
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV
Anonymous Author(s)

ABSTRACT
We investigate the problem of finding winner(s) given a large num-

ber of users (voters) preferences casted as ballots, one from each

of the𝑚 users, where each ballot is a ranked order of preference

of up to ℓ out of 𝑛 items (candidates). Given a group protected

attribute with 𝑘 different values and a priority that imposes a selec-

tion order among these groups, the goal is to satisfy the priority

order and select a winner per group that is most representative.

It is imperative that at times the original users’ preferences may

require further manipulation to meet these fairness and priority

requirement. We consider manipulation by modifications and for-

malize the margin finding problem under modification problem. We

study the suitability of Instant Run-off Voting (IRV) as a preference

aggregation method and demonstrate its advantages over positional

methods. We present a suite of technical results on the hardness

of the problem, design algorithms with theoretical guarantees and

further investigate efficiency opportunities. We present exhaustive

experimental evaluations using multiple applications and large-

scale datasets to demonstrate the effectiveness of IRV, and efficacy

of our designed solutions qualitatively and scalability-wise.

ACM Reference Format:
Anonymous Author(s). 2024. Promoting Fairness and Priority in 𝑘-Winners

Selection Using IRV. In Proceedings of 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’24). ACM, New York, NY, USA,

15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The task of finding the winner, i.e., the most favorable item or

candidate from a given set of𝑚 users’ (voters’) preferences over 𝑛

items (candidates), has found a wide variety of applications such as

in hiring candidate(s) for a job, selecting member(s) of a committee,

finding winning candidate(s) in a competition, in electoral voting,

or even in recommender systems. IRV (Instant Run-off Voting) is a

ranked choice voting mechanism that has been gaining popularity

lately as an electoral system in the US [11, 13, 22, 26, 34]. In this

paper, we study the applicability and computational implications

of adapting IRV to preference data to enable group fairness while

satisfying a priority order.

Preference data considering faculty hiring. Table 1 represents
ranked order of up to top-5 preferences over 7 candidates who

have applied to a faculty position. Preferences are provided by

10 committee members (voters). Each of these ranked orders of

preferences constitutes a ballot.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Fairness and priority order.Group fairness is studied considering
the protected attribute of the candidates to ensure equal representa-

tion of each group [19, 29]. The example assumes that research area

is one such protected attribute with 𝑘 = 3 different values (it is not

hard to extend this to race, gender, ethnicity, or any other protected

attribute). The value of this attribute for each of the candidates and

the priority among these values is given in Table 2.

Goal. The goal is to return one candidate per protected attribute

group that is most representative of the committee members’ prefer-

ences while obeying the priority order. In our example, we need to

first select a Data Mining (DM) candidate, then a Machine Learning

(ML) candidate, and finally an Artificial Intelligence (AI) candidate.

The IRV process. The IRV process [21, 27] is a multi-stage pro-

cess [31] that simulates 𝑛 − 1 run-off rounds, where in each such

round one item is eliminated. The single item that survived the

eliminations after all rounds is the winner. More specifically, given

the original preferences of the users (voters), an initial tally of the

first choice votes of every candidate is performed in round 1. The

item that has the lowest number of first choice votes is eliminated.

Ties are broken arbitrarily. After the elimination, all the ranked

orders that include the eliminated item are updated, and the items

following this eliminated item in the ranked order are advanced

one place up. This concludes round 1. This is iterated 𝑛 − 1 times,

namely, the tally is recomputed, and the item that has the lowest

number of first choice votes is eliminated, where ties are broken

arbitrarily.

Using the running example, as shown in the left of Table 4, the

IRV process eliminates Molly in round 1, Mira in round 2 (and the

respective vote gets transferred to Sara), and Gina in round 3. This

process continues further making Sara the winner after 6 rounds.
Motivation. The resurgence of IRV is motivated by a range of ex-

pected benefits, including, ensuringmajority support for the winner,

reducing conflict within the electorate, reducing strategic voting,

and increasing diversity of the winners [27]. IRV is amenable to

incomplete ranked order, making the process further suitable for

Committee member 1st choice 2nd choice 3rd choice 4th choice 5th choice
Jack Zoey Mira

Emma Laura Gina Molly Kim Zoey

Monica Zoey Molly Kim Gina Sara

Daniel Zoey Molly Sara Gina

Max Mira Molly Sara Kim Zoey

John Sara Gina Kim Zoey

Amy Gina Sara Kim Mira Zoey

Alice Sara Gina Kim Molly Zoey

Bob Kim Gina Sara Molly Zoey

Steve Kim Gina Sara

Table 1: Preferences over 7(𝑛) candidates by 10 committee
members(𝑚) upto 5-th position (ℓ)

Priority Order Protected attribute (area) Candidates
First DM Molly, Laura

Second ML Gina, Kim, Sara

Third AI Zoey, Mira

Table 2: Fairness and Priority Orders
1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

applications where users are not obligated to provide full order.

Multiple recent works [14], [8] have demonstrated the superiority

of IRV over plurality voting [23], as well as positional voting mech-

anisms (such as Borda [17]) to promote proportional representation

of solid coalition and anti-plurality. Table 3 summarizes some of

the advantages of IRV compared to other selection methods. Refer

to Appendices A.1, A.2 for further details.

Method
Anti-

plurality
Proportional
representation

Suitable to
incomplete order

Scoring based × × ×
Plurality × × ×
Positional × × ✓

IRV ✓ ✓ ✓

Table 3: Comparison of aggregation methods

IRV Margin computation. Recall that in our example the IRV

process chooses Sara as the winner of the ballots. Clearly, Sara
does not satisfy the priority order of selecting a DM candidate first.

Hence, some ballot modifications are needed. If Jack’s ballot in

Table 1 is changed by replacing Zoey with Molly, a series of 6 run-
off rounds are simulated after that, as listed in the right of Table 4,

which makes Molly the winner. If instead Laura is to be made the

winner, this will require at least 3 ballot modifications, for example,

by replacing the top choice of Alice, Monica, and John with Laura.
Intuitively too, Molly is a better choice because it is liked as the
second choice for 3 out of 7 original committee members. A similar

process must also be carried out for ML and AI independently. Our

goal is to find the minimum ballot modification that results in an

outcome that satisfies the 𝑘 priority orders. We refer to this problem

as IRVmargin computation [23] to satisfy 𝑘 priority orders (denoted

by MqKIRV for 𝑘 ≥ 1 and MqIRV for 𝑘 = 1). To the best of our

knowledge, we are the first to initiate a principled study on this.

Candidate Tally R1 R2 R3 R4 R5 R6 New
Tally R1 R2 R3 R4 R5 R6

Zoey 3 3 3 3 3 4 2 2 2 2

Sara 2 2 3 4 4 6 8 2 2 3 3 3 5

Kim 2 2 2 2 3 2 2 2 2 2

Laura 1 1 1 1 1 1 1

Gina 1 1 1 1 1

Mira 1 1 1

Molly 0 1 2 2 3 5 5 7

Table 4: IRV rounds after ballot modification (left): Sara winner
IRV rounds after ballot modification (right): Molly winner

Why ballot modification? An alternative to ballot modification

could be the following - filter out candidates that do not satisfy

the priority order (e.g., delete all ML and AI candidates for finding

the top DM candidate) and run preference aggregation over the

remaining ones. We note that such a filtering process that does not

consider the order of all candidates on the ballot could heavily skew

the results. Appendix A.3 has more details.

Technical Contributions (Sections 3 and 4). We make multiple

technical contributions in terms of analyzing the studied problems

as well as designing solutions for them. We prove thatMqIRV is

NP-hard, even when the ballot size is at most ℓ = 2 by reducing an

instance of the known NP-complete problem Exact Cover by 3-Sets

(X3C) to an instance ofMqIRV. Inspired by [11, 26] we then design

an algorithmic framework AlgExact that gives an exact solution

and considers all possible permutations of the candidates that end in

a candidate that satisfies the priority order. Solving AlgExact thus

requires repeatedly solving a subproblem DistTo, which, given

a permutation, finds the smallest number of ballot modifications

needed to ensure that the order of the candidates eliminated in 𝑛−1

run-off rounds of IRV follow this order. Unfortunately, we prove

that even the decision version of DistTo is NP-hard by reducing

an instance of X3C to DistTo, even when ℓ = 3.

We further study efficiency opportunities of AlgExact by en-

abling early terminations via branch and bound. The idea is to

avoid making expensive DistTo calls by computing a lower bound

on the margin for every possible suffix of every permutation, and

eliminating a permutation in its entirety if the lower bound on its

margin is not smaller than the current upper bound on the margin

of theMqIRV instance. To that end, we design a lower bound com-

putation algorithm DistToLB and an upper bound computation

algorithmMqIRVUB that are highly effective and computationally

lightweight. We also study the DistTo problem under different

preference manipulation models – for example, we study how to
only add the smallest number of ballots to the existing set of ballots,

such that the priority orders are satisfied. We refer to this as the

DistToAdd problem. We present an efficient exact solution for

the DistToAdd problem. We also present an integer programming

formulation forMqIRV which is non-trivial. We finally design a

highly scalable heuristics that is shown to work well in practice.

Experimental Evaluations (Section 5). Our final contribution is

experimental - we use four real world large scale datasets motivated

by different electoral voting and recommender systems applications,

as well as one synthetically generated very large datasets. Our exper-

imental evaluations have the following findings: (a)We empirically

show that MqIRVresults in a significantly smaller anti-plurality

index [14] (i.e., it does not select candidates that are disliked by

the majority of voters) compared to alternative approaches such

as plurality voting [23] or Borda [17]. (b)We present an in-depth

case study demonstrating that ballot modification results in a lower

anti-plurality index compared to alternative approaches such as

filtering. (c)We demonstrate that AlgExact is optimal, yet more

scalable than existing solutions that could be adapted to our prob-

lem [26], [11]. (d) We empirically demonstrate the optimality of

DistToAddAlg and its scalability, as well as the quality and scal-

ability of our designed approximate solution by varying several

pertinent parameters and comparing with appropriate additional

baseline algorithms.

We present the discussion of related work in Section 6 (and in

Appendix A.10) and conclude in Section 7.

2 DATA MODEL & PROBLEM
In this section, we describe the data model, following which we

formally define the problem, and prove its hardness.

2.1 Data model
Ballot/preference. Preference of a user is elicited using a ballot 𝑏

containing a ranking up to position at most ℓ , where 𝑐𝑖 is the 𝑖-th

preferred candidate. Using the running example, 𝑐1 and 𝑐5 are Gina,
and Zoey, respectively of user Amy’s ballot.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Ballot profiles. The data contains the preferences/ballots B of𝑚

users/voters over a set 𝐶 of 𝑛 items/candidates. Using the running

example,𝑚 = 10 , 𝑛 = 7. The columns in Table 1 show B.

Preference aggregation. A preference aggregation method F
takes B as input and selects a winner from the candidates/items.

Given fairness criteria and priority order, the goal is to make use of

B and F multiple (𝑘) times to select 𝑘 different winners. Table 2

shows 𝑘 = 3 such constraints for recommending top DM, ML, and

AI candidates. We use IRV as F , as discussed in more detail in

Section A.2.

Preference manipulation models. We consider two different

preference manipulation models, where only the first one satisfies

the number of ballot invariance property (i.e., the total number of

votes remains unchanged) and is our primary focus in this work.

(1) Manipulation bymodification.Given a ballot 𝑏 with ranking
up to position 𝑗 (𝑗 ≤ ℓ) positions, update any number of entries

in 𝑏 considering candidates from𝐶 . As an example, Jack’s ballot

(see Table 1) is changed from Zoey, Mira to Molly, Mira. Note
that changing Daniel’s ballot from Zoey, Molly, Sara, Gina to
Mira, Kim also constitutes to a single ballot modification.

(2) Manipulation by addition. Add a new ballot 𝑏 with ranking

of up to ℓ candidates from 𝐶 .

Handling ties in IRV Recall that according to our definition ties

during the IRV process are broken arbitrarily. It is not difficult to

see that the way these ties are broken may impact the value of the

margin. Indeed, in our example of ballot modification candidate

Molly is the winner after just a single modification only in case

the ties are broken in a very specific way. We postulate that any

consistent choice would be effective in our case, since we use the

margin to distinguish among choices and are not interested in the

actual value of the margin.

2.2 Problem Definitions & Hardness
Problem Definition 1. MqIRV (IRV Margin satisfying a single

query constraint). Given a set of ballots B eliciting𝑚 voters ranked
preferences of up to ℓ positions over a given set 𝐶 of 𝑛 candidates,
and a query constraint that specifies a subset of the candidates, find
the minimum number of ballots that need to be modified in order
to ensure that the winner of the IRV election belongs to the subset
specified in the query constraint.

