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Gentrification is a complex and context-specific process that involves changes in the built environment and social
fabric of neighborhoods, often resulting in the displacement of vulnerable communities. Machine Learning (ML)
has emerged as a powerful predictive tool that is capable of circumventing the methodological challenges that
historically held back researchers from producing reliable forecasts of gentrification. Additionally, computer
vision ML algorithms for landscape character assessment, or deep mapping, can now capture a wider range of
built metrics related to gentrification-induced redevelopment. These novel ML applications promise to rapidly
progress our understandings of gentrification and our capacity to translate academic findings into more pro-
ductive direction for communities and stakeholders, but with this sudden development comes a steep learning
curve. The current paper aims to bridge this divide by providing an overview of recent progress and an actionable
template of use that is accessible for researchers across a wide array of academic fields. As a secondary point of
emphasis, the review goes over Explainable Artificial Intelligence (XAI) tools for gentrification models and opens
up discussion on the nuanced challenges that arise when applying black-box models to human systems. Abstract:
Gentrification is a complex and context-specific process that involves changes in the built environment and social
fabric of neighborhoods, often resulting in the displacement of vulnerable communities. Machine Learning (ML)
has emerged as a powerful predictive tool that is capable of circumventing the methodological challenges that
historically held back researchers from producing reliable forecasts of gentrification. Additionally, computer
vision ML algorithms for landscape character assessment, or deep mapping, can now capture a wider range of
built metrics related to gentrification-induced redevelopment. These novel ML applications promise to rapidly
progress our understandings of gentrification and our capacity to translate academic findings into more pro-
ductive direction for communities and stakeholders, but with this sudden development comes a steep learning
curve. The current paper aims to bridge this divide by providing an overview of recent progress and an actionable
template of use that is accessible for researchers across a wide array of academic fields. As a secondary point of
emphasis, the review goes over Explainable Artificial Intelligence (XAI) tools for gentrification models and opens
up discussion on the nuanced challenges that arise when applying black-box models to human systems.

1. Introduction

Gentrification is defined as the process where the social character
and built landscape of a historically disinvested, inner-city neighbor-
hood is transformed by an influx of people and capital (Glass, 1964;
Smith, 1979). Gentrification is distinct from other forms of neighbor-
hood evolution, such as in the case of incumbent upgrading where the
residential housing stock is gradually renovated in situ by existing res-
idents (Van Criekingen & Decroly, 2003, p. 2452).

Gentrification’s transformation of the built environment emerges in
relation to historical spatial patterns of investment and disinvestment, or
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“geographies of opportunity” (Wilson, 2006). Opportunity, in this case,
can refer to educational opportunity across school districts, employment
opportunity, the proximity of health services and grocery stores, public
transit options, and the overall quality of the neighborhood’s infra-
structure. Central to modern gentrification theory is the concept that
structural attributes affect life quality and human outcomes, and that
gentrification both flourishes in and contributes to increased inequity
through the restructuring of local landscapes (Ansell, 2019; Wyly &
Hammel, 2004; Zuk et al., 2018).

Information asymmetries inherent in the real estate market can
exacerbate the gentrification process by creating disparities in
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knowledge and power between various stakeholders, such as de-
velopers, incumbent residents, potential homebuyers or renters, and
local government (Krijnen, 2018). Without access to the private market
data that drives the informed speculation of developers and investors,
municipal planners and community groups frequently find themselves
retroactively responding to gentrification’s effects after development is
well-advanced. For this reason, a large body of contemporary scholars
work towards constructing a productive and reproducible model of the
gentrification process that can extrapolate trends that reflect realities
on-ground.

Research themes are multidisciplinary and encompass a wide array
of topics, from examining the sociopolitical conflicts between gentrifiers
and displacees (Brown-Saracino & Ghaziani, 2009; Pattillo, 2010),
modeling the relationship between gentrification and broader economic
trends in the housing market (Schaffer & Smith, 1986; Wyly & Hammel,
1999), identifying global patterns of gentrification outside of Anglo-
sphere contexts (Lees, 2019; Slater, 2017), and finding ways to better
integrate academic findings into municipal policy (Chapple, 2009;
Chapple & Zuk, 2016).

For most studies, researchers are tasked to identify where and when
gentrification is occurring. Quantitative models tend to focus on socio-
economic shifts in the study area, such as tracking spikes in median
income or rent (Atkinson, 2000; McKinnish et al., 2010), whereas more
labor-intensive, mixed-methods studies integrate observation-based
data in the form of community surveys or direct audits of visual
neighborhood change (Chapple, 2009; Hammel & Wyly, 1996; Hwang &
Sampson, 2014; Wyly & Hammel, 1998, 1999).

Many researchers have emphasized the need for better metrics,
models, and validation techniques (Barton, 2016; Brown-Saracino,
2017a; Finio, 2021). Although qualitative studies can provide detailed
ethnographic accounts of gentrification narratives, they are often locale-
specific and time-intensive. Quantitative methods can analyze gentrifi-
cation at a macro-scale with nationally available census datasets, but
variables lack quality information on built characteristics and data on
housing supply. The most widely applied quantitative methods are also
limited in their applicability in light of gaps in the data and collinearities
between variables (Royall & Wortmann, 2015). Without the capability
to provide accurate forecasts and link specific urban features to the
gentrification process, researchers face difficulties in communicating
their theoretical insights to stakeholders in meaningful ways (Atkinson,
2008; Chapple & Zuk, 2016).

Recent advancements in Machine Learning (ML), a subset of Artifi-
cial Intelligence (AI), have opened new avenues for researchers to tackle
the wicked problem of modeling gentrification (e.g., Palafox & Ortiz-
Monasterio, 2020; Reades et al., 2019; Thackway et al., 2023a, 2023b;
Yee & Dennett, 2022). Unlike non-learning-based methods, ML is
powerful in its capacity to discern meaningful patterns from high-
volume, stochastic datasets. These pioneering researchers emphasize
the potential for their findings to help outline gentrification mitigation
techniques, construct early warning systems for vulnerable commu-
nities, and place political pressure on stakeholders to consider the long-
term, negative consequences of supporting pro-gentrification policies.

Progress in ML seems to come in leaps and bounds by the day, from
the application of more computationally powerful algorithms like
Extreme Gradient Boosting (Chen & Guestrin, 2016), to the ever-
increasing sophistication of object recognition models (Tian, 2020).
Gentrification researchers are integrating ML with a similarly rapid and
eager pace, but there are few publications that reflect on the progress,
untapped potential, and limitations of these novel approaches. Despite
the pace of integration, there is a need for more critical evaluation and,
additionally, a need to disseminate this knowledge in ways that are
accessible to researchers without data science-specific backgrounds.

Although recent ML-based gentrification models have exercised a
good deal of caution, the same cannot be said of other applications, such
as the case with Al chatbots like Microsoft’s Tay, Meta’s Galactica, and
ChatGPT that have been reported to perpetuate racist and sexist
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stereotypes (Borji, 2023), or the proliferation of criminal profiling tools
that use ML to classify suspects based on arbitrary patterns in facial
proportions (Labi, 2012; Wu & Zhang, 2016). It is important to note that
there is nothing inherently malicious about the structure of ML algo-
rithms. However, due to the need for substantial amounts of input data
and the lack of transparency in how the algorithms process this data to
generate predictions, ML algorithms are susceptible to misuse and can
easily learn biases without proper safeguards.

For modeling gentrification, a phenomenon with inexorable ties to
race, class, and inequity, researchers face an ever-increasing re-
sponsibility towards applying ML in reflective and cautious ways to not
do disservice to the very groups we aim to serve. Many of the ML models
used in gentrification research are “black-box” in nature in that under-
lying model mechanisms are not readily apparent to the user and the
relationships between inputs and outputs are unclear (Hamori et al.,
2018). Within this context, the current paper contributes an overview of
successful ML applications for gentrification modeling with an eye to-
wards elucidating the strengths, limitations, and interpretability of these
Al algorithms. By demonstrating how ML models can function within
our existing theoretical frameworks, we can work towards demystifying
its seemingly “magic” capacity to produce predictions from the data,
promote transparency in our data and methods, and encourage a
widespread usage of these tools in fields such as human geography and
planning, environmental science, and other non-data science disciplines.

