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A B S T R A C T

Gentrication is a complex and context-specic process that involves changes in the built environment and social
abric o neighborhoods, oten resulting in the displacement o vulnerable communities. Machine Learning (ML)
has emerged as a powerul predictive tool that is capable o circumventing the methodological challenges that
historically held back researchers rom producing reliable orecasts o gentrication. Additionally, computer
vision ML algorithms or landscape character assessment, or deep mapping, can now capture a wider range o
built metrics related to gentrication-induced redevelopment. These novel ML applications promise to rapidly
progress our understandings o gentrication and our capacity to translate academic ndings into more pro-
ductive direction or communities and stakeholders, but with this sudden development comes a steep learning
curve. The current paper aims to bridge this divide by providing an overview o recent progress and an actionable
template o use that is accessible or researchers across a wide array o academic elds. As a secondary point o
emphasis, the review goes over Explainable Articial Intelligence (XAI) tools or gentrication models and opens
up discussion on the nuanced challenges that arise when applying black-box models to human systems. Abstract:
Gentrication is a complex and context-specic process that involves changes in the built environment and social
abric o neighborhoods, oten resulting in the displacement o vulnerable communities. Machine Learning (ML)
has emerged as a powerul predictive tool that is capable o circumventing the methodological challenges that
historically held back researchers rom producing reliable orecasts o gentrication. Additionally, computer
vision ML algorithms or landscape character assessment, or deep mapping, can now capture a wider range o
built metrics related to gentrication-induced redevelopment. These novel ML applications promise to rapidly
progress our understandings o gentrication and our capacity to translate academic ndings into more pro-
ductive direction or communities and stakeholders, but with this sudden development comes a steep learning
curve. The current paper aims to bridge this divide by providing an overview o recent progress and an actionable
template o use that is accessible or researchers across a wide array o academic elds. As a secondary point o
emphasis, the review goes over Explainable Articial Intelligence (XAI) tools or gentrication models and opens
up discussion on the nuanced challenges that arise when applying black-box models to human systems.

1. Introduction

Gentrication is dened as the process where the social character
and built landscape o a historically disinvested, inner-city neighbor-
hood is transormed by an infux o people and capital (Glass, 1964;
Smith, 1979). Gentrication is distinct rom other orms o neighbor-
hood evolution, such as in the case o incumbent upgrading where the
residential housing stock is gradually renovated in situ by existing res-
idents (Van Criekingen & Decroly, 2003, p. 2452).

Gentrication’s transormation o the built environment emerges in
relation to historical spatial patterns o investment and disinvestment, or

“geographies o opportunity” (Wilson, 2006). Opportunity, in this case,
can reer to educational opportunity across school districts, employment
opportunity, the proximity o health services and grocery stores, public
transit options, and the overall quality o the neighborhood’s inra-
structure. Central to modern gentrication theory is the concept that
structural attributes aect lie quality and human outcomes, and that
gentrication both fourishes in and contributes to increased inequity
through the restructuring o local landscapes (Ansell, 2019; Wyly &
Hammel, 2004; Zuk et al., 2018).

Inormation asymmetries inherent in the real estate market can
exacerbate the gentrication process by creating disparities in

* Corresponding author.
E-mail address: sth55@drexel.edu (H. Simi).

Contents lists available at ScienceDirect

Computers, Environment and Urban Systems
journal homepage: www.elsevier.com/locate/ceus 

https://doi.org/10.1016/j.compenvurbsys.2024.102119
Received 5 November 2023; Received in revised orm 29 February 2024; Accepted 18 April 2024



Computers, Environment and Urban Systems 111 (2024) 102119

2

knowledge and power between various stakeholders, such as de-
velopers, incumbent residents, potential homebuyers or renters, and
local government (Krijnen, 2018). Without access to the private market
data that drives the inormed speculation o developers and investors,
municipal planners and community groups requently nd themselves
retroactively responding to gentrication’s eects ater development is
well-advanced. For this reason, a large body o contemporary scholars
work towards constructing a productive and reproducible model o the
gentrication process that can extrapolate trends that refect realities
on-ground.

Research themes are multidisciplinary and encompass a wide array
o topics, rom examining the sociopolitical conficts between gentriers
and displacees (Brown-Saracino & Ghaziani, 2009; Pattillo, 2010),
modeling the relationship between gentrication and broader economic
trends in the housing market (Schaer & Smith, 1986; Wyly & Hammel,
1999), identiying global patterns o gentrication outside o Anglo-
sphere contexts (Lees, 2019; Slater, 2017), and nding ways to better
integrate academic ndings into municipal policy (Chapple, 2009;
Chapple & Zuk, 2016).

For most studies, researchers are tasked to identiy where and when
gentrication is occurring. Quantitative models tend to ocus on socio-
economic shits in the study area, such as tracking spikes in median
income or rent (Atkinson, 2000; McKinnish et al., 2010), whereas more
labor-intensive, mixed-methods studies integrate observation-based
data in the orm o community surveys or direct audits o visual
neighborhood change (Chapple, 2009; Hammel&Wyly, 1996; Hwang&
Sampson, 2014; Wyly & Hammel, 1998, 1999).

Many researchers have emphasized the need or better metrics,
models, and validation techniques (Barton, 2016; Brown-Saracino,
2017a; Finio, 2021). Although qualitative studies can provide detailed
ethnographic accounts o gentrication narratives, they are oten locale-
specic and time-intensive. Quantitative methods can analyze gentri-
cation at a macro-scale with nationally available census datasets, but
variables lack quality inormation on built characteristics and data on
housing supply. The most widely applied quantitative methods are also
limited in their applicability in light o gaps in the data and collinearities
between variables (Royall & Wortmann, 2015). Without the capability
to provide accurate orecasts and link specic urban eatures to the
gentrication process, researchers ace diculties in communicating
their theoretical insights to stakeholders in meaningul ways (Atkinson,
2008; Chapple & Zuk, 2016).

Recent advancements in Machine Learning (ML), a subset o Arti-
cial Intelligence (AI), have opened new avenues or researchers to tackle
the wicked problem o modeling gentrication (e.g., Palaox & Ortiz-
Monasterio, 2020; Reades et al., 2019; Thackway et al., 2023a, 2023b;
Yee & Dennett, 2022). Unlike non-learning-based methods, ML is
powerul in its capacity to discern meaningul patterns rom high-
volume, stochastic datasets. These pioneering researchers emphasize
the potential or their ndings to help outline gentrication mitigation
techniques, construct early warning systems or vulnerable commu-
nities, and place political pressure on stakeholders to consider the long-
term, negative consequences o supporting pro-gentrication policies.

Progress in ML seems to come in leaps and bounds by the day, rom
the application o more computationally powerul algorithms like
Extreme Gradient Boosting (Chen & Guestrin, 2016), to the ever-
increasing sophistication o object recognition models (Tian, 2020).
Gentrication researchers are integrating ML with a similarly rapid and
eager pace, but there are ew publications that refect on the progress,
untapped potential, and limitations o these novel approaches. Despite
the pace o integration, there is a need or more critical evaluation and,
additionally, a need to disseminate this knowledge in ways that are
accessible to researchers without data science-specic backgrounds.

Although recent ML-based gentrication models have exercised a
good deal o caution, the same cannot be said o other applications, such
as the case with AI chatbots like Microsot’s Tay, Meta’s Galactica, and
ChatGPT that have been reported to perpetuate racist and sexist

stereotypes (Borji, 2023), or the prolieration o criminal proling tools
that use ML to classiy suspects based on arbitrary patterns in acial
proportions (Labi, 2012; Wu& Zhang, 2016). It is important to note that
there is nothing inherently malicious about the structure o ML algo-
rithms. However, due to the need or substantial amounts o input data
and the lack o transparency in how the algorithms process this data to
generate predictions, ML algorithms are susceptible to misuse and can
easily learn biases without proper saeguards.