Running Example. Referring to Table 2, if the query constraint
specifies selecting a DB candidate, then the minimum number of

ballot modifications required to ensure that is 1, where Zoey in

Jack’s ballot is swapped byMolly. If instead Laura is to be made the

winner, this will require 3 ballot modifications. Hence, the margin

to satisfy the query constraint is 1.

Theorem 2.1. MqIRV is NP-Complete, even when ℓ = 2.

ProblemDefinition 2. MqKIRV (IRVMargin satisfying𝑘 query
constraints.) Given a set of ballots B eliciting𝑚 voters ranked pref-
erences of up to ℓ positions over a given set 𝐶 of 𝑛 candidates, and
a query with 𝑘 constraints, each specifies a subset of the candidates,
find the minimum number of ballots that need to be modified in or-
der to ensure that the winners of 𝑘 independent invocations of the
IRV election (each starting from the original ballots) belong to the
respective subsets specified 𝑘 query constraints.

Theorem 2.2. MqKIRV is NP-Complete, even when ℓ = 2.

Proof. Follows trivially from Theorem 2.1. □

Running Example. Considering the running example again (Ta-

ble 2), 𝑘 = 3 and the ballots are shown in Table 1. The winner for

DB isMolly (margin = 1), for ML it is Sara (margin = 0), for horror it

is Zoey (margin = 1). The minimum number of ballot modifications

(margin) required to ensure all three constraints is 1+0+1 = 2.

3 ALGORITHMS FOR MqIRV AND MqKIRV
In this section, we focus on designing exact solutions forMqIRV
and MqKIRV. In Section 3.2 we discuss AlgExact, a branch-and-

bound algorithm for MqIRV that is capable of effective pruning

of the search space. In Section 3.3 we present a non-trivial integer

programming formulation ofMqIRV. These exact algorithms apply

also exact algorithms for forMqKIRV as follows from the following

simple theorem.

Theorem 3.1. An optimal solution forMqKIRV corresponds to
solving MqIRV optimally 𝑘 times.

3.1 Required Definitions
We first give some definitions that will be useful when discussing

our algorithms.

Signature. Let S be the set of all possible partial or total rankings

over𝐶 (including those that do not appear in B). A signature 𝑠 ∈ S
is one such partial or total ranking. The total number of possible

signatures is |S| = ∑ℓ
𝑥=1

(𝑛
𝑥

)
· 𝑥 !. For example, both {Molly, Sara}

and {Zoey, Molly, Sara, Gina} are valid signatures even though the

former is not present in Table 1.

Tally 𝑡𝑟 (𝑐) or first choice votes. The tally or first choice votes of

a candidate 𝑐 at round 𝑟 , denoted as 𝑡𝑟 (𝑐), is defined as the number

of ballots in round 𝑟 in which 𝑐 is the first choice candidate. Using

the running example, tally of Sara, Zoey, and Kim at the beginning

of round 5 are: 𝑡5(Sara) = 4, 𝑡5(Zoey) = 3, and 𝑡5(Kim) = 3.

3.2 AlgExact for MqIRV
We propose an algorithmic framework AlgExact that is an exact

solution to the MqIRV problem. The algorithmic solution is de-

veloped by creating a branch and bound tree, akin to two prior

works [11, 26].

For a given winner 𝑤 , the solution considers all possible per-

mutations of candidates that need to be eliminated (i.e., (𝑛 − 1)!),
where each permutation represents an elimination order simulating

𝑛− 1 run-off rounds of IRV. The height of the tree is at most 𝑛. Each

node of the tree contains two values: (a) an elimination order 𝜋 ,

(b) a score that represents the number of ballot modifications to

realize 𝜋 (we formalize that as DistTo below). Each edge of the

tree represents the next candidate to be eliminated. An artificial

root node connects the branches of the subtree, where each subtree

represents a 𝑤 ∈ 𝑊 as the winner, where𝑊 is the constrained

winner set specified by the query. Except for the fake root node, the

relationship between any parent and child nodes in the tree is as

follows: (i) At any parent node with elimination order 𝜋 , the child

node has elimination order 𝜋 ′ = 𝑐 + 𝜋 , for some 𝑐 ∈ 𝐶 − 𝜋 , and

(ii) DistTo(𝜋) ≤ DistTo(𝜋 ′) [26]. The leaf nodes end with a full

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

permutation, where the last candidate is from𝑊 . The maximum

number of possible leaf nodes is = |𝑊 | × (𝑛 − 1)!. AlgExact solves

the sub-problemDistTo formalized below, repeatedly, at each node

of the branch and bound tree.

Problem Definition 3. DistTo. Given an elimination order over
the candidates 𝜋 (complete or partial order, |𝜋 | ≤ |𝐶 |) and a database
of ballot profiles B, find the minimum number of ballots that must
be modified to achieve 𝜋 .

Theorem 3.2. DistTo is NP-hard, even when ℓ = 3.

AlgExact explores the tree level by level (refer to Figure 9 in

Appendix A.11) and makes an attempt to prune part of the tree

based on the lower bound of a branch (which corresponds to an

elimination order) and an upper bound of the value the MqIRV
instance.

Definition 3.3. Upper bound of an instance MqIRVUB. Given
anMqIRV instance,MqIRVUB is defined as an upper bound of

the number of ballots that must be modified to satisfy the query

constraint.

Definition 3.4. Lower bound (DistToLB) of DistTo(𝜋). Given
an MqIRV instance and an elimination order 𝜋 , DistToLB is a

lower bound on the number of ballots that must be modified to

achieve 𝜋 , namely, DistToLB(𝜋) ≤DistTo(𝜋).
Running Example. Figure 9 shows one such partially constructed

tree for our running example.The candidates are represented by

their unique ids, and any red node and the sub-tree under them

are fully pruned. Each such red node has DistToLB(𝜋) that is

not smaller than the MqIRVUB of the MqIRV instance (e.g.,

DistToLB([1, 3, 5]) = 4 is larger than MqIRVUB = 2). Compared

to prior works [11, 26], we propose both effective as well as com-

putationally efficientMqIRVUB and DistToLB solutions, as we

discuss in Section 4.

3.3 IP for MqIRV
MqIRV can be formulated as an integer linear program (IP). The

objective of the IP is to minimize the number of ballot modifications

required to ensure that the winner is the preferred candidate. Next,

we describe how to formulate this IP.

For each ballot signature 𝑠 ∈ S, let 𝑚𝑠 denote the number of

ballots with signature 𝑠 in the original ballot profile. Define𝑚 =∑
𝑠∈S𝑚𝑠 , so that𝑚 counts the total number of ballots in the original

election profile. Note that the values of𝑚𝑠 and𝑚 are determined

by the original election profile. Let 𝑎𝑠 denote the number of ballots

that are modified to 𝑠 from a different ballot signature, 𝑑𝑠 denote

the number of ballots that are modified from 𝑠 to another ballot

signature, and 𝑦𝑠 denote the total number of ballots with signature

𝑠 after the modifications. The following equations must be satisfied.

𝑚𝑠 + 𝑎𝑠 − 𝑑𝑠 = 𝑦𝑠 (1)

𝑚 ≥ 𝑦𝑠 ≥ 0 (2)

𝑚𝑠 ≥ 𝑑𝑠 ≥ 0 (3)

𝑚 −𝑚𝑠 ≥ 𝑎𝑠 ≥ 0 (4)

Equation 1 requires that the number of ballots with a new sig-

nature 𝑠 be equal to the number of ballots that originally had the

Algorithm 1 AlgExact

Input: Ballot profile B, set of Candidates 𝐶 , set of preferred

candidates𝑊 .

Output: MqIRV
1: 𝑢𝑏 = ∞
2: 𝑙𝑏 = 0

3: initialize priority 𝑞𝑢𝑒𝑢𝑒 with tuples (𝑤, 0) where𝑤 ∈𝑊
4: while 𝑞𝑢𝑒𝑢𝑒 .notEmpty() do
5: 𝜋, 𝑙𝑏 = 𝑞𝑢𝑒𝑢𝑒 .pop()

6: for 𝑐 ∈ 𝐶 \ 𝜋 do
7: 𝜋 ′ = 𝑐 + 𝜋

8: 𝑙𝑏 = DistToLB(B,𝐶, 𝜋 ′)
9: if 𝑙𝑏 > 𝑢𝑏 then
10: prune 𝜋 ′

11: else
12: 𝑞𝑢𝑒𝑢𝑒 .add(𝜋 ′, 𝑙𝑏)
13: end if
14: if |𝜋 ′ | == 𝑛 then
15: 𝑢𝑏 = min(𝑢𝑏,DistTo(B,𝐶, 𝜋 ′))
16: end if
17: end for
18: end while
19: MqIRV = 𝑢𝑏

20: Return MqIRV

signature 𝑠 , plus the number that changed from something else to

𝑠 , minus the number that changed from 𝑠 to something else. Equa-

tion 2 constrains that the number of ballots that end with signature

𝑠 cannot be more than the total number of ballots that were cast in

the election. The next two equation requires that the number of bal-

lots that are modified to have signature 𝑠 must be nonnegative and

no more than the number of ballots that had a signature different

than 𝑠 originally, and one cannot change more ballots of signature

𝑠 than the number of ballots that originally had the signature 𝑠 .

The next constraint is that the total number of ballots changed

from any signature is equal to the total number of ballots changed

to any signature. ∑︁
𝑠∈S

𝑎𝑠 =
∑︁
𝑠∈S

𝑑𝑠 (5)

The next two constraints correspond to the elimination order.

Assume𝐶 is the set of all candidates. For every pair {𝑐𝑖 , 𝑐 𝑗 } ⊆ 𝐶 , de-

fine 𝑢𝑐𝑖 ,𝑐 𝑗 as a binary variable that is 1 iff candidate 𝑐 𝑗 is eliminated

before candidate 𝑐𝑖 . For completeness also define 𝑢𝑐𝑖 ,𝑐𝑖 = 1, for ev-

ery 𝑐𝑖 ∈ 𝐶 . The following constraints guarantee that the variables

𝑢𝑐𝑖 ,𝑐 𝑗 define an order. Equation 6 constrains it to be antisymmetric

and Equation 7 constrains it to satisfy the triangle inequality.

𝑢𝑐𝑖 ,𝑐 𝑗 + 𝑢𝑐 𝑗 ,𝑐𝑖 = 1 ∀ {𝑐𝑖 , 𝑐 𝑗 } ⊆ 𝐶 (6)

𝑢𝑐𝑖 ,𝑐 𝑗 + 𝑢𝑐 𝑗 ,𝑐𝑟 + 𝑢𝑐𝑟 ,𝑐𝑖 ≥ 1 ∀ {𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑟 } ⊆ 𝐶 (7)

For a signature 𝑠 of an original ballot and candidates 𝑐 and 𝑐

(which may be equal), define the binary variable 𝑣𝑠,𝑐,𝑐 to be 1 iff

when candidate 𝑐 is eliminated 𝑐 is the top candidate in the signature

that had originally been signature 𝑠 . Bit 𝑣𝑠,𝑐,𝑐 is trivially 0 if 𝑐 does

not appear in 𝑠 . Let signature 𝑠 = 𝑐1, 𝑐2, . . . , 𝑐ℓ , where 𝑐𝑥 is the 𝑥-th

candidate on the ballot, 𝑐1 is the top choice while 𝑐ℓ is the bottom.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Assume from now on that 𝑐 = 𝑐𝑖 . For candidate 𝑐 𝑗 in 𝑠 , where 𝑗 < 𝑖 ,

bit 𝑣𝑠,𝑐𝑖 ,𝑐 𝑗 is 0 since 𝑐 𝑗 is ranked higher than 𝑐𝑖 is 𝑠 . Assume from

now on that 𝑐 ≠ 𝑐 𝑗 , for 𝑗 ∈ {1, . . . , 𝑖 − 1}. We have the following

constraint on 𝑣𝑠,𝑐𝑖 ,𝑐 .

𝑣𝑠,𝑐𝑖 ,𝑐 = 𝑢𝑐𝑖 ,𝑐 · Π
𝑖−1
𝑥=1𝑢𝑐,𝑐𝑥 (8)

This constraint ensures that all the candidates 𝑐1, 𝑐2, . . . , 𝑐𝑖−1 are
eliminated before 𝑐 is eliminated, and in case 𝑐𝑖 ≠ 𝑐 , candidate 𝑐𝑖 is

eliminated after 𝑐 is eliminated. Thus signature 𝑠 contributes to 𝑐𝑖 ’s

tally when 𝑐 is eliminated. Note that since by definition 𝑢𝑐1,𝑐1 = 1,

we get that 𝑣𝑠,𝑐1,𝑐1 = 1, which holds trivially. The constraint in its

current format is not linear since it is a product of bits. Later, we

show how to convert it to linear constraints.

