
Improving the Accessibility of the EarSketch Web-Based
Audio Application for Blind and Visually Impaired Learners

Stephen Garrett
School Of Music

Georgia Institute of
Technology

garrett@gatech.edu

Jason Brent Smith
School Of Music

Georgia Institute of
Technology

jsmith775@gatech.edu

Amber Blue
School Of Music

Georgia Institute of
Technology

amber.blue.n@gmail.com

Zerrin Ondin
Center for Inclusive Design

and Innovation
Georgia Institute of

Technology
zerrin.ondin@design.gatech.edu

Johan Rempel
Center for Inclusive Design

and Innovation
Georgia Institute of

Technology
jrempel3@gatech.edu

Kara Mumma
Center for Inclusive Design

and Innovation
Georgia Institute of

Technology
kara.mumma@design.gatech.edu

Jason Freeman
School Of Music

Georgia Institute of
Technology

jason.freeman@gatech.edu

Brian Magerko
Expressive Machinery Lab

Georgia Institute of
Technology

magerko@gatech.edu

ABSTRACT
EarSketch is an online learning environment that uses
the Web Audio API to teach computer science and
computational thinking through music technology,
production, and remixing. It is designed to broaden
participation in computer science and music education
for beginning learners by providing a free, web-based
application coupled with curricula for informal and formal
learning contexts and a library of audio content spanning
multiple popular genres. This paper describes an analysis
of EarSketch’s accommodations for students who are blind
or visually impaired (BVI) and initial improvements to the
system to improve accessibility. This paper also presents
the findings of a user study designed to determine the
biggest accessibility issues for EarSketch users who are
BVI, and a discussion of how accessibility improvements
can help broaden participation in computing and music
education and, more broadly, how all web audio application
developers can integrate accessibility considerations into
their work.

CCS Concepts
•Applied computing → Education; Interactive learning
environments; Sound and music computing; •Social and
professional topics → K-12 education;

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2024, March 15–17, 2024, West Lafayette, IN, USA.

© 2024 Copyright held by the owner/author(s).

Keywords
STEAM education, creative computing, broadening
participation, accessibility

1 Introduction
1.1 BVI in CS Education
Computer Science (CS) education has gained momentum
in the past two decades as computing has become a
ubiquitously needed skill in the 21st century. Developers
and researchers who are blind or visually impaired (BVI),
however, remain severely underrepresented in computing
[26]. This is due to a variety of factors, including a lack of
accessible environments for students who are BVI to learn
computing concepts and write code. Although strides have
been made towards creating more accessible programming
environments and learning experiences for students who are
BVI (e.g. [26, 2, 24, 8, 3, 13, 9, 7, 20]), there is still
much work to be done in this space. Visual impairments
are a relatively low-incidence disability, and as a result,
support and resources for engaging students who are BVI
in computing can be in short supply [1]. In particular,
many authentic learning experiences that allow for creativity
and personal expression have not been made accessible to
students who are BVI as they take the form of online
learning environments that were designed by sighted people
and rely on visual design paradigms such as connecting
visual puzzle pieces (or blocks) correctly, drag and drop
manipulation using a mouse, and visual animations as the
output artifact [27, 14].

Tools for improving the accessibility of code as well as
creative and artistic tasks aim to accommodate students
who are BVI in CS education, but face issues in areas of
distribution and availability. Tools such as StructJumper

assist users who are BVI in navigating text-based code [2].
Other domain-specific languages for students have also

been developed, such as the Quorum programming language
which contains a curriculum with chapters on audio
programming and other creative tasks [25].

Block-based languages (BBL) such as Scratch [19] provide
a way for students to focus on the semantics of programming
over the syntax of text-based code, and are well-suited to
creative tasks such as Scratch’s focus on animation and
sound projects. Students with visual impairments can
benefit from this approach, though the BBL infrastructure
has not caught up with the need to provide full screen reader
and keyboard support despite some research work in the area
[13, 9].

Tangible or tactile programming interfaces have shown
success in educational environments, but are heavily limited
by the distribution of physical interfaces themselves [14, 7,
20].