For modeling gentrication, a phenomenon with inexorable ties to
race, class, and inequity, researchers ace an ever-increasing re-
sponsibility towards applying ML in refective and cautious ways to not
do disservice to the very groups we aim to serve. Many o the ML models
used in gentrication research are “black-box” in nature in that under-
lying model mechanisms are not readily apparent to the user and the
relationships between inputs and outputs are unclear (Hamori et al.,
2018). Within this context, the current paper contributes an overview o
successul ML applications or gentrication modeling with an eye to-
wards elucidating the strengths, limitations, and interpretability o these
AI algorithms. By demonstrating how ML models can unction within
our existing theoretical rameworks, we can work towards demystiying
its seemingly “magic” capacity to produce predictions rom the data,
promote transparency in our data and methods, and encourage a
widespread usage o these tools in elds such as human geography and
planning, environmental science, and other non-data science disciplines.

As a secondary point o emphasis, the current paper investigates the
signicance o the advent o “deep mapping,” or deep learning models
trained to categorize aspects o the built environment, or gentrication
modeling (Ilic et al., 2019). Built characteristics have largely eluded
researchers prior; Relevant census variables tend to be inconsistently
available and thus unworkable or the purposes o a creating a repro-
ducible model. However, deep mapping methods provide a template or
automating the ways we acquire data o built orms. Such a technique
opens the possibility to implement easily reproducible methods o data
collection that can be fexible or a wide range o urban environments.
Lastly, the current paper proposes a visualization o how these new data
collection and modeling techniques can cohere together into a single,
comprehensive methodology or orecasting gentrication.

2. An actionable denition of gentrication

One o the greatest methodological challenges in mapping gentri-
cation is the misidentication, or the chronic under- or over-estimation,
o gentrication occurrence in a locale (Finio, 2021). By establishing a
set o comprehensive metrics, researchers can better evaluate the quality
o their models and pinpoint areas where a loss o inormation could lead
to poor model perormance. From this basis o thought, the paper nds it
useul to break down the core characteristics that dierentiate gentri-
cation rom other orms o neighborhood change beore entering into
an overview o the methods.

As ollows, the current research denes gentrication in a neigh-
borhood when landscape change occurs in league with other urban
phenomena that are symptomatic o the presence o gentrication. From
Davidson and Lees (2005), these gentrication-related indicators can be
broadly grouped under three processes o neighborhood change:

1. a major investment o capital or stakeholders in a localized area,
oten indicated through the relative scale o development, renova-
tion, and/or beautication eorts underway

2. landscape changes where the amenities, built eatures, and ease o
access to these newly developed or rehabilitated locations are
designed or the wealthier target demographic and their existing or
anticipated demands

3. indicators o an infux o households rom a high(er) socioeconomic
class

There exists general consensus in the research that these criteria
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serve as reliable indicators or the presence o gentrication in a
neighborhood. Ideally, these three criteria are all well-represented in a
comprehensive model.

Contemporary research recognizes the existence o gentrication
variants that provide more dimension in the way we analyze the di-
erences in how gentrication can maniest across context and place. For
example, “new-build” gentrication involves development on brown-
eld sites and underperorming lots, commonly ound in cases o state-
led gentrication in the Global South (Lees, 2019). “Green gentrica-
tion” is primarily triggered by sustainability initiatives such as the
introduction o parks or pollution remediation (Gould & Lewis, 2012;
Pearsall, 2018). The redevelopment o these green amenities is oten
responsible or the displacement o low-income people o color and re-
sults in inequitable impacts by urther distancing marginalized com-
munities rom ecosystem benets and green space (Anguelovski, 2016;
Goossens et al., 2020). With respect to varying orms o socioeconomic
change, “marginal gentrication” describes the phenomena where
young artists and/or students attract wealthier gentrier groups by
imbuing a trendy aesthetic to the neighborhood with their presence,
inadvertently upping the marketability o the neighborhood (Owens,
2012, p. 347). For “super-gentrication,” the gentrier group comes
rom the wealthiest upper echelon, a transnational elite class, residing in
newly developed, luxury high-rises. This extreme orm o gentrication
can even result in the displacement o middle-class residents who were
once gentriers themselves and perpetuate a spiraling up o land and
property values (Butler & Lees, 2006; Lees, 2008; Roe, 2003).

By incorporating these variants into a gentrication modeling
methodology, researchers can develop more sophisticated, customized
models o measurement or each gentrication variant rather than
mapping gentrication under an overly broad umbrella o indicator
eatures. For example, green gentrication may necessitate the variable
o “proximity to recently (re)developed green amenity” in order to
qualiy as a green gentriying area, whereas solely using traditional
gentrication metrics that ocus on residential structures may lead to
green gentriying tracts being overlooked in the analysis.

The ollowing section provides an overview o common, non-ML
methods or mapping gentrication occurrence (section 3) beore
moving into a review o ML-specic techniques (section 4).

3. A review of the methods for mapping gentrication

In order to map out gentrication or a study area, quantitative
studies typically apply a “threshold strategy” or identiying gentrica-
tion occurrence by comparing proportional dierences in population
and housing characteristics beore and ater a given time point (Barton,
2016). Although contemporary literature prioritizes the recognition o
variegated gentrication orms (Atkinson & Bridge, 2004), many exist-
ing studies tend towards recognizing a more classic typology o a
gentriying tract – i.e., a majority low-income, blue-collar inner-city
neighborhood changing to a majority high-income, white-collar one.
Under this diagnosis, a tract is vulnerable to gentrication given that the
tract’s median income is some percentile below the municipal or na-
tional average, and a tract is gentried given a certain percentage point
increase in income- and employment-related eatures (Atkinson, 2000;
Ellen & Ding, 2016; McKinnish et al., 2010).

For example, Atkinson (2000) quantiy gentrication with proxy
variables relating to household occupation. Gentrication is indicated
by above-average increases in the proportion o white-collar occupa-
tions or a given ward relative to the whole o London. Based on
descriptive statistics o longitudinal census data, the study nds a cor-
respondence with these occupational shits and decreases in socioeco-
nomic variables related to blue-collar displacement (e.g., the proportion
o working-class households, unskilled labor, renters, non-white eth-
nicities, the elderly, single parents, and the unemployed).

Freeman (2005) integrates more variables into their criteria or
gentrication occurrence, considering only inner-city, low-income,

underinvested neighborhoods in the US that demonstrate an increase in
educational attainment and housing price. The threshold is set as a
proportional change relative to the median o the metropolitan area,
with the variable o underinvestment quantied according to the pro-
portion o housing built.

Threshold criteria provide an easily interpretable and implementable
solution to classiying neighborhoods. Nonetheless, research suggests
that simpler metrics may ail to capture the complexities within a
gentrication model and thus chronically misidentiy gentrication
status due to that loss o inormation (Barton, 2016). For example, i a
threshold analysis were to use median rent as their variable-o-choice, a
non-gentriying neighborhood with newly constructed aordable
housing would be classied in the same way as a gentriying neigh-
borhood with new-build condominiums (Wyly & Hammel, 1998).

In order to elucidate how alternate methodologies can compensate
or this weakness, the current paper rst outlines three core limitations
to standard threshold analyses. Firstly, commonly used metrics oten ail
to capture built development and investment, a necessary criterion or
gentrication occurrence. A core eature o the gentrication experience
is not only that wealthier households move into the neighborhood, but
that this demographic movement heralds a restructuring o the built
environment in a way that is exclusionary to existing communities. This
overreliance on limited sociodemographic measures is not rom negli-
gence, but rather due to a lack o access to quality data on built char-
acteristics, thus preventing an appropriate consideration o landscape
change and a propensity to under- or over-estimate the scale o gentri-
cation in each study area.

