21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

Promoting Fairness and Priority in k-Winners Selection Using IRV

Anonymous Author(s)

ABSTRACT

We investigate the problem of finding winner(s) given a large num-
ber of users (voters) preferences casted as ballots, one from each
of the m users, where each ballot is a ranked order of preference
of up to ¢ out of n items (candidates). Given a group protected
attribute with k different values and a priority that imposes a selec-
tion order among these groups, the goal is to satisfy the priority
order and select a winner per group that is most representative.
It is imperative that at times the original users’ preferences may
require further manipulation to meet these fairness and priority
requirement. We consider manipulation by modifications and for-
malize the margin finding problem under modification problem. We
study the suitability of Instant Run-off Voting (IRV) as a preference
aggregation method and demonstrate its advantages over positional
methods. We present a suite of technical results on the hardness
of the problem, design algorithms with theoretical guarantees and
further investigate efficiency opportunities. We present exhaustive
experimental evaluations using multiple applications and large-
scale datasets to demonstrate the effectiveness of IRV, and efficacy
of our designed solutions qualitatively and scalability-wise.

ACM Reference Format:

Anonymous Author(s). 2024. Promoting Fairness and Priority in k-Winners
Selection Using IRV. In Proceedings of 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’24). ACM, New York, NY, USA,
15 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

The task of finding the winner, i.e., the most favorable item or
candidate from a given set of m users’ (voters’) preferences over n
items (candidates), has found a wide variety of applications such as
in hiring candidate(s) for a job, selecting member(s) of a committee,
finding winning candidate(s) in a competition, in electoral voting,
or even in recommender systems. IRV (Instant Run-off Voting) is a
ranked choice voting mechanism that has been gaining popularity
lately as an electoral system in the US [11, 13, 22, 26, 34]. In this
paper, we study the applicability and computational implications
of adapting IRV to preference data to enable group fairness while
satisfying a priority order.

Preference data considering faculty hiring. Table 1 represents
ranked order of up to top-5 preferences over 7 candidates who
have applied to a faculty position. Preferences are provided by
10 committee members (voters). Each of these ranked orders of
preferences constitutes a ballot.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’24, August 25-29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Fairness and priority order. Group fairness is studied considering
the protected attribute of the candidates to ensure equal representa-
tion of each group [19, 29]. The example assumes that research area
is one such protected attribute with k = 3 different values (it is not
hard to extend this to race, gender, ethnicity, or any other protected
attribute). The value of this attribute for each of the candidates and
the priority among these values is given in Table 2.

Goal. The goal is to return one candidate per protected attribute
group that is most representative of the committee members’ prefer-
ences while obeying the priority order. In our example, we need to
first select a Data Mining (DM) candidate, then a Machine Learning
(ML) candidate, and finally an Artificial Intelligence (AI) candidate.
The IRV process. The IRV process [21, 27] is a multi-stage pro-
cess [31] that simulates n — 1 run-off rounds, where in each such
round one item is eliminated. The single item that survived the
eliminations after all rounds is the winner. More specifically, given
the original preferences of the users (voters), an initial tally of the
first choice votes of every candidate is performed in round 1. The
item that has the lowest number of first choice votes is eliminated.
Ties are broken arbitrarily. After the elimination, all the ranked
orders that include the eliminated item are updated, and the items
following this eliminated item in the ranked order are advanced
one place up. This concludes round 1. This is iterated n — 1 times,
namely, the tally is recomputed, and the item that has the lowest
number of first choice votes is eliminated, where ties are broken
arbitrarily.

Using the running example, as shown in the left of Table 4, the
IRV process eliminates Molly in round 1, Mira in round 2 (and the
respective vote gets transferred to Sara), and Gina in round 3. This
process continues further making Sara the winner after 6 rounds.
Motivation. The resurgence of IRV is motivated by a range of ex-
pected benefits, including, ensuring majority support for the winner,
reducing conflict within the electorate, reducing strategic voting,
and increasing diversity of the winners [27]. IRV is amenable to
incomplete ranked order, making the process further suitable for

Committee member | 1st choice | 2nd choice | 3rd choice | 4th choice | 5th choice
Jack Zoey Mira

Emma Laura Gina Molly Kim Zoey
Monica Zoey Molly Kim Gina Sara
Daniel Zoey Molly Sara Gina

Max Mira Molly Sara Kim Zoey
John Sara Gina Kim Zoey

Amy Gina Sara Kim Mira Zoey
Alice Sara Gina Kim Molly Zoey
Bob Kim Gina Sara Molly Zoey
Steve Kim Gina Sara

Table 1: Preferences over 7(n) candidates by 10 committee
members(m) upto 5-th position (¢)

Priority Order | Protected attribute (area) | Candidates
First DM Molly, Laura
Second ML Gina, Kim, Sara
Third Al Zoey, Mira

Table 2: Fairness and Priority Orders

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

KDD’24, August 25-29, 2024, Barcelona, Spain

applications where users are not obligated to provide full order.
Multiple recent works [14], [8] have demonstrated the superiority
of IRV over plurality voting [23], as well as positional voting mech-
anisms (such as Borda [17]) to promote proportional representation
of solid coalition and anti-plurality. Table 3 summarizes some of
the advantages of IRV compared to other selection methods. Refer
to Appendices A.1, A.2 for further details.

Anti- Proportional Suitable to
Method . . .
plurality | representation | incomplete order
Scoring based X X X
Plurality X X X
Positional X X v
IRV v v v

Table 3: Comparison of aggregation methods

IRV Margin computation. Recall that in our example the IRV
process chooses Sara as the winner of the ballots. Clearly, Sara
does not satisfy the priority order of selecting a DM candidate first.
Hence, some ballot modifications are needed. If Jack’s ballot in
Table 1 is changed by replacing Zoey with Molly, a series of 6 run-
off rounds are simulated after that, as listed in the right of Table 4,
which makes Molly the winner. If instead Laura is to be made the
winner, this will require at least 3 ballot modifications, for example,
by replacing the top choice of Alice, Monica, and John with Laura.
Intuitively too, Molly is a better choice because it is liked as the
second choice for 3 out of 7 original committee members. A similar
process must also be carried out for ML and Al independently. Our
goal is to find the minimum ballot modification that results in an
outcome that satisfies the k priority orders. We refer to this problem
as IRV margin computation [23] to satisfy k priority orders (denoted
by MgKIRY for k > 1 and MqIRY for k = 1). To the best of our
knowledge, we are the first to initiate a principled study on this.