As a secondary point of emphasis, the current paper investigates the
significance of the advent of “deep mapping,” or deep learning models
trained to categorize aspects of the built environment, for gentrification
modeling (Ilic et al., 2019). Built characteristics have largely eluded
researchers prior; Relevant census variables tend to be inconsistently
available and thus unworkable for the purposes of a creating a repro-
ducible model. However, deep mapping methods provide a template for
automating the ways we acquire data of built forms. Such a technique
opens the possibility to implement easily reproducible methods of data
collection that can be flexible for a wide range of urban environments.
Lastly, the current paper proposes a visualization of how these new data
collection and modeling techniques can cohere together into a single,
comprehensive methodology for forecasting gentrification.

2. An actionable definition of gentrification

One of the greatest methodological challenges in mapping gentrifi-
cation is the misidentification, or the chronic under- or over-estimation,
of gentrification occurrence in a locale (Finio, 2021). By establishing a
set of comprehensive metrics, researchers can better evaluate the quality
of their models and pinpoint areas where a loss of information could lead
to poor model performance. From this basis of thought, the paper finds it
useful to break down the core characteristics that differentiate gentri-
fication from other forms of neighborhood change before entering into
an overview of the methods.

As follows, the current research defines gentrification in a neigh-
borhood when landscape change occurs in league with other urban
phenomena that are symptomatic of the presence of gentrification. From
Davidson and Lees (2005), these gentrification-related indicators can be
broadly grouped under three processes of neighborhood change:

1. a major investment of capital for stakeholders in a localized area,
often indicated through the relative scale of development, renova-
tion, and/or beautification efforts underway

2. landscape changes where the amenities, built features, and ease of
access to these newly developed or rehabilitated locations are
designed for the wealthier target demographic and their existing or
anticipated demands

3. indicators of an influx of households from a high(er) socioeconomic
class

There exists general consensus in the research that these criteria



M. Maya et al.

serve as reliable indicators for the presence of gentrification in a
neighborhood. Ideally, these three criteria are all well-represented in a
comprehensive model.

Contemporary research recognizes the existence of gentrification
variants that provide more dimension in the way we analyze the dif-
ferences in how gentrification can manifest across context and place. For
example, “new-build” gentrification involves development on brown-
field sites and underperforming lots, commonly found in cases of state-
led gentrification in the Global South (Lees, 2019). “Green gentrifica-
tion” is primarily triggered by sustainability initiatives such as the
introduction of parks or pollution remediation (Gould & Lewis, 2012;
Pearsall, 2018). The redevelopment of these green amenities is often
responsible for the displacement of low-income people of color and re-
sults in inequitable impacts by further distancing marginalized com-
munities from ecosystem benefits and green space (Anguelovski, 2016;
Goossens et al., 2020). With respect to varying forms of socioeconomic
change, “marginal gentrification” describes the phenomena where
young artists and/or students attract wealthier gentrifier groups by
imbuing a trendy aesthetic to the neighborhood with their presence,
inadvertently upping the marketability of the neighborhood (Owens,
2012, p. 347). For “super-gentrification,” the gentrifier group comes
from the wealthiest upper echelon, a transnational elite class, residing in
newly developed, luxury high-rises. This extreme form of gentrification
can even result in the displacement of middle-class residents who were
once gentrifiers themselves and perpetuate a spiraling up of land and
property values (Butler & Lees, 2006; Lees, 2008; Rofe, 2003).

By incorporating these variants into a gentrification modeling
methodology, researchers can develop more sophisticated, customized
models of measurement for each gentrification variant rather than
mapping gentrification under an overly broad umbrella of indicator
features. For example, green gentrification may necessitate the variable
of “proximity to recently (re)developed green amenity” in order to
qualify as a green gentrifying area, whereas solely using traditional
gentrification metrics that focus on residential structures may lead to
green gentrifying tracts being overlooked in the analysis.

The following section provides an overview of common, non-ML
methods for mapping gentrification occurrence (section 3) before
moving into a review of ML-specific techniques (section 4).

3. A review of the methods for mapping gentrification

In order to map out gentrification for a study area, quantitative
studies typically apply a “threshold strategy” for identifying gentrifica-
tion occurrence by comparing proportional differences in population
and housing characteristics before and after a given time point (Barton,
2016). Although contemporary literature prioritizes the recognition of
variegated gentrification forms (Atkinson & Bridge, 2004), many exist-
ing studies tend towards recognizing a more classic typology of a
gentrifying tract — i.e., a majority low-income, blue-collar inner-city
neighborhood changing to a majority high-income, white-collar one.
Under this diagnosis, a tract is vulnerable to gentrification given that the
tract’s median income is some percentile below the municipal or na-
tional average, and a tract is gentrified given a certain percentage point
increase in income- and employment-related features (Atkinson, 2000;
Ellen & Ding, 2016; McKinnish et al., 2010).

For example, Atkinson (2000) quantify gentrification with proxy
variables relating to household occupation. Gentrification is indicated
by above-average increases in the proportion of white-collar occupa-
tions for a given ward relative to the whole of London. Based on
descriptive statistics of longitudinal census data, the study finds a cor-
respondence with these occupational shifts and decreases in socioeco-
nomic variables related to blue-collar displacement (e.g., the proportion
of working-class households, unskilled labor, renters, non-white eth-
nicities, the elderly, single parents, and the unemployed).

Freeman (2005) integrates more variables into their criteria for
gentrification occurrence, considering only inner-city, low-income,
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underinvested neighborhoods in the US that demonstrate an increase in
educational attainment and housing price. The threshold is set as a
proportional change relative to the median of the metropolitan area,
with the variable of underinvestment quantified according to the pro-
portion of housing built.

Threshold criteria provide an easily interpretable and implementable
solution to classifying neighborhoods. Nonetheless, research suggests
that simpler metrics may fail to capture the complexities within a
gentrification model and thus chronically misidentify gentrification
status due to that loss of information (Barton, 2016). For example, if a
threshold analysis were to use median rent as their variable-of-choice, a
non-gentrifying neighborhood with newly constructed affordable
housing would be classified in the same way as a gentrifying neigh-
borhood with new-build condominiums (Wyly & Hammel, 1998).

In order to elucidate how alternate methodologies can compensate
for this weakness, the current paper first outlines three core limitations
to standard threshold analyses. Firstly, commonly used metrics often fail
to capture built development and investment, a necessary criterion for
gentrification occurrence. A core feature of the gentrification experience
is not only that wealthier households move into the neighborhood, but
that this demographic movement heralds a restructuring of the built
environment in a way that is exclusionary to existing communities. This
overreliance on limited sociodemographic measures is not from negli-
gence, but rather due to a lack of access to quality data on built char-
acteristics, thus preventing an appropriate consideration of landscape
change and a propensity to under- or over-estimate the scale of gentri-
fication in each study area.

Threshold methods are also limited in the quantity of metrics they
can incorporate. For a given neighborhood, socioeconomic change may
be better captured across a wider range of metrics beyond occupational
and income characteristics. As the threshold method is often imple-
mented in tandem with a kind of “checklist” approach to identifying
gentrifying places, this technique limits the capacity to integrate a wider
range of indicators and lacks the ability to weight features according to
their ability to distinguish between difference socioeconomic groups.