These platforms that incorporate music making or audio
programming with CS education tend to either require
domain knowledge (e.g. music theory and composition) to
produce something that students find artistically pleasing,
or they have lower skill ceilings that constrain rich
expressiveness when compared to environments available
to sighted students. In addition, approaches using
tangible programming or BBL are often perceived as being
inauthentic by learners in high school computing courses,
who are eager to learn what they perceive as being
“real-world” languages that are used in professional practice
[5, 4, 12].

1.2 EarSketch and Accessibility
EarSketch is an online learning environment in which
learners use Python or JavaScript code to manipulate audio
samples and create music [10, 11]. It contains a curriculum
with lessons about introductory coding and music concepts
as well as other facets of code and music production such
as code review and collaboration. It has shown success
across multiple learning contexts and student populations
in driving student engagement and intention to persist in
computing [28, 10] through an approach that requires no
prerequisite computing or music experience, is perceived by
students to be authentic in the computational and musical
domains, and supports students’ personal expression [4,
12]. EarSketch uses the Web Audio API for the real-time
manipulation and playback of sounds in its Digital Audio
Workstation (DAW) view (see Figure 1) and generating
sound recommendations [11, 23].

Unlike many other creative computing environments used
in education, such as Scratch [19] and Processing [18],
EarSketch focuses exclusively on the creation of audio rather
than visual content, which makes for a compelling use case
for students who are BVI. However, prior to the work
described in this paper, EarSketch was almost completely
inaccessible to individuals using assistive technologies such
as screen readers.

Payne [17] has identified a need for musicians who
are BVI to have multimodal interactions, customizable
interfaces, inclusive design approaches, and communication
between developers and users to make music technology
more accessible. Payne has used this set of user needs to
evaluate how musicians who are BVI access music notation
[15] as well as the successful integration of collaborative

live coding in a classroom environment including students
of varying visual acuities [16]. As developers of web-based
software that uses music in education, we also consider these
priorities when evaluating the accessibility of EarSketch.

In this paper, we examine the accessibility of EarSketch
as a tool for learners who are BVI and its alignment with
modern accessibility standards1 and move toward a design
that puts users who are BVI at the center.

The contributions of this paper are:

• An accessibility audit of an online, web audio-based
music and coding application and an overview of the
remediation made to improve accessibility for users
who are BVI.

• The design and execution of a user study highlighting
issues users who are BVI face when using a web
audio-based production environment.

• A discussion of the findings from this study and
how they are informing the continued development of
EarSketch, along with considerations for how these
findings can inform the work of other web audio
application developers.

2 Preliminary Work
2.1 Accessibility Audit
The EarSketch team partnered with the Center for Inclusive
Design and Innovation (CIDI) at Georgia Tech to conduct
an audit of the EarSketch web application from an
accessibility perspective. CIDI is a research and service
center that provides expertise, tools, and technology for
accessibility for education, corporations, non-profits, and
government institutions throughout the United States. CIDI
provided detailed reports of areas of inaccessibility and made
recommendations for improving the EarSketch interface (see
Table 1 for an excerpt of the report). The audit and
evaluation reports highlighted 38 key accessibility issues in
EarSketch, with each issue having one or more occurrences
in the user interface. Each issue in the report included the
following:

• Corresponding Web Content Accessibility Guidelines
(WCAG) 2

• Level of impact on preventing the user from being able
to access the feature or content

• The WCAG guideline level assigned by the W3C (A,
AA, AAA)

• Corresponding rendered HTML source(s) where the
issue occurred

• Recommendations for how to address the issue in a way
that will meet WCAG guidelines and provide access

The EarSketch team supplemented these
recommendations with additional audit findings from
the automated Microsoft Accessibility Insights3 and Axe4

tools.

1https://www.w3.org/TR/WCAG21/
2https://www.w3.org/TR/WCAG21/#cc1
3https://accessibilityinsights.io/
4https://www.deque.com/axe/

Figure 1: The EarSketch interface, with Content Browser (left), Digital Audio Workstation (top), Code Editor (bottom),
Curriculum (right).