Candidate | Tally | R1 | R2 | R3 | R4 | R5 | R6 _Ir:eﬁ; R1|R2 |R3 | R4 |R5|R6
Zoey 3 |3 |3 |3 |3 |4 2 |2 |2 |2

Sara 2 |2 |3 |4 |4 |6 |8 2 |2 |3 |3 [3 |5
Kim 2 2 2 2 3 2 2 2 2 2

Laura 1 1 1 1 1 1 1

Gina 1 1 1 1 1

Mira 1 1 1

Molly 0 T (2 |2 |3 |5 |5 |7

Table 4: IRV rounds after ballot modification (left): Sara winner
IRV rounds after ballot modification (right): Molly winner

Why ballot modification? An alternative to ballot modification
could be the following - filter out candidates that do not satisfy
the priority order (e.g., delete all ML and Al candidates for finding
the top DM candidate) and run preference aggregation over the
remaining ones. We note that such a filtering process that does not
consider the order of all candidates on the ballot could heavily skew
the results. Appendix A.3 has more details.

Technical Contributions (Sections 3 and 4). We make multiple
technical contributions in terms of analyzing the studied problems
as well as designing solutions for them. We prove that MqIRYV is
NP-hard, even when the ballot size is at most £ = 2 by reducing an
instance of the known NP-complete problem Exact Cover by 3-Sets
(X3C) to an instance of MqIRV. Inspired by [11, 26] we then design

Anon.

an algorithmic framework ALGEXAcCT that gives an exact solution
and considers all possible permutations of the candidates that end in
a candidate that satisfies the priority order. Solving ALGExXACT thus
requires repeatedly solving a subproblem DistTo, which, given
a permutation, finds the smallest number of ballot modifications
needed to ensure that the order of the candidates eliminated in n—1
run-off rounds of IRV follow this order. Unfortunately, we prove
that even the decision version of Di1stTo is NP-hard by reducing
an instance of X3C to DistTo, even when ¢ = 3.

We further study efficiency opportunities of ALGEXACT by en-
abling early terminations via branch and bound. The idea is to
avoid making expensive DistTo calls by computing a lower bound
on the margin for every possible suffix of every permutation, and
eliminating a permutation in its entirety if the lower bound on its
margin is not smaller than the current upper bound on the margin
of the MqIRYV instance. To that end, we design a lower bound com-
putation algorithm D1sTToLB and an upper bound computation
algorithm MqIRVUB that are highly effective and computationally
lightweight. We also study the DisTTo problem under different
preference manipulation models - for example, we study how to
only add the smallest number of ballots to the existing set of ballots,
such that the priority orders are satisfied. We refer to this as the
DisTToADD problem. We present an efficient exact solution for
the DisTTOADD problem. We also present an integer programming
formulation for MqIRV which is non-trivial. We finally design a
highly scalable heuristics that is shown to work well in practice.
Experimental Evaluations (Section 5). Our final contribution is
experimental - we use four real world large scale datasets motivated
by different electoral voting and recommender systems applications,
as well as one synthetically generated very large datasets. Our exper-
imental evaluations have the following findings: (a) We empirically
show that MqIRVresults in a significantly smaller anti-plurality
index [14] (i.e., it does not select candidates that are disliked by
the majority of voters) compared to alternative approaches such
as plurality voting [23] or Borda [17]. (b) We present an in-depth
case study demonstrating that ballot modification results in a lower
anti-plurality index compared to alternative approaches such as
filtering. (c) We demonstrate that ALGEXACT is optimal, yet more
scalable than existing solutions that could be adapted to our prob-
lem [26], [11]. (d) We empirically demonstrate the optimality of
Di1sTToADDALG and its scalability, as well as the quality and scal-
ability of our designed approximate solution by varying several
pertinent parameters and comparing with appropriate additional
baseline algorithms.

We present the discussion of related work in Section 6 (and in
Appendix A.10) and conclude in Section 7.

2 DATA MODEL & PROBLEM

In this section, we describe the data model, following which we
formally define the problem, and prove its hardness.

2.1 Data model

Ballot/preference. Preference of a user is elicited using a ballot b
containing a ranking up to position at most ¢, where ¢; is the i-th
preferred candidate. Using the running example, c¢; and cs are Gina,
and Zoey, respectively of user Amy’s ballot.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Promoting Fairness and Priority in k-Winners Selection Using IRV

Ballot profiles. The data contains the preferences/ballots 8 of m
users/voters over a set C of n items/candidates. Using the running
example, m = 10, n = 7. The columns in Table 1 show 8.
Preference aggregation. A preference aggregation method 7
takes B as input and selects a winner from the candidates/items.
Given fairness criteria and priority order, the goal is to make use of
B and ¥ multiple (k) times to select k different winners. Table 2
shows k = 3 such constraints for recommending top DM, ML, and
Al candidates. We use IRV as ¥, as discussed in more detail in
Section A.2.

Preference manipulation models. We consider two different
preference manipulation models, where only the first one satisfies
the number of ballot invariance property (i.e., the total number of
votes remains unchanged) and is our primary focus in this work.

(1) Manipulation by modification. Given a ballot b with ranking
up to position j (j < ¢) positions, update any number of entries
in b considering candidates from C. As an example, Jack’s ballot
(see Table 1) is changed from Zoey, Mira to Molly, Mira. Note
that changing Daniel’s ballot from Zoey, Molly, Sara, Gina to
Mira, Kim also constitutes to a single ballot modification.

(2) Manipulation by addition. Add a new ballot b with ranking
of up to ¢ candidates from C.

Handling ties in IRV Recall that according to our definition ties
during the IRV process are broken arbitrarily. It is not difficult to
see that the way these ties are broken may impact the value of the
margin. Indeed, in our example of ballot modification candidate
Molly is the winner after just a single modification only in case
the ties are broken in a very specific way. We postulate that any
consistent choice would be effective in our case, since we use the
margin to distinguish among choices and are not interested in the
actual value of the margin.

2.2 Problem Definitions & Hardness

Problem Definition 1. MqIRV (IRV Margin satisfying a single
query constraint). Given a set of ballots B eliciting m voters ranked
preferences of up to £ positions over a given set C of n candidates,
and a query constraint that specifies a subset of the candidates, find
the minimum number of ballots that need to be modified in order
to ensure that the winner of the IRV election belongs to the subset
specified in the query constraint.