Threshold methods are also limited in the quantity o metrics they
can incorporate. For a given neighborhood, socioeconomic change may
be better captured across a wider range o metrics beyond occupational
and income characteristics. As the threshold method is oten imple-
mented in tandem with a kind o “checklist” approach to identiying
gentriying places, this technique limits the capacity to integrate a wider
range o indicators and lacks the ability to weight eatures according to
their ability to distinguish between dierence socioeconomic groups.

Lastly, gentrication can take on various orms beyond the standard
“blue-collar to white-collar” typology. Threshold approaches can over-
look more evolved stages o the gentrication liecycle, such as with
super-gentrication where the gentrier group consists o ultra wealthy
individuals who are capable o outing high-income households who
were once gentriers themselves. Alternatively, threshold methods can
overlook more nascent orms o gentrication like marginal gentrica-
tion where artists and students inadvertently up the marketability o
their neighborhood, even when they lack the nancial capital and in-
come status to be quantied as gentriers by commonly used metrics.

In order to circumvent these limitations, certain mixed-methods
approaches integrate qualitative ndings to construct or validate
gentrication occurrence. Oten, journalistic approaches can capture
on-ground truths through interviews with stakeholders, media analysis,
and eld observations o built changes (i.e., direct auditing).

To date, Hammel and Wyly (1996) and Wyly and Hammel (1998,
1999) provide the most extensive dataset o eld observations or Bos-
ton, Chicago, Detroit, Milwaukee, Minneapolis-St. Paul, Philadelphia,
Seattle and Washington D.C. The eld survey observations were
centered on the development or rehabilitation o residential buildings,
such as the reconstruction o latticework and window rames or the
installation o security systems. Along with journalistic sources (e.g.,
city planning documents, local press reports), these ndings were drawn
on to split the study area into “core” gentried, “ringe” gentried, and
non-gentried tracts. According to the authors, core gentried tracts are
dened as tracts with at least one rehabilitated structure on each block
and with at least a third o all structures upgraded in a tract, whereas
ringe gentried tracts have at least one rehabilitated structure on the
majority o blocks within a tract with at least one block having a third o
all structures upgraded.

Direct auditing methods are, unortunately, dicult to replicate due
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to their time-consuming and labor-intensive nature. As a solution to this
limitation, Hwang and Sampson (2014) apply Google Street View (GSV)
images in order to eectively audit changes to the built environment
using the panoramic, rotation, and zoom eatures o the GSV platorm
or dierent years. By eliminating the need or in-person observation,
the researchers could aord to incorporate a wider array o survey
metrics like marking evidence o beautication eorts (e.g., painting
over grati, cleaning up vacant lots) and disorder (e.g., derelict
buildings).

The implementation o GSV proves a promising solution to inte-
grating landscape change into gentrication orecasts in addition to
providing the validity and inter-reliability results needed to be a pro-
ductive measure o neighborhood change (Clarke et al., 2010; Odgers
et al., 2012; Rundle et al., 2011). Notably, manually parsing through
GSV images is still an exhaustive process. Hwang and Sampson (2014),
or example, worked with a sample o 2709 block aces. Recent ad-
vancements in ML and computer vision provide a solution to automating
the GSV image classication process, and will be discussed in greater
detail in section 4.

These advancements allow or a more comprehensive and repre-
sentative dataset o gentrication-indicating eatures, but there is still a
need or a better statistical method or integrating a wider array o
eatures and or weighting variables by their relative infuence. Wyly
and Hammel (1999) apply a multivariate discriminant analysis to
identiy which set o independent variables are o best t to the model,
but this type o analysis requires an a priori knowledge o gentrication
status and retroactively ts eatures to a known system state. Addi-
tionally, multivariate analyses still perorm poorly in the presence o
multicollinearities which run rampant when dealing with socioeco-
nomic variables. With the rapid evolution o the gentrication process
and its variability rom place to place, researchers need a method that
can provide a reliable map o gentriying neighborhoods rom the data at
hand.

Recent research has ound an easily implementable solution to this
problem in the orm o Principal Components Analysis (PCA) or the
identication o gentriying tracts. PCA is a popular dimensionality
reduction technique that can perorm optimally with a large number o
interrelated variables (Wold et al., 1987). PCA unctions by producing a
set o principal component vectors that consist o a linear combination o
the original independent variables in a way that best describes the
variance o the dataset. In this way, the top principal component would
ascribe a new value to each data point or tract that better describes the
meaningul dierences in tract characteristics.

Bereitschat (2020) apply PCA on 110 urban cores o U.S. cities in
order to quantiy socioeconomic and demographic change that could be
indicative o gentrication occurrence. The 16 variables capturing
metrics like race, occupational status, education, income, age, vehicle-
ownership, household size, population, and homeownership could be
condensed down to our principal components that describe 67% o the
variance in the dataset. PCA, on its own, is not amenable to interpre-
tation as it can be challenging to parse through the individual eects o
the original variables. However, PCA provides a useul way to tackle
long and wide datasets and distinguish between summarized magni-
tudes o neighborhood change.

Whereas threshold and PCA methods nd utility in identiying past
or current gentrication status, relatively less research has been done in
constructing techniques or tracking gentrication progression or
uture years. This subset o the literature has important implications or
disseminating academic ndings in a way that has immediate utility on-
ground, such as providing early warning systems or vulnerable com-
munities or assisting municipal bodies in producing targeted anti-
gentrication policies.

Methodology-wise, the majority o studies on gentrication predic-
tion rely on constructing composite indices based on variables related to
gentrication susceptibility (Bates, 2013; Chapple, 2009; Spinney et al.,
2011; Turner & Snow, 2001). Chapple (2009) provide a measure o

gentrication susceptibility to unction as an early warning toolkit or
the San Fransisco Bay Area municipal government. Beore constructing a
predictive model, the research rst identies current gentrication
status as low-income tracts that had undergone above-average housing
appreciation and educational attainment over the decade. The study
then implements a multivariate regression to model gentrication-
related variables as a unction o attributes relating to demographic
traits, income, transportation, housing, and locational actors. I one o
the attributes is ound to correlate highly with eatures o gentrication
occurrence, then that variable becomes an indicator o uture gentri-
cation risk. For the orecasting process, each risk variable contributes an
equally weighted score o 1 to the susceptibility index.

Other composite indices generally ollow a similar methodology as
Chapple (2009), just with dierent variable choices. For example,
Turner and Snow (2001) construct a composite index orWashington DC
with the same approach or scoring variables, this time drawing on data
that described housing prices, public transit access, and presence o new
coee shops and art galleries. Given the spatiotemporal variability o
gentrication occurrence, data choices should vary rom place to place.
For example, Los Angeles would consider access to public transit a high-
risk actor whereas Portland places more emphasis on evidence o pri-
vate investment in the housing sector (Preis et al., 2020). However, in
the case o the early warning systems mentioned, data choices are
dicult to validate or their ecacy relative to other metrics as they are
oten based on the personal judgements o the authors behind the study.

O the studies that validated the accuracy o their composite metrics,
many nd a great discrepancy between predicted and actual gentri-
cation status and a propensity or alse positives (Chapple & Zuk, 2016).
There is a persisting need in the literature or more reliable orecasting
models that can perorm optimally despite multicollinearities between
input eatures and assign weights to indicators according to their
contribution to the prediction.

Progress in the literature has brought us the ability to incorporate
built measures into the gentrication model and the capacity to
condense a large number o input eatures into smaller, more workable
components. We are still let with limitations in our ability to identiy
gentrication variants i.e., modeling gentrication beyond the more
rigid constructs o blue-collar to white-collar, low-income to high-
income gentrication evolution. Secondly, we still need more sophisti-
cated methodologies or predicting gentrication susceptibility (Greene
& Pettit, 2016). Moreover, there is a need or less time-consuming
methods or acquiring data on the built environment. The current
paper will proceed with an explanation o how recent applications in ML
provide solutions to these three core gaps in the literature.