Lastly, gentrification can take on various forms beyond the standard
“blue-collar to white-collar” typology. Threshold approaches can over-
look more evolved stages of the gentrification lifecycle, such as with
super-gentrification where the gentrifier group consists of ultra wealthy
individuals who are capable of outing high-income households who
were once gentrifiers themselves. Alternatively, threshold methods can
overlook more nascent forms of gentrification like marginal gentrifica-
tion where artists and students inadvertently up the marketability of
their neighborhood, even when they lack the financial capital and in-
come status to be quantified as gentrifiers by commonly used metrics.

In order to circumvent these limitations, certain mixed-methods
approaches integrate qualitative findings to construct or validate
gentrification occurrence. Often, journalistic approaches can capture
on-ground truths through interviews with stakeholders, media analysis,
and field observations of built changes (i.e., direct auditing).

To date, Hammel and Wyly (1996) and Wyly and Hammel (1998,
1999) provide the most extensive dataset of field observations for Bos-
ton, Chicago, Detroit, Milwaukee, Minneapolis-St. Paul, Philadelphia,
Seattle and Washington D.C. The field survey observations were
centered on the development or rehabilitation of residential buildings,
such as the reconstruction of latticework and window frames or the
installation of security systems. Along with journalistic sources (e.g.,
city planning documents, local press reports), these findings were drawn
on to split the study area into “core” gentrified, “fringe” gentrified, and
non-gentrified tracts. According to the authors, core gentrified tracts are
defined as tracts with at least one rehabilitated structure on each block
and with at least a third of all structures upgraded in a tract, whereas
fringe gentrified tracts have at least one rehabilitated structure on the
majority of blocks within a tract with at least one block having a third of
all structures upgraded.

Direct auditing methods are, unfortunately, difficult to replicate due
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to their time-consuming and labor-intensive nature. As a solution to this
limitation, Hwang and Sampson (2014) apply Google Street View (GSV)
images in order to effectively audit changes to the built environment
using the panoramic, rotation, and zoom features of the GSV platform
for different years. By eliminating the need for in-person observation,
the researchers could afford to incorporate a wider array of survey
metrics like marking evidence of beautification efforts (e.g., painting
over graffiti, cleaning up vacant lots) and disorder (e.g., derelict
buildings).

The implementation of GSV proves a promising solution to inte-
grating landscape change into gentrification forecasts in addition to
providing the validity and inter-reliability results needed to be a pro-
ductive measure of neighborhood change (Clarke et al., 2010; Odgers
et al.,, 2012; Rundle et al., 2011). Notably, manually parsing through
GSV images is still an exhaustive process. Hwang and Sampson (2014),
for example, worked with a sample of 2709 block faces. Recent ad-
vancements in ML and computer vision provide a solution to automating
the GSV image classification process, and will be discussed in greater
detail in section 4.

These advancements allow for a more comprehensive and repre-
sentative dataset of gentrification-indicating features, but there is still a
need for a better statistical method for integrating a wider array of
features and for weighting variables by their relative influence. Wyly
and Hammel (1999) apply a multivariate discriminant analysis to
identify which set of independent variables are of best fit to the model,
but this type of analysis requires an a priori knowledge of gentrification
status and retroactively fits features to a known system state. Addi-
tionally, multivariate analyses still perform poorly in the presence of
multicollinearities which run rampant when dealing with socioeco-
nomic variables. With the rapid evolution of the gentrification process
and its variability from place to place, researchers need a method that
can provide a reliable map of gentrifying neighborhoods from the data at
hand.

Recent research has found an easily implementable solution to this
problem in the form of Principal Components Analysis (PCA) for the
identification of gentrifying tracts. PCA is a popular dimensionality
reduction technique that can perform optimally with a large number of
interrelated variables (Wold et al., 1987). PCA functions by producing a
set of principal component vectors that consist of a linear combination of
the original independent variables in a way that best describes the
variance of the dataset. In this way, the top principal component would
ascribe a new value to each data point or tract that better describes the
meaningful differences in tract characteristics.

Bereitschaft (2020) apply PCA on 110 urban cores of U.S. cities in
order to quantify socioeconomic and demographic change that could be
indicative of gentrification occurrence. The 16 variables capturing
metrics like race, occupational status, education, income, age, vehicle-
ownership, household size, population, and homeownership could be
condensed down to four principal components that describe 67% of the
variance in the dataset. PCA, on its own, is not amenable to interpre-
tation as it can be challenging to parse through the individual effects of
the original variables. However, PCA provides a useful way to tackle
long and wide datasets and distinguish between summarized magni-
tudes of neighborhood change.

Whereas threshold and PCA methods find utility in identifying past
or current gentrification status, relatively less research has been done in
constructing techniques for tracking gentrification progression for
future years. This subset of the literature has important implications for
disseminating academic findings in a way that has immediate utility on-
ground, such as providing early warning systems for vulnerable com-
munities or assisting municipal bodies in producing targeted anti-
gentrification policies.

Methodology-wise, the majority of studies on gentrification predic-
tion rely on constructing composite indices based on variables related to
gentrification susceptibility (Bates, 2013; Chapple, 2009; Spinney et al.,
2011; Turner & Snow, 2001). Chapple (2009) provide a measure of
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gentrification susceptibility to function as an early warning toolkit for
the San Fransisco Bay Area municipal government. Before constructing a
predictive model, the research first identifies current gentrification
status as low-income tracts that had undergone above-average housing
appreciation and educational attainment over the decade. The study
then implements a multivariate regression to model gentrification-
related variables as a function of attributes relating to demographic
traits, income, transportation, housing, and locational factors. If one of
the attributes is found to correlate highly with features of gentrification
occurrence, then that variable becomes an indicator of future gentrifi-
cation risk. For the forecasting process, each risk variable contributes an
equally weighted score of 1 to the susceptibility index.

Other composite indices generally follow a similar methodology as
Chapple (2009), just with different variable choices. For example,
Turner and Snow (2001) construct a composite index for Washington DC
with the same approach for scoring variables, this time drawing on data
that described housing prices, public transit access, and presence of new
coffee shops and art galleries. Given the spatiotemporal variability of
gentrification occurrence, data choices should vary from place to place.
For example, Los Angeles would consider access to public transit a high-
risk factor whereas Portland places more emphasis on evidence of pri-
vate investment in the housing sector (Preis et al., 2020). However, in
the case of the early warning systems mentioned, data choices are
difficult to validate for their efficacy relative to other metrics as they are
often based on the personal judgements of the authors behind the study.

Of the studies that validated the accuracy of their composite metrics,
many find a great discrepancy between predicted and actual gentrifi-
cation status and a propensity for false positives (Chapple & Zuk, 2016).
There is a persisting need in the literature for more reliable forecasting
models that can perform optimally despite multicollinearities between
input features and assign weights to indicators according to their
contribution to the prediction.

Progress in the literature has brought us the ability to incorporate
built measures into the gentrification model and the capacity to
condense a large number of input features into smaller, more workable
components. We are still left with limitations in our ability to identify
gentrification variants i.e., modeling gentrification beyond the more
rigid constructs of blue-collar to white-collar, low-income to high-
income gentrification evolution. Secondly, we still need more sophisti-
cated methodologies for predicting gentrification susceptibility (Greene
& Pettit, 2016). Moreover, there is a need for less time-consuming
methods for acquiring data on the built environment. The current
paper will proceed with an explanation of how recent applications in ML
provide solutions to these three core gaps in the literature.

4. Machine learning for gentrification

Advancements in ML provide a host of solutions to persisting gaps in
the literature, such as parsing out gentrification variants from the
dataset (Owens, 2012; Wei & Knox, 2013; Yee & Dennett, 2022), pro-
ducing predictive models to forecast gentrification for upcoming de-
cades (Alejandro & Palafox, 2019; Kiely & Bastian, 2020; Knorr, 2019;
Palafox & Ortiz-Monasterio, 2020; Reades et al., 2019; Thackway et al.,
2023a; Yee & Dennett, 2022), and gathering built metrics with computer
vision techniques (Ilic et al., 2019; Thackway et al., 2023b).