Running Example. Referring to Table 2, if the query constraint
specifies selecting a DB candidate, then the minimum number of
ballot modifications required to ensure that is 1, where Zoey in
Jack’s ballot is swapped by Molly. If instead Laura is to be made the
winner, this will require 3 ballot modifications. Hence, the margin
to satisfy the query constraint is 1.

THEOREM 2.1. MqIRV is NP-Complete, even when { = 2.

Problem Definition 2. MqKIRYV (IRV Margin satisfying k query
constraints.) Given a set of ballots B eliciting m voters ranked pref-
erences of up to £ positions over a given set C of n candidates, and
a query with k constraints, each specifies a subset of the candidates,
find the minimum number of ballots that need to be modified in or-
der to ensure that the winners of k independent invocations of the
IRV election (each starting from the original ballots) belong to the
respective subsets specified k query constraints.

KDD’24, August 25-29, 2024, Barcelona, Spain

THEOREM 2.2. MQKIRYV is NP-Complete, even when £ = 2.
Proor. Follows trivially from Theorem 2.1. O

Running Example. Considering the running example again (Ta-
ble 2), k = 3 and the ballots are shown in Table 1. The winner for
DB is Molly (margin = 1), for ML it is Sara (margin = 0), for horror it
is Zoey (margin = 1). The minimum number of ballot modifications
(margin) required to ensure all three constraints is 1+0+1 = 2.

3 ALGORITHMS FOR MqIRV AND MqKIRV

In this section, we focus on designing exact solutions for MqIRV
and M@KIRV. In Section 3.2 we discuss ALGEXACT, a branch-and-
bound algorithm for MqIRYV that is capable of effective pruning
of the search space. In Section 3.3 we present a non-trivial integer
programming formulation of MqIRV. These exact algorithms apply
also exact algorithms for for MqKIRYV as follows from the following
simple theorem.

THEOREM 3.1. An optimal solution for MqKIRV corresponds to
solving MqIRYV optimally k times.

3.1 Required Definitions

We first give some definitions that will be useful when discussing
our algorithms.

Signature. Let S be the set of all possible partial or total rankings
over C (including those that do not appear in B). A signature s € S
is one such partial or total ranking. The total number of possible
signatures is S| = f(:l (;) - x!. For example, both {Molly, Sara}
and {Zoey, Molly, Sara, Gina} are valid signatures even though the
former is not present in Table 1.

Tally ¢, (c) or first choice votes. The tally or first choice votes of
a candidate ¢ at round r, denoted as t,(c), is defined as the number
of ballots in round r in which c is the first choice candidate. Using
the running example, tally of Sara, Zoey, and Kim at the beginning
of round 5 are: t5(Sara) = 4, t5(Zoey) = 3, and t5(Kim) = 3.

3.2 AigExact for MqIRV

We propose an algorithmic framework ALGEXACT that is an exact
solution to the MqIRV problem. The algorithmic solution is de-
veloped by creating a branch and bound tree, akin to two prior
works [11, 26].

For a given winner w, the solution considers all possible per-
mutations of candidates that need to be eliminated (i.e., (n — 1)!),
where each permutation represents an elimination order simulating
n —1 run-off rounds of IRV. The height of the tree is at most n. Each
node of the tree contains two values: (a) an elimination order 7,
(b) a score that represents the number of ballot modifications to
realize 7 (we formalize that as Di1sTTo below). Each edge of the
tree represents the next candidate to be eliminated. An artificial
root node connects the branches of the subtree, where each subtree
represents a w € W as the winner, where W is the constrained
winner set specified by the query. Except for the fake root node, the
relationship between any parent and child nodes in the tree is as
follows: (i) At any parent node with elimination order 7z, the child
node has elimination order 7’ = ¢ + r, for some ¢ € C — &, and
(ii) DistTo(rr) < DistTo(n’) [26]. The leaf nodes end with a full

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

KDD’24, August 25-29, 2024, Barcelona, Spain

permutation, where the last candidate is from W. The maximum
number of possible leaf nodes is = |W| X (n — 1)!. ALGEXACT solves
the sub-problem DisTTo formalized below, repeatedly, at each node
of the branch and bound tree.

Problem Definition 3. DistTo. Given an elimination order over
the candidates it (complete or partial order, || < |C|) and a database
of ballot profiles B, find the minimum number of ballots that must
be modified to achieve .

TueoreM 3.2. DistTo is NP-hard, even when £ = 3.

ALGEXACT explores the tree level by level (refer to Figure 9 in
Appendix A.11) and makes an attempt to prune part of the tree
based on the lower bound of a branch (which corresponds to an
elimination order) and an upper bound of the value the MqQIRV
instance.

Definition 3.3. Upper bound of an instance MqIRVUB. Given
an MqIRYV instance, MqIRVUB is defined as an upper bound of
the number of ballots that must be modified to satisfy the query
constraint.

Definition 3.4. Lower bound (DisTToLB) of DistTo(r). Given
an MqIRYV instance and an elimination order 7z, DisTTOLB is a
lower bound on the number of ballots that must be modified to
achieve 7, namely, D1sTToLB(7r) <DistTo(x).

Running Example. Figure 9 shows one such partially constructed
tree for our running example.The candidates are represented by
their unique ids, and any red node and the sub-tree under them
are fully pruned. Each such red node has DistTToLB(x) that is
not smaller than the MqQIRVUB of the MqIRV instance (e.g.,
DistToLB([1,3,5]) = 4 is larger than MqIRVUB = 2). Compared
to prior works [11, 26], we propose both effective as well as com-
putationally efficient MqQIRVUB and DisTToLB solutions, as we
discuss in Section 4.

3.3 IP for MqIRV

MqIRYV can be formulated as an integer linear program (IP). The
objective of the IP is to minimize the number of ballot modifications
required to ensure that the winner is the preferred candidate. Next,
we describe how to formulate this IP.

For each ballot signature s € S, let ms denote the number of
ballots with signature s in the original ballot profile. Define m =
Ylses Mg, so that m counts the total number of ballots in the original
election profile. Note that the values of ms and m are determined
by the original election profile. Let as denote the number of ballots
that are modified to s from a different ballot signature, ds denote
the number of ballots that are modified from s to another ballot
signature, and ys denote the total number of ballots with signature
s after the modifications. The following equations must be satisfied.

ms+as —ds =Ys (1)
ms >ds >0 3)
m-ms>as>0 4

Equation 1 requires that the number of ballots with a new sig-
nature s be equal to the number of ballots that originally had the

Anon.