4. Machine learning for gentrication

Advancements in ML provide a host o solutions to persisting gaps in
the literature, such as parsing out gentrication variants rom the
dataset (Owens, 2012; Wei & Knox, 2013; Yee & Dennett, 2022), pro-
ducing predictive models to orecast gentrication or upcoming de-
cades (Alejandro & Palaox, 2019; Kiely & Bastian, 2020; Knorr, 2019;
Palaox & Ortiz-Monasterio, 2020; Reades et al., 2019; Thackway et al.,
2023a; Yee&Dennett, 2022), and gathering built metrics with computer
vision techniques (Ilic et al., 2019; Thackway et al., 2023b).

Moreover, ML methods utilized in gentrication modeling are oten
amenable to stacking, where the predictions rom oneMLmethod can be
coherently ed into another, allowing researchers to acknowledge mul-
tiple research questions (e.g., identiying current gentrication status,
parsing out variants, gathering built metrics, building a predictive
model) within a single study. The progress o ML-based gentrication
research is oten consistent in its tendency to expand o o the meth-
odological structure o prior work.

The current section o this paper will describe these ML modeling
techniques in a way that places emphasis on research studies that
compound their ndings onto the methodologies o their predecessors,
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beginning with the pioneering application o a predictive gentrication
model (Reades et al., 2019), to the stacking oMLmodels or identiying
gentrication variants (Yee & Dennett, 2022), and down to the nal
iteration oML studies that construct more detailed metrics o landscape
change or the prediction model (Ilic et al., 2019; Thackway et al.,
2023b).

For a brie summary o ML, learning-based algorithms are not so
dierent rom their task-based counterparts (e.g., non-ML regression
analyses) in that they oten unction o o similar mathematical unc-
tions and in their ability to draw on samples to make inerences about
the true system state. ML only diers in its capacity to “learn” rom and
improve on prior iterations o the model. All learning-based models
begin with training the model on a subset o the data and testing the
adapted model on the remaining data, unamiliar to the newly trained
model, until optimal perormance is achieved.

ML approaches can be grouped into amilies o supervised, unsu-
pervised, and semi-supervised models. Supervised models (e.g., Random
Forest) learn rom labeled data, where the “label” is the descriptor value
or a data sample (e.g., the label or a tract could be the binary yes/no
indicator o whether or not that tract gentried).

For a simplied diagram o what the supervised ML learning process
looks like in practice, see Fig. 1 where the sequential steps or data
preparation, model training, model evaluation, model testing, and
model explainability are presented in a top-down order. Although not a
strict requirement, it is suggested that the output o low-explainability
models (e.g., tree-ensembles, support vector machine) is run through
an Explainable Articial Intelligence (XAI) tool (e.g., Shapley, LIME).
The recommendation holds or unsupervised and semi-supervised
models.

Alternatively, unsupervised models (e.g., K-means) learn rom the
intrinsic patterns o unlabeled data. Where supervised models train on
user-presented examples (i.e., labeled data samples), unsupervised
models use the structure o the data itsel to come up with a prediction.
Unsupervised approaches are commonly used or clustering, dimen-
sionality reduction, and density estimation. Semi-supervised models can

intake unlabeled and labeled data in tandem, and are oten applied
when labeling the entire training dataset becomes too labor intensive or
the user. In the ollowing subsection, we describe howMLmodels can be
used to predict uture gentrication occurrence. Many o the studies
mentioned in the review published open-source datasets and/or
methods via GitHub. Links are provided in the Supplementary Inor-
mation section o the current paper.

4.1. Data sources

The spatial and temporal scales o gentrication research tend to be
restricted by the extent o data availability. Studies largely measure
gentrication over 5- to 10-year periods corresponding to regional
census data time scales. For US contexts, the census tract is a commonly
used spatial unit o analysis containing around 1200 to 8000 residents
per unit.

ML-based gentrication models are similar to traditional studies in
the variables they incorporate. Gentrication’s infuential actors, as
represented in the data, can be broadly split into two camps: residential
household and housing characteristics like the demographic and socio-
economic descriptors o households and basic housing stock eatures
and, secondly, the locational attributes that infuence the accessibility,
appeal, and marketability o urban spaces, like Point o Interest (POI)
amenities, proximity to the downtown center, historic district, or transit,
and qualities o the public transit system itsel (Brown-Saracino, 2017b;
Finio, 2022).

Unlike traditional regression analyses, many ML algorithms are
capable o intaking a high number o correlated variables without
running the risk o overtting. Tree-based models like Random Forest
(RF) and Gradient Boosted Machine (GBM) can methodically select
eatures that contribute best to the nal prediction and, in turn, place
lower predictive weight on the more insignicant variables. This opti-
mization process is o great utility to the research as neighborhood
variables can change in predictive power over location, context, and
time, even within a single study area. For example, the impact o transit

Fig. 1. A supervised Machine Learning (ML) model. A fowchart describing the processes or data preparation, model training and testing, model validation, and
model explainability. Specic to geospatial datasets, “geo ID” reers to the geographic unit o measurement (e.g., tract). Without the “label” boxes, the gure would
represent an unsupervised learning algorithm.
Source: Authors.
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station access (Wardrip, 2011) and parks (Anguelovski, 2016; Rigolon&
Németh, 2020) display variable infuence on gentrication outcomes
depending on location and eature characteristics.

The algorithmic fexibility oML allows the model to integrate a wide
range o variable domains. For example, or a Random Forest (RF) model
or predicting uture gentrication in London, Reades et al. (2018)
incorporate 166 census variables that describe the housing market
(median house price and rent), demographic descriptors (e.g., age, place
o origin, gender, amily structure, health), educational and occupa-
tional traits, household transportation behaviors and accessibility, in-
come, and basic structural attributes o commercial and residential
housing.

Thackway et al. (2023a) similarly cover an extensive range o ea-
tures rom regional census datasets like age, country o birth, dwelling
type, education level, employment status, amily composition, income,
industry, marital status, occupation, and religion. The authors supple-
ment their analyses with property data o housing prices and supply,
commercial property sales, and additionally Point o Interest (POI) data
like Airbnb count and presence o ood and leisure businesses. See the
Appendix or a comprehensive list o data sources or the respective
publications (Reades et al., 2018; Thackway et al., 2023a).

For more detailed POI categories, Zeng et al. (2022) provide a ML-
based methodology or acquiring detailed metrics on consumer ame-
nities like ood services, recreational outlets, art institutions and other
regional attractions and urther maps the POI data in relation to
gentrication patterns with a supervised gradient boosting model.

For the research at large, built metrics are more scarcely available in
census data outside o simpler descriptors like building zoning (e.g.,
residential, commercial), housing structure (e.g., detached vs. semi-
detached designations), and building age. In Section 4.4., we provide
detail on howMLmodels are implemented to produce data on whether a
residential structure undergoes rehabilitation or is replaced by new-
build development (Ilic et al., 2019; Thackway et al., 2023a).

4.2. A predictive machine learning model

The pioneering application o ML or gentrication analysis began
with the work o Reades et al. (2019) and the implementation o the ML
algorithm Random Forest (RF) in order to predict gentrication trajec-
tories or Lower-Layer Super Output Areas (LSOAs) in London. LSOAs
are approximately similar to US census tracts, the deault geographic
scale or gentrication-based studies.

Random Forest is a supervised machine learning model that can be
adapted or classication problems or predicting categorical outcomes
(e.g., whether or not a tract gentried) or or regression problems or
estimating a continuous output (e.g., the degree to which a tract un-
derwent socioeconomic change). Due to its ability to perorm well with
noise and collinearities, RF is an attractive algorithm or high-
dimensional, real-world problems (Breiman, 2001).