2.2 Remediation
Through a series of bi-weekly meetings with the CIDI
team, the EarSketch development team iteratively addressed
the audit findings by presenting development versions
of EarSketch addressing specific accessibility issues to
gather feedback from CIDI. The approach was to directly
mirror the hierarchy of WCAG guidelines, prioritizing
updates according to the WCAG accessibility Levels.
This strategy ensured systematic enhancements to the
accessibility features of the EarSketch platform, starting
with the most critical improvements and progressing to
more advanced requirements. This focus was particularly
beneficial for users relying on screen readers, high-contrast
settings, and magnification tools. These included the
following accessibility improvements:

• Enhanced screen reader accessibility for users who
are BVI by replacing non-descriptive button names
(particularly for buttons only containing icons and
no text) with meaningful labels conveying their
functionality and intended action. Buttons with only
icons can simplify visual/graphical user interfaces but
must be described by an accessible name by using an
aria-label, aria-labelledby, or title attribute to
be accessible to screen readers.

• Improved form navigation for screen readers by adding
explicit labels to each input field, providing clear
expectations for each input. Without explicit labels
(either through enclosing <label> tags or Accessible
Rich Internet Applications (ARIA) ”label” or ”labeled
by”attributes, forms can be difficult to use with screen
readers as the input field won’t have a descriptive
name. ARIA labels provide explicit descriptions rather
than relying on the visual proximity of descriptive text
to a form input field.

• Achieved WCAG 2.3 AAA standards for color
contrast, aiding users in differentiating text
and interactive elements. Low contrast between
background and foreground colors (e.g. white text
on a light background), or thin/small font sizes can
make text or other elements difficult to see for users
with low vision. Increasing color contrast makes
the interface legible and accessible to more people,
including those who may not consider themselves BVI.
Figure 2 shows a set of examples of these changes.

• Enhanced navigation and identification of interactive
elements by converting instances of clickable <div>
and tags to semantically correct <button>
tags. Making clickable <div> or accessible
involves marking them up with proper role and cursor
attributes so that they are read properly. This can
become a long term maintenance issue, and these
attributes come for ”free”by just using a <button> tag.
In our case, <button> tags were sometimes avoided
to conveniently avoid styling from legacy opinionated
CSS frameworks. If an element behaves like a button,
the default choice should be a <button> tag.

• Adding descriptive ARIA attributes for labels, toggle
button states, and menu hierarchy to improve
the descriptions, predictability, and contextual
understanding of each element. These convey
information to the screen reader that is otherwise only
available visually, such as whether a toggle button is
pressed or not, how many tabs are in a tabbed interface
element, and which tab is currently selected, or how
many options are available in a multi-select menu and
how many are selected.

• Enhanced keyboard-only navigation by improving tab
focus ordering, proper header hierarchy (e.g. h1, h2,

Issue, WCAG Guideline, Impact Source Code & Recommendation

Zoom in/out <button> elements
are missing accessible names.

4.1.2 Name, Role, Value

Level of Impact: High

WCAG Level: A

Zoom In Buttons
<button class="zoom-in"><i class="icon-plus2 ">...
Zoom Out Buttons
<button class="zoom-out"><i class="icon-minus">...

Explanation: The zoom in/out buttons on the daw-container are
missing accessible names/labels. Typically, buttons that use icons
instead of text as visual labels should also contain programmatically
associated names/labels. Without them, the button’s purpose or
function may be lost to screen reader users who rely on the screen
readers access to the attributes of the button. To put it in perspective,
the zoom in button should be read as ”zoom in button” via screen
reader, but instead it is read as ”button”. To a user who may be blind,
this is not enough information to determine the function of the button.
Recommendation: Provide an accessible name/label for the zoom in/out
button elements. Acceptable methods include providing a <label>
element or an aria-label, aria-labelledby, or title attribute.
Supporting Article(s): https://developer.mozilla.org/en-US/docs/
Web/Accessibility/ARIA/Roles/button role

Heading markup should be
improved.

1.3.1: Info and Relationships

Level of Impact: Medium

WCAG Level: A

<h2 id="welcome">Welcome Students and Teachers!</h2>

Explanation: The heading that reads ”Welcome Students and Teachers”
is marked up as an <h2>, but it is not preceded by an <h1>. For a
proper page structure, headings should follow a logical order (h1 >
h2...h5). Headings should also be used for their semantic meaning as
opposed to their aesthetic value.
Recommendation: Provide proper heading markup for the ”Welcome
Students and Teachers” heading in the Curriculum section of the page.
Supporting Article(s): https://www.w3.org/TR/WCAG20-TECHS/
H42.html