Algorithm 1 ALGExACT

Input: Ballot profile B, set of Candidates C, set of preferred
candidates W.
Output: MqIRV
ub = o
Ib=0
. initialize priority queue with tuples (w, 0) where w € W
: while queue.notEmpty() do
7, 1b = queue.pop()
forc e C\ m do
' =c+nxw
Ib = DisTTOLB(8B,C, n’)
if Ib > ub then
prune 7’
else
queue.add(r’, Ib)
end if
if |7’| == n then
ub = min(ub, D1stTo(8B,C, 1))
16: end if
17: end for
18: end while
19: MqIRV = ub
20: Return MqIRV

R A A o

e e i v
Qs W N = O

signature s, plus the number that changed from something else to
s, minus the number that changed from s to something else. Equa-
tion 2 constrains that the number of ballots that end with signature
s cannot be more than the total number of ballots that were cast in
the election. The next two equation requires that the number of bal-
lots that are modified to have signature s must be nonnegative and
no more than the number of ballots that had a signature different
than s originally, and one cannot change more ballots of signature
s than the number of ballots that originally had the signature s.
The next constraint is that the total number of ballots changed
from any signature is equal to the total number of ballots changed

to any signature.
Z as = Z ds ©)
seS seS
The next two constraints correspond to the elimination order.
Assume C is the set of all candidates. For every pair {c;,c;} C C, de-
fine uc, ¢, as a binary variable that is 1 iff candidate c; is eliminated
before candidate c;. For completeness also define u, ¢; = 1, for ev-
ery ¢; € C. The following constraints guarantee that the variables
Uc;,c; define an order. Equation 6 constrains it to be antisymmetric
and Equation 7 constrains it to satisfy the triangle inequality.

V{Ci,Cj} ccC 6)
V{ci,cj,ery € C (7)

Ucsc; +lcje; =1
Uc,c; + Ucjep +Ucpe; 21

For a signature s of an original ballot and candidates ¢ and ¢
(which may be equal), define the binary variable v 4z to be 1 iff
when candidate ¢ is eliminated ¢ is the top candidate in the signature
that had originally been signature s. Bit v ¢ = is trivially 0 if ¢ does
not appear in s. Let signature s = ¢y, ¢, . . ., cp, Where cy is the x-th
candidate on the ballot, c1 is the top choice while c; is the bottom.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

Promoting Fairness and Priority in k-Winners Selection Using IRV

Assume from now on that ¢ = ¢;. For candidate c; in s, where j < i,
bit vs.c; ¢ ., is 0 since cj is ranked higher than ¢; is s. Assume from
now on that ¢ # cj, for j € {1,...,i — 1}. We have the following
constraint on vg ¢, .

_ . i-1,
Us c;,¢ = Uc;é ° Hx:1uc,cx (8)

This constraint ensures that all the candidates ¢y, co, ..., cj—1 are
eliminated before ¢ is eliminated, and in case c; # ¢, candidate c; is
eliminated after ¢ is eliminated. Thus signature s contributes to ¢;’s
tally when ¢ is eliminated. Note that since by definition u¢, ¢, =1,
we get that v5¢ ¢, = 1, which holds trivially. The constraint in its
current format is not linear since it is a product of bits. Later, we
show how to convert it to linear constraints.

The next constraint is for every ordered pair of candidates ¢ # C.
It guarantees that if us = 1, namely ¢ is eliminated after ¢, then in
the round in which ¢ is eliminated the number of ballots in which
¢ is the top candidate is at least the number of ballots in which ¢ is
the top candidate. The constraint is written as a product of bits and
an integer (later, we show how to convert it to linear constraints).

D Ys vs08) = s Y (Us - vsee) ©)

S S

If we want to force candidate ¢ to be the winner we need to add
the constraints ug ; = 1, for every ¢ # ¢. Alternatively, if we want to
force candidate ¢ not to be the winner we need to add the constraint
Dléx¢ Ug¢ = 1. In addition, we can change the objective function to
count only additions or only deletions or any linear combination
of additions, deletions, and modifications. For our case we set the
objective function to be: minimize } a5, which is the number of
ballots modifications.

In the last two constraints, we used (i) product of bits, and more
generally (ii) product of a nonnegative number and bits. We show
how to linearize a product of a nonnegative number and bits as long
as we have an upper bound on the number. Let uy, . .., ux be x bits,
and A be a non-negative number. Assume that m is an upper bound
on A. (As in our case, since m is the total number of signatures.)
The constraints that replace Z = A - IT}_; u; are as follows.

z<uj-m forie {1,...,x}

4 EFFICIENT ALGORITHMS

This section is dedicated to further investigation of computational
efficiency. In Section 4.1, we describe an improved algorithm for
computing D1sTToLB. In Section A.6 (in the Appendix), we discuss
an improved MqIRVUB algorithm that is computationally efficient.
Interestingly, this algorithm can be applied as an efficient heuristic
for the MqIRV problem. In Section A.7 (in the Appendix), we
describe an efficient (polynomial time) algorithm for DistTo in
case only ballot additions are allowed. Thus, demonstrating that
DistTo becomes a computationally tractable in this special case.

KDD’24, August 25-29, 2024, Barcelona, Spain

4.1 An Improved DisTToLB Algorithm

In this section, we discuss an improved lower bound calculation
algorithm for DisTTo(x). The intuition is the following: given =
and two candidates ¢ and ¢’, if ¢ needs to be eliminated before ¢’
in round i, where t;(¢) and t;(¢”) are the number of first choice

votes of ¢ and ¢’ in round i, respectively, then at least [th’(c)

number of first choice votes from ¢ needs to go to ¢’. That is, Ib, the
lower bound of round i is calculated as the half of the difference
of tally between ¢ and ¢’. Finally, the maximum over all of these
is returned as the output of the algorithm. Algorithm 2 has the
pseudocode.

Algorithm Efficient ALGExacT | Blom
Al: 1 Al: 143

Number of IP calls | ML: 1 ML: 108
DM: 2 DM: 107

Runtime (s) 0.057 0.626

Table 5: Efficiency improvement using MqIRVUB and
DistToLB for the running example

Running example. Assume, 7 = [Gina, Molly, Zoey] = [4,6,0]
where 4 is eliminated first. Initially, t1(Gina) = 6, t1(Zoey) = 3,
t1(Molly) = 1. To ensure Gina s eliminated, at least max{|—6%1-| , [%]}
= 3 ballot modifications are required. After Gina is eliminated,
t2(Zoey) = 5, to(Molly) = 4. Required modifications of the ballot to
ensure that Zoey wins = {%] = 0. Therefore, [b = max(3,0) = 3.