Moreover, ML methods utilized in gentrification modeling are often
amenable to stacking, where the predictions from one ML method can be
coherently fed into another, allowing researchers to acknowledge mul-
tiple research questions (e.g., identifying current gentrification status,
parsing out variants, gathering built metrics, building a predictive
model) within a single study. The progress of ML-based gentrification
research is often consistent in its tendency to expand off of the meth-
odological structure of prior work.

The current section of this paper will describe these ML modeling
techniques in a way that places emphasis on research studies that
compound their findings onto the methodologies of their predecessors,
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beginning with the pioneering application of a predictive gentrification
model (Reades et al., 2019), to the stacking of ML models for identifying
gentrification variants (Yee & Dennett, 2022), and down to the final
iteration of ML studies that construct more detailed metrics of landscape
change for the prediction model (Ilic et al., 2019; Thackway et al.,
2023b).

For a brief summary of ML, learning-based algorithms are not so
different from their task-based counterparts (e.g., non-ML regression
analyses) in that they often function off of similar mathematical func-
tions and in their ability to draw on samples to make inferences about
the true system state. ML only differs in its capacity to “learn” from and
improve on prior iterations of the model. All learning-based models
begin with training the model on a subset of the data and testing the
adapted model on the remaining data, unfamiliar to the newly trained
model, until optimal performance is achieved.

ML approaches can be grouped into families of supervised, unsu-
pervised, and semi-supervised models. Supervised models (e.g., Random
Forest) learn from labeled data, where the “label” is the descriptor value
for a data sample (e.g., the label for a tract could be the binary yes/no
indicator of whether or not that tract gentrified).

For a simplified diagram of what the supervised ML learning process
looks like in practice, see Fig. 1 where the sequential steps for data
preparation, model training, model evaluation, model testing, and
model explainability are presented in a top-down order. Although not a
strict requirement, it is suggested that the output of low-explainability
models (e.g., tree-ensembles, support vector machine) is run through
an Explainable Artificial Intelligence (XAI) tool (e.g., Shapley, LIME).
The recommendation holds for unsupervised and semi-supervised
models.

Alternatively, unsupervised models (e.g., K-means) learn from the
intrinsic patterns of unlabeled data. Where supervised models train on
user-presented examples (i.e., labeled data samples), unsupervised
models use the structure of the data itself to come up with a prediction.
Unsupervised approaches are commonly used for clustering, dimen-
sionality reduction, and density estimation. Semi-supervised models can

Data preparation process
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intake unlabeled and labeled data in tandem, and are often applied
when labeling the entire training dataset becomes too labor intensive for
the user. In the following subsection, we describe how ML models can be
used to predict future gentrification occurrence. Many of the studies
mentioned in the review published open-source datasets and/or
methods via GitHub. Links are provided in the Supplementary Infor-
mation section of the current paper.

4.1. Data sources

The spatial and temporal scales of gentrification research tend to be
restricted by the extent of data availability. Studies largely measure
gentrification over 5- to 10-year periods corresponding to regional
census data time scales. For US contexts, the census tract is a commonly
used spatial unit of analysis containing around 1200 to 8000 residents
per unit.

ML-based gentrification models are similar to traditional studies in
the variables they incorporate. Gentrification’s influential factors, as
represented in the data, can be broadly split into two camps: residential
household and housing characteristics like the demographic and socio-
economic descriptors of households and basic housing stock features
and, secondly, the locational attributes that influence the accessibility,
appeal, and marketability of urban spaces, like Point of Interest (POI)
amenities, proximity to the downtown center, historic district, or transit,
and qualities of the public transit system itself (Brown-Saracino, 2017b;
Finio, 2022).

Unlike traditional regression analyses, many ML algorithms are
capable of intaking a high number of correlated variables without
running the risk of overfitting. Tree-based models like Random Forest
(RF) and Gradient Boosted Machine (GBM) can methodically select
features that contribute best to the final prediction and, in turn, place
lower predictive weight on the more insignificant variables. This opti-
mization process is of great utility to the research as neighborhood
variables can change in predictive power over location, context, and
time, even within a single study area. For example, the impact of transit

Training dataset

Testing dataset

Validation
dataset

Model training

= | Training dataset

Predictor

e i variables

LABEL

Model testing

i {1 s e

Training dataset

Predictor

Geo ID variables

LABEL

Trained Machine
Learning model

-~

Maodel evaluation -
1

Model evaluation and
fine-tuning process

Training the Machine
Learning model

Model Output

Geo ID LABEL

Model explainability

Explainable Artificial
Intelligence (XAl) taols

Fig. 1. A supervised Machine Learning (ML) model. A flowchart describing the processes for data preparation, model training and testing, model validation, and
model explainability. Specific to geospatial datasets, “geo ID” refers to the geographic unit of measurement (e.g., tract). Without the “label” boxes, the figure would

represent an unsupervised learning algorithm.
Source: Authors.
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station access (Wardrip, 2011) and parks (Anguelovski, 2016; Rigolon &
Németh, 2020) display variable influence on gentrification outcomes
depending on location and feature characteristics.

The algorithmic flexibility of ML allows the model to integrate a wide
range of variable domains. For example, for a Random Forest (RF) model
for predicting future gentrification in London, Reades et al. (2018)
incorporate 166 census variables that describe the housing market
(median house price and rent), demographic descriptors (e.g., age, place
of origin, gender, family structure, health), educational and occupa-
tional traits, household transportation behaviors and accessibility, in-
come, and basic structural attributes of commercial and residential
housing.

Thackway et al. (2023a) similarly cover an extensive range of fea-
tures from regional census datasets like age, country of birth, dwelling
type, education level, employment status, family composition, income,
industry, marital status, occupation, and religion. The authors supple-
ment their analyses with property data of housing prices and supply,
commercial property sales, and additionally Point of Interest (POI) data
like Airbnb count and presence of food and leisure businesses. See the
Appendix for a comprehensive list of data sources for the respective
publications (Reades et al., 2018; Thackway et al., 2023a).

For more detailed POI categories, Zeng et al. (2022) provide a ML-
based methodology for acquiring detailed metrics on consumer ame-
nities like food services, recreational outlets, art institutions and other
regional attractions and further maps the POI data in relation to
gentrification patterns with a supervised gradient boosting model.

For the research at large, built metrics are more scarcely available in
census data outside of simpler descriptors like building zoning (e.g.,
residential, commercial), housing structure (e.g., detached vs. semi-
detached designations), and building age. In Section 4.4., we provide
detail on how ML models are implemented to produce data on whether a
residential structure undergoes rehabilitation or is replaced by new-
build development (llic et al., 2019; Thackway et al., 2023a).
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4.2. A predictive machine learning model

The pioneering application of ML for gentrification analysis began
with the work of Reades et al. (2019) and the implementation of the ML
algorithm Random Forest (RF) in order to predict gentrification trajec-
tories for Lower-Layer Super Output Areas (LSOAs) in London. LSOAs
are approximately similar to US census tracts, the default geographic
scale for gentrification-based studies.

Random Forest is a supervised machine learning model that can be
adapted for classification problems for predicting categorical outcomes
(e.g., whether or not a tract gentrified) or for regression problems for
estimating a continuous output (e.g., the degree to which a tract un-
derwent socioeconomic change). Due to its ability to perform well with
noise and collinearities, RF is an attractive algorithm for high-
dimensional, real-world problems (Breiman, 2001).

As Random Forest is a supervised learning algorithm, it is necessary
to first construct a label for the training dataset. In application to the
gentrification forecast, Reades et al. (2019) precede the Random Forest
regression model with a training dataset where each LSOA is assigned a
continuous measure indicating the degree of gentrification-related
change. The label is quantified using Principal Components Analysis
(PCA) to construct a single composite score from four variables of
neighborhood change (e.g., median household income, median property
value, proportion of higher-earning, professional employment groups,
and education attainment). For more detail on PCA construction, see
section 3. The results of the PCA analysis are promising and indicate a
reliable composite metric, with the first principal component alone
explaining 78.8% of the variance in the data. Importantly, the authors
note the need for built variables for a more comprehensive composite
metric.