The next constraint is for every ordered pair of candidates 𝑐 ≠ 𝑐 .

It guarantees that if 𝑢𝑐,𝑐 = 1, namely 𝑐 is eliminated after 𝑐 , then in

the round in which 𝑐 is eliminated the number of ballots in which

𝑐 is the top candidate is at least the number of ballots in which 𝑐 is

the top candidate. The constraint is written as a product of bits and

an integer (later, we show how to convert it to linear constraints).∑︁
𝑠

(
𝑦𝑠 · 𝑣𝑠,𝑐,𝑐

)
≥ 𝑢𝑐,𝑐 ·

∑︁
𝑠

(
𝑦𝑠 · 𝑣𝑠,𝑐,𝑐

)
(9)

If we want to force candidate 𝑐 to be the winner we need to add

the constraints 𝑢𝑐,𝑐 = 1, for every 𝑐 ≠ 𝑐 . Alternatively, if we want to

force candidate 𝑐 not to be the winner we need to add the constraint∑
𝑐≠𝑐 𝑢𝑐,𝑐 ≥ 1. In addition, we can change the objective function to

count only additions or only deletions or any linear combination

of additions, deletions, and modifications. For our case we set the

objective function to be: minimize

∑
𝑎𝑠 , which is the number of

ballots modifications.

In the last two constraints, we used (i) product of bits, and more

generally (ii) product of a nonnegative number and bits. We show

how to linearize a product of a nonnegative number and bits as long

as we have an upper bound on the number. Let 𝑢1, . . . , 𝑢𝑥 be 𝑥 bits,

and𝐴 be a non-negative number. Assume that𝑚 is an upper bound

on 𝐴. (As in our case, since𝑚 is the total number of signatures.)

The constraints that replace 𝑍 = 𝐴 · Π𝑥
𝑖=1

𝑢𝑖 are as follows.

𝑧 ≤ 𝑢𝑖 ·𝑚 for 𝑖 ∈ {1, . . . , 𝑥}
𝑧 ≤ 𝐴

𝑧 ≥ 𝐴 +
(
𝑥∑︁
𝑖=1

𝑢𝑖 − 𝑥

)
·𝑚

𝑧 ≥ 0

4 EFFICIENT ALGORITHMS
This section is dedicated to further investigation of computational

efficiency. In Section 4.1, we describe an improved algorithm for

computing DistToLB. In Section A.6 (in the Appendix), we discuss

an improvedMqIRVUB algorithm that is computationally efficient.

Interestingly, this algorithm can be applied as an efficient heuristic

for the MqIRV problem. In Section A.7 (in the Appendix), we

describe an efficient (polynomial time) algorithm for DistTo in

case only ballot additions are allowed. Thus, demonstrating that

DistTo becomes a computationally tractable in this special case.

4.1 An Improved DistToLB Algorithm
In this section, we discuss an improved lower bound calculation

algorithm for DistTo(𝜋). The intuition is the following: given 𝜋

and two candidates 𝑐 and 𝑐′, if 𝑐 needs to be eliminated before 𝑐′

in round 𝑖 , where 𝑡𝑖 (𝑐) and 𝑡𝑖 (𝑐′) are the number of first choice

votes of 𝑐 and 𝑐′ in round 𝑖 , respectively, then at least

⌈
𝑡𝑖 (𝑐)−𝑡𝑖 (𝑐′)

2

⌉
number of first choice votes from 𝑐 needs to go to 𝑐′. That is, 𝑙𝑏, the
lower bound of round 𝑖 is calculated as the half of the difference

of tally between 𝑐 and 𝑐′. Finally, the maximum over all of these

is returned as the output of the algorithm. Algorithm 2 has the

pseudocode.

Algorithm Efficient AlgExact Blom

Number of IP calls

AI: 1

ML: 1

DM: 2

AI: 143

ML: 108

DM: 107

Runtime (s) 0.057 0.626

Table 5: Efficiency improvement using MqIRVUB and
DistToLB for the running example

Running example. Assume, 𝜋 = [Gina, Molly, Zoey] = [4, 6, 0]
where 4 is eliminated first. Initially, 𝑡1(Gina) = 6, 𝑡1(Zoey) = 3,

𝑡1(Molly) = 1. To ensureGina is eliminated, at leastmax{
⌈
6−1
2

⌉
,
⌈
6−3
2

⌉
}

= 3 ballot modifications are required. After Gina is eliminated,

𝑡2(Zoey) = 5, 𝑡2(Molly) = 4. Required modifications of the ballot to

ensure that Zoey wins =

⌈
5−6
2

⌉
= 0. Therefore, 𝑙𝑏 = max(3, 0) = 3.

Using the running example, Algorithm 2 reduces a significant

number of DistTo (which is solved using IP) calls. For example,

𝑙𝑏 = DistToLB([4, 6, 0]) = 3 ≤ DistTo([4, 6, 0]). HenceAlgExact
prunes the branch [4, 6, 0] without having to make an expensive

DistTo call (this is because 𝑙𝑏 for this branch > 𝑢𝑏). Table 5 shows

efficiency improvement using DistToLB and MqIRVUB inside

AlgExact over prior work [11].

Algorithm 2 Algorithm for DistToLB

Input: Set of ballots B, an elimination order 𝜋

Output: DistToLB(DistTo(𝜋))

1: 𝑙𝑏 = 0

2: while |𝜋 | > 1 do
3: 𝑐 = 𝜋.pop_front()
4: for 𝑐′ ∈ 𝜋 \ 𝑒 do
5: 𝑙𝑏 = max(𝑙𝑏,

⌈
𝑡𝑖 (𝑐)−𝑡𝑖 (𝑐′)

2

⌉
)

6: end for
7: end while
8: Return 𝑙𝑏

Theorem 4.1. Algorithm 2 returns a valid lower bound onDistTo(𝜋).

Lemma 1. The running time of Algorithm 2 is 𝑂 (𝑛2 +𝑚ℓ).

5 EXPERIMENTAL EVALUATIONS
We conducted experiments to analyze our algorithms, implemented

in Python 3.8 on a Windows 11, i7, 16GB RAM setup. Results are

averages from 10 runs. The code and data could be found in the

github [3].

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

5.1 Experiment Design
We have three goals. (a) Assess the effectiveness of MqKIRV (Sec-

tion 5.2). (b) Evaluate the quality of our designed algorithms for

MqIRV andMqKIRV problems (Section 5.3). (c) Evaluate their scal-

ability (Section 5.4). We analyzed four real-world and one synthetic

dataset, with comprehensive details provided in Table 6.

Dataset Name 𝑚 𝑛 Description
NSW Senate

Election data

533 1,520k Candidates from five parties.

San Francisco

Election data

18 193k

Board of supervisors, district

attorney, and mayoral results.

MovieLens 100k 100k User movie ratings.

Adressa News 100k 100k News articles with user ratings.

Synthetic 1,000k 1,000k Random preference rankings.

Table 6: Real world and synthetic datasets
(𝑚 denotes number of candidates and 𝑛 number of voters)

5.1.1 Baseline Algorithms. The following algorithms are imple-

mented.

1. Filtering-Borda [28]. We implement a baseline where candi-

dates who do not satisfy the query constraints are first filtered out.

Then, considering the remaining candidates, the preferences of the

voters are aggregated using the ”positional” scoring mechanism

Borda [28] that assigns a score to each candidate corresponding

to the positions in which a candidate appears within each voter’s

ballot. This baseline is implemented to evaluate two aspects: 1. Why

a ballot modification is necessary and 2. effectiveness of a different

positional aggregation mechanism and its effectiveness over IRV.

2. Plurality voting [18, 20]. The winner is the candidate who rep-

resents a plurality of voters’ first choice or, in other words, receives

more first choice votes than any other candidate. That makes plural-

ity voting among the simplest of all electoral systems. This baseline

is implemented to evaluate effectiveness of a non positional aggre-

gation mechanism and its effectiveness over IRV.

3. Blom et al. [11]. Magrino et al. [26] propose a simple lower

bound based on the DistTo of any 𝜋 of length 𝑛. Given two elimi-

nation orders, if one is the suffix of another, then, the DistTo of the

suffix could be used as the DistToLB of DistTo for the longer elim-

ination order. Blom et al. [11] propose an improved lower bound

over [26] based on the last round margin 𝑙 (𝑐′, 𝑐) between any pair

of candidates 𝑐 and 𝑐′ (to ensure 𝑐′ is eliminated before 𝑐), where

𝑙 (𝑐′, 𝑐) is half of the difference in the tallies of 𝑐′ and 𝑐 (first choice
votes). This idea is generalized to generate lower bound of margin

to ensure an elimination order ending in 𝜋 , which is max{𝑙 (𝑐′, 𝑐)},
where 𝑐′ ∈ 𝐶 − 𝜋 , 𝑐 ∈ 𝜋 .

4. Random.We implement an algorithm that runs iteratively. In

the first iteration, it randomly selects a ballot and modifies it. In

the next iteration, it doubles the number of selected ballots to be

modified (and selects those ballots randomly) and repeats the pro-

cess until the query constraints are satisfied.

5. IP for DistToAdd.We implement an integer programming based

solution for the DistToAdd problem.

These algorithms are compared against our proposed DistToLB

andMqIRVUB solutions inside AlgExact. We also compare Al-

gApprx against these solutions and the implemented IP forMqIRV.
Finally, we compare our designed solution DistToAddAlg with its

corresponding IP implementation.

7 8 9 10
candidates

0.0

0.2

0.4

0.6

0.8

1.0

An
ti

-P
lu

ra
lit

y
In

de
x

IRV
Plurality
Filtering-Borda

Figure 1: Anti-plurality index using NSW election dataset

5.1.2 Measures. To evaluate anti-plurality, we measure the anti-

plurality index that is proposed in a relatedwork [14]. Anti-plurality

index of a preference aggregation method is computed by looking

at each winner candidate 𝑖 that the method produces and then

calculating the percentage of voters who prefer 𝑖 the least (i.e.,

it is the last choice on their ballots). The average anti-plurality

index is then calculated by taking the average over multiple queries.

To evaluate the quality of our designed algorithms, we compare

approximation factors of margins produced by different algorithms

(margin produced by the proposed algorithm/ exact margin), as

well as compare the exact margin values. Finally, we compare the

effectiveness of the proposed algorithms based on the number of

expensive DistTo calls they make (smaller is better). To evaluate

scalability, we evaluate the pruning effectiveness of the algorithms

and the overall running time.

5.1.3 Query and Parameters. Query constraints are generated ran-

domly but by using party affiliation for NSW datasets, race of the

candidates from the San Francisco Election dataset, andmovie genre,

and news type of the last two datasets, respectively. For evaluating

MqIRV, we vary the size of the ballot (ℓ), number of users (𝑚), and

the number of candidates (𝑛). We consider various combinations

over these parameters to cover a wide range of recommendation

settings. The default values are 𝑛 = 10, ℓ = 4 and𝑚 = 1000.

5.2 Goal 1: Analyzing Anti-plurality
For these experiments, NSW dataset is used. For each query, the set

𝑊 is selected arbitrarily based on the 5 different party affiliation

of the candidates – Labor Party or LAB, Christian Democratic

Party or CDP, National Party or NLT, Liberal Party or LIB, The

Greens or GRN.We compare average anti-plurality index ofMqIRV
margin computation based on plurality voting [18, 20] and margin

computation based on Filtering-Borda in Figure 1 after running

133 queries. These results clearly indicate that MqKIRV results in

significantly anti-plurality compared to the other baselines.

5.2.1 A case study. We present a case study to demonstrate efficacy

of MqIRV to overcome anti-plurality. A smaller subset of NSW

election data is used that contains 12 candidates and 33, 553 voters.

A query is generated to select candidates that are either LIB or

LAB. This makes𝑊 = {2, 5, 8, 10} (these numbers are the unique

ids of the candidates). MqIRV selects candidate 8 as the winner,

while, Plurality voting and Filtering-Borda both select candidate

5. Upon further analysis, it appears that a total of 9884 voters like

candidate 5 as their first choice, while a total of 5411 voters dislike

candidate 5 (these voters place candidate 5 as their last choice on

their ballots). For candidate 8, these two numbers are 9483 and 1863,

respectively. In fact, about 25% of the voters put candidate 5 as one

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

of their 3 least preferred candidates compared to only 2% voters that

do so for candidate 8. This case study anecdotally demonstrates the

efficacy of MqIRV to overcome anti-plurality. This case study also

demonstrates why filtering based approach could skew the results,

which MqIRV avoids by looking at the entire ballot and the order

of all candidates.

5.3 Goal 2: Analyzing Quality
Approximation factor. In Table 7, we present the approximation

factors of theMqIRV problems solved using different algorithms.