Using the running example, Algorithm 2 reduces a significant
number of DistTo (which is solved using IP) calls. For example,
Ib = D1sTTOLB([4, 6,0]) = 3 < DistTo([4, 6,0]). Hence ALGEXACT
prunes the branch [4, 6,0] without having to make an expensive
DistTo call (this is because [b for this branch > ub). Table 5 shows
efficiency improvement using DisTToLB and MqIRVUB inside
ALGEXACT over prior work [11].

Algorithm 2 Algorithm for D1sTToLB

Input: Set of ballots B, an elimination order &
Output: Di1stTToLB(D1stTo(x))
Ib=0
: while |z| > 1 do
¢ = m.pop_front()
forc’ e 7\ edo
5 Ib = max(Ib, [M])
end for
7. end while
8: Return [b

N Y

THEOREM 4.1. Algorithm 2 returns a valid lower bound on DisTTo(r).

Lemma 1. The running time of Algorithm 2 is O(n* + m¢).

5 EXPERIMENTAL EVALUATIONS
We conducted experiments to analyze our algorithms, implemented
in Python 3.8 on a Windows 11, i7, 16GB RAM setup. Results are

averages from 10 runs. The code and data could be found in the
github [3].

523

524

526

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

5

e

6
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

KDD’24, August 25-29, 2024, Barcelona, Spain

5.1 Experiment Design

We have three goals. (a) Assess the effectiveness of MgqKIRV (Sec-
tion 5.2). (b) Evaluate the quality of our designed algorithms for
MqIRYV and M@KIRYV problems (Section 5.3). (c) Evaluate their scal-
ability (Section 5.4). We analyzed four real-world and one synthetic
dataset, with comprehensive details provided in Table 6.

Dataset Name m n
NSW Senate
Election data

Description

533 1,520k | Candidates from five parties.

San Francisco Board of supervisors, district

Election data 18 193k attorney, and mayoral results.
MovieLens 100k 100k | User movie ratings.

Adressa News 100k 100k | News articles with user ratings.
Synthetic 1,000k | 1,000k | Random preference rankings.

Table 6: Real world and synthetic datasets
(m denotes number of candidates and n number of voters)

5.1.1 Baseline Algorithms. The following algorithms are imple-
mented.

1. Filtering-Borda [28]. We implement a baseline where candi-
dates who do not satisfy the query constraints are first filtered out.
Then, considering the remaining candidates, the preferences of the
voters are aggregated using the “positional” scoring mechanism
Borda [28] that assigns a score to each candidate corresponding
to the positions in which a candidate appears within each voter’s
ballot. This baseline is implemented to evaluate two aspects: 1. Why
a ballot modification is necessary and 2. effectiveness of a different
positional aggregation mechanism and its effectiveness over IRV.
2. Plurality voting [18, 20]. The winner is the candidate who rep-
resents a plurality of voters’ first choice or, in other words, receives
more first choice votes than any other candidate. That makes plural-
ity voting among the simplest of all electoral systems. This baseline
is implemented to evaluate effectiveness of a non positional aggre-
gation mechanism and its effectiveness over IRV.

3. Blom et al. [11]. Magrino et al. [26] propose a simple lower
bound based on the DisTTo of any 7 of length n. Given two elimi-
nation orders, if one is the suffix of another, then, the DistTo of the
suffix could be used as the Di1sTToLB of DistTo for the longer elim-
ination order. Blom et al. [11] propose an improved lower bound
over [26] based on the last round margin I(¢’, ¢) between any pair
of candidates ¢ and ¢’ (to ensure ¢’ is eliminated before c), where
I(c’, ¢) is half of the difference in the tallies of ¢’ and c (first choice
votes). This idea is generalized to generate lower bound of margin
to ensure an elimination order ending in 7, which is max{I(¢’,¢)},
wherec’ e C—m,c € 7.

4. Random. We implement an algorithm that runs iteratively. In
the first iteration, it randomly selects a ballot and modifies it. In
the next iteration, it doubles the number of selected ballots to be
modified (and selects those ballots randomly) and repeats the pro-
cess until the query constraints are satisfied.

5. IP for DistToAdd. We implement an integer programming based
solution for the Di1sSTTOADD problem.

These algorithms are compared against our proposed DisTToLB
and MqIRVUB solutions inside ALGExAcT. We also compare AL-
GAPPRX against these solutions and the implemented IP for MqIRV.
Finally, we compare our designed solution DisTTOADDALG with its
corresponding IP implementation.

Anon.

- H Plurality
£0.6) W Filtering-Borda

7 8 9 10
candidates

Figure 1: Anti-plurality index using NSW election dataset

5.1.2 Measures. To evaluate anti-plurality, we measure the anti-
plurality index that is proposed in a related work [14]. Anti-plurality
index of a preference aggregation method is computed by looking
at each winner candidate i that the method produces and then
calculating the percentage of voters who prefer i the least (i.e.,
it is the last choice on their ballots). The average anti-plurality
index is then calculated by taking the average over multiple queries.
To evaluate the quality of our designed algorithms, we compare
approximation factors of margins produced by different algorithms
(margin produced by the proposed algorithm/ exact margin), as
well as compare the exact margin values. Finally, we compare the
effectiveness of the proposed algorithms based on the number of
expensive DisTTo calls they make (smaller is better). To evaluate
scalability, we evaluate the pruning effectiveness of the algorithms
and the overall running time.

5.1.3 Query and Parameters. Query constraints are generated ran-
domly but by using party affiliation for NSW datasets, race of the
candidates from the San Francisco Election dataset, and movie genre,
and news type of the last two datasets, respectively. For evaluating
MqIRYV, we vary the size of the ballot (£), number of users (m), and
the number of candidates (n). We consider various combinations
over these parameters to cover a wide range of recommendation
settings. The default values are n = 10, £ = 4 and m = 1000.

5.2 Goal 1: Analyzing Anti-plurality

For these experiments, NSW dataset is used. For each query, the set
W is selected arbitrarily based on the 5 different party affiliation
of the candidates — Labor Party or LAB, Christian Democratic
Party or CDP, National Party or NLT, Liberal Party or LIB, The
Greens or GRN. We compare average anti-plurality index of MqIRV
margin computation based on plurality voting [18, 20] and margin
computation based on Filtering-Borda in Figure 1 after running
133 queries. These results clearly indicate that MqKIRV results in
significantly anti-plurality compared to the other baselines.