For a visualization of the training and testing process, refer to Fig. 2
where all LSOAs (or geos) are run through a PCA in order to derive a
composite score. After splitting samples into a training and testing
dataset, a ML prediction model (e.g., Random Forest regression) learns
how to attribute a prediction to each LSOA in the study area. The labels

/Initial scoring of neighborhoods by socioeconomic change
Which neighborhoods are gentrifying?

Indicator Principal

variables

Components
Analysis (PCA)

-

Training geos Testing geos

Composite Score
for all geos

Geos with no significant
socioeconomic change

A

/ﬁpplying Machine Learning (ML) to predict future
gentrification
Which neighborhoods will gentrify?

Training dataset
Training the Machine
Learning (ML)

Training Predictor Composite
geos variables Score Prediction Model
Testing dataset
Trained Machine
Testing Predictor Learning (ML)
variables Prediction Model

\geos

\

Model Output

Composite

Testing

geos

Score /

Fig. 2. A basic gentrification prediction model. The base stack of a gentrification prediction modeling methodology where a Principal Components Analysis (PCA)
and a supervised Machine Learning (ML) model like Random Forest Regression produce a gentrification forecast. Geos refer to geographical sampling unit and the
Composite Index Score quantifies the degree of socioeconomic change, a proxy for gentrification.

Source: Authors, based on the methodology of Reades et al. (2019).
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for the ML model are differentiated by a dark blue color.

For the testing phase, Random Forest (RF) models outperformed non-
ML linear regression methods in prediction reliability. Even the initial,
untuned RF model (i.e., without the optimization of model hyper-
parameters) could provide more accurate predictions of gentrification-
indicating socioeconomic change for London LSOAs compared to the
non-learning-based approach. From 2001 census data, the tuned RF
model could predict 2011 PCA composite scores with high accuracy
(Pearson’s r of 0.99).

Thackway et al. (2023a) compare the performance of Random Forest
(RF) against two other supervised machine learning algorithms:
Gradient Boosted Machine (GBM) and an improved implementation of
GBM, Extreme Gradient Boosting (XGBoost). All models are imple-
mented to predict future gentrification for Sydney, Australia. Rather
than a PCA score, the authors utilize a pre-existing municipal index on
household demographics and residential and commercial housing sup-
ply. All machine learning methods outperformed task-based linear
regression, but the boosting algorithms (i.e, GBM and XGBoost)
demonstrated marginally higher performance to their RF counterpart in
predicting gentrification growth for Sydney, Australia.

For other examples of ML modeling for gentrification prediction, see
work by Palafox and Ortiz-Monasterio (2020) where Neural Networks
are applied to predict gentrification trajectories for Mexico City. Kiely
and Bastian (2020) provide a more economics-centric measurement of
gentrification based on real estate sale price and sale probability to
compare the performance of a generalized linear model (GLM), Random
Forest, Gradient Boosting Machine (GBM), and artificial neural network
(ANN).

4.3. Gentrification variants and implementing controls

For the second “stack” of the gentrification forecasting system, we
discuss the integration of clustering algorithms for the identification of
gentrification variants and other forms of neighborhood change (e.g.,
incumbent upgrading).

A popular clustering algorithm, K-means (Hartigan & Wong, 1979) is
an unsupervised learning method that partitions the dataset into k
clusters where within-cluster variance is minimized. The goal of K-
means is to produce clusters that are compact (i.e., samples within a
cluster are similar) and distinct from other clusters. As K-means is un-
supervised, the algorithm does not work with nor produce labels for
each cluster. Thus, researchers are tasked to profile the clusters based on
their theoretical knowledge of what each cluster may pertain to. For
example, a cluster centroid characterized by features of socioeconomic
ascent, but lacking features of landscape change would be inferred to
pertain to an “incumbent upgrading” data cluster, in contrast to a
“gentrification” cluster sharing features of both socioeconomic ascent
and landscape change.

Early research has experimented with the applicability of K-means
for parsing out different typologies of socioeconomic ascent. For
example, Wei and Knox (2013) apply K-means cluster analysis and
discriminant analysis to distinguish between seven clusters of neigh-
borhood types based on combinations of race, immigrant status, and
socioeconomic descriptor characteristics. Owens (2012) implement a
PCA in order to summarize population and housing features into five to
six composite indices, or linear combinations of the original variables,
before running K-means to define a typology of metropolitan tracts ac-
cording to factors like race, economic status, and gentrification
occurrence.

Yee and Dennett (2022) follow directly off of the methodology of
Reades et al. (2019) to predict future gentrification status for London
LSOAs, this time stacking the model with a K-means analysis of gentri-
fication variants. Whereas Reades et al. (2019) treat the PCA score for
socioeconomic change as a proxy to quantify gentrification and a label
for the prediction model, Yee and Dennett (2022) treat the PCA score as
solely a measure of socioeconomic change. From the neighborhoods of
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the PCA, an initial K-means analysis is run to further isolate the group of
samples that demonstrate both socioeconomic shift and evidence of (re)
development i.e., the gentrifying cluster. Data on (re)development is
drawn from municipal-level data on new-build construction and reha-
bilitation of existing residential buildings.

After filtering out LSOAs that either represented socioeconomic
change without built change or, alternatively, built change without so-
cioeconomic change (i.e., incumbent upgrading), the study performs a
secondary K-means to identify gentrification variants like marginal
gentrification and super-gentrification.

After K-means, Yee and Dennett (2022) run a Random Forest (RF)
Classification model where LSOAs are categorically labeled according to
their gentrification status and variant type (classic gentrification, mar-
ginal gentrification, or super-gentrification). The research provides a
novel methodological approach to integrating clustering techniques into
the gentrification forecasting toolbox.

See Fig. 3 for a visualization of how a clustering algorithm like K-
means can work with a PCA and prediction model (e.g., Random Forest
classification) to identify different types of neighborhood change. For
simplicity, Fig. 3 condenses the two disparate K-means analyses used in
Yee and Dennett (2022) into a single process, highlighted in yellow.

K-means carries some notable limitations that are worth consider-
ation before replicating this method with other datasets. For one, K-
means works under the assumption that all clusters are approximately
the same size and variance. With clusters of uneven density, the model
can easily group the data incorrectly even when the clusters are
apparent to the naked eye (Holden et al., 2011). With gentrification-
related models where the quantity of, say, green gentrifying tracts
could be much smaller than the number of non-gentrifying tracts, this
limitation can lead to deteriorating model performance. With a large
number of independent variables, researchers can find it difficult to
visualize model performance on multiple axes and validate the accuracy
of cluster assignments.

Alternate clustering algorithms may be able to circumvent these
shortcomings, such as Density-Based Spatial Clustering and Application
with Noise or DBSCAN (Ester et al., 1996), an algorithm that clusters
samples based on density and can function optimally despite unequal
cluster sizes and the presence of outliers (Finch, 2019). Ultimately, the
performance of clustering algorithms can vary depending on the
research application and dataset type so it can be beneficial to compare
the performance of multiple methods.

The clustering-based methodology proposed by Yee and Dennett
(2022) provides a way to control for other forms of neighborhood
change and incorporate landscape change into a gentrification metric.
However, the housing data applied by the study draws on municipal-
level data which can be sparse and inconsistently available for
different regions. The next subsection reviews how a third ML stack
addresses this limitation by automating the process of data acquisition
on built forms in a way that is reproducible for a variety of geographic
contexts.