As Random Forest is a supervised learning algorithm, it is necessary
to rst construct a label or the training dataset. In application to the
gentrication orecast, Reades et al. (2019) precede the Random Forest
regression model with a training dataset where each LSOA is assigned a
continuous measure indicating the degree o gentrication-related
change. The label is quantied using Principal Components Analysis
(PCA) to construct a single composite score rom our variables o
neighborhood change (e.g., median household income, median property
value, proportion o higher-earning, proessional employment groups,
and education attainment). For more detail on PCA construction, see
section 3. The results o the PCA analysis are promising and indicate a
reliable composite metric, with the rst principal component alone
explaining 78.8% o the variance in the data. Importantly, the authors
note the need or built variables or a more comprehensive composite
metric.

For a visualization o the training and testing process, reer to Fig. 2
where all LSOAs (or geos) are run through a PCA in order to derive a
composite score. Ater splitting samples into a training and testing
dataset, a ML prediction model (e.g., Random Forest regression) learns
how to attribute a prediction to each LSOA in the study area. The labels

Fig. 2. A basic gentrication prediction model. The base stack o a gentrication prediction modeling methodology where a Principal Components Analysis (PCA)
and a supervised Machine Learning (ML) model like Random Forest Regression produce a gentrication orecast. Geos reer to geographical sampling unit and the
Composite Index Score quanties the degree o socioeconomic change, a proxy or gentrication.
Source: Authors, based on the methodology o Reades et al. (2019).
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or the ML model are dierentiated by a dark blue color.
For the testing phase, Random Forest (RF) models outperormed non-

ML linear regression methods in prediction reliability. Even the initial,
untuned RF model (i.e., without the optimization o model hyper-
parameters) could provide more accurate predictions o gentrication-
indicating socioeconomic change or London LSOAs compared to the
non-learning-based approach. From 2001 census data, the tuned RF
model could predict 2011 PCA composite scores with high accuracy
(Pearson’s r o 0.99).

Thackway et al. (2023a) compare the perormance o Random Forest
(RF) against two other supervised machine learning algorithms:
Gradient Boosted Machine (GBM) and an improved implementation o
GBM, Extreme Gradient Boosting (XGBoost). All models are imple-
mented to predict uture gentrication or Sydney, Australia. Rather
than a PCA score, the authors utilize a pre-existing municipal index on
household demographics and residential and commercial housing sup-
ply. All machine learning methods outperormed task-based linear
regression, but the boosting algorithms (i.e., GBM and XGBoost)
demonstrated marginally higher perormance to their RF counterpart in
predicting gentrication growth or Sydney, Australia.

For other examples oML modeling or gentrication prediction, see
work by Palaox and Ortiz-Monasterio (2020) where Neural Networks
are applied to predict gentrication trajectories or Mexico City. Kiely
and Bastian (2020) provide a more economics-centric measurement o
gentrication based on real estate sale price and sale probability to
compare the perormance o a generalized linear model (GLM), Random
Forest, Gradient Boosting Machine (GBM), and articial neural network
(ANN).

4.3. Gentrifcation variants and implementing controls

For the second “stack” o the gentrication orecasting system, we
discuss the integration o clustering algorithms or the identication o
gentrication variants and other orms o neighborhood change (e.g.,
incumbent upgrading).

A popular clustering algorithm, K-means (Hartigan&Wong, 1979) is
an unsupervised learning method that partitions the dataset into k
clusters where within-cluster variance is minimized. The goal o K-
means is to produce clusters that are compact (i.e., samples within a
cluster are similar) and distinct rom other clusters. As K-means is un-
supervised, the algorithm does not work with nor produce labels or
each cluster. Thus, researchers are tasked to prole the clusters based on
their theoretical knowledge o what each cluster may pertain to. For
example, a cluster centroid characterized by eatures o socioeconomic
ascent, but lacking eatures o landscape change would be inerred to
pertain to an “incumbent upgrading” data cluster, in contrast to a
“gentrication” cluster sharing eatures o both socioeconomic ascent
and landscape change.

Early research has experimented with the applicability o K-means
or parsing out dierent typologies o socioeconomic ascent. For
example, Wei and Knox (2013) apply K-means cluster analysis and
discriminant analysis to distinguish between seven clusters o neigh-
borhood types based on combinations o race, immigrant status, and
socioeconomic descriptor characteristics. Owens (2012) implement a
PCA in order to summarize population and housing eatures into ve to
six composite indices, or linear combinations o the original variables,
beore running K-means to dene a typology o metropolitan tracts ac-
cording to actors like race, economic status, and gentrication
occurrence.

Yee and Dennett (2022) ollow directly o o the methodology o
Reades et al. (2019) to predict uture gentrication status or London
LSOAs, this time stacking the model with a K-means analysis o gentri-
cation variants. Whereas Reades et al. (2019) treat the PCA score or
socioeconomic change as a proxy to quantiy gentrication and a label
or the prediction model, Yee and Dennett (2022) treat the PCA score as
solely a measure o socioeconomic change. From the neighborhoods o

the PCA, an initial K-means analysis is run to urther isolate the group o
samples that demonstrate both socioeconomic shit and evidence o (re)
development i.e., the gentriying cluster. Data on (re)development is
drawn rom municipal-level data on new-build construction and reha-
bilitation o existing residential buildings.

Ater ltering out LSOAs that either represented socioeconomic
change without built change or, alternatively, built change without so-
cioeconomic change (i.e., incumbent upgrading), the study perorms a
secondary K-means to identiy gentrication variants like marginal
gentrication and super-gentrication.

Ater K-means, Yee and Dennett (2022) run a Random Forest (RF)
Classication model where LSOAs are categorically labeled according to
their gentrication status and variant type (classic gentrication, mar-
ginal gentrication, or super-gentrication). The research provides a
novel methodological approach to integrating clustering techniques into
the gentrication orecasting toolbox.

See Fig. 3 or a visualization o how a clustering algorithm like K-
means can work with a PCA and prediction model (e.g., Random Forest
classication) to identiy dierent types o neighborhood change. For
simplicity, Fig. 3 condenses the two disparate K-means analyses used in
Yee and Dennett (2022) into a single process, highlighted in yellow.

K-means carries some notable limitations that are worth consider-
ation beore replicating this method with other datasets. For one, K-
means works under the assumption that all clusters are approximately
the same size and variance. With clusters o uneven density, the model
can easily group the data incorrectly even when the clusters are
apparent to the naked eye (Holden et al., 2011). With gentrication-
related models where the quantity o, say, green gentriying tracts
could be much smaller than the number o non-gentriying tracts, this
limitation can lead to deteriorating model perormance. With a large
number o independent variables, researchers can nd it dicult to
visualize model perormance on multiple axes and validate the accuracy
o cluster assignments.

Alternate clustering algorithms may be able to circumvent these
shortcomings, such as Density-Based Spatial Clustering and Application
with Noise or DBSCAN (Ester et al., 1996), an algorithm that clusters
samples based on density and can unction optimally despite unequal
cluster sizes and the presence o outliers (Finch, 2019). Ultimately, the
perormance o clustering algorithms can vary depending on the
research application and dataset type so it can be benecial to compare
the perormance o multiple methods.

The clustering-based methodology proposed by Yee and Dennett
(2022) provides a way to control or other orms o neighborhood
change and incorporate landscape change into a gentrication metric.
However, the housing data applied by the study draws on municipal-
level data which can be sparse and inconsistently available or
dierent regions. The next subsection reviews how a third ML stack
addresses this limitation by automating the process o data acquisition
on built orms in a way that is reproducible or a variety o geographic
contexts.

4.4. Better built metrics with computer vision and street-level imagery

The third stack o the ML gentrication orecast methodology in-
volves integrating more comprehensive metrics on the built environ-
ment. Mapping the built environment in an Articial Intelligence (AI)
context is reerred to as “deep mapping” or “machine mapping” and
presents a promising alternative to direct auditing. Deep mapping ap-
proaches are already phasing out patch-wise labeling and other tradi-
tional methods o land-use classication in their capacity to pick out ne
boundaries in remote-sensing aerial images (Kang et al., 2018). Image
data opens many new avenues or nally integrating built orms into the
gentrication model and placing more emphasis on landscape change as
an essential eature o the gentrication process.