The results are shown for 4 real datasets. Two of the exact solutions

are compared against the IP formulation of MqIRV and exhibit

approximation ratio of 1, as expected. AlgApprx has an approxi-

mation ratio between 1.91 and 3.15. On the other hand, Random
has an approximation ratio between 3.61 and 4.21. As analyzed

analytically, DistToAddAlg is an exact solution of DistToAdd

and has an approximation ratio of 1.

Dataset AlgExact DistToAdd AlgApprx Random
NSW dataset 1 1 1.97 3.41

San Francisco Election 1 1 1.98 3.96

MovieLens 1 1 1.99 3.42

Adressa News 1 1 3.15 4.21

Table 7: Approximation factor of the algorithms

Margin. Figure 2 shows the box plot of difference in margin for

AlgApprx and AlgExact varying 𝑛 for all 4 real datasets over 10

different queries. These results corroborate that AlgApprx is an

effective solution across all 4 datasets.

We also analyze the margin difference between AlgApprx and

Random using one synthetic dataset and 3 real datasets varying

𝑛 up to 1 million. For each run, we keep the number of ballots

𝑚 = 𝑛. Figure 5 shows AlgApprx always returns smaller margin

than Random. Using MovieLens data, Random margin is about 20

times larger than AlgApprx.

Number of DistTo IP calls. Finally, we show that AlgExact re-

quires significantly less number of IP calls compared to Blom (Fig-

ure 6). On Adressa News dataset on 𝑛 = 10, AlgExact invokes

about 17 times less number of IP calls than what Blom does. These

results demonstrate the effectiveness of our proposed DistToLB

and MqIRVUB solutions, compared to the adapted version of [11].

5.4 Goal 3: Analyzing Scalability
Running time. In these experiments (Figure 3), we compare run-

ning time in seconds for AlgExact, AlgApprx, and Blom on 4 real

world datasets by varying 𝑛, while keeping ℓ and𝑚 fixed. The ex-

act algorithms show that the running time increases exponentially

with increasing 𝑛.AlgApprx is almost 24333 times faster than Blom

for 𝑛 = 12 using MovieLens dataset. While AlgExact is 7.6 times

faster than Blom for 𝑛 = 12 using MovieLens dataset.

Figure 7 presents effect of varying ℓ and 𝑚 on running time

of AlgExact, AlgApprx, and Blom on 2 real world datasets. As

expected, running time AlgExact does not significantly vary with

increasing𝑚 and ℓ , as it is mostly driven by exponential 2
𝑛
cost of

branch & bound tree exploration.

Running time in very large scale data. For these experiments,

we compare running time of our efficient solution AlgApprx and

compare that with Random. Figure 8 shows that the running time of

AlgApprx is significantly smaller than Random. Using the Adressa

News dataset with 𝑛 = 100𝑘 ,𝑚 = 100𝑘 and 𝑙 = 4, the runtime for

Random is about 100 times higher than AlgApprx.

Running time of DistToAddAlg. Figure 4 compares the running

time between our exact solution DistToAddAlg for DistToAdd

with IP based implementation (DistToIPADD). DistToIPAdd run-

time increases exponentially with 𝑛 as expected, whereas, Dist-

ToAddAlg runs in 𝑂 (𝑛2) time. For MovieLens dataset with 𝑛 = 10

DistToAddAlg is 53 times faster than DistToIPAdd.

5.5 Summary of Results
Our first observation is that,MqKIRV significantly promotes lower

anti-plurality, whereas, the other baselines do not. The case study

demonstrates that ballot modification selects winner with lower

anti-plurality index than plurality voting and a filtering based ap-

proach (Filtering-Borda) that could be myopic at times. Our

second major observation is that our designed AlgExact enabled

by effective lower bound DistToLB and upper boundMqIRVUB
algorithm is highly effective as well as computationally efficient

compared to their counterparts Blom. Third, AlgApprx exhibits

empirical approximation factor around 2 (for 3 of the datasets) and

runs significantly faster than the exact solutions (order of magni-

tude faster) and the Random baseline. Finally, consistent with our

theoretical analysis, DistToAddAlg returns an exact solution for

DistToAdd, runs in polynomial time, and is significantly faster

(about 53 times for some datasets) than the IP based solution.

6 PRIORWORK
We present related work covering three areas: (a) preference ag-

gregation methods, (b) how to minimally update preferences so

that the produced outputs satisfy additional criteria, and (c) multi-

stage preference aggregation methods and their margin of victory

computation.

Due to space constraints, the details are given in Appendix A.10.

We remark that it is evident from this prior work that we are the

first to study an IRV based multi-stage preference aggregation

procedures [31]. Also, our margin finding problem MqKIRV is

different from previously known MoV problems, and our hardness

results and algorithmic solutions to this problem extend the state

of the art in this area.

7 CONCLUSION
We study the suitability of Instant Run-off Voting (IRV) as a prefer-

ence aggregation method to select 𝑘 different winners to promote

group fairness and priority. We formalize an optimization problem

that aims at finding the margin, i.e., the smallest number of modifi-

cations of original users’ preferences (ballots) so that the selected 𝑘

winners satisfy all these query constraints. We present principled

models and several non-trivial algorithmic and theoretical results.

Our experimental analyses demonstrate suitability of IRV as a pref-

erence aggregation method over plurality voting and a filtering

based approach, as well as corroborate our theoretical analysis.

This work opens up many interesting directions – as an ongoing

work, we are investigating how to design approximation algorithms

with theoretical guarantees for MqIRV. We are also studying how

our proposed solution AlgExact could be adapted to compute the

margin for single transferable voting (STV) schemes.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

4 5 6 7 8 9 10
candidates (n)

1k

2k

3k

4k

M
ar

gi
n

di
ff

er
en

ce

(a) NSW Election

4 5 6 7 8 9 10
candidates (n)

0

10

20

M
ar

gi
n

di
ff

er
en

ce

(b) San Francisco Election

4 5 6 7 8 9 101112
candidates (n)

0

20

40

M
ar

gi
n

di
ff

er
en

ce

(c) MovieLens

4 5 6 7 8 9 10
candidates (n)

0.2k

0.6k

1.0k

M
ar

gi
n

di
ff

er
en

ce

(d) Adressa News

Figure 2: Margin difference between AlgApprx and AlgExact varying 𝑛

4 6 8 10
candidates (n)

0

50

100

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(a) NSW Election

4 6 8 10
candidates (n)

0

20

40

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(b) San Francisco Election

4 6 8 10 12
candidates (n)

0

50

100

150

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(c) MovieLens

4 6 8 10
candidates (n)

0

20

40

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(d) Adressa News

Figure 3: Runtime for AlgApprx, AlgExact, and Blom varying 𝑛

4 6 8 10 12
candidates (n)

0

200

400

600

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(a) NSW Election

4 6 8
candidates (n)

0

20

40

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(b) San Francisco Election

4 6 8 10 12
candidates (n)

0

200

400
Ti

m
e

(s
)

DistToAddAlg
DistToIPAdd

(c) MovieLens

4 6 8 10
candidates (n)

0

100

200

300

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(d) Adressa News

Figure 4: Runtime for DistToAddAlg and DistToIPAdd

50k 100k 500k 1000k
candidates

0

20

40

60

M
ar

gi
n

AlgApprx
Random

(a) Synthetic

200 500 800 1000
candidates

0

20

40

60

M
ar

gi
n

AlgApprx
Random

(b) MovieLens

5k 10k 50k 100k
candidates

5k

15k

30k

M
ar

gi
n

AlgApprx
Random

(c) Adressa News

Figure 5: Margin for AlgApprx and Random

4 5 6 7 8 9 10
candidates (n)

1k

2k

3k

4k

#
 IP

 c
al

ls

AlgExact
Blom

(a) NSW Election

4 5 6 7 8 9 10 11 12
candidates (n)

1k

2k

3k

#
 IP

 c
al

ls

AlgExact
Blom

(b) MovieLens

4 5 6 7 8 9 10
candidates (n)

0.2k

0.6k

1.0k

1.4k

#
 IP

 c
al

ls

AlgExact
Blom

(c) Adressa News

Figure 6: #IP calls for AlgApprx and AlgExact varying 𝑛

4 5 6 7
Maximum ballot size (l)

1

2

3

4

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(a) Adressa News varying 𝑙

0 10k 20k 30k
ballots (m)

0

5

10
Ti

m
e

(s
)

AlgApprx
AlgExact
Blom

(b) Adressa News varying𝑚

Figure 7: Runtime for AlgApprx, AlgExact, and Blom varying 𝑙 ,𝑚

100k 500k 1000k
candidates

0

200

400

600

Ti
m

e(
s)

AlgApprx
Random

(a) Synthetic

250 500 750 1000
candidates

0

1

2

Ti
m

e(
s)

AlgApprx
Random

(b) MovieLens

20k 60k 100k
candidates

0

100

200

Ti
m

e(
s)

AlgApprx
Random

(c) Adressa News

Figure 8: Runtime for AlgApprx & Random

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Sihem Amer-Yahia, Behrooz Omidvar-Tehrani, Senjuti Basu, and Nafiseh Shabib.

2015. Group recommendationwith temporal affinities. In International Conference
on Extending Database Technology (EDBT).

[2] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong

Yu. 2009. Group recommendation: Semantics and efficiency. Proceedings of the
VLDB Endowment 2, 1 (2009), 754–765.

[3] Anonymous. 2023. Git link. https://anonymous.4open.science/r/selection_

queries_using_irv-5AD0/README.md.

[4] Manel Ayadi, Nahla Ben Amor, Jérôme Lang, and Dominik Peters. 2019. Single

Transferable Vote: Incomplete Knowledge and Communication Issues. In 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
19). International Foundation for Autonomous Agents and Multiagent Systems,

Montreal QC, Canada, 1288–1296. https://hal.science/hal-02307486

[5] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. 2010. Group recom-

mendations with rank aggregation and collaborative filtering. In Proceedings of
the fourth ACM conference on Recommender systems. 119–126.

[6] John J. Bartholdi and James B. Orlin. 1991. Single transferable vote resists

strategic voting. Social Choice and Welfare 8, 4 (1991), 341–354. http://www.

jstor.org/stable/41105995

[7] Senjuti Basu Roy, Laks VS Lakshmanan, and Rui Liu. 2015. From group rec-

ommendations to group formation. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 1603–1616.

[8] Rachel Behar and Sara Cohen. 2022. Representative Query Results by Voting. In

Proceedings of the 2022 International Conference on Management of Data. 1741–
1754.

[9] Arnab Bhattacharyya and Palash Dey. 2021. Predicting winner and estimating

margin of victory in elections using sampling. Artificial Intelligence 296 (2021),
103476. https://doi.org/10.1016/j.artint.2021.103476

[10] Michelle Blom, Peter J. Stuckey, and Vanessa J. Teague. 2017. Towards Computing

Victory Margins in STV Elections. arXiv:1703.03511 [cs.GT]

[11] Michelle Blom, Peter J. Stuckey, Vanessa J. Teague, and Ron Tidhar. 2015. Efficient

Computation of Exact IRV Margins. arXiv:1508.04885 [cs.AI]

[12] Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong.

2018. Attentive group recommendation. In The 41st International ACM SIGIR
conference on research & development in information retrieval. 645–654.

[13] David Cary. 2011. Estimating the Margin of Victory for Instant-Runoff Voting.

In Conference on Electronic voting technology/workshop on trustworthy elections.
USENIX Association, San Francisco, CA.

[14] Abhijnan Chakraborty, Gourab K Patro, Niloy Ganguly, Krishna P. Gummadi,

and Patrick Loiseau. 2018. Equality of Voice: Towards Fair Representation in

Crowdsourced Top-K Recommendations. arXiv:1811.08690 [cs.SI]

[15] Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. 2007. When Are Elections

with Few Candidates Hard to Manipulate? J. ACM 54, 3 (Jun 2007), 14:1–14:33.

https://doi.org/10.1145/1236457.1236461

[16] Palash Dey and Y. Narahari. 2015. Estimating theMargin of Victory of an Election

using Sampling. arXiv:1505.00566 [cs.AI]

[17] Peter Emerson. 2013. The original Borda count and partial voting. Social Choice
and Welfare 40 (2013), 353–358.

[18] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. 2017.

Multiwinner voting: A new challenge for social choice theory. Trends in compu-
tational social choice 74, 2017 (2017), 27–47.

[19] David García-Soriano and Francesco Bonchi. 2021. Maxmin-fair ranking: indi-

vidual fairness under group-fairness constraints. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 436–446.

[20] Bernard Grofman, Guillermo Owen, and Scott L Feld. 1983. Thirteen theorems

in search of the truth. Theory and decision 15, 3 (1983), 261–278.