4.4. Better built metrics with computer vision and street-level imagery

The third stack of the ML gentrification forecast methodology in-
volves integrating more comprehensive metrics on the built environ-
ment. Mapping the built environment in an Artificial Intelligence (AI)
context is referred to as “deep mapping” or “machine mapping” and
presents a promising alternative to direct auditing. Deep mapping ap-
proaches are already phasing out patch-wise labeling and other tradi-
tional methods of land-use classification in their capacity to pick out fine
boundaries in remote-sensing aerial images (Kang et al., 2018). Image
data opens many new avenues for finally integrating built forms into the
gentrification model and placing more emphasis on landscape change as
an essential feature of the gentrification process.

Deep mapping incorporates two features of new urban analytics:
deep learning — a subset of ML algorithms that run on neural network
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Fig. 3. Second stack of the gentrification prediction model. The second stack of a gentrification prediction model where the methodology in Fig. 2 is supplemented
by a K-means analysis (in yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: Authors, based on the methodology of Yee and Dennett (2022)

architectures, and computer vision — an Al application that aids in the
processing, detection, classification, and interpretation of images. In
practice, deep mapping consists of black-box, ML methods that draw
meaningful information from images, such as Google Street View (GSV)
or satellite imagery, in a way that allows researchers to automate the
collection of built variables and incorporate more detailed, geospatial
metrics.

Deep mapping techniques can possess different levels of model
interpretability, from the more black-box models that imitate perceptual
judgements of a scene (e.g., categorizing a street view as “beautiful” or
“ugly”) to relatively less opaque models that learn to extract
semantically-defined spatial objects in an image (e.g., road, sidewalk,
tree).

For perceptual deep mapping, pioneering studies trained ML models
to categorize streets according to perceived safety, drawing on crowd-
sourced datasets and GSV images to produce large-scale maps for U.S.
cities, such as the computer vision algorithms of Place Pulse and Street
Score (Naik et al., 2014; Salesses et al., 2013). The datasets and
computational techniques are open-source and have been drawn on for
further urban analysis, such as identifying socioeconomic characteristics
that correlate with neighborhood infrastructure improvements (Naik
et al., 2017).

Many of the perceptual models apply Convolutional Neural Net-
works (CNNs) which are versatile in their ability to learn from large sets
of labeled and unlabeled images, hence the capacity to mimic human
visual judgements of more esoteric qualities, such as identifying a street-
level image as “safe-looking” (Naik et al., 2014; Salesses et al., 2013),
“scenic” (Seresinhe et al., 2017), or “walkable” (Blecic et al., 2018).

For a simplified explanation, CNN draws on multiple convolutional

layers where each layer consists of a procedure for extracting informa-
tion from an image input. The initial layers extract low-level, basic
features (e.g., points, edges, lines) from the image, with each additional
layer extracting more and more complex feature descriptors (e.g.,
shapes, ridges). CNN is a learning-based algorithm in that it learns how
to optimally filter out meaningful information from the image on its own
without the need for hard-engineered rules (Cheng et al., 2018).

In the field of remote sensing scene classification, a nascent but
growing body of research has found promise in the application of Sia-
mese Convolutional Neural Networks (SCNN) that harnesses the
strengths of two or more identical CNN models in order to compare the
similarity between pairwise images (Bertinetto et al., 2016; Liu et al.,
2019).

Ilic et al. (2019) applied the first implementation of a deep mapping
model to map gentrification-indicating landscape change. The study
applies a Siamese Convolutional Neural Network (SCNN) that is trained
to identify changes between two, sequential images. In this case,
panoramic Google Street View (GSV) imagery is drawn on to construct a
dataset where a single data sample of pairwise images consists of the
before- and after- structural improvements for a residential building.
The study defines a neighborhood as likely gentrifying when there is a
high spatial density of property improvements over an area. The authors
acknowledge how the lack of sociodemographic metrics could result in
an over-estimation of gentrification status, as incumbent upgrading is
not controlled for.

The authors adopt the protocol of Hammel and Wyly (1996; p. 250),
where gentrification-like” changes cover the replacement of an older,
disinvested building with a newly constructed house, significant and
structurally sound renovation of the building (e.g., reconstructed
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windows and frames, steps, porches), and evidence of landscaping and
beautification (e.g., porch furniture). See Fig. 4 for an example of a
gentrification-indicating structural change, where a residential building
is demolished in lieu of a newly-built three-story home with modernistic
architecture.

Notably, the deep learning model itself does not explicitly learn how
to identify semantic objects like windows, porches, or porch furniture,
but rather mimics human judgements of before- and after- changes at the
pixel unit. As the model does not extract any human-understandable
objects, categorizations can be vulnerable to inaccuracies for less pris-
tine image data. False positive detections occurred when there was a
slight offset in the image snapshot, causing a portion of an adjacent
property to appear in the image. The presence of vehicles also threw off
the model.

The granular scale and black-box nature of the SCNN algorithm gives
rise to dilemmas in ascertaining the breadth of model’s ability to capture
different built forms — is the model really targeting the right pixels (e.g.,
the pixels that comprise of a new window) when categorizing an image?
Is there a cut-off point in terms of the degree of structural change that the
model can identify? The low level of Al interpretability leaves much to
be desired, but the high performance of the model with new, unseen
testing images (95.6% accuracy) and comparisons with cross-validated
Development Approval (DA) datasets suggest that the model is
capable of honing in on the correct target regions of the training data for
a majority of cases.

For future research, more detailed metrics on the scale of redevel-
opment in each image pair during manual auditing could provide insight
into the mechanisms of the model and the breadth of its capacity to
identify structural changes. Additionally, the research can benefit from
outlining explicit protocol on the attributes in an image that define a
significant, gentrification-indicative change. Quantifying and justifying
the metrics that underlie the image labeling process is critical for pro-
moting the replicability of these deep mapping models; Different re-
searchers will inevitably label pairwise images differently and visible
structural changes can vary according to the architectural specificities of
a given region. Qualitative, local knowledge and community input can
fill in the gaps for understanding these place-based gentrification in-
dicators and help researchers distinguish between incumbent upgrades
and capital investment from external developer groups.

Although there is no precedent, the literature may also benefit from
constructing a measure of inter-class variability in (re)development in-
tensity (i.e., the degree of renovation to a single structure) rather than
solely measuring the intra-class density where all forms of property
improvement are weighted equally.

From the methodology of Ilic et al. (2019); Thackway et al. (2023b)
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apply a SCNN deep learning model on GSV images of residential land-
scape change for neighborhoods in Sydney, Australia. The research also
draws on prior results of a census-based ML gentrification forecast
(Thackway et al., 2023a), making it the first study to integrate pre-
dictions of socioeconomic shift with that of GSV-based built metrics.
Although the landscape change data is not integrated in tandem with the
sociodemographic-centric model, the study provides a solution to
drawing on SCNN-derived data to ensure that the gentrifying neigh-
borhoods are qualified according to corresponding sociodemographic
shift and residential-specific built changes.

Because the manual labeling of the training data is still a labor-
intensive process, the image classification process is semi-supervised
in that a portion of the samples are labeled by the authors and the
remaining samples are labeled by an unsupervised -classification
algorithm.

As the deep learning model can be easily thrown off by images with
tree or vehicle obstructions, the paper applies a semantic segmentation
algorithm (SegNet) to classify images into basic object types (e.g.,
building, tree, sky, car) and parse out image data unsuitable for pairwise
classification (Badrinarayanan et al., 2017).

In Thackway et al. (2023b), researchers were able to draw on their
familiarity with regional urban trends in Sydney, Australia and assess
demographic census records to identify immigrant population turnover
in Sydney’s Bankstown neighborhood as a culprit of localized socio-
economic changes without landscape change. These insights provide an
important qualitative dimensionality to the analysis and an opportunity
to distinguish between model inaccuracy and model scope.