Website lacks visible focus
indicators. Default Visible
Focus Disabled on <button>
Elements

2.4.7: Focus Visible

Level of Impact: Critical

WCAG Level: AA

button:focus {
outline: none !important;
}

Explanation: Throughout the page, there is a lack of visible focus. In
some areas, elements that can receive keyboard focus like buttons,
links, and input there is no indication when focus has landed on the
element. In other cases, the indication of visible focus is a small, almost
unnoticeable, change in the color of the element. The lack of visible
focus indicators throughout the page makes it very difficult for users
with low vision and keyboard-only users to track where they are on
the page and could cause some of these users to abandon the site all
together.
Recommendation: Provide adequate visible focus indicators that can
be seen without much difficulty. Also, remove any styles that disable
the default visible focus of focusable elements.
Supporting Article(s): https://www.w3.org/WAI/WCAG21/
Techniques/failures/F78.html

Table 1: Examples from the EarSketch accessibility audit

Figure 2: Colors of various EarSketch interface elements,
before (left) and after (right) remediation as a result of the
accessibility audit.

etc), implementing a quick navigation links menu,
allowing the user to skip to the desired header or
section of the page, and implementing semantic and
ARIA landmarks (e.g. banner, nav, main). These
navigation features make the application more usable
and accessible to people who cannot use a mouse by
allowing users to quickly hear a list of landmarks or
headings by triggering a keyboard shortcut. This
allows for quick navigation throughout the application
rather than having to tab through each element.

• Migrating our code editor to CodeMirror 6, which
included substantial accessibility enhancements,
such as using the contentEditable attribute
for direct content manipulation instead of a hidden
<textarea>, and improved tab handling and enhanced
keyboard-only navigation, aligning with WCAG
guidelines to avoid keyboard traps5.

• Internationalizing all of these ARIA labels,
descriptions, and other attributes for future
translation (EarSketch is currently available in 7
languages) so that screen readers can announce
element names, descriptions, and state in users’
preferred language

These improvements were iteratively deployed to the live,
public-facing version of EarSketch. Once all audit findings
were addressed, we began preparations for a user study to
test the efficacy of the improvements with users who are
blind or visually impaired.

3 Study Design
In Spring 2023, we conducted a preliminary user study
to identify and determine how to address the pain points
and barriers faced by EarSketch users who are BVI. This
study was meant to understand how users who are BVI
perform a set of basic tasks in the platform, to evaluate
the effectiveness of our remediation efforts to-date and to

5https://www.w3.org/TR/WCAG21/#no-keyboard-trap

guide design and development for future accessibility-related
improvements and features.

3.1 Recruitment
Subjects were recruited from national, regional, and local
(Atlanta, GA) organizations, networks, and disability
service providers for the blind and visually impaired.
Individuals were presented with our IRB-approved
advertisement text which provided links to consent
forms based on if they were interested in on-site or remote
participation. When individuals signed the informed
consent, we had them fill out the background survey,
and inclusion was determined based on their survey
responses, including amount of functional vision, additional
disabilities, use of assistive technologies, and prior coding
or EarSketch experience.

3.2 Participants
The EarSketch Accessibility research study consisted of 6
participants: 5 with little or no functional vision that access
digital content using screen readers, and 1 with low vision
accessing digital content using magnification. Individuals
ranged in age from 18 – 49 years (Mage = 26.3 years)
and were primarily male (83.3%). All have some college
background: two have a 4-year degree, one has a 2-year
degree, and three have some college experience (two of those
are currently students at a university). There was a wide
range of knowledge of coding – one was not knowledgeable
at all, two were slightly knowledgeable, two were moderately
knowledgeable, and one was extremely knowledgeable.
None of the participants had prior experience with the
EarSketch platform. In terms of Assistive Technology,
three participants use the NVDA6 screen reader, including
one participant who is a certified expert with NVDA and
has extensive experience with several screen readers. Two
participants use JAWS7, and one participant with low vision
primarily relies on screen magnifiers. Three participants
also said they use VoiceOver8, the built-in screen reader on
Apple’s Mac and iOS devices.