5.2.1 A case study. We present a case study to demonstrate efficacy
of MqIRYV to overcome anti-plurality. A smaller subset of NSW
election data is used that contains 12 candidates and 33, 553 voters.
A query is generated to select candidates that are either LIB or
LAB. This makes W = {2,5, 8,10} (these numbers are the unique
ids of the candidates). MqIRYV selects candidate 8 as the winner,
while, Plurality voting and Filtering-Borda both select candidate
5. Upon further analysis, it appears that a total of 9884 voters like
candidate 5 as their first choice, while a total of 5411 voters dislike
candidate 5 (these voters place candidate 5 as their last choice on
their ballots). For candidate 8, these two numbers are 9483 and 1863,
respectively. In fact, about 25% of the voters put candidate 5 as one

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

Promoting Fairness and Priority in k-Winners Selection Using IRV

of their 3 least preferred candidates compared to only 2% voters that
do so for candidate 8. This case study anecdotally demonstrates the
efficacy of MQIRV to overcome anti-plurality. This case study also
demonstrates why filtering based approach could skew the results,
which MqIRYV avoids by looking at the entire ballot and the order
of all candidates.

5.3 Goal 2: Analyzing Quality

Approximation factor. In Table 7, we present the approximation
factors of the MqIRV problems solved using different algorithms.
The results are shown for 4 real datasets. Two of the exact solutions
are compared against the IP formulation of MQIRV and exhibit
approximation ratio of 1, as expected. ALGAPPRX has an approxi-
mation ratio between 1.91 and 3.15. On the other hand, Random
has an approximation ratio between 3.61 and 4.21. As analyzed
analytically, DiIsTTOADDALG is an exact solution of DisTTOADD
and has an approximation ratio of 1.

Dataset ALGExACT | DisTTOADD | ALGAPPRX | Random
NSW dataset 1 1 1.97 3.41
San Francisco Election | 1 1 1.98 3.96
MovieLens 1 1 1.99 3.42
Adressa News 1 1 3.15 4.21

Table 7: Approximation factor of the algorithms

Margin. Figure 2 shows the box plot of difference in margin for
ALGAPPRX and ALGEXACT varying n for all 4 real datasets over 10
different queries. These results corroborate that ALGAPPRX is an
effective solution across all 4 datasets.

We also analyze the margin difference between ALGAPPRX and
Random using one synthetic dataset and 3 real datasets varying
n up to 1 million. For each run, we keep the number of ballots
m = n. Figure 5 shows ALGAPPRX always returns smaller margin
than Random. Using MovieLens data, Random margin is about 20
times larger than ALGAPPRX.

Number of DistTo IP calls. Finally, we show that ALGEXACT re-
quires significantly less number of IP calls compared to Blom (Fig-
ure 6). On Adressa News dataset on n = 10, ALGEXACT invokes
about 17 times less number of IP calls than what Blom does. These
results demonstrate the effectiveness of our proposed DisTToLB
and MqIRVUB solutions, compared to the adapted version of [11].

5.4 Goal 3: Analyzing Scalability

Running time. In these experiments (Figure 3), we compare run-
ning time in seconds for ALGEXAcT, ALGAPPRX, and Blom on 4 real
world datasets by varying n, while keeping ¢ and m fixed. The ex-
act algorithms show that the running time increases exponentially
with increasing n. ALGAPPRX is almost 24333 times faster than Blom
for n = 12 using MovieLens dataset. While ALGEXACT is 7.6 times
faster than Blom for n = 12 using MovieLens dataset.

Figure 7 presents effect of varying ¢ and m on running time
of ALGExAcT, ALGAPPRX, and Blom on 2 real world datasets. As
expected, running time ALGEXACT does not significantly vary with
increasing m and ¢, as it is mostly driven by exponential 2" cost of
branch & bound tree exploration.

Running time in very large scale data. For these experiments,
we compare running time of our efficient solution ALGAPPRX and
compare that with Random. Figure 8 shows that the running time of

KDD’24, August 25-29, 2024, Barcelona, Spain

ALGAPPRKX is significantly smaller than Random. Using the Adressa
News dataset with n = 100k, m = 100k and [= 4, the runtime for
Random is about 100 times higher than ALGAPPRX.

Running time of DisTTOADDALG. Figure 4 compares the running
time between our exact solution DisTTOADDALG for D1sTTOADD
with IP based implementation (DistToIPADD). DistToIPAdd run-
time increases exponentially with n as expected, whereas, D1sT-
ToADDALG runs in O(n?) time. For MovieLens dataset with n = 10
D1sTTOADDALG is 53 times faster than DistToIPAdd.

5.5 Summary of Results

Our first observation is that, MqKIRYV significantly promotes lower
anti-plurality, whereas, the other baselines do not. The case study
demonstrates that ballot modification selects winner with lower
anti-plurality index than plurality voting and a filtering based ap-
proach (Filtering-Borda) that could be myopic at times. Our
second major observation is that our designed ALGEXACT enabled
by effective lower bound DisTToLB and upper bound MqIRVUB
algorithm is highly effective as well as computationally efficient
compared to their counterparts Blom. Third, ALGAPPRX exhibits
empirical approximation factor around 2 (for 3 of the datasets) and
runs significantly faster than the exact solutions (order of magni-
tude faster) and the Random baseline. Finally, consistent with our
theoretical analysis, DIsTTOADDALG returns an exact solution for
DisTTOADD, runs in polynomial time, and is significantly faster
(about 53 times for some datasets) than the IP based solution.

6 PRIOR WORK

We present related work covering three areas: (a) preference ag-
gregation methods, (b) how to minimally update preferences so
that the produced outputs satisfy additional criteria, and (c) multi-
stage preference aggregation methods and their margin of victory
computation.

Due to space constraints, the details are given in Appendix A.10.
We remark that it is evident from this prior work that we are the
first to study an IRV based multi-stage preference aggregation
procedures [31]. Also, our margin finding problem MqKIRYV is
different from previously known MoV problems, and our hardness
results and algorithmic solutions to this problem extend the state
of the art in this area.