See Fig. 5 for a proposed methodology that demonstrates how the
methodologies of Reades et al. (2019), Yee and Dennett (2022), Ilic et al.
(2019), and Thackway et al. (2023b) can be combined into a multi-
layered gentrification forecasting system. Highlighted in yellow, Fig. 5
illustrates how the deep mapping model (e.g., Siamese Convolutional
Neural Networks) can work to produce a binary label (i.e., whether or
not a residential structure underwent visible changes).

In Fig. 5, the mapped density improvements are used to construct the
“Gentrification status” column input for the clustering model and can
also be integrated into the “Neighborhood change variables” indepen-
dently as a “density of rehabilitation” variable to identify incumbent
upgrading clusters for both the clustering and the prediction model.

In Fig. 6, the methodological stacks covered in the current paper are
simplified into a four-step process for further clarity. The “Data collec-
tion” phase describes how input data for subsequent steps is acquired,
where a computer vision or deep mapping ML model draws out infor-
mation on residential development and rehabilitation (see Fig. 5 and
Section 4.4). In order to illustrate where various ML models contribute

Fig. 4. User pairwise images. Crowdsourced perceptions on landscape change are turned into training data. Users are asked, “Is there a property improvement?” for

before- and after-images of a residential unit.
Source: (Ilic et al., 2019)
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Fig. 5. Third, proposed stack of the gentrification prediction model. The third stack of a proposed gentrification prediction methodology incorporating the con-

tributions of Fig. 2 and Fig. 3 with a more accurate measure of built metrics.

Source: From authors, based on work by Ilic et al. (2019) and Thackway et al. (2023b)

to the gentrification prediction, they are represented by light blue boxes.
The mapped output, where a value is assigned to a geographic area (e.g.,
census tract), is distinguished by a darker blue color.

In step (b), “Identifying gentrification status”, relevant metrics are
drawn out of the census-based household and housing data to produce a
composite score. Gentrification status is attributed to neighborhoods
with both socioeconomic change and evidence of built investment. As
PCA is a non-ML analysis, it is represented in purple. For more detail,
refer to Fig. 2, the end of Section 3, and Section 4.2.

Step (c) summarizes the process illustrated in Fig. 3 and Section 4.3
for identifying gentrification variants (e.g., green gentrification, mar-
ginal gentrification, super gentrification, classic gentrification). Lastly,
step (d) produces the final gentrification prediction model (Fig. 2; Sec-
tion 4.2). Steps (b) and (c) produce the requisite label for the final ML
prediction model (d) by producing a map of gentrified neighborhoods
(b) and further detail on their corresponding variants (c).

Instead of solely mapping the prevalence of built improvements as
initial controls for identifying gentrification, the current review posits
that there is utility in using the deep mapping output as a predictive
feature for future gentrification occurrence:

For one, there exists a major gap in the research in understanding the
temporal directionality of built changes in the gentrification process. By
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adding a time-based level to the redevelopment data (e.g., structural
changes that occurred from 2005 to 2010, 2010-2015), we can inves-
tigate the role of built change as a predecessor, coinciding, or post-
humous event on the gentrification timeline.

Mapping the temporal evolution of redevelopment gives way to new
opportunities in the research: If the bulk of residential improvements
occur prior to socioeconomic shift, then could we draw on visible signs
of improvements as a proxy for gentrification warning systems? Do the
densities of structural changes align or misalign with the magnitude of
socioeconomic shift?

Although there are observational discussions on the characteristics
that describe the architecture of gentrified neighborhoods (Helms,
2003), there is limited discourse on the role of structural attributes in
instigating, hastening, or even preventing gentrification effects (Aoki,
1992; Miranda & Lane-McKinley, 2017).

If we can pinpoint more specific architectural attributes through
auditing or more detail-oriented computer vision tools, can we assess if
there are any built characteristics that make a neighborhood more
vulnerable or resilient to gentrification? The research stipulates that the
built environment can affect human outcomes and foster a sense of
place-based community (Chitov, 2006; Mazumdar et al., 2018), and that
communities with social capital can better rebound from and resist
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this figure legend, the reader is referred to the web version of this article.)
(Source: From authors)

gentrification-induced changes (Balzarini & Shlay, 2018; Bernstein &
Isaac, 2023)- can we draw on ML tools to develop more gentrification-
resistant neighborhoods?

Although not yet widespread in the research, there are many existing
tools in the remote sensing field for producing more detailed accounts of
built change and investigating the aforementioned gaps in the literature:

For more objective measures of deep mapping, neural networks have
shown promising performance in identifying changes in urban greenery
via street-level imagery (Lu et al., 2023). Common measures include the
Green View Index (GVI) that scores relative quantities of vegetation
based on the distribution of RBG pixel colors in each street-level image
(Li et al., 2015), Sky View Factor (SVF) to quantify the proportion of
visible sky (Zeng et al., 2018), and measures for tree height and canopy
projection size (Wang et al., 2018). Deep mapping for greenery changes
can be an especially helpful tool for variants like green gentrification,
where gentrification can arise from the installation green amenities.

Other deep mapping measures include the semantic classification of
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buildings trained on street-level image data like GSV and Open-
StreetMap to map building frontage quality and functionality (e.g., Kang
et al., 2018; Law et al., 2019; Liu et al., 2017). For example, Kang et al.
(2018) provide a framework for semantically classifying building in-
stances with a CNN model to map the presence of apartments, churches,
garages, industrial buildings, office buildings, retail buildings, and roofs
in street-level images. These building classification maps are currently
publicly available for further urban systems research at high levels of
spatial resolution for the U.S. and Canada. For future research, these
methodological advancements could prove an asset to the gentrification
forecasting process as a more objective measure of building stock
characteristics and for better understanding the role of built forms in the
evolution of neighborhood change.

4.5. Explainable artificial intelligence (XAD for the predictive model

Despite its high-performance accuracy, the ML models described
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above (e.g., Random Forest, XGBoost, CNN) all fall under the category of
opaque, or “black-box”, algorithms in that the motivations behind the
algorithm’s decisions, the underlying model structure, and the in-
teractions between input variables are not well understood by the user
(Pasquale, 2015; Rudin, 2019). With the potential to test increasingly
more complex and obtuse systems of measurement, it becomes critical to
integrate systems for model interpretability. This ensures that stake-
holders can reliably extrapolate patterns from the research and that the
model itself is grounded upon a logical, theoretical basis rather than
functioning off spurious correlations in the data (Yosinski, Clune,
Nguyen, Fuchs, & Lipson, 2015).

A machine learning algorithm can, in practice, predict if a household
voted Republican based on a satellite image of their vehicle (Gebru et al.,
2017), or estimate the Dow Jones average based on the prevalence of the
word “calm” in Twitter tweets (Bollen et al., 2011), but finding
happenstance patterns in the noise of data clouds (i.e., data mining) is
theoretically and productively of zero substance. Such associations
cannot be reliably extrapolated for future applications, and predictions,
even in their immediate usage, can be easily thrown off track with
miniscule alterations to the data (Smith, 2020). For this reason, recent
trends in Al literature are moving to prioritize interpretability over ac-
curacy and emphasize the need for Explainable AI (XAI) methods when
dealing with human-based research questions (Angelov et al., 2021;
Core et al., 2006; Guidotti et al., 2018).

Thackway et al. (2023a) provide the first implementation of an
Explainable Al (XAI) analysis to better interpret the results of three
models: Random Forest, Gradient Boosted Machine (GBM), and Extreme
Gradient Boosting (XGBoost). Random Forest, GBM, and XGBoost all fall
under the category of tree ensemble models and therefore have low
levels of explainability compared to more transparent ML models like
decision trees, k-nearest neighbors, and rule-based learners. In order to
provide more insight to model behavior, the authors apply Shapley
Additive Explanations (Shapley or SHAP analyses), an XAI tool for
explaining feature relevance by ranking the predictive power of influ-
ential features (Lundberg & Lee, 2017). In practice, Shapley analyses can
provide a system to ascertain whether the ML model is working with the
input features in a logical way. For example, if the variables representing
the change in median income, rent, and house price were found to rank
highly in Shapley analyses, this would instill trust in the ML prediction
as the behavior of the model corresponds to the researcher’s theoretical
knowledge of gentrification occurrence. On the other hand, if a more
innocuous variable, like the proportion of residents that immigrated
from Canada, were found to be of high import to the model prediction,
we may have reason to reconsider whether the model is taking shortcuts
based on noise in the data.