3.3 Methodology
The study consisted of five benchmark tasks for the users to
accomplish in EarSketch:

1) Exploring the EarSketch platform
2) Finding and playing a video in the Curriculum
Browser
3) Locating and playing a sound in the Content
Manager
4) Opening previously saved scripts in EarSketch
5) Running code and listening to it in the Digital
Audio Workstation (DAW)

After each task, subjects were asked to rate the difficulty
of the task on a five-point Likert scale and to discuss what
changes to the platform would make completing the task
easier.

To keep sessions within 1.5 hours, some steps were
taken to expedite onboarding. The research team
created usernames and passwords for each participant and

6https://www.nvaccess.org/
7https://www.freedomscientific.com/products/software/jaws/
8https://www.apple.com/accessibility/vision/

pre-loaded them with a working EarSketch script written
in Python. This allowed users to complete tasks 4 and 5
regardless of their coding ability.

Participants were encouraged to think aloud as they
were working through the session. The total time spent,
observations, rating of task difficulty (on a scale of 1-5
where 1 is very easy and 5 is very difficult), and verbal
feedback were collected. After obtaining permission from
participants, all sessions were recorded. Overall, the users
spent between 60 and 75 minutes to complete tasks outlined
in the usability testing protocol.

4 Findings
As Table 2 shows, a majority of participants rated each task
as very easy (1) or easy (2). Through their qualitative
responses, subjects identified concerns in categories of
labeling issues, the use of keyboard shortcuts, live screen
reader alerts, and non-standard HTML controls.

Participant Task 1 Task 2 Task 3 Task 4 Task 5
1 1 2 1 2 1
2 2 2 2 2 5
3 2 3 1 4 1
4 2 3 2 1 1
5 2 1 3 - -
6 1 1 1.5 1 2

Average 1.67 2 1.75 2 2

Table 2: User Ratings of Task Difficulty

4.1 Labeling
Our descriptive text in the interface or our ARIA labels
still shows some sighted bias as well as a need for more
precision. Still relying on sighted representations, like
shapes or vertical positioning in the text of our ARIA labels,
“click the right arrow above to get started” rather, one
participant suggested, “Make it so you’re not relying on
shapes to exclusively signify a meaning. You have to actually
say what that meaning is. Seeing “next page” will help to
know what a person is looking for.” In another example, our
play button to preview sounds in the sound browser switches
from a play icon (green triangle) to a stop button (black
square) while playing, but this was the only representation
of the state change. Including dynamic ARIA descriptions
on the play button based on state would be helpful. Line
numbers in the code editor were not being read properly,
which made understanding location within the Python script
more challenging.

4.2 Keyboard Shortcuts
We were initially concerned that continuing to add
keyboard shortcuts might add cognitive load and become
overwhelming, but we received suggestions for more
keyboard shortcut keys, especially for the DAW transport
controls such as “rewind, fast forward, beginning, end, and
may want to jump by measure, set and move through
markers, jump by 30 sec, or other portions of time since
there will be interference with screen reader output.” This
participant stated that they would mute JAWS and then
use shortcut keys. A person “should be able to play it

from the code editor, as doing it with a keyboard is so
much more efficient.” Another suggestion included adding
a search bar at the top so a screen reader user could more
easily navigate the interface and shortcuts, similar to the
“command palette” design pattern implemented in Visual
Studio Code and other apps.

4.3 Live Alerts
We were also overly cautious with the amount of information
we presented as live screen reader alerts, and so only
included basic notifications of whether a user’s script ran
successfully or not. One participant “really appreciate(s)
announcements whenever there are updates. Their NVDA
reads them,” and that “so many companies don’t do that.”
However, details of errors in the code were left out for
brevity, but one participant noted“the program did indicate
that there were one or more errors, but it would be helpful to
notify what the errors might be.” The participant “couldn’t
fix it because I didn’t know where the error was,” and
another participant stated that the error alert should just
say what line it was on, and that it would be helpful if the
error was highlighted or explained.

4.4 Non-standard HTML Controls
Filtering our sound library by artist proved more difficult
than needed due to the use of non-standard controls for
drop-down lists of artists, genres, and instruments. One
participant said “the list box was weird to open (had to
press the enter key) and that usually, you can arrow through
options in combo boxes, but had to tab into it and do
some finagling to choose [the artist] “Common.”” Similarly,
our use of <div> elements to represent the list of sounds
proved less navigable than if we had used a standard <table>
element. Each row in our sound browser contains the name
of the sound, a play button to preview the sound, a star
button to save the sound to the user’s favorites, and a
paste button to paste the name of the sound (i.e. the
Sound Constant) into the code editor. Use of nonstandard
controls can be common in web applications to achieve
certain visual aesthetics or override a web browser’s default
styling of components such as drop-down lists, however, this
can obfuscate the semantics of the information for users who
are blind or visually impaired.

