remaining terms, we repeatedly use the hypothesis p < 2, (2.12), and
(2.13) and obtain the bounds:

|<N1

/ / P 1|hHaZ<N 1 |<|aZ<N 1 ‘_"_ <> u')dl‘dt
S 2= ullp e (110 T 925N Ml + 100 T 25V Ml ),

<N-1
/ / P|on||gz =N |(|aZ<N 1y 4 122l = u')dmdt
S 5||<T>T@ZSN_1U||L$L§ (||<T>?aZSN_1U||L§L§ + ||<7">¥Z§N_1U||L§Lg)a

and
| [ @7 (lonl+ 100) 125l dwa < 8 r) 7 25

as desired. In all three cases, the  appears as a result of the bound on the first
term in (2.13). Arguing similarly to (2.17), using the bound on the last two terms
of (2.13), results in

<N-1

/ / (1] + 1P wquas] ) |92Vl (|52 |+|Z<T>“|) do dt
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p—1 p—3
1025wl g + 514 T P2 By + )T 25 N2 ).
Combining these bounds immediately gives (2.18). O

3. PROOF OF THEOREM 1.1

We begin by establishing the following lemma concerning the interaction of
the admissible vector fields with the null condition. Variants of this lemma are
commonplace.

Lemma 3.1. Suppose that AY%P and BL2*P satisfy (1.3). Then, on |z| > 1,
(3.1) |Z=N(AD3P0au” 95v™)| < | Z5N Jul|| Z5N200| + | Z5N/2 Gul| Z=N )|

175N 0ul| 25V 2] + |25V 20u| 75
and

(3.2)
175N (B 0,0 0005%)| S 125N Jull 75N/ 90| + | 25N/l 7V o

+ 125N ou| (175N G| + 17| 25N 200 )
+|ZSN2gy| (\ZSNHW + r*1|aZSNv|).
for any N. Moreover, for any multi-index p with |u| < N,
(3.3) |Z4(BLrP 0,u” 0a050™) — BP0 0’ 0,05 210 |
5 \ZSNauHZSN/QHaﬂ + |Z§N/2¢u||ZSN80|
+ 125N oul (175N gl + 17| 25N 200 )
| ZSN2gy| (\zSNam + r*1|ZSNav|).
PROOF. By (1.3), we have
AL 0! 950" = AL (00 — wadr)u! 950" + AYpPwad,u” (05 — wpdr ) o™

The result (3.1) then follows from the product rule.
We write

B89 u! 0,050% = BLYP (8, — w0, )u’ 8,050
+ B w007 (80 — wady)sv
+ B;’%O‘ﬁw,ywaé‘ru‘]ar(ag — wpd, v’
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We further note that
BiPy . u‘](a — Wadr) v’ = B 5w76 u”’ 5 (00 — wa Oy )™
+ BI ijva U waW IS BI RELI, 87~UJ(5jk — wjwg)Opv
The desired results (3.2) and (3.3) are again a result of the product rule. O
We solve (1.1) by considering an iteration where ug = 0 and ug solves
Oup = AP0l 1 05ul_ ) + BY P00, 0a05ul,

ug(0, -) = f,  Our(0,-) =g

Welet 0 < 2p <p<2.
Boundedness: Our first task will be to show uniform boundedness of the se-
quence (uy). We set

p—1 p_1 _
My =|(r)" 7 Z=N Jupll 2z + 1(r) 7 25V G| 22

+ 125N 0ug| oo 12 + 12N uiell L -

(3.4)

For k = 1, we may take h'%” = 0. From (2.14) and (2.18), which are being
applied to a homogeneous equation, and (1.4), there exists a constant Cy so that

My < Cope.
We will use induction to show that
(3.5) My, <2Cpe, forall ke N.
Assuming that the bound holds at the (k — 1)st level, we set
hiP = —BIePo ul .
By (1.3), for any I, J, K, we have
hreboaws = =B P wawsdu, 1 = =B waws(0y — wyd)up_ 1.