[21] Wm. H. Hare. 1871. Application of Mr. Hare’s System of Voting to the Nomi-

nation of Overseers of harvard College. Journal of Social Science: Containing
the Transactions of the American Social Science Association 3-4 (1871), 192–198.

https://books.google.com/books?id=W7QRAAAAYAAJ

[22] Steven Hill and Robert Richie. 2005. Success for instant runoff voting in San

Francisco. National Civic Review 94, 1 (2005), 65–69.

[23] Md Mouinul Islam, DongWei, Baruch Schieber, and Senjuti Basu Roy. 2022. Satis-

fying complex top-k fairness constraints by preference substitutions. Proceedings
of the VLDB Endowment 16, 2 (2022), 317–329.

[24] Alborz Jelvani and Amelie Marian. 2022. Identifying Possible Winners in Ranked

Choice Voting Elections with Outstanding Ballots. Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing 10, 1 (Oct. 2022), 114–123.

https://doi.org/10.1609/hcomp.v10i1.21992

[25] Jae Kyeong Kim, Hyea Kyeong Kim, Hee Young Oh, and Young U Ryu. 2010. A

group recommendation system for online communities. International journal of
information management 30, 3 (2010), 212–219.

[26] Thomas Magrino, Ronald Rivest, Emily Shen, and David Wagner. 2011. Comput-

ing the margin of victory in IRV elections. In 2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE 11). USENIX Associ-

ation, San Francisco, CA, 4–4. https://www.usenix.org/conference/evtwote-

11/computing-margin-victory-irv-elections

[27] Eamon McGinn. 2020. Rating Rankings: Effect of Instant Run-off Voting on

participation and civility. http://eamonmcginn.com.s3.amazonaws.com/papers/

IRV_in_Minneapolis.pdf

[28] Shmuel Nitzan and Ariel Rubinstein. 1981. A further characterization of Borda

ranking method. Public choice (1981), 153–158.
[29] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in

rankings and recommendations: an overview. The VLDB Journal (2022), 1–28.
[30] Abinash Pujahari and Dilip Singh Sisodia. 2020. Aggregation of preference

relations to enhance the ranking quality of collaborative filtering based group

recommender system. Expert Systems with Applications 156 (2020), 113476. https:

//doi.org/10.1016/j.eswa.2020.113476

[31] Senjuti Basu Roy. 2022. Returning Top-K: Preference Aggregation or Sortition,

or is there a Better Middle Ground? SIGMOD Blog (2022).

[32] Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, Gautam

Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible

preferences. In 2014 IEEE 30th international conference on data engineering. IEEE,
Chicago, IL, USA, 412–423.

[33] Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, Gautam

Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible

preferences. In 2014 IEEE 30th international conference on data engineering. IEEE,
412–423.

[34] A. D. Sarwate, S. Checkoway, and H. Shacham. 2012. Risk-Limiting Audits and

the Margin of Victory in Nonplurality Elections. Statistics, Politics and Policy 3,

3 (December 2012), 29–64. https://doi.org/10.1515/spp-2012-0003

[35] DongWei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy. 2022. Rank

aggregation with proportionate fairness. In Proceedings of the 2022 International
Conference on Management of Data. 262–275.

[36] Lirong Xia. 2012. Computing the Margin of Victory for Various Voting Rules. In

Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12) (Valencia,
Spain). Association for Computing Machinery, New York, NY, USA, 982–999.

https://doi.org/10.1145/2229012.2229086

[37] Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2021. Fairness in ranking: A

survey. arXiv preprint arXiv:2103.14000 (2021).

9

https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://hal.science/hal-02307486
http://www.jstor.org/stable/41105995
http://www.jstor.org/stable/41105995
https://doi.org/10.1016/j.artint.2021.103476
https://arxiv.org/abs/1703.03511
https://arxiv.org/abs/1508.04885
https://arxiv.org/abs/1811.08690
https://doi.org/10.1145/1236457.1236461
https://arxiv.org/abs/1505.00566
https://books.google.com/books?id=W7QRAAAAYAAJ
https://doi.org/10.1609/hcomp.v10i1.21992
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1515/spp-2012-0003
https://doi.org/10.1145/2229012.2229086

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
A.1 Different Aggregation Mechanisms
Plurality voting. In a plurality voting system, each voter is allowed

to vote for one candidate, and the candidate who receives the most

votes wins, regardless of whether they secure amajority of the votes.

This system is straightforward and easy to understand but can result

in a "winner-takes-all" outcome where the elected representative

may not reflect the preference of the majority of voters. For instance,

in our current example, Zoey wins the plurality vote with just 3

ballots in her favor. However, Zoey is also the least favored choice

of 5 voters, underscoring the system’s limitation in capturing the

majority’s true preference.

Scoring based. In scoring-based voting systems, voters score each

candidate independently on a scale (e.g., 0 to 5 or 1 to 10). The scores

for each candidate are then aggregated to determine the winner.

This system allows voters to express not just a preference order

but also the intensity of their preferences. Examples of scoring-

based voting systems include Range Voting and Approval Voting.

However, when the users provide preferences in a ranked order,

there is no standard way to convert those preferences to scores.

Positional voting. Positional voting systems allow voters to rank

candidates in order of preference. The most common form of po-

sitional voting is the Borda Count, where points are assigned to

positions on the voters’ preference lists. Using the running example,

Gina emerged as the clear winner of Borda Count with a total of

17 points (3 points from Emma, 1 point from Monica, 0 point from

Daniel, 2 points from John, 4 points from Amy, 3 points from Alice,

3 points from Bob, 1 points from Steve.). Gina’s consistent ranking

as a second top choices of many voters secured her victory.

A.2 IRV Properties
IRV is known to satisfy properties [14] that other preference aggre-

gation measures are unable to accommodate.

IRV promotes proportional representation for solid coali-
tions. Definition. In social choice theory, a solid coalition for a

set of candidates is defined as a set of voters who all rank every

candidate in that set higher than any candidates outside that set.

This criterion requires that if the number of such voters is at least

half of the total number of voters, then one of those candidates

from that set must win.

Consider a scenario in which two candidates with similar ide-

ologies compete over the same pool of voters, resulting in divided

votes and potentially allowing a third candidate with a different

ideology that has fewer overall votes to win. IRV fulfills this crite-

rion, whereas plurality voting [20] fails to do so. To demonstrate

this property, notice that in our running example, there exists a

solid coalition of voters who like ML (refer to Table 1 which shows

5 of the 10 users, John, Amy, Alice, Bob, and Steve rank the three

ML candidates Gina, Kim, Sara higher than any other candidate).

Clearly, if user preferences are aggregated using plurality voting,

none of the ML candidates will be returned as the winner since Zoey
has the highest number of first place votes, and will be selected as

the winner. On the contrary, IRV will select Sara as the winner, and
hence it is resistant to the ballot splitting problem.

IRV promotes anti-plurality. In social choice theory, themajority
loser criterion was proposed to evaluate single-winner elections. It

states that if a majority of voters prefer every other candidate over

a given candidate, then that candidate must not win. IRV fulfills

this criterion [14] (as there is a solid coalition for the rest of the

candidates). Indeed, the candidate Zoey is the last choice of 6 out
of the 10 users (Table 1), and thus IRV will not select it. Contrarily,

plurality voting will select Zoey as the winner. In [14] this criterion

is extended to define anti-pluralitywhich requires that no candidate
among the bottom 𝑥% of the ranked choices for the majority of the

voters should be selected. Although not guaranteed, it is empirically

shown in [14] that IRV fulfills this extended criterion anti-plurality

frequently.

IRV vs. Plurality Voting A popular voting mechanism is plurality

voting, that selects that the winner that receives the highest number

of top ranked votes. Using Table 1, note that plurality voting will

choose Laura as the winner among the candidates in DM area,

even though it is clear that between Laura and Molly, the latter is
more preferred by the users. As we will demonstrate later our IRV

based process will indeed choose Molly. Finally, it is known that

finding the margin (the number of ballots that must be substituted

in order to change the original winner [16, 23, 34, 36]) for IRV is

NP-hard [11], making IRV less susceptible to manipulation.

IRV vs. Scoring based Voting Scoring-based voting systems face

challenges in terms of the proportionality of solid coalitions, anti-

plurality, and having the complete preferences of voters in a way

that accurately reflects voter intent. In scoring-based voting sys-

tems, the proportionality of solid coalitions as a strong preference

for a particular candidate can be undermined if voters give nearly

as high scores to other candidates, thus not providing a clear ad-

vantage to the coalition’s preferred candidate. This aspect can also

impact anti-plurality; since voters might give high scores to a can-

didate who is the last choice by the majority of the voters, this can

lead to a winner who is disliked by most. In contrast, IRV upholds

all three of these properties.

IRV vs. Positional Voting Positional Voting, like the Borda Count,
focuses on selecting the most preferred candidate rather than re-

flecting the depth of support among multiple choices. This may

lead to a winner-takes-all outcome, often favoring the candidate

with the highest first-choice or second-choice support, potentially

disregarding the proportional strength of coalitions. For the same

reason, Positional Voting can select a winner who is the last choice

by the majority of voters. Let’s consider an example where voters

rank five candidates A, B, C, D, and E in order of preference. In

this election, there are 20 votes of preference order {A, D, E, C},

indicating that A is ranked first, followed by D, E, and C; 10 votes of

preference order {B, C, E, A}; and 11 votes of preference order {C, B,

D, A} are cast. Applying the Borda Count, Candidate A accumulates

60 points (20 votes * 3 points), Candidate B, C, D, E accumulates

52, 53,51 and 30 points respectively. Therefore, under the Borda

Count, Candidate A emerges as the winner with the highest total

points of 60. However, notice there is a solid coalition of B and C

formed by 21 voters (they are preferred by 21 voters, more than

half of voters, than any other candidates). IRV will select one of the

candidates of group B or C. Again, A is the last preference by the

majority of voters (21 voters), yet still wins the election, showing

an anti-plurality scenario.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.3 Why Ballot Modification?
Without loss of generality, imagine that there are 𝑛 voters that

have provided their top-3 (ℓ) preferences over𝑚 candidates, out of

which only 3 candidates satisfy priority orders (these candidates are

𝐴, 𝐵,𝐶). Voters preferences are as follows: 𝑛/4 voters have provided
the top-3 choices as 𝐴 > 𝐵 > someone other than 𝐶 . Another n/4

voters have provided the top-3 choices as 𝐵 > 𝐴 > and someone

other than 𝐶 . The remaining 𝑛/2 voters prefer other candidates

in the top-2 positions, but like 𝐶 in the third position. Any aggre-

gation mechanism based on filtering will choose 𝐶 as the winner,

but clearly 𝐴 or 𝐵 are better choices (as they are in the higher

ranked order for half of the voters). Ballot modification, on the

other hand, will select either 𝐴 or 𝐵. Section 5.2.1 contains a case

study validating this aspect using an election dataset.

A.4 Hardness Results: MqIRV is NP-Complete
Theorem A.1. MqIRVis NP-Complete, even when ℓ = 2.

Proof. (sketch). The proof is done by taking an instance of

the known NP-hard problem 3-Exact Cover problem (3XC) to an

instance of MqIRV. □

Consider an election in which 𝑚 voters need to elect 𝑘 = 1

candidate out of 𝑛 candidates. In the election, each voter casts

his/her ballot for two candidate in ranked order. The final candidate

is determined using the IRV process. For a given instance of the

election, we define the margin as the number of ballot changes

required to ensure that a specific candidate wins.

We prove that computing the margin is NP-Complete. Our proof

is inspired by the NP-Hardness proof of [6]. It is straightforward

that the problem is in NP since the outcome of an IRV election

can be computed in polynomial time. The NP-hardness is proved

by reduction from the 3-Exact Cover problem (3XC). In this prob-

lem, we are given a universal set {𝑒1, . . . , 𝑒3𝑛}, and𝑚 ≥ 𝑛 subsets

𝑆1, . . . , 𝑆𝑚 of size 3 each. We need to determine whether there are

𝑛 sets whose union is the universal set.

Suppose that we are given an instance of the 3XC problem. We

show how to define a related IRV margin problem and then prove

that the IRV has amargin𝑛 if and only if the answer to the respective

3XC problem is Yes.