7 CONCLUSION

We study the suitability of Instant Run-off Voting (IRV) as a prefer-
ence aggregation method to select k different winners to promote
group fairness and priority. We formalize an optimization problem
that aims at finding the margin, i.e., the smallest number of modifi-
cations of original users’ preferences (ballots) so that the selected k
winners satisfy all these query constraints. We present principled
models and several non-trivial algorithmic and theoretical results.
Our experimental analyses demonstrate suitability of IRV as a pref-
erence aggregation method over plurality voting and a filtering
based approach, as well as corroborate our theoretical analysis.

This work opens up many interesting directions - as an ongoing
work, we are investigating how to design approximation algorithms
with theoretical guarantees for MqIRV. We are also studying how
our proposed solution ALGEXACT could be adapted to compute the
margin for single transferable voting (STV) schemes.

760
761
762
763

764

766
767
768
769

770

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

KDD’24, August 25-29, 2024, Barcelona, Spain

94k
<
23k
]
E
3 2k
c
o1k
T |uma
= .
4 5 6 7 8 9 10
candidates (n)
(a) NSW Election
100
—— AlgApprx
- —— AlgExact
‘; 50, — Blom
£
=
o
6 8 10
candidates (n)
(a) NSW Election
600 DistToAddAIg
- —— DistTolPAdd
0 400
£
=200
0o

4 6 8 10 12
candidates (n)

(a) NSW Election

I AlgApprx
mmm Random 40

° 50k 100k 500k 1000k 0

candidates

(a) Synthetic

EEE AlgApprx
mm Random

(b) MovieLens

N
o

Margin difference

L

4 5 6 7 8 9 10
candidates (n)

(b) San Francisco Election

—— AlgApprx

40| — aigexact
ﬁ —— Blom
()
£20
g

0o
4 6 8 10

candidates (n)

(b) San Francisco Election

N
[

Margin difference
N
=]

o;imﬁ ks

456 7 8 9101112
candidates (n)

(c) MovieLens

Figure 2: Margin difference between ALGAPPRX and ALGEXACT varying n

150
—— AlgApprx
Eloo —— AlgExact
P —— Blom
£
-

4 6 8 10 12
candidates (n)

(c) MovieLens

Figure 3: Runtime for ALGAPPRX, ALGEXACT, and Blom varying n

—— DistToAddAlg
—— DistTolPAdd

a4 6 8
candidates (n)

(b) San Francisco Election

400| __ pistToAddAlg
—— DistTolPAdd

Time (s)
N
o
=]

4 6 8 10 12
candidates (n)

(c) MovieLens

Figure 4: Runtime for D1sTToOADDALG and DisTToIPADD

EEN AlgApprx
mmm Random

200 500 800 1000 5k 10k 50k 100k
candidates

candidates

(c) Adressa News

Figure 5: Margin for ALcApPRx and Random

1.4k
4| mmm AlgExact 3/ ™ AlgExact BN AlgExact
LM m Blom L] I Blom 1.0« =N Blom
[[P K]
a 2 2 0.6k
#* * 1k #*
0.2k
2 256 7 8 9101112 2

5 6 8 9
candidates (n)

(a) NSW Election

candidates (n)

(b) MovieLens

5 6 7 8 9 I
candidates (n)

(c) Adressa News

Figure 6: #IP calls for ALGAPPRX and ALGEXACT varying n

4
—— AlgApprx
33 —— AlgExact
=~ —— Blom
]
£?
=
1
4 5 6 7

Maximum ballot size (l)

(a) Adressa News varying [

Figure 7: Runtime for ALGAPPRX, ALGEXACT, and Blom varying [, m

Anon.

g 1.0k : '
g
g 0.6k
S
£
20.2k .
s = _
4 5 6 7 8 9 10
candidates (n)
(d) Adressa News
40
—— AlgApprx
- —— AlgExact
b —— Blom
020
£
=
0
4 6 8 10
candidates (n)
(d) Adressa News
300
—— DistToAddAlg
2000 — DistTolPAdd
A
= 100
1]
4 6 8 10
candidates (n)
(d) Adressa News
10 — AlgApprx
- —— AlgExact
b —— Blom
o
£ 5
0

V] 10k 20k 30k
ballots (m)

(b) Adressa News varying m

2
600 —— AlgApprx 200
—— AlgApprx - Random — AlgApprx

+400] — Random % n —— Random
‘g gt *g'loo
i 200 Fl—_— - [

o o 0

100k 500k 1000k 250 500 750 1000 20k 60k 100k

candidates # candidates # candidates
(a) Synthetic (b) MovieLens (c) Adressa News

Figure 8: Runtime for ALGAPPRX & Random

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Promoting Fairness and Priority in k-Winners Selection Using IRV

REFERENCES

(1]

(2]

(3]
(4]

[19]

Sihem Amer-Yahia, Behrooz Omidvar-Tehrani, Senjuti Basu, and Nafiseh Shabib.
2015. Group recommendation with temporal affinities. In International Conference
on Extending Database Technology (EDBT).

Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong
Yu. 2009. Group recommendation: Semantics and efficiency. Proceedings of the
VLDB Endowment 2, 1 (2009), 754-765.

Anonymous. 2023. Git link. https://anonymous.4open.science/r/selection_
queries_using_irv-5AD0/README.md.

Manel Ayadi, Nahla Ben Amor, Jérome Lang, and Dominik Peters. 2019. Single
Transferable Vote: Incomplete Knowledge and Communication Issues. In 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
19). International Foundation for Autonomous Agents and Multiagent Systems,
Montreal QC, Canada, 1288-1296. https://hal.science/hal-02307486

Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. 2010. Group recom-
mendations with rank aggregation and collaborative filtering. In Proceedings of
the fourth ACM conference on Recommender systems. 119-126.

John J. Bartholdi and James B. Orlin. 1991. Single transferable vote resists
strategic voting. Social Choice and Welfare 8, 4 (1991), 341-354. http://www.
jstor.org/stable/41105995

Senjuti Basu Roy, Laks VS Lakshmanan, and Rui Liu. 2015. From group rec-
ommendations to group formation. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 1603-1616.

Rachel Behar and Sara Cohen. 2022. Representative Query Results by Voting. In
Proceedings of the 2022 International Conference on Management of Data. 1741—
1754.