Shapley analyses are versatile for a wide array of ML model types (i.
e., are model agnostic) and are well-trusted by the ML community due to
Shapley’s basis in game theoretic mathematics. However, Shapley is not
always ideal in the case of highly correlated predictors as the Shapley
explanation for an individual feature would be muddied by between-
factor interactions. For tree ensemble methods in particular, the litera-
ture advises supplementing feature-oriented XAI tools like Shapley with
model simplification tools (Arrieta et al., 2020).

Examples of model simplification in XAI include local surrogate
methods like Local Interpretable Model-Agnostic Explanations (LIME;
Dieber & Kirrane, 2020) or G-REX (Konig et al., 2008). Local surrogate
methods function by training a transparent, toy model (e.g., Decision
Trees) on a permutation of the original dataset where the labels of the
training dataset comprise of the output of the original, black-box model
(e.g., Random Forest). Local surrogate models like LIME are also
applicable to image data where user-defined pixels are permuted from
the original image data to better understand the influence of spatial
objects on the image classification model.

Whereas local surrogate techniques are used to understand how the
model prediction changes when data samples are perturbed by the user,
global surrogates approximate the entire prediction function of the
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original model with a surrogate. See Islam et al. (2022) where the global
behavior of a Random Forest model is approximated with CART decision
trees.

Specific to CNN-type architectures, Class Activation Maps (CAMs)
and its generalizations Grad-CAM (Selvaraju et al., 2017) and Grad-
CAM++ (Chattopadhay et al., 2018) provide an XAI method where,
similar to Shapley, spatial patterns in an input image are marked ac-
cording to their relative importance to the CNN model prediction. CNN-
specific XAI techniques have not been applied for models interpreting
gentrification-related landscape change, but may be a key step in
untangling how the learned perceptual decisions of the CNN model
relate to discrete spatial objects in a street-view image.

For computer vision models like CNN and SCNN, feature extraction
techniques can also provide a level of explainability (Naik et al., 2014;
Naik et al., 2016; Naik et al., 2017; Thackway et al., 2023b) or, at the
very least, ensure that the model is actually focusing on the housing unit
in the image rather than on unrelated noise. By ensuring that pixels can
be categorically identified in the model (e.g., sky, car, tree), we can trace
back performance errors to discrete, human-understandable objects and
adjust the training dataset accordingly.

5. Conclusion and opportunities for future research

Contemporary literature identifies gentrification as a global process
defined by class succession, landscape change, and the increased
segregation of housing access. From the Global North to the Global
South, these three qualities are inherent in every gentrification outcome,
but the specifics that describe gentrification can vary depending on
geographic and sociopolitical context. Different and sometimes unex-
pected metrics can capture how these neighborhoods vary in meaningful
ways, rendering simpler, task-based methods of measurement prone to
inaccuracy and incapable of reliably extrapolating trends from the data.

A recent renaissance of Machine Learning (ML) applications provides
researchers with a newfound ability to deal with the stochasticity of real-
world phenomena and model the gentrification process. Predictive
models such as Random Forest and Extreme Gradient Boosting
(XGBoost) can draw on immense volumes of data to produce reliable
forecasts of future gentrification at spatially granular scales (Reades
et al., 2018; Thackway et al., 2023a). Unsupervised algorithms like K-
means clustering can categorize specific gentrification variants like
marginal gentrification and super-gentrification, in addition to con-
trolling for non-gentrification-related neighborhood change (Yee &
Dennett, 2022). Deep mapping techniques with Neural Network (NN)
models offer efficient ways to gather data on built metrics (Ilic et al.,
2019; Thackway et al., 2023b). Lastly, recent advances in Artificial In-
telligence (AI) computer vision software allow researchers to incorpo-
rate built metrics that were long absent from the model (Thackway et al.,
2023b).

Various opportunities exist to progress our understanding of the
gentrification lifecycle with these novel ML tools. Deep mapping mea-
sures for semantic classification of building instances have yet to find
wide-spread use in application to gentrification modeling but offer an
avenue to integrate variables on land use, zoning, building quality, and
building characteristics into analyses of landscape change.

For future research, semantic image classification can provide more
objective, workable components into the gentrification model by linking
specific types of built development (e.g., a new roof) to gentrification
processes. Moreover, semantically classified image data could serve as
inputs to a clustering algorithm to better identify gentrification variants
and uncover novel patterns of landscape change for each variant. For
example, researchers understand that new-build gentrification entails
new-build development (Davidson & Lees, 2005), but little is known
about the types of zoning (e.g., residential, commercial, mixed), floor-
area ratios, and development intensity that correspond with this
gentrification type.

For both semantic and perceptual-based built characteristics, these
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built metrics are solely drawn on to control for alternate forms of
neighborhood change, but the research has yet to integrating informa-
tion on landscape change as explicit variables within a modeling or
forecasting mechanism. Such information would be monumental to
transcribing academic findings to workable direction for municipal
bodies that seek to uncover the links between planning policy, built
development, and gentrification effects.

Beyond statistical XAI tools, ML models can become more trustable
when they are nested in a diversified system of measurement and
analysis. Even for non-learning-based systems, methods become more
robust when triangulated, such as combining quantitative, qualitative,
and field-survey derived findings (Loukaitou-Sideris et al., 2017). For
example, qualitative studies on gentrification may be case specific but
are nonetheless highly versed in local dialectics of social structure and
extensive in their coverage of neighborhood change (e.g., Betancur,
2002). By synthesizing these findings with Al-based applications, we can
ascertain that model findings run parallel to the narrative threads
identified in journalistic accounts of a given locale.

Pioneering ML gentrification models have set a precedent for this by
weaving in discussion of a priori, contextual knowledge of the study area
with the results (Ilic et al., 2019; Reades et al., 2018; Thackway et al.,
2023a; Yee & Dennett, 2022). Typically focusing on a single city, like
London, Sydney, or Ottawa, the researchers relate ML model findings
with the narratives of specific boroughs or neighborhoods. Context-
specificity and sensitivity is essential to capturing the variable ways in
which gentrification can alter local demographics and landscapes (Preis
et al., 2020). Although ML methods can automate aspects of the analysis
and be reproduced for diverse locales, the ways we implement the
model, the preparation of the training data and the choice of validation
techniques, must be adapted on a case-by-case basis.

As machine learning functions for usability over interpretability, it is
important for new waves of research to lay out clear targets for how
model output will be utilized in real-time. Although the body of research
is still in the nascent phase of testing future applicability, pioneering
studies in predictive machine learning models are pointed in how they
evaluate the functionality of their forecasts: to supplement early warn-
ing systems, to place greater political pressure on policy makers to
instigate policies, and to, ultimately, mitigate the occurrence of gentri-
fication by accurately identifying at-risk neighborhoods (e.g., Palafox
Novack, 2019; Reades et al., 2018; Thackway et al., 2023a; Yee &
Dennett, 2022). Emphasizing the intended purpose of each machine
learning application helps ensure that future reproductions of the
research will evaluate the productivity of study findings in furthering
community-based motives. Moreover, if the aim of contemporary
scholars is to move towards global reproducibility, we must construct a
more robust and integrated toolbox of gentrification measurement to
ensure predictions can be extrapolated for different geographic contexts,
and keep the more uninterpretable, black-box algorithms in check with
other, highly interpretable systems of analysis.
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