Deep mapping incorporates two eatures o new urban analytics:
deep learning – a subset o ML algorithms that run on neural network
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architectures, and computer vision – an AI application that aids in the
processing, detection, classication, and interpretation o images. In
practice, deep mapping consists o black-box, ML methods that draw
meaningul inormation rom images, such as Google Street View (GSV)
or satellite imagery, in a way that allows researchers to automate the
collection o built variables and incorporate more detailed, geospatial
metrics.

Deep mapping techniques can possess dierent levels o model
interpretability, rom the more black-box models that imitate perceptual
judgements o a scene (e.g., categorizing a street view as “beautiul” or
“ugly”) to relatively less opaque models that learn to extract
semantically-dened spatial objects in an image (e.g., road, sidewalk,
tree).

For perceptual deep mapping, pioneering studies trained ML models
to categorize streets according to perceived saety, drawing on crowd-
sourced datasets and GSV images to produce large-scale maps or U.S.
cities, such as the computer vision algorithms o Place Pulse and Street
Score (Naik et al., 2014; Salesses et al., 2013). The datasets and
computational techniques are open-source and have been drawn on or
urther urban analysis, such as identiying socioeconomic characteristics
that correlate with neighborhood inrastructure improvements (Naik
et al., 2017).

Many o the perceptual models apply Convolutional Neural Net-
works (CNNs) which are versatile in their ability to learn rom large sets
o labeled and unlabeled images, hence the capacity to mimic human
visual judgements omore esoteric qualities, such as identiying a street-
level image as “sae-looking” (Naik et al., 2014; Salesses et al., 2013),
“scenic” (Seresinhe et al., 2017), or “walkable” (Blečić et al., 2018).

For a simplied explanation, CNN draws on multiple convolutional

layers where each layer consists o a procedure or extracting inorma-
tion rom an image input. The initial layers extract low-level, basic
eatures (e.g., points, edges, lines) rom the image, with each additional
layer extracting more and more complex eature descriptors (e.g.,
shapes, ridges). CNN is a learning-based algorithm in that it learns how
to optimally lter out meaningul inormation rom the image on its own
without the need or hard-engineered rules (Cheng et al., 2018).

In the eld o remote sensing scene classication, a nascent but
growing body o research has ound promise in the application o Sia-
mese Convolutional Neural Networks (SCNN) that harnesses the
strengths o two or more identical CNN models in order to compare the
similarity between pairwise images (Bertinetto et al., 2016; Liu et al.,
2019).

Ilic et al. (2019) applied the rst implementation o a deep mapping
model to map gentrication-indicating landscape change. The study
applies a Siamese Convolutional Neural Network (SCNN) that is trained
to identiy changes between two, sequential images. In this case,
panoramic Google Street View (GSV) imagery is drawn on to construct a
dataset where a single data sample o pairwise images consists o the
beore- and ater- structural improvements or a residential building.
The study denes a neighborhood as likely gentriying when there is a
high spatial density o property improvements over an area. The authors
acknowledge how the lack o sociodemographic metrics could result in
an over-estimation o gentrication status, as incumbent upgrading is
not controlled or.

The authors adopt the protocol o Hammel and Wyly (1996; p. 250),
where gentrication-like” changes cover the replacement o an older,
disinvested building with a newly constructed house, signicant and
structurally sound renovation o the building (e.g., reconstructed

Fig. 3. Second stack o the gentrication prediction model. The second stack o a gentrication prediction model where the methodology in Fig. 2 is supplemented
by a K-means analysis (in yellow). (For interpretation o the reerences to color in this gure legend, the reader is reerred to the web version o this article.)
Source: Authors, based on the methodology o Yee and Dennett (2022)
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windows and rames, steps, porches), and evidence o landscaping and
beautication (e.g., porch urniture). See Fig. 4 or an example o a
gentrication-indicating structural change, where a residential building
is demolished in lieu o a newly-built three-story home with modernistic
architecture.

Notably, the deep learning model itsel does not explicitly learn how
to identiy semantic objects like windows, porches, or porch urniture,
but rather mimics human judgements o beore- and ater- changes at the
pixel unit. As the model does not extract any human-understandable
objects, categorizations can be vulnerable to inaccuracies or less pris-
tine image data. False positive detections occurred when there was a
slight oset in the image snapshot, causing a portion o an adjacent
property to appear in the image. The presence o vehicles also threw o
the model.

The granular scale and black-box nature o the SCNN algorithm gives
rise to dilemmas in ascertaining the breadth omodel’s ability to capture
dierent built orms – is the model really targeting the right pixels (e.g.,
the pixels that comprise o a new window) when categorizing an image?
Is there a cut-o point in terms o the degree o structural change that the
model can identiy? The low level o AI interpretability leaves much to
be desired, but the high perormance o the model with new, unseen
testing images (95.6% accuracy) and comparisons with cross-validated
Development Approval (DA) datasets suggest that the model is
capable o honing in on the correct target regions o the training data or
a majority o cases.

For uture research, more detailed metrics on the scale o redevel-
opment in each image pair during manual auditing could provide insight
into the mechanisms o the model and the breadth o its capacity to
identiy structural changes. Additionally, the research can benet rom
outlining explicit protocol on the attributes in an image that dene a
signicant, gentrication-indicative change. Quantiying and justiying
the metrics that underlie the image labeling process is critical or pro-
moting the replicability o these deep mapping models; Dierent re-
searchers will inevitably label pairwise images dierently and visible
structural changes can vary according to the architectural specicities o
a given region. Qualitative, local knowledge and community input can
ll in the gaps or understanding these place-based gentrication in-
dicators and help researchers distinguish between incumbent upgrades
and capital investment rom external developer groups.

Although there is no precedent, the literature may also benet rom
constructing a measure o inter-class variability in (re)development in-
tensity (i.e., the degree o renovation to a single structure) rather than
solely measuring the intra-class density where all orms o property
improvement are weighted equally.

From the methodology o Ilic et al. (2019); Thackway et al. (2023b)

apply a SCNN deep learning model on GSV images o residential land-
scape change or neighborhoods in Sydney, Australia. The research also
draws on prior results o a census-based ML gentrication orecast
(Thackway et al., 2023a), making it the rst study to integrate pre-
dictions o socioeconomic shit with that o GSV-based built metrics.
Although the landscape change data is not integrated in tandemwith the
sociodemographic-centric model, the study provides a solution to
drawing on SCNN-derived data to ensure that the gentriying neigh-
borhoods are qualied according to corresponding sociodemographic
shit and residential-specic built changes.

Because the manual labeling o the training data is still a labor-
intensive process, the image classication process is semi-supervised
in that a portion o the samples are labeled by the authors and the
remaining samples are labeled by an unsupervised classication
algorithm.

As the deep learning model can be easily thrown o by images with
tree or vehicle obstructions, the paper applies a semantic segmentation
algorithm (SegNet) to classiy images into basic object types (e.g.,
building, tree, sky, car) and parse out image data unsuitable or pairwise
classication (Badrinarayanan et al., 2017).

In Thackway et al. (2023b), researchers were able to draw on their
amiliarity with regional urban trends in Sydney, Australia and assess
demographic census records to identiy immigrant population turnover
in Sydney’s Bankstown neighborhood as a culprit o localized socio-
economic changes without landscape change. These insights provide an
important qualitative dimensionality to the analysis and an opportunity
to distinguish between model inaccuracy and model scope.

See Fig. 5 or a proposed methodology that demonstrates how the
methodologies o Reades et al. (2019), Yee and Dennett (2022), Ilic et al.
(2019), and Thackway et al. (2023b) can be combined into a multi-
layered gentrication orecasting system. Highlighted in yellow, Fig. 5
illustrates how the deep mapping model (e.g., Siamese Convolutional
Neural Networks) can work to produce a binary label (i.e., whether or
not a residential structure underwent visible changes).