Thus, since p < 2 and using (1.5),

125 hllegez + 10 252 9hlagns + )5 25 watah™) 112
S 125 0up— 1llperz + [I(r > Z<3@uk llz2rz + 1252 w1 L

By the inductive hypothesis, this is O(e), which establishes (2.13). Thus by (2.14)
and (2.18) it will suffice to establish

P

pt1 1
(3.6) (r) = OnZ=Nupl2p2 + [I(r) S 0,258 Yugllpare S Mi_y + My—1 M.
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As noted previously the problem of multiple good derivatives is only an artifact
of considering estimates for perturbations of 0. With (2.13) established, Propo-
sition 2.5 completely addresses the issue, and the subsequent argument is quite
reminiscent of the simpler semilinear case.

We first notice that

O 2w =Z* (AT Oauil_10pui_y) + 2" (ByR7 0w, 0a0pui)
— BP0 ul 0,05 21 uls.

By (3.1) and (3.3), it follows that

ptl ptl N
B.7) ) 7 w2 Nugll 2 S )7 125N Gui || 252 Oupa | 212
p+1 N ptl N
() 1257 Jupa || 25N 0w |l 2oz +I1(r) 2 125N Pup—a || 25+ Oui| | 12 12
ptl N pt1 N
+[(r) 21257 Jupa || 25N Qui || 2z + ) = 125N Qi || 252 Pui||| 22

p+1

p+1 N p—1 N

1) = 1252 Qur | 25N Junlll 2z + () = | 257 Qupe 1 [| 25N Qupe—a || 212
1 —1

) T 25N Gup | 255 T 0w 2 gz +1(r) T 125 % Our [| 25N Qu| | 2.2

We notice that the last three terms provide the appropriate bounds when |z| < 1.
For each of the first six terms in the right, we apply (2.12) to the term with fewer
vector fields and measure the good derivative factor in a weighted L?L2-space
and the other factor in an energy space L{°L2. Provided % +3 < N, by (2.12),
we have

1 41
(38) ()T 25N 2= E | o + ()T 25 F 1w 250 1
p=1
S ) 2 ZSNw”LngHZSNUHLgOLg
and, since p < 2,

p—1 N
(3.9) [r) = 25w 252 | 212 S 125V wl| pe 12 | 25N 0] L

Indeed, (3.9) follows as the square of the left side is controlled by

—1)j|| 7<N <&
ZQ(F 1)J||Z* w272+1U||i%L%(R+X{2171S<1}>§2j})7
Jj=0

which after an application of (2.12) is

- <N . —jl <&
< (2 Z Nl 52125 0l i< ooy
>0 JZ



650 MICHAEL FACCI AND JASON METCALFE

from which (3.9) follows readily. Using (3.8) and (3.9) repeatedly, it follows that
the right side of (3.7) is
< ME_| + My—1 My,

This provides the bound for the first term in the left side of (3.6). The bound
for the second term is nearly identical where all of the p are replaced by p and
the N by N — 1.

Convergence: We now establish that the sequence (uy) is Cauchy. It, thus,
converges, and its limit is the desired solution.

To this end, we set

(3.10) Ay =) T 2=V Gy, — up—1)|pzr2 + 1125V 7 0wk — uk—1)llpeor2
+ 125N ug — w1 ||

We will prove that
(3.11) A < %Ak_l for all k.

We begin by noting

O(uf, — up_y) = ATR Do (ul_y — ui_)dpuf,

+ A?}%’Baaui—zaﬁ(uk](—l —uy) + B;’;{aﬂav“i—laaaﬁ(uf —upy)
+ Bﬁ’%“ﬁaw(uiq - Ui&)aaaﬁuéil-