One participant provided additional perspective, saying
“Creating a table can reduce the cognitive load for users;
otherwise, they have to remember to arrow three times each
time [to move past the three buttons]. It will allow them to
determine the end of it and move beyond it and filter out
specific information by navigating quickly to what they’re
interested in and/or quickly eliminating what not interested
in so can skip over as well as give a sense of the size of that
data,” and “As a sighted user, think about the information
you want to know/take for granted. There’s a scroll bar for
sighted viewers – these users want to know that too. Table
would give a sense of size, set, and position of set (ex. item
2 of 5).”

There were also other cases where we were attempting
to conform to accessibility / ARIA best practices, but the
implementation still left room for improvement because of
our lack of expertise in navigating websites via keyboard.
For example, there is a group of tab buttons at the top of
the Content Manager for switching between Sounds, Scripts,
and the API browser. These were properly attributed with

the ARIA role of “tab” within a “tab list” but were not
properly contained in a “tab panel.” One participant stated
they “shouldn’t have to use the tab key to move from one
page tab to another. I had to tab, hit the tab panel, and
use arrow keys to navigate, and then tab to get out of it.”
A tab panel would have added functionality to switch tabs
with the keyboard arrow keys once focus landed inside of
the tab panel.

Even after manual and automated audits, participants
still managed to find instances where non-interactive
elements, such as <div> elements, had ’on click’ behaviors
present that weren’t caught ahead of the study. The
practical implications were that participants found it
difficult or confusing to try to open a script from the script
browser. One participant noted that they were trying to
find an “open” button and “I didn’t think there was one.
It should have one tab stop and use arrow keys.” The
participant thought they’d land on a new script and tried
to press enter but this didn’t work. One participant stated
that the Python script filename “sounds like text (JAWS
isn’t calling it a link), so not hearing anything telling that a
person can click on this. Might be able to click on it with a
mouse, but with a screen reader a) nothing tells you to click
on it and b) would need to try to use the mouse to click on
it.”

These seemingly small differences from the perspective of
a sighted software developer (using a <div> instead of a
<button>) can make our interfaces confusing at best, and
unusable at worst to people who use assistive technologies.

4.5 Additional Feedback
Our curriculum video player could use improvement with
better button controls as well as audio descriptions for the
video content. For the participants with low vision using
screen magnification, they commented that the addition of
full-screen functionality for the DAW as well as the code
editor would be helpful. They also commented that the red
playhead line which shows in the DAW timeline was helpful,
but a second black/gray line that shows the current mouse
position was confusing because the user had to determine
which line was presenting the information they wanted.
Using a different shape or arrow to indicate the current
mouse position on the timeline (for selecting loop regions)
was suggested.

While our remediation work for EarSketch made the
application conform to the letter of accessibility standards
and, on average, users rated the study tasks between easy
and very easy, there were still many design elements that
were less than ideal from an accessibility standpoint and
could affect learners’ cognitive load. Many of these issues
stem from the fact that EarSketch was originally designed
only with sighted users in mind. These findings motivate
our future work described below.

5 Discussion & Future Work
Ultimately, this work only seeks to make the existing
EarSketch user interface more accessible but does not
address major design questions inherent in an application
designed by sighted software developers for sighted teachers
and students. We now seek to redesign EarSketch through a
participatory design process that engages students who are
blind or visually impaired, their teachers and parents, and

expert music producers and software engineers who are BVI.

We will approach this task from a universal design
perspective, with the goal being that both sighted students
and students who are BVI will use this new version
of EarSketch. We will use the Universal Design for
Learning (UDL) [21] principles of offering multiple means
of representation, expression, and engagement [22, 6] to
create a learning environment that is accessible to the widest
variety of students with differing visual abilities.