In Fig. 5, the mapped density improvements are used to construct the
“Gentrication status” column input or the clustering model and can
also be integrated into the “Neighborhood change variables” indepen-
dently as a “density o rehabilitation” variable to identiy incumbent
upgrading clusters or both the clustering and the prediction model.

In Fig. 6, the methodological stacks covered in the current paper are
simplied into a our-step process or urther clarity. The “Data collec-
tion” phase describes how input data or subsequent steps is acquired,
where a computer vision or deep mapping ML model draws out inor-
mation on residential development and rehabilitation (see Fig. 5 and
Section 4.4). In order to illustrate where various ML models contribute

Fig. 4. User pairwise images. Crowdsourced perceptions on landscape change are turned into training data. Users are asked, “Is there a property improvement?” or
beore- and ater-images o a residential unit.
Source: (Ilic et al., 2019)
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to the gentrication prediction, they are represented by light blue boxes.
The mapped output, where a value is assigned to a geographic area (e.g.,
census tract), is distinguished by a darker blue color.

In step (b), “Identiying gentrication status”, relevant metrics are
drawn out o the census-based household and housing data to produce a
composite score. Gentrication status is attributed to neighborhoods
with both socioeconomic change and evidence o built investment. As
PCA is a non-ML analysis, it is represented in purple. For more detail,
reer to Fig. 2, the end o Section 3, and Section 4.2.

Step (c) summarizes the process illustrated in Fig. 3 and Section 4.3
or identiying gentrication variants (e.g., green gentrication, mar-
ginal gentrication, super gentrication, classic gentrication). Lastly,
step (d) produces the nal gentrication prediction model (Fig. 2; Sec-
tion 4.2). Steps (b) and (c) produce the requisite label or the nal ML
prediction model (d) by producing a map o gentried neighborhoods
(b) and urther detail on their corresponding variants (c).

Instead o solely mapping the prevalence o built improvements as
initial controls or identiying gentrication, the current review posits
that there is utility in using the deep mapping output as a predictive
eature or uture gentrication occurrence:

For one, there exists a major gap in the research in understanding the
temporal directionality o built changes in the gentrication process. By

adding a time-based level to the redevelopment data (e.g., structural
changes that occurred rom 2005 to 2010, 2010–2015), we can inves-
tigate the role o built change as a predecessor, coinciding, or post-
humous event on the gentrication timeline.

Mapping the temporal evolution o redevelopment gives way to new
opportunities in the research: I the bulk o residential improvements
occur prior to socioeconomic shit, then could we draw on visible signs
o improvements as a proxy or gentrication warning systems? Do the
densities o structural changes align or misalign with the magnitude o
socioeconomic shit?

Although there are observational discussions on the characteristics
that describe the architecture o gentried neighborhoods (Helms,
2003), there is limited discourse on the role o structural attributes in
instigating, hastening, or even preventing gentrication eects (Aoki,
1992; Miranda & Lane-McKinley, 2017).

I we can pinpoint more specic architectural attributes through
auditing or more detail-oriented computer vision tools, can we assess i
there are any built characteristics that make a neighborhood more
vulnerable or resilient to gentrication? The research stipulates that the
built environment can aect human outcomes and oster a sense o
place-based community (Chitov, 2006; Mazumdar et al., 2018), and that
communities with social capital can better rebound rom and resist

Fig. 5. Third, proposed stack o the gentrication prediction model. The third stack o a proposed gentrication prediction methodology incorporating the con-
tributions o Fig. 2 and Fig. 3 with a more accurate measure o built metrics.
Source: From authors, based on work by Ilic et al. (2019) and Thackway et al. (2023b)

M. Maya et al.



Computers, Environment and Urban Systems 111 (2024) 102119

11

gentrication-induced changes (Balzarini & Shlay, 2018; Bernstein &
Isaac, 2023)– can we draw on ML tools to develop more gentrication-
resistant neighborhoods?

Although not yet widespread in the research, there are many existing
tools in the remote sensing eld or producing more detailed accounts o
built change and investigating the aorementioned gaps in the literature:

For more objective measures o deep mapping, neural networks have
shown promising perormance in identiying changes in urban greenery
via street-level imagery (Lu et al., 2023). Common measures include the
Green View Index (GVI) that scores relative quantities o vegetation
based on the distribution o RBG pixel colors in each street-level image
(Li et al., 2015), Sky View Factor (SVF) to quantiy the proportion o
visible sky (Zeng et al., 2018), and measures or tree height and canopy
projection size (Wang et al., 2018). Deep mapping or greenery changes
can be an especially helpul tool or variants like green gentrication,
where gentrication can arise rom the installation green amenities.

Other deep mapping measures include the semantic classication o

buildings trained on street-level image data like GSV and Open-
StreetMap to map building rontage quality and unctionality (e.g., Kang
et al., 2018; Law et al., 2019; Liu et al., 2017). For example, Kang et al.
(2018) provide a ramework or semantically classiying building in-
stances with a CNN model to map the presence o apartments, churches,
garages, industrial buildings, oce buildings, retail buildings, and roos
in street-level images. These building classication maps are currently
publicly available or urther urban systems research at high levels o
spatial resolution or the U.S. and Canada. For uture research, these
methodological advancements could prove an asset to the gentrication
orecasting process as a more objective measure o building stock
characteristics and or better understanding the role o built orms in the
evolution o neighborhood change.

4.5. Explainable artifcial intelligence (XAI) or the predictive model

Despite its high-perormance accuracy, the ML models described

Fig. 6. Summarized methodological steps or a gentrication prediction model. Steps (a)-(d) represent how multiple Machine Learning (ML) models, represented in
light blue, play various roles in acquiring data, identiying gentrication variants, and predicting uture gentrication. (For interpretation o the reerences to color in
this gure legend, the reader is reerred to the web version o this article.)
(Source: From authors)
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above (e.g., Random Forest, XGBoost, CNN) all all under the category o
opaque, or “black-box”, algorithms in that the motivations behind the
algorithm’s decisions, the underlying model structure, and the in-
teractions between input variables are not well understood by the user
(Pasquale, 2015; Rudin, 2019). With the potential to test increasingly
more complex and obtuse systems omeasurement, it becomes critical to
integrate systems or model interpretability. This ensures that stake-
holders can reliably extrapolate patterns rom the research and that the
model itsel is grounded upon a logical, theoretical basis rather than
unctioning o spurious correlations in the data (Yosinski, Clune,
Nguyen, Fuchs, & Lipson, 2015).

A machine learning algorithm can, in practice, predict i a household
voted Republican based on a satellite image o their vehicle (Gebru et al.,
2017), or estimate the Dow Jones average based on the prevalence o the
word “calm” in Twitter tweets (Bollen et al., 2011), but nding
happenstance patterns in the noise o data clouds (i.e., data mining) is
theoretically and productively o zero substance. Such associations
cannot be reliably extrapolated or uture applications, and predictions,
even in their immediate usage, can be easily thrown o track with
miniscule alterations to the data (Smith, 2020). For this reason, recent
trends in AI literature are moving to prioritize interpretability over ac-
curacy and emphasize the need or Explainable AI (XAI) methods when
dealing with human-based research questions (Angelov et al., 2021;
Core et al., 2006; Guidotti et al., 2018).

Thackway et al. (2023a) provide the rst implementation o an
Explainable AI (XAI) analysis to better interpret the results o three
models: Random Forest, Gradient Boosted Machine (GBM), and Extreme
Gradient Boosting (XGBoost). Random Forest, GBM, and XGBoost all all
under the category o tree ensemble models and thereore have low
levels o explainability compared to more transparent ML models like
decision trees, k-nearest neighbors, and rule-based learners. In order to
provide more insight to model behavior, the authors apply Shapley
Additive Explanations (Shapley or SHAP analyses), an XAI tool or
explaining eature relevance by ranking the predictive power o infu-
ential eatures (Lundberg& Lee, 2017). In practice, Shapley analyses can
provide a system to ascertain whether the ML model is working with the
input eatures in a logical way. For example, i the variables representing
the change in median income, rent, and house price were ound to rank
highly in Shapley analyses, this would instill trust in the ML prediction
as the behavior o the model corresponds to the researcher’s theoretical
knowledge o gentrication occurrence. On the other hand, i a more
innocuous variable, like the proportion o residents that immigrated
rom Canada, were ound to be o high import to the model prediction,
we may have reason to reconsider whether the model is taking shortcuts
based on noise in the data.