With hk*? = —BL1Pg uJ | as above, (3.5) implies (2.13). We may, thus,

apply (2.14). Since uy — up—1 has vanishing Cauchy data, it suffices to bound

p+1

(3.12) [l(r) * OnZ N N ug —up—1)llp2rz S (Mi—1 + My_2)Ap—1 + My_1 Ay,

~

as we may then apply (3.5) and absorb Ay to the other side, which will yield
(3.11) as long as ¢ is sufficiently small.
Using (3.1), (3.3), and (3.2), we have

pt1 -
(3.13) |[(r) 7 OpZ=N "M (ug — ug—1)ll 2 re
2l - N1 N-1
< [0 125 s —w2)l (1257w | + 1257 )|
pF1 _
) 1255 Dl — w2 (125 O | 4+ 125V D)) |
o1 _ N+1 N-1 o
+|[(r) 7 |Z=N 13(“k—l*“k—2)|<\zS > Jup—1| + 1273 f/’uk—2|>’LzL2
t -z

N-—-1

T Ok — wn-)| (|25Y Pu-a| + 125V Jupal )|

p+1
+ H<7“>T|ZS

L2L2



GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS 651

ptl N+1 -
+ || F 125 F o — w125V G|,
prl _ N—-1
+ () 25N 0wk — uk- )| 2577 Jug—a| 1212
pt1 N41 -
| = 1255 = w125 |
ptl B N—1
+ () T |25V P u — we—1)|| 2572 Oupa | L2L2
t @x
p=1 — = e
+”<T> 7 |Z<N 16(u1€—1—Uk—2)|(\Z5 > Qup—y| + 2572 8uk_2|)‘L2L2
p—1 N1 B
—&-H<7“> T |Z572 8(%—1—uk—2)|<|Z§Nauk—1|+\ZSN 16“’“_2')‘L2L2
R <5
[ T 12N o w1257 S|,
Pl N1 -
+H<7"> T Z572 9wy, — up—1)||Z=N lauk*ﬂ‘L%?'

We proceed with an argument that is akin to that used in the proof of (3.5).
For each term, we apply (2.12) to the lower order factor. We then measure the
“good” derivative factor in a weighted L? L2 space, while the other factor is placed
into an energy space. This approach, which is based in (3.8) and (3.9), shows that
the first four terms in the right side of (3.13) are bounded by

p=1 _
1(r) = Z=N " Gupy — up—a) |21z

N+5 N+3
x (1255wl ez + 1255 Ouiall ez )

N43
> Plug—1 —up—2)|llL2L2

X <||ZSN8uk—1||L;>°L§ + |Z§N713Uk—2||Lg°Lg)
+ 125N O(up—1 — up—2)||Leor2

x (litr) = 2=

p—1
+(r) 7 |25

N+5 p—1 <

Ni3
2 Gun -l iz + 1) 25 us o312

N+3
2 O(up—1 — up—2)||lrr2

p—1l p—1 B
X (||<7“> 7 725N Jug | pare + |(r) 7 25N 1@uk—2||Lng),

+||Z=

which, provided that % <N, is

S Ak (Mkﬂ + Mk72)~
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Similarly, the fifth through eighth terms in the right side of (3.13) can be con-
trolled by

< N+o

PR
125727 0(uk — up—1)llLger2 [(r) 2 Z5N 7' Puge_a |22
_ p—1 N+3
+||Z§N "O(ur — ur—1) |2 1(r) = 2572 upallpepe
N5 _
+|lr)*7 | 2= Pur, — up—1)l| 222 125N Oup 1 ||| oo 2

1) T 125N G — ) 2222 12577 Ous ez,

which in turn is < Ay - My_; provided that % < N — 1. Relying on the fact
that p < 2, the remaining terms in (3.13) (namely the last four in the right side)
are

S ||Z§%3(Uk71 —up—2)|lLer2 (”ZSNukleLEl + ||ZSN_1U1072HLE1)

+ 125V O (up g — up— 2)|lsr2 (||Z 2 e + 1125 =N S g 2||LE1)

N+3
H N ZN 0wk — 1) || poo 22 |1 2577 w1 | L

+ 12555 0wy, — wr—1) o2 125N w1 || L
As this is
S (Mkfz + M}c—l)Ak—l + M1 - Ay,

we have completed the proof of (3.12), which also completes the proof of Theo-
rem 1.1.
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