The IRV problem has 2𝑚+3𝑛+2 candidates𝑏1, . . . , 𝑏𝑚 , 𝑐1, . . . , 𝑐𝑚 ,

𝑒1, . . . , 𝑒3𝑛 and 𝑢, 𝑣 . We must ensure that 𝑢 wins the election. There

are 6𝑚 + 𝑚2 + 𝑚(𝑚 + 5) + 3𝑛(2𝑚 + 10) + 2𝑚 + 11 + 2𝑚 + 13 =

2𝑚2 + 6𝑚𝑛 + 15𝑚 + 30𝑛 + 24 ballots as follows:

• For every 𝑖 ∈ [1..𝑚], let 𝑆𝑖 = {𝑒𝑥 , 𝑒𝑦, 𝑒𝑧 }. There are 6 ballots
that we call “cover ballots”. These ballots are two of each

[𝑏𝑖 , 𝑒𝑥], [𝑏𝑖 , 𝑒𝑦], and [𝑏𝑖 , 𝑒𝑧]
• For every 𝑖 ∈ [1..𝑚] there are𝑚 ballots [𝑏𝑖 , 𝑐𝑖]
• For every 𝑖 ∈ [1..𝑚] there are𝑚 + 5 ballots [𝑐𝑖 , 𝑏𝑖]
• For every 𝑖 ∈ [1..3𝑛] there are 2𝑚 + 10 ballots [𝑒𝑖 , 𝑣]
• There are 2𝑚 + 11 ballots [𝑣,𝑢]
• There are 2𝑚 + 13 ballots [𝑢, 𝑣]

Suppose that the 3XC instance has an exact cover. Let the indices

of the sets in the cover be 𝑗1 . . . , 𝑗𝑛 . We change 𝑛 ballots as follows.

For every 𝑖 ∈ [1..𝑛] change a ballot [𝑏 𝑗𝑖 , 𝑐 𝑗𝑖] to [𝑐 𝑗𝑖 , 𝑏 𝑗𝑖].
We successively eliminated all candidates who got the least num-

ber of votes, which is initially𝑚+5. There are𝑚 candidates with this

number of votes:𝑚 − 𝑛 candidates 𝑐𝑥 , for 𝑥 ∈ [1..𝑚] \ { 𝑗1 . . . , 𝑗𝑛},
and 𝑛 candidates 𝑏𝑥 , for 𝑥 ∈ { 𝑗1 . . . , 𝑗𝑛}. As a result of eliminating

the𝑚 − 𝑛 candidates 𝑐𝑥 , the number of votes of the candidates 𝑏𝑥 ,

for 𝑥 ∈ [1..𝑚] \ { 𝑗1 . . . , 𝑗𝑛} jumps to 2𝑚 + 11. As a result of elimi-

nating the 𝑛 candidates 𝑏𝑥 , the number of votes of the candidates

𝑐𝑥 , for 𝑥 ∈ { 𝑗1 . . . , 𝑗𝑛}, jumps to 2𝑚 + 5. Also, since the union of

the 𝑛 sets 𝑆𝑥 , 𝑥 ∈ { 𝑗1 . . . , 𝑗𝑛}, is the universal set, the elimination

of 𝑏𝑥 in the 6𝑛 “cover ballots” causes the number of votes of every
𝑒𝑖 to jump to 2𝑚 + 12.

Next, the 𝑛 remaining candidates 𝑐𝑥 , for 𝑥 ∈ { 𝑗1 . . . , 𝑗𝑛}, with
2𝑚 + 5 votes are eliminated. This does not change the vote of

any other candidate. Lastly, the 𝑚 − 𝑛 candidates 𝑏𝑥 , for 𝑥 ∈
[1..𝑚] \ { 𝑗1 . . . , 𝑗𝑛}, and 𝑣 each with 2𝑚 + 11 votes are eliminated.

None of the 𝑒𝑖 is eliminated at this point because all of them have

2𝑚 + 12 votes. Then, all 𝑒𝑖s will be deleted, each with 2𝑚 + 12 votes,

and, finally, 𝑢 wins with 2𝑚 + 11 + 2𝑚 + 13 = 4𝑚 + 24 votes.

We need to prove the other direction. Namely, if the margin

is 𝑛 then there is an exact cover. Suppose that the outcome of

the elections can be changed to be 𝑢 by at most 𝑛 ballot changes.

Since candidate 𝑣 has one more vote than each of the 3𝑛 candi-

dates 𝑒1, . . . , 𝑒3𝑛 , we need to increase the votes of all the candidates

𝑒1, . . . , 𝑒3𝑛 by at least 2 so that none of the 𝑒𝑖 is eliminated before 𝑣 is

eliminated. Because if any of 𝑒𝑖s is eliminated before 𝑣 is eliminated,

then the second choice of 𝑒𝑖 ’s ballot goes to 𝑣 and the votes of 𝑣

increase to 4𝑚 + 21. Then all 𝑒𝑖 and 𝑢 will be eliminated, and 𝑣 wins

the election, and 𝑢 loses. The only way to ensure that none of 𝑒𝑖s

is eliminated before 𝑣 is by eliminating some of the candidates 𝑏 𝑗 .

This can be done by ballot changes that reduce the number of votes

of some of the candidates 𝑏 𝑗 by 1 and increase the number of votes

of the respective candidates 𝑐 𝑗 . This will cause some candidates

𝑏 𝑗 to be eliminated and thus increase the votes of the resulting

elements 𝑒𝑖 in the “cover ballots” corresponding to these candidates

𝑏 𝑗 . Since we can make only 𝑛 ballot changes and since the cover

ballots of any candidate 𝑏 𝑗 change the votes of only the 3 candidates

from {𝑒1, . . . , 𝑒3𝑛} that correspond to the set 𝑆 𝑗 , the 𝑛 candidates

𝑏 𝑗 eliminated first must correspond to an exact set.

A.5 Hardness Results: DistTo is NP-hard
Theorem A.2. DistTo is NP-hard, even when ℓ = 3.

Proof. First, we prove that DistTo is NP-hard when instead

of ballot modifications we consider ballot deletions. The proof is

by reduction from the 3-Exact Cover problem (3XC) described ear-

lier. In the 3XC problem we are given a universal set {𝑣1, . . . , 𝑣3𝑛},
and 𝑚 > 𝑛 subsets 𝑆1, . . . , 𝑆𝑚 of size 3 each. We need to deter-

mine whether there are 𝑛 subsets whose union is the universal

set. Given an instance of the 3XC problem, we show how to re-

duce it to an instance of DistTo. The instance of DistToconsists

of 3𝑛 + 1 candidates 𝑣1, 𝑣2, . . . , 𝑣3𝑛+1, and the elimination order 𝜋 =

𝑣1, 𝑣2, . . . , 𝑣3𝑛+1 (𝜋 [1] = 𝑣1 is eliminated first, and 𝜋 [3𝑛+1] = 𝑣3𝑛+1
is the winner). We show that this elimination order can be achieved

with 𝑛 ballot deletions iff the 3XC instance has a positive answer.

The polynomial number of ballots in the instance varies in size

from 3 to 1 and is described below.

Ballots of size 3: There are𝑚 ballots of size 3, one per every subset

𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑚. Consider a subset 𝑆𝑖 = {𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 }. From now on, we

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

assume that the subset is “ordered”, that is, 1 ≤ 𝑥 < 𝑦 < 𝑧 ≤ 3𝑛.

For every such subset 𝑆𝑖 , the ballot (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) is added, namely 𝑣𝑥
is the top candidate in the ballot, 𝑣𝑦 is the second candidate, and 𝑣𝑧
is the bottom candidate.

Ballots of size 2: For 1 ≤ 𝑥 < 𝑦 ≤ 3𝑛, let 𝑐𝑥𝑦 be the sum of the

following 2 numbers: (1) number of ballots of size 3 in which 𝑣𝑥 is

the top candidate and 𝑣𝑦 is the second candidate and (2) the number

of ballots of size 3 in which 𝑣𝑥 is the second candidate and 𝑣𝑦 is

the bottom candidate (note that the index of the top candidate in

this case is lower than 𝑥). Let𝑚𝑎𝑥𝑐𝑥 = max
3𝑛
𝑦=𝑥+1{𝑐𝑥𝑦}. For every

𝑥 < 𝑦 ≤ 3𝑛, there are𝑚𝑎𝑥𝑐𝑥 − 𝑐𝑥𝑦 ballots of size 2 consisting of

candidate 𝑣𝑥 as the top candidate and 𝑣𝑦 as the second candidate.

There are also𝑚𝑎𝑥𝑐𝑖 ballots consisting of candidate 𝑣𝑖 as the top

candidate and candidate 𝑣3𝑛+1 as the second candidate.

The total number of size 2 ballots is bounded by 6𝑛𝑚 − 2𝑚 since

there are at most (3𝑛 − 1) ·𝑚𝑎𝑥𝑐𝑥 size 2 ballots with 𝑣𝑥 as the top

candidate for 1 ≤ 𝑖 ≤ 3𝑛, and
∑
3𝑛
𝑥=1𝑚𝑎𝑥𝑐𝑥 ≤ 2𝑚.

Ballots of size 1: For 1 ≤ 𝑥 ≤ 3𝑛, let 𝑑𝑥 be the total number

of ballots of size 3 and size 2 in which 𝑣𝑥 is the top candidate.

Let 𝑚𝑎𝑥𝑑 = max
3𝑛
𝑦=1

{𝑑𝑦}. There are 𝑚𝑎𝑥𝑑 − 𝑑𝑥 ballots of size 1

consisting only of candidate 𝑣𝑥 as the top candidate and the only

candidate. There are also𝑚𝑎𝑥𝑑 − 1 ballots consisting of only can-

didate 𝑣3𝑛+1 as the top and only candidate. The number of ballots

of size 1 is bounded by 18𝑛2𝑚 − 3𝑛𝑚 since at most 3𝑛 candidates

have single ballots, and for each of these candidates, there are at

most𝑚 + 6𝑛𝑚 − 2𝑚 ballots of size 1, since this is an upper bound

on the number of ballots of size 2 and 3 per candidate.

We prove that if there is an exact cover, then the margin is 𝑛.

Suppose that the 3XC instance has an exact cover consisting of 𝑛

sets. Each such set corresponds to a ballot of size 3. We call these

ballots the “cover ballots”. For 1 ≤ 𝑥 ≤ 3𝑛, let 𝑏 (𝑥) be the unique
cover ballot containing 𝑥 . We prove below that after deleting the 𝑛

cover ballots the IRV process will result in the elimination order

𝑣1, 𝑣2 ...𝑣3𝑛+1.
By our construction, before the deletion of the cover ballots, each

of the candidates 𝑣1, . . . , 𝑣3𝑛 is the top candidate on the𝑚𝑎𝑥𝑑 ballots

and 𝑣3𝑛+1 is the top candidate on the𝑚𝑎𝑥𝑑 − 1 ballots. Since the

candidates on every ballot are ordered, 𝑣1 must be the top candidate

in ballot 𝑏 (1) and thus after the removal of this ballot, 𝑣1 is the top

candidate in 𝑚𝑎𝑥𝑑 − 1 ballots. Also, since no candidate appears

more than once in the cover ballots, after their removal, each of the

candidates 𝑣2, . . . , 𝑣3𝑛 is the top candidate on either𝑚𝑎𝑥𝑑 − 1 or

𝑚𝑎𝑥𝑑 ballots. Recall that ties are broken arbitrarily, and thus we can

eliminate 𝑣1. As a result of the elimination of 𝑣1 the top candidate in

all ballots that included 𝑣1 (and are not of size 1) is updated. By our

construction, there are exactly𝑚𝑎𝑥𝑐1 such ballots for each of the

candidates 𝑣2, . . . , 𝑣3𝑛+1. After the elimination of 𝑣1, 𝑣2 must be the

top candidate in ballot 𝑏 (2) and therefore after the removal of this

ballot 𝑣2 is the top candidate in𝑚𝑎𝑥𝑐1 +𝑚𝑎𝑥𝑑 − 1 ballots. Again,

no candidate can be the top candidate in less than𝑚𝑎𝑥𝑐1 +𝑚𝑎𝑥𝑑 −
1 ballots and thus 𝑣2 can be eliminated. Continuing in the same

manner, after the elimination of 𝑣1, . . . , 𝑣𝑥−1, candidate 𝑣𝑥 must be

the top candidate in ballot 𝑏 (𝑥) and thus after the removal of this

ballot 𝑣𝑥 is the top candidate in

∑𝑥−1
𝑦=1 𝑚𝑎𝑥𝑐𝑦 +𝑚𝑎𝑥𝑑 −1 ballots and

can be eliminated as dictated by the required elimination order.

In the other direction, we prove that if the margin is 𝑛 then there

is an exact cover. To achieve this goal, we show that any set of

ballots whose removal results in the elimination order 𝑣1, 𝑣2 ...𝑣3𝑛+1
must include the candidates 𝑣1, 𝑣2 ...𝑣3𝑛 . We prove this by contra-

diction. Assume that this is not the case and that there exists a set

of ballots that do not include a candidate 𝑣𝑥 whose removal results

in the required elimination order. Let 𝑣𝑥 be the candidate with the

minimum index that is not included in the deleted ballots. In this

case, by our construction, when 𝑣𝑥 is about to be eliminated, it is

the top candidate of

∑𝑥−1
𝑦=1 𝑚𝑎𝑥𝑐𝑦 +𝑚𝑎𝑥𝑑 ballots, while 𝑣3𝑛+1 is the

top candidate of

∑𝑥−1
𝑦=1 𝑚𝑎𝑥𝑐𝑦 +𝑚𝑎𝑥𝑑 − 1 ballots. A contradiction.