We hypothesize that music programming learning
environments, like EarSketch, can be re-designed for and
with students who are BVI to educate learners who are BVI
in computer science and improve their attitudes towards
computing as a discipline. More specifically, we hypothesize
that this new version of EarSketch — designed with and
for students who are BVI — will lead to gains similar
to those sighted students have enjoyed in prior versions
of EarSketch: content knowledge gains in computing and
music, interest formation, belongingness, and intent to
persist in computing. In addition, we hypothesize that the
code complexity, positive attitudinal changes, and evidence
of engagement we see amongst students who are BVI will
be comparable to changes we see in data from current and
former sighted student users of EarSketch.

We have recently begun this participatory design work
in collaboration with research teams at Northwestern
University and the University of North Texas. To date
we have prepared observation and interview protocols for
teachers and softare development and music professionals
and received IRB approval. We have also visited a partner
school, California School for the Blind, in-person to observe
coding activities with students who are blind and conducted
followup interviews with teachers who conducted these
activities.

Unless accessibility for blind and visually impaired users
is considered from the outset of application design and
development, a bias towards sighted users is likely to make
applications difficult or impossible for users who are BVI to
effectively utilize. Because of their focus on audio rather
than visual forms of output and their easy browser-based,
cross-device access, web audio applications present a unique
opportunity for users who are BVI. By sharing our ongoing
work on EarSketch with the web audio community, our
hope is to highlight challenges and opportunities for the
accessibility of web audio applications and encourage all web
audio developers to integrate universal design, participatory
design, and usability testing into their workflows to ensure
that their applications not only address the minimum
technical standards for accessibility but also incorporate
designs that support effective real-world use.

6 Acknowledgments
Preliminary work, study, and findings supported by the
GT-Microsoft Accessibility Research Seed Grant Program.

This material is based upon work supported by the
National Science Foundation Award No. 2300631.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation. EarSketch is available online at https://
earsketch.gatech.edu

https://earsketch.gatech.edu
https://earsketch.gatech.edu

7 References

[1] J.-H. Ahn, W. Sung, S. W. Lee, J. Hee, et al. Cobrix:
A physical computing interface for blind and visually
impaired students to learn programming. In Society
for Information Technology & Teacher Education
international conference, pages 727–733. Association
for the Advancement of Computing in Education
(AACE), 2017.

[2] C. M. Baker, L. R. Milne, and R. E. Ladner.
Structjumper: A tool to help blind programmers
navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages
3043–3052, 2015.

[3] L. B. Caraco, S. Deibel, Y. Ma, and L. R. Milne.
Making the blockly library accessible via touchscreen.
In Proceedings of the 21st International ACM
SIGACCESS Conference on Computers and
Accessibility, pages 648–650, 2019.

[4] S. Engelman, B. Magerko, T. McKlin, M. Miller,
D. Edwards, and J. Freeman. Creativity in authentic
steam education with earsketch. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pages 183–188, 2017.

[5] M. Guzdial and A. E. Tew. Imagineering inauthentic
legitimate peripheral participation: An instructional
design approach for motivating computing education.
In Proceedings of the Second International Workshop
on Computing Education Research, ICER ’06, page
51–58, New York, NY, USA, 2006. Association for
Computing Machinery.

[6] K. E. Koehler and T. A. Wild. Students with visual
impairments’ access and participation in the science
curriculum: Views of teachers of students with visual
impairments. 22(1):8.

[7] V. Koushik, D. Guinness, and S. K. Kane.
Storyblocks: A tangible programming game to create
accessible audio stories. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems, pages 1–12, 2019.

[8] S. Ludi, M. Abadi, Y. Fujiki, P. Sankaran, and
S. Herzberg. Jbrick: accessible lego mindstorm
programming tool for users who are visually impaired.
In Proceedings of the 12th international ACM
SIGACCESS conference on Computers and
accessibility, pages 271–272, 2010.

[9] S. Ludi and M. Spencer. Design considerations to
increase block-based language accessibility for blind
programmers via blockly. J. Vis. Lang. Sentient Syst.,
3(1):119–124, 2017.

[10] B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, S. Mccoid, and A. Crews-Brown.
Earsketch: A steam-based approach for
underrepresented populations in high school computer
science education. ACM Transactions on Computing
Education (TOCE), 16(4):1–25, 2016.