Shapley analyses are versatile or a wide array o ML model types (i.
e., are model agnostic) and are well-trusted by the ML community due to
Shapley’s basis in game theoretic mathematics. However, Shapley is not
always ideal in the case o highly correlated predictors as the Shapley
explanation or an individual eature would be muddied by between-
actor interactions. For tree ensemble methods in particular, the litera-
ture advises supplementing eature-oriented XAI tools like Shapley with
model simplication tools (Arrieta et al., 2020).

Examples o model simplication in XAI include local surrogate
methods like Local Interpretable Model-Agnostic Explanations (LIME;
Dieber & Kirrane, 2020) or G-REX (König et al., 2008). Local surrogate
methods unction by training a transparent, toy model (e.g., Decision
Trees) on a permutation o the original dataset where the labels o the
training dataset comprise o the output o the original, black-box model
(e.g., Random Forest). Local surrogate models like LIME are also
applicable to image data where user-dened pixels are permuted rom
the original image data to better understand the infuence o spatial
objects on the image classication model.

Whereas local surrogate techniques are used to understand how the
model prediction changes when data samples are perturbed by the user,
global surrogates approximate the entire prediction unction o the

original model with a surrogate. See Islam et al. (2022) where the global
behavior o a Random Forest model is approximated with CART decision
trees.

Specic to CNN-type architectures, Class Activation Maps (CAMs)
and its generalizations Grad-CAM (Selvaraju et al., 2017) and Grad-
CAM++ (Chattopadhay et al., 2018) provide an XAI method where,
similar to Shapley, spatial patterns in an input image are marked ac-
cording to their relative importance to the CNN model prediction. CNN-
specic XAI techniques have not been applied or models interpreting
gentrication-related landscape change, but may be a key step in
untangling how the learned perceptual decisions o the CNN model
relate to discrete spatial objects in a street-view image.

For computer vision models like CNN and SCNN, eature extraction
techniques can also provide a level o explainability (Naik et al., 2014;
Naik et al., 2016; Naik et al., 2017; Thackway et al., 2023b) or, at the
very least, ensure that the model is actually ocusing on the housing unit
in the image rather than on unrelated noise. By ensuring that pixels can
be categorically identied in the model (e.g., sky, car, tree), we can trace
back perormance errors to discrete, human-understandable objects and
adjust the training dataset accordingly.

5. Conclusion and opportunities for future research

Contemporary literature identies gentrication as a global process
dened by class succession, landscape change, and the increased
segregation o housing access. From the Global North to the Global
South, these three qualities are inherent in every gentrication outcome,
but the specics that describe gentrication can vary depending on
geographic and sociopolitical context. Dierent and sometimes unex-
pected metrics can capture how these neighborhoods vary in meaningul
ways, rendering simpler, task-based methods o measurement prone to
inaccuracy and incapable o reliably extrapolating trends rom the data.

A recent renaissance oMachine Learning (ML) applications provides
researchers with a newound ability to deal with the stochasticity o real-
world phenomena and model the gentrication process. Predictive
models such as Random Forest and Extreme Gradient Boosting
(XGBoost) can draw on immense volumes o data to produce reliable
orecasts o uture gentrication at spatially granular scales (Reades
et al., 2018; Thackway et al., 2023a). Unsupervised algorithms like K-
means clustering can categorize specic gentrication variants like
marginal gentrication and super-gentrication, in addition to con-
trolling or non-gentrication-related neighborhood change (Yee &
Dennett, 2022). Deep mapping techniques with Neural Network (NN)
models oer ecient ways to gather data on built metrics (Ilic et al.,
2019; Thackway et al., 2023b). Lastly, recent advances in Articial In-
telligence (AI) computer vision sotware allow researchers to incorpo-
rate built metrics that were long absent rom the model (Thackway et al.,
2023b).

Various opportunities exist to progress our understanding o the
gentrication liecycle with these novel ML tools. Deep mapping mea-
sures or semantic classication o building instances have yet to nd
wide-spread use in application to gentrication modeling but oer an
avenue to integrate variables on land use, zoning, building quality, and
building characteristics into analyses o landscape change.

For uture research, semantic image classication can provide more
objective, workable components into the gentrication model by linking
specic types o built development (e.g., a new roo) to gentrication
processes. Moreover, semantically classied image data could serve as
inputs to a clustering algorithm to better identiy gentrication variants
and uncover novel patterns o landscape change or each variant. For
example, researchers understand that new-build gentrication entails
new-build development (Davidson & Lees, 2005), but little is known
about the types o zoning (e.g., residential, commercial, mixed), foor-
area ratios, and development intensity that correspond with this
gentrication type.

For both semantic and perceptual-based built characteristics, these
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built metrics are solely drawn on to control or alternate orms o
neighborhood change, but the research has yet to integrating inorma-
tion on landscape change as explicit variables within a modeling or
orecasting mechanism. Such inormation would be monumental to
transcribing academic ndings to workable direction or municipal
bodies that seek to uncover the links between planning policy, built
development, and gentrication eects.

Beyond statistical XAI tools, ML models can become more trustable
when they are nested in a diversied system o measurement and
analysis. Even or non-learning-based systems, methods become more
robust when triangulated, such as combining quantitative, qualitative,
and eld-survey derived ndings (Loukaitou-Sideris et al., 2017). For
example, qualitative studies on gentrication may be case specic but
are nonetheless highly versed in local dialectics o social structure and
extensive in their coverage o neighborhood change (e.g., Betancur,
2002). By synthesizing these ndings with AI-based applications, we can
ascertain that model ndings run parallel to the narrative threads
identied in journalistic accounts o a given locale.

Pioneering ML gentrication models have set a precedent or this by
weaving in discussion o a priori, contextual knowledge o the study area
with the results (Ilic et al., 2019; Reades et al., 2018; Thackway et al.,
2023a; Yee & Dennett, 2022). Typically ocusing on a single city, like
London, Sydney, or Ottawa, the researchers relate ML model ndings
with the narratives o specic boroughs or neighborhoods. Context-
specicity and sensitivity is essential to capturing the variable ways in
which gentrication can alter local demographics and landscapes (Preis
et al., 2020). Although ML methods can automate aspects o the analysis
and be reproduced or diverse locales, the ways we implement the
model, the preparation o the training data and the choice o validation
techniques, must be adapted on a case-by-case basis.

As machine learning unctions or usability over interpretability, it is
important or new waves o research to lay out clear targets or how
model output will be utilized in real-time. Although the body o research
is still in the nascent phase o testing uture applicability, pioneering
studies in predictive machine learning models are pointed in how they
evaluate the unctionality o their orecasts: to supplement early warn-
ing systems, to place greater political pressure on policy makers to
instigate policies, and to, ultimately, mitigate the occurrence o gentri-
cation by accurately identiying at-risk neighborhoods (e.g., Palaox
Novack, 2019; Reades et al., 2018; Thackway et al., 2023a; Yee &
Dennett, 2022). Emphasizing the intended purpose o each machine
learning application helps ensure that uture reproductions o the
research will evaluate the productivity o study ndings in urthering
community-based motives. Moreover, i the aim o contemporary
scholars is to move towards global reproducibility, we must construct a
more robust and integrated toolbox o gentrication measurement to
ensure predictions can be extrapolated or dierent geographic contexts,
and keep the more uninterpretable, black-box algorithms in check with
other, highly interpretable systems o analysis.
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