Clearly, the only way to delete 𝑛 ballots that include all 3𝑛 candi-

dates 𝑣1, 𝑣2 ...𝑣3𝑛 is by choosing ballots of size 3 that correspond to

an exact cover.

Next, we extend this proof to the case of ballot modifications. We

use the same ballot profile as before with only one difference: candi-

date 𝑣3𝑛+1 has𝑚𝑎𝑥𝑑 −𝑛 − 1 ballots, that is, 𝑛 + 1 fewer ballots than

any other candidate (instead of having 1 ballot less than the others).

By a similar reduction, it can be shown that in this scenario, the 3XC

problem instance has an exact cover iff the optimal solution to the

DistToinstance consists of 𝑛 ballot modifications where the ballots

removed in these modifications include candidates 𝑣1, 𝑣2 ...𝑣3𝑛 and

each of the added 𝑛 ballots includes candidate 𝑣3𝑛+1 as the top and

only candidate.

□

A.6 Algorithm AlgApprx

In this section, we discuss a highly scalable Algorithm AlgAp-

prx which could be used as a subroutine inside AlgExact to calcu-

lateMqIRVUB, as well as, could serve as a standalone algorithm

to solve MqIRV.
The basic idea of AlgApprx simply leverages the fact that for

every possible winner𝑤 ∈𝑊 ,𝑤 must have more first choice votes

(tally) than the rest of the candidates (𝑒 ∈ 𝐶 \𝑤). An upper bound

of ballot modification to ensure the winning of candidate𝑤 is thus

the maximum difference in the first choice votes (tally) between𝑤

and each 𝑒 . Finally, given𝑊 ,MqIRVUB is the smallest (minimum)

over these bounds considering𝑤 ∈𝑊 .

Algorithm 3 Algorithm AlgApprx: An Improved MqIRVUB

Input: B, candidate set 𝐶 , winners𝑊 .

Output: MqIRVUBor margin

1: MqIRVUB= ∞
2: for𝑤 ∈𝑊 do
3: 𝑢𝑏 = 0,𝐶′ = 𝐶

4: 𝑖 = 1

5: while 𝑖 ≤ 𝑛 − 1 do
6: 𝑒 = argmin𝑐∈𝐶\𝑤 𝑡𝑖 (𝑐)
7: 𝐶 .remove(𝑒)

8: Distribute 𝑒’s vote following IRV rules and update tally

of the remaining candidates

9: 𝑢𝑏 = max(𝑢𝑏, [𝑡𝑖 (𝑒) − 𝑡𝑖 (𝑤)])
10: end while
11: 𝐶 = 𝐶′

12: end for
13: MqIRVUB =𝑚𝑖𝑛(MqIRVUB, 𝑢𝑏)
14: Return MqIRVUBor margin

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Algorithm 4 DistToAddAlg

Input: B,𝐶 , 𝑙 , 𝜋 = {𝑐1, . . . , 𝑐𝑛}
Output: DistToAdd

1: 𝑎𝑑𝑑𝑜𝑛𝑒 = Add(B,𝐶, 𝜋)
2: DistToAdd = Merge(B,𝐶, 𝜋, 𝑎𝑑𝑑𝑜𝑛𝑒, 𝑙)
3: Return DistToAdd

Algorithm 3 has the pseudocode, which simulates 𝑛 − 1 rounds

of IRV run-offs for each 𝑤 ∈ 𝑊 . In round 𝑖 , the candidate 𝑒 with

the smallest tally is removed from𝐶 . After that, the remaining first-

choice votes of 𝑒 are redistributed and the tally of the remaining

candidates is updated. The current upper bound 𝑢𝑏 is updated by

the difference 𝑡𝑖 [𝑒]−𝑡𝑖 [𝑤] of tally between the eliminated candidate

𝑒 and 𝑤 (indeed, if 𝑡𝑖 [𝑒] − 𝑡𝑖 [𝑤] number of extra votes could be

added to𝑤 , it will never be eliminated before 𝑒). Finally, if |𝑊 | > 1,

Algorithm 3 runs for all 𝑤 ∈ 𝑊 , and the minimum of the 𝑢𝑏’s is

returned as the output of MqIRVUB problem.

Running example. Consider that Mira is the preferred winner (𝑤

= Mira). Initially, it has 1 ballot in its tally. The candidates Zoey,
Gina, Laura (having ballot 0, 1 and 1 respectively) are eliminated in

the first three rounds. To ensure that Kimwith ballot 2 is eliminated,

1 ballot needs to be added to Mira. Similarly, to ensure that Zoey
is eliminated next, 2 ballots must be added to Mira. In the last

round, Sara will have 8 ballots in its tally and Mira will have 2

ballots. As a result, 6 more ballots are required for American Psycho
to avoid elimination. Therefore, theMqIRVUB(American Psycho)
= max(0, 0, 0, 1, 2, 6) = 6. Using the running example in figure 9,

for𝑊 ={Mira, Zoey}, MqIRVUB(Mira, Zoey) =2, which is a tighter

upper bound than ∞ and saves expensive DistTo calls.

TheoremA.3. Algorithm 3 returns a valid upper bound onMqIRV.

Proof sketch. Each round of the algorithm calculates the dif-

ference of tally between the eliminated candidate in that round and

𝑤 . Let us assume that 𝑢𝑏 is the maximum of those differences after

𝑛 − 1 rounds. Indeed, if the tally of𝑤 increases by 𝑢𝑏,𝑤 will be the

surviving candidate after 𝑛 − 1 rounds of elimination. Modifying

a single ballot amounts to adding a new ballot and removing an

existing one. This could be facilitated starting from the candidate

who is eliminated first, then repeat the process for the next elimi-

nated candidate, and so on, until 𝑢𝑏 number of ballot additions has

been accounted for. Similarly, theMqIRVUB will be the smallest

of 𝑢𝑏’s for each candidate𝑤 ∈𝑊 . □

Theorem A.4. Algorithm AlgApprxis an approximate solution
for MqIRV.

Lemma 2. The running time of Algorithm 3 is𝑂 (𝑚ℓ+min{𝑛2, 𝑛+
𝑚(log𝑛)2)}).

A.7 DistToAddAlg for DistToAdd
AlgorithmDistToAddAlg (Pseudocode in Algorithm 4) takesB,𝐶 ,ℓ

as inputs, and returns the minimum number of ballot additions to

ensure 𝜋 . The algorithm has two main procedures:Add andMerge.
Add finds the number of size 1 ballots needed to ensure 𝜋 . Merge
merges multiple size 1 ballots and produces ballots up to size 𝑛.

Algorithm 4 first calls SubroutineAddwhich returns 𝑎𝑑𝑑𝑜𝑛𝑒 . Then,

it passes 𝑎𝑑𝑑𝑜𝑛𝑒 to SubroutineMerge, which returns the output of

DistToAddAlg.

Subroutine Add (Algorithm 5) returns a two dimensional array

𝑎𝑑𝑑𝑜𝑛𝑒 . Each element 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟] represents the number of bal-

lots of size one added to candidate 𝑐’s tally at round 𝑟 . It repeats in

|𝜋 | rounds. In round 𝑟 , it computes the tally 𝑡𝑟 (𝑐) of candidates 𝑐 ∈ 𝜋 ,

as well as keeping track of the sum of ballot additions up to round

𝑟 −1 in 𝑡 ′
𝑟−1 [𝑐] =

∑
𝑥 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑥] (𝑥 ∈ 1, . . . , 𝑟 − 1). To ensure 𝑐 is

not eliminated in round 𝑟 ,𝑚𝑎𝑥 (0, 𝑡𝑟 (𝑒) + 𝑡 ′𝑟−1 (𝑒) − 𝑡𝑟 (𝑐) − 𝑡 ′
𝑟−1 (𝑐))

number of ballots of size one ballot additions is required for 𝑐 .

𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟] is updated based on that. Finally, when all the candi-

dates in 𝜋 are popped, 𝑎𝑑𝑑𝑜𝑛𝑒 is returned.

Subroutine Merge (Algorithm 6) reduces the number of ballots

by merging the ballots of size 1 into ballots of size at most 𝑛. The

intuition behind this subroutine is as follows. A ballot of signature

(𝑐𝑥1) corresponding to 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐𝑥1] [𝑟𝑦1] can be merged with a bal-

lot (𝑐𝑥2) corresponding to 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐𝑥2] [𝑟𝑦2] into a new ballot of sig-

nature (𝑐𝑥1 , 𝑐𝑥2) if 𝜋−1 [𝑐𝑥1] < 𝜋−1 [𝑐𝑥2] and 𝜋−1 [𝑐𝑥1] ≤ 𝑟𝑦2 . Since,

first (𝑐𝑥1 , 𝑐𝑥2) will contribute to 𝑐𝑥1 in round 𝑟𝑦1 , and then after 𝑐𝑥1
is eliminated, this ballot will contribute to 𝑐𝑥2 at round 𝑟𝑦2 . After the

merge, we can reduce𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐𝑥1] [𝑟𝑦1] by one, keeping the value of
𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐𝑥1] [𝑟𝑦1] the same. We can keep merging ballots this way

as long as it is feasible. The size of a merged ballot (𝑐𝑥1 , 𝑐𝑥2 , . . . 𝑐𝑥𝑛)
is at most 𝑛 since 𝜋−1 [𝑥1] < 𝜋−1 [𝑥2] < · · · < 𝜋−1 [𝑥𝑛].

SubroutineMerge runs in 𝑛 rounds. We maintain two variable

𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 and𝑚𝑒𝑟𝑔𝑒𝑇𝑜 , initially they are 0 (line 1). In each round

𝑟 , the sum of the 𝑎𝑑𝑑𝑜𝑛𝑒 entries in the row corresponding to the

candidate 𝜋 [𝑟] is added to𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚, and𝑚𝑒𝑟𝑔𝑒𝑇𝑜 is set to the

sum of the column 𝑟 + 1 (line 2-4). If we merge the ballots from

𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 with the ballots counted in𝑚𝑒𝑟𝑔𝑒𝑇𝑜 then the resulting

ballot will always satisfy the conditions specified above. As we

are merging in 𝑛 rounds, the merged ballot length will never be

more than 𝑛. After merging, we reduce𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 by𝑚𝑒𝑟𝑔𝑒𝑇𝑜 ,

making sure𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 is not negative (line 5). Finally, we return

𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚.

Running example.Consider an elimination order 𝜋 = {Molly,Mira,
Gina, Kim, Laura, Zoey, Sara}. To ensure that Laura is not eliminated

before Kim in round 4, we need to add 1 ballot of signature (Laura).
Similarly, to make sure Zoey is the winner, 4 ballots of signature

(Zoey) have to be added at round 6. Total ballots of size one equals

4 + 1 = 5. We can merge (Laura) and (Zoey) to (Laura, Zoey). When

Laura is eliminated this ballot counts toward Zoey. Hence, required
ballot additions = 4.

Lemma 3. The minimum number of ballots of size one required to
be added to ensure elimination order 𝜋 is

∑
𝑐∈𝐶

∑ |𝜋 |
𝑟=1

𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟].

Proof sketch. Consider a round 𝑟 where 𝑒 is the eliminated

candidate and 𝑐 is a standing candidate. To ensure 𝑐 is not eliminated

in round 𝑐 , it must satisfy: 𝑡𝑟 (𝑒) + 𝑡 ′
𝑟−1 (𝑒) ≤ 𝑡𝑟 (𝑐) − 𝑡 ′

𝑟−1 (𝑐). For a
candidate 𝑐 and round 𝑟 , 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟] is the number of ballots of

size one that are required to ensure that 𝑐 is not eliminated before 𝑒 .

Hence,

∑
𝑐∈𝐶

∑ |𝜋 |
𝑟=1

𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟] is the minimum number of ballots

of size one required to ensure 𝜋 . □

Theorem A.5. DistToAddAlg returns an exact solution.