Arnab Bhattacharyya and Palash Dey. 2021. Predicting winner and estimating
margin of victory in elections using sampling. Artificial Intelligence 296 (2021),
103476. https://doi.org/10.1016/j.artint.2021.103476

Michelle Blom, Peter J. Stuckey, and Vanessa J. Teague. 2017. Towards Computing

Victory Margins in STV Elections. arXiv:1703.03511 [cs.GT]
Michelle Blom, Peter]. Stuckey, Vanessa J. Teague, and Ron Tidhar. 2015. Efficient

Computation of Exact IRV Margins. arXiv:1508.04885 [cs.Al]

Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong.
2018. Attentive group recommendation. In The 41st International ACM SIGIR
conference on research & development in information retrieval. 645-654.

David Cary. 2011. Estimating the Margin of Victory for Instant-Runoff Voting.
In Conference on Electronic voting technology/workshop on trustworthy elections.
USENIX Association, San Francisco, CA.

Abhijnan Chakraborty, Gourab K Patro, Niloy Ganguly, Krishna P. Gummadi,
and Patrick Loiseau. 2018. Equality of Voice: Towards Fair Representation in
Crowdsourced Top-K Recommendations. arXiv:1811.08690 [cs.SI]

Vincent Conitzer, Tuomas Sandholm, and Jérome Lang. 2007. When Are Elections
with Few Candidates Hard to Manipulate? J. ACM 54, 3 (Jun 2007), 14:1-14:33.
https://doi.org/10.1145/1236457.1236461

Palash Dey and Y. Narahari. 2015. Estimating the Margin of Victory of an Election
using Sampling. arXiv:1505.00566 [cs.Al]

Peter Emerson. 2013. The original Borda count and partial voting. Social Choice
and Welfare 40 (2013), 353-358.

Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. 2017.
Multiwinner voting: A new challenge for social choice theory. Trends in compu-
tational social choice 74, 2017 (2017), 27-47.

David Garcia-Soriano and Francesco Bonchi. 2021. Maxmin-fair ranking: indi-
vidual fairness under group-fairness constraints. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 436—446.

[20]

[21]

[22]

(23]

[25]

[26]

(31]

(32]

(34]

(35]

[36]

KDD’24, August 25-29, 2024, Barcelona, Spain

Bernard Grofman, Guillermo Owen, and Scott L Feld. 1983. Thirteen theorems
in search of the truth. Theory and decision 15, 3 (1983), 261-278.

Wm. H. Hare. 1871. Application of Mr. Hare’s System of Voting to the Nomi-
nation of Overseers of harvard College. Journal of Social Science: Containing
the Transactions of the American Social Science Association 3-4 (1871), 192-198.
https://books.google.com/books?id=W7QRAAAAYAA]

Steven Hill and Robert Richie. 2005. Success for instant runoff voting in San
Francisco. National Civic Review 94, 1 (2005), 65—69.

Md Mouinul Islam, Dong Wei, Baruch Schieber, and Senjuti Basu Roy. 2022. Satis-
fying complex top-k fairness constraints by preference substitutions. Proceedings
of the VLDB Endowment 16, 2 (2022), 317-329.

Alborz Jelvani and Amelie Marian. 2022. Identifying Possible Winners in Ranked
Choice Voting Elections with Outstanding Ballots. Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing 10, 1 (Oct. 2022), 114-123.
https://doi.org/10.1609/hcomp.v10i1.21992

Jae Kyeong Kim, Hyea Kyeong Kim, Hee Young Oh, and Young U Ryu. 2010. A
group recommendation system for online communities. International journal of
information management 30, 3 (2010), 212-219.

Thomas Magrino, Ronald Rivest, Emily Shen, and David Wagner. 2011. Comput-
ing the margin of victory in IRV elections. In 2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE 11). USENIX Associ-
ation, San Francisco, CA, 4-4. https://www.usenix.org/conference/evtwote—
11/computing-margin-victory-irv-elections

Eamon McGinn. 2020. Rating Rankings: Effect of Instant Run-off Voting on
participation and civility. http://eamonmcginn.com.s3.amazonaws.com/papers/
IRV_in_Minneapolis.pdf

Shmuel Nitzan and Ariel Rubinstein. 1981. A further characterization of Borda
ranking method. Public choice (1981), 153-158.

Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in
rankings and recommendations: an overview. The VLDB Journal (2022), 1-28.
Abinash Pujahari and Dilip Singh Sisodia. 2020. Aggregation of preference
relations to enhance the ranking quality of collaborative filtering based group
recommender system. Expert Systems with Applications 156 (2020), 113476. https:
//doi.org/10.1016/j.eswa.2020.113476

Senjuti Basu Roy. 2022. Returning Top-K: Preference Aggregation or Sortition,
or is there a Better Middle Ground? SIGMOD Blog (2022).

Senjuti Basu Roy, Saravanan Thirumuruganathan, Sthem Amer-Yahia, Gautam
Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible
preferences. In 2014 IEEE 30th international conference on data engineering. IEEE,
Chicago, IL, USA, 412-423.

Senjuti Basu Roy, Saravanan Thirumuruganathan, Sthem Amer-Yahia, Gautam
Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible
preferences. In 2014 IEEE 30th international conference on data engineering. IEEE,
412-423.

A. D. Sarwate, S. Checkoway, and H. Shacham. 2012. Risk-Limiting Audits and
the Margin of Victory in Nonplurality Elections. Statistics, Politics and Policy 3,
3 (December 2012), 29-64. https://doi.org/10.1515/spp-2012-0003

Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy. 2022. Rank
aggregation with proportionate fairness. In Proceedings of the 2022 International
Conference on Management of Data. 262-275.

Lirong Xia. 2012. Computing the Margin of Victory for Various Voting Rules. In
Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12) (Valencia,
Spain). Association for Computing Machinery, New York, NY, USA, 982-999.
https://doi.org/10.1145/2229012.2229086

Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2021. Fairness in ranking: A
survey. arXiv preprint arXiv:2103.14000 (2021).

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://hal.science/hal-02307486
http://www.jstor.org/stable/41105995
http://www.jstor.org/stable/41105995
https://doi.org/10.1016/j.artint.2021.103476
https://arxiv.org/abs/1703.03511
https://arxiv.org/abs/1508.04885
https://arxiv.org/abs/1811.08690
https://doi.org/10.1145/1236457.1236461
https://arxiv.org/abs/1505.00566
https://books.google.com/books?id=W7QRAAAAYAAJ
https://doi.org/10.1609/hcomp.v10i1.21992
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1515/spp-2012-0003
https://doi.org/10.1145/2229012.2229086

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

KDD’24, August 25-29, 2024, Barcelona, Spain

A