[11] A. Mahadevan, J. Freeman, B. Magerko, and J. C.
Martinez. Earsketch: Teaching computational music
remixing in an online web audio based learning
environment. In Web Audio Conference. Citeseer,
2015.

[12] T. McKlin, B. Magerko, T. Lee, D. Wanzer,
D. Edwards, and J. Freeman. Authenticity and
personal creativity: How earsketch affects student
persistence. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages
987–992, 2018.

[13] L. R. Milne and R. E. Ladner. Position: Accessible
block-based programming: Why and how. In 2019
IEEE Blocks and Beyond Workshop (B&B), pages
19–22. IEEE, 2019.

[14] C. Morrison, N. Villar, A. Thieme, Z. Ashktorab,
E. Taysom, O. Salandin, D. Cletheroe, G. Saul, A. F.
Blackwell, D. Edge, et al. Torino: A tangible
programming language inclusive of children with
visual disabilities. Human–Computer Interaction,
35(3):191–239, 2020.

[15] W. Payne and A. Hurst. “we avoid pdfs”: Improving
notation access for blind and visually impaired
musicians. In International Conference on
Information, pages 581–597. Springer, 2023.

[16] W. C. Payne, X. Shen, E. Xu, M. Kaney, M. Graves,
M. Herrera, M. Mau, D. Murray, V. Wang, and
A. Hurst. Approaches to making live code accessible in
a mixed-vision music ensemble. In Proceedings of the
25th International ACM SIGACCESS Conference on
Computers and Accessibility, pages 1–5, 2023.

[17] W. C. Payne, A. Y. Xu, F. Ahmed, L. Ye, and
A. Hurst. How blind and visually impaired composers,
producers, and songwriters leverage and adapt music
technology. In Proceedings of the 22nd International
ACM SIGACCESS Conference on Computers and
Accessibility, pages 1–12, 2020.

[18] C. Reas and B. Fry. Processing: a programming
handbook for visual designers and artists. Mit Press,
2007.

[19] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[20] Z. Rong, N. F. Chan, T. Chen, and K. Zhu.
Coderhythm: Designing inclusive tangible
programming blocks. In Companion Publication of the
2020 ACM Designing Interactive Systems Conference,
pages 105–110, 2020.

[21] D. Rose. Universal design for learning. Journal of
Special Education Technology, 15(4):47–51, 2000.

[22] D. H. Rose, W. S. Harbour, C. S. Johnston, S. G.
Daley, and L. Abarbanell. Universal design for learning
in postsecondary education: Reflections on principles
and their application. Journal of postsecondary
education and disability, 19(2):135–151, 2006.

[23] J. Smith, M. Jacob, J. Freeman, B. Magerko, and
T. Mcklin. Combining collaborative and content
filtering in a recommendation system for a web-based
daw. In Proceedings of the International Web Audio
Conference, 2019.

[24] A. Stefik, A. Haywood, S. Mansoor, B. Dunda, and
D. Garcia. Sodbeans. In 2009 IEEE 17th International
Conference on Program Comprehension, pages
293–294. IEEE, 2009.

[25] A. Stefik and R. Ladner. The quorum programming

language. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education,
pages 641–641, 2017.

[26] A. M. Stefik, C. Hundhausen, and D. Smith. On the
design of an educational infrastructure for the blind
and visually impaired in computer science. In
Proceedings of the 42nd ACM technical symposium on
Computer science education, pages 571–576, 2011.

[27] A. van der Meulen, M. Hartendorp, W. Voorn, and
F. Hermans. The perception of teachers on usability
and accessibility of programming materials for
children with visual impairments. ACM Trans.
Comput. Educ., 23(1), dec 2022.

[28] D. L. Wanzer, T. McKlin, J. Freeman, B. Magerko,
and T. Lee. Promoting intentions to persist in
computing: an examination of six years of the
earsketch program. Computer Science Education,
30(4):394–419, 2020.

	Introduction
	BVI in CS Education
	EarSketch and Accessibility

	Preliminary Work
	Accessibility Audit
	Remediation

	Study Design
	Recruitment
	Participants
	Methodology

	Findings
	Labeling
	Keyboard Shortcuts
	Live Alerts
	Non-standard HTML Controls
	Additional Feedback

	Discussion & Future Work
	Acknowledgments
	References