Proof sketch. Using Lemma 3, 𝑎𝑑𝑑𝑜𝑛𝑒 (returned by Subrou-

tine Add) represents all the ballots of size one required to be added

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

KDD’24, August 25–29, 2024, Barcelona, Spain Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Algorithm 5 Subroutine: Add

Input: B, 𝐶 , 𝜋

Output: 𝑎𝑑𝑑𝑜𝑛𝑒

1: 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑥] = 0 , ∀ 𝑐 ∈ 𝐶, 𝑥 ∈ {1, . . . , |𝜋 |}
2: 𝑟 = 1,

3: while |𝜋 |.𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦 () do
4: 𝑡𝑟 (𝑐) = determine tally of 𝑐 at round 𝑟 , ∀𝑐 ∈ 𝜋

5: 𝑡 ′
𝑟−1 (𝑐) =

∑𝑟−1
𝑥=1 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑥],∀𝑐 ∈ 𝐶

6: 𝑒 = 𝜋.pop_front()
7: 𝑒’s first choice votes are redistributed according to IRV

8: for 𝑐 ∈ {𝜋 − 𝑒} do
9: 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐] [𝑟] =𝑚𝑎𝑥 (0, 𝑡𝑟 (𝑒)+𝑡 ′𝑟−1 (𝑒)−𝑡𝑟 (𝑐)−𝑡

′
𝑟−1 (𝑐))

10: end for
11: 𝑟 = 𝑟 + 1

12: end while
13: Return 𝑎𝑑𝑑𝑜𝑛𝑒

Algorithm 6 Subroutine: Merge

Input: B, 𝐶 , 𝜋 , 𝑎𝑑𝑑𝑜𝑛𝑒

Output:𝑚𝑎𝑟𝑔𝑖𝑛

1: 𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 = 0,𝑚𝑒𝑟𝑔𝑒𝑇𝑜 = 0

2: for 𝑟 = 1 to 𝑛 do
3: 𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 =𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 + ∑𝑟−1

𝑖=1 𝑎𝑑𝑑𝑜𝑛𝑒 [𝜋 [𝑟]] [𝑖]
4: 𝑚𝑒𝑟𝑔𝑒𝑇𝑜 =

∑𝑛
𝑗=𝑟+1 𝑎𝑑𝑑𝑜𝑛𝑒 [𝜋 [𝑗]] [𝑟]

5: 𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 = min(0,𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚 −𝑚𝑒𝑟𝑔𝑒𝑇𝑜)
6: end for
7: Return𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚

to ensure 𝜋 . Next, we show that Subroutine Merge merges max-

imum number of size one ballots of 𝑎𝑑𝑑𝑜𝑛𝑒 . Subroutine Merge
always produces a merged ballot such that after replacing the origi-

nal ballots with the merged ballot, the resulting elimination order of

the election does not change. In each round, the algorithm 6 merges

the maximum number of ballots possible. Repeating this process 𝑛

times produces a minimum number for𝑚𝑒𝑟𝑔𝑒𝐹𝑟𝑜𝑚. Hence, Dist-

ToAddAlg returns the optimum value of DistToAdd. □

Lemma 4. The running time for DistToAddAlg is 𝑂 (𝑚ℓ + 𝑛2).
Extension to ballots of bounded size.We remark that Subrou-

tineMerge can be generalized also to the case of ballots of bounded

size ℓ < 𝑛. In this case, we need to optimize the way we merge

ballots as it may not be beneficial to merge a ballot (𝑐𝑥) correspond-
ing to 𝑎𝑑𝑑𝑜𝑛𝑒 [𝑐𝑥] [𝑟𝑦] where 𝜋 [𝑥] = 𝑛 and 𝑟𝑦 << 𝑛 to a ballot of

length << ℓ as this will block us from using this ballot in future

rounds (after round 𝑟𝑦). One way to compute the best way to merge

the ballots is by modeling this problem as a min cost flow problem

where the (negative) cost rewards the merged ballots and the flow

value is the total number of ballots of size 1.

A.8 Proofs
Theorem A.6. An optimal solution forMqKIRVcorresponds to

solving MqIRV optimally 𝑘 times.

Proof. It follows from the definition of the problem that an op-

timal solution ofMqKIRV can be expressed as a sum of 𝑘 indepen-

dentMqIRV instances. Therefore, solvingMqKIRV optimally is

equivalent to solving each of the 𝑘 MqIRV instances optimally. □

TheoremA.7. Algorithm 2 returns a valid lower bound onDistTo(𝜋).

Proof sketch. Each round of the algorithm calculates half of

the difference of the first choice votes between the eliminated can-

didate and other standing candidates based on 𝜋 . Notice that the

eliminated candidate must have fewer or equal votes in its tally

than any of the standing candidates. For any pair of candidates, the

minimum number of ballot modifications required to ensure that

the eliminated candidate has less or equal votes than the standing

candidate could be achieved by reducing 𝑙𝑏

⌈
𝑡𝑖 (𝑐)−𝑡𝑖 (𝑐′)

2

⌉
number

of votes from the eliminated one and adding that to the standing

one. This is true for all pairs of eliminated and standing candidates

in all rounds. Therefore, the maximum of all 𝑙𝑏’s serves is indeed

DistToLB(DistTo(𝜋)). □

Theorem A.8. Algorithm AlgApprxis an approximate solution
for MqIRV.

Proof sketch. According to Theorem A.3, AlgApprx is an up-

per bound ofMqIRV. Therefore, AlgApprx also solves an instance

of MqIRV approximately. □

A.9 Running Time Proofs
Lemma 5. The running time of Algorithm 2 is 𝑂 (𝑛2 +𝑚ℓ).

Proof. The running time of Algorithm 2 has two components:

(i) time to calculate the tally and (ii) time to find the maximum 𝑙𝑏

(lines 4-6). Tally can be calculated efficiently as follows: for each

candidate, maintain the number of ballots in which this candidate

is the top choice, as well as a linked list of all these ballots. In every

elimination round, pick a candidate that appears as a top candidate

in the minimum number of ballots, and eliminate this candidate

by going over its linked list and adding each ballot in the linked

list to the next surviving candidate (and update this candidate’s

number of ballots). While finding the next surviving candidate,

delete the ones that have already been eliminated from the ballot.

In this way, the number of operations performed on a single ballot

during the tally calculation is 𝑂 (ℓ). Hence, the running time to

calculate the tally is 𝑂 (𝑚ℓ). To find the maximum of 𝑙𝑏 in each of

the 𝑛 rounds (lines 4-6), the algorithm iterates over the remaining

𝑂 (𝑛) candidates. This totals to 𝑂 (𝑛2) time. Therefore, the running

time of Algorithm 2 is 𝑂 (𝑛2 +𝑚ℓ). □

Lemma 6. The running time of Algorithm 3 is𝑂 (𝑚ℓ+min{𝑛2, 𝑛+
𝑚(log𝑛)2)}).

Proof. The running time of Algorithm 3 has two components: (i)

time for calculating the tally (ii) time for finding the candidate with

minimum tally. Tally can be calculated efficiently in 𝑂 (𝑚ℓ) time

as explained in the analysis of Algorithm 2. Finding the candidate

with a minimum tally can be done using two methods depending

on the value of 𝑛 and𝑚. Method 1: Perform a linear search on all

remaining candidates to find the onewith theminimum tally in each

round. The linear search requires 𝑂 (𝑛) time per round, and thus

a total 𝑂 (𝑛2) time in 𝑛 rounds. Method 2: The candidate with the

minimum tally can be found using a min heap to store the tally of

the remaining candidates. The creation of the heap takes𝑂 (𝑛) time.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Promoting Fairness and Priority in 𝑘-Winners Selection Using IRV KDD’24, August 25–29, 2024, Barcelona, Spain

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Finding the initial candidate with the smallest tally takes constant

time. A single update of the heap takes 𝑂 (log𝑛) time. The number

of times that heap needs to be updated is bounded by the number of

ballots that need to be redistributed when a candidate is eliminated.

Since we eliminate the candidate with the minimum tally, if a round

has 𝑥 surviving candidates, then the minimum tally is no more than

𝑚/𝑥 . So, summing over all elimination rounds, we get that the

number of heap updates is upper bounded by𝑚(1/𝑛 + 1/(𝑛 − 1) +
· · · + 1/2) which is 𝑂 (𝑚 log𝑛) (Harmonic number). Therefore, the

total time to update the heap is𝑂 (𝑚(log𝑛)2). and the running time

for Algorithm 3 is 𝑂 (𝑚ℓ +min{𝑛2, 𝑛 +𝑚(log𝑛)2)}). □

Lemma 7. The running time for DistToAddAlg is 𝑂 (𝑚ℓ + 𝑛2).

Proof. (a)Add: the runtime for counting tally is𝑂 (𝑚ℓ), and for
calculating𝑎𝑑𝑑𝑜𝑛𝑒 is𝑂 (𝑛2). (b)Merge: each cell of𝑎𝑑𝑑𝑜𝑛𝑒 is visited
a constant number of times, and hence takes 𝑂 (𝑛2) time. It follows

that the total running time for DistToAddAlg is 𝑂 (𝑚ℓ + 𝑛2). □

A.10 Prior Work
We present three types of related work in this section.

Preference aggregation. Preference aggregation is closely studied

in the context of group recommendation [1, 2, 5, 7, 12, 25, 30, 32, 33],

with the goal of selecting one or top-𝑘 items that are most suitable

to the preference of all users in the group. These are also studied

while promoting fairness in ranking and recommendation [29, 37].

In[14], the authors empirically demonstrate that multi-stage voting

methods, such as STV and IRV offer benefits over positional prefer-

ence aggregation methods (e.g., plurality voting, approval voting)

in the recommendation contexts by handling hyperactive users in

a more equitable and fair way.

Changing original preferences. The second line of related work

exists in how to minimally update the original preferences of the

users so that the produced outputs satisfy additional criteria. Some

leading criteria include maximizing the satisfaction of some specific

users considering rating based preference aggregation methods in

top-𝑘 recommendation [33], changing the original winner, that

is, computing margin, or producing Margin of victory (MoV), or

satisfying fairness criteria, [23, 35], to name a few. Among these, the

most relevant to this work is the previous work on computing MoV.

There are two types of MOV: constructive and destructive. In the

constructive (destructive) version, the goal is to find the minimum

number of changes to the ballots that is needed so that a special

candidate is (not) elected. [36] has investigated the computational

complexity and (in)approximability of computing MoV for various

voting rules, including approval voting, all positional scoring rules,

etc. [9] has introduced a sampling based probabilistic algorithm for

finding the margin of victory, which can be used for many voting

rules.

Multi-stage preference aggregation methods and their mar-
gin of victory computation. Multi-stage methods, such as STV

and IRV, were introduced in the 19th century in electoral voting

systems. [6] demonstrated that determining whether the MoV in an

IRV election is at most 1 is NP-hard for both constructive and de-

structive versions. Moreover, there is no 2-approximation algorithm

for it unless 𝑃 = 𝑁𝑃 . In [15], the coalitional weighted manipula-

tion is investigated. In [24], the authors have shown a branch and

bound algorithm that calculates possible winners when only some

part of the ballots are accessible, not all. The usage of [24] is to

generate information on the result of an election and to announce

it on election night, when there are still some ballots that have not

arrived at the specified place to count the votes. MoV of IRV [27]

and STV [21] is studied in many related works [26], [11], [4], [10].

A.11 Figures

[0] , lb=0.0

[1,0] , lb=1.0

[5, 1, 0] ,
lb=1.0

[4, 2, 3, 5, 1, 0]
, lb=1.0

[4, 2, 3, 5, 1, 0] ,
lb=1.0

[6, 4, 2, 3, 5, 1, 0] ,
lb=1.0

[6,0] , lb=0

[4,6,0] ,
lb=3.0

[5] , lb=1.0

[0,5] , lb=3.0 [3,5] , lb=1.0

[0,3,5] ,
lb=3.0

[1,3,5] ,
lb=4.0

ub=2 ub=2

ub=2ub=2

ub=2 ub=2

ub=2

ub=2ub=2

...... ub=2ub=2

[], lb=0

...

Figure 9: Partially explored tree for AlgExact , the
candidates are represented with their ids, where red nodes

and their subtrees are pruned

15

	Abstract
	1 Introduction
	2 Data Model & Problem
	2.1 Data model
	2.2 Problem Definitions & Hardness

	3 Algorithms for MIRV and MkIRV
	3.1 Required Definitions
	3.2 algEx for MIRV
	3.3 IP for MIRV

	4 Efficient Algorithms
	4.1 An Improved DistToLB Algorithm

	5 Experimental Evaluations
	5.1 Experiment Design
	5.2 Goal 1: Analyzing Anti-plurality
	5.3 Goal 2: Analyzing Quality
	5.4 Goal 3: Analyzing Scalability
	5.5 Summary of Results

	6 Prior Work
	7 Conclusion
	References
	A Appendix
	A.1 Different Aggregation Mechanisms
	A.2 IRV Properties
	A.3 Why Ballot Modification?
	A.4 Hardness Results: MIRV is NP-Complete
	A.5 Hardness Results: DistTo is NP-hard
	A.6 Algorithm AlgApprx
	A.7 DistToAddAlg for DistToAdd
	A.8 Proofs
	A.9 Running Time Proofs
	A.10 Prior Work
	A.11 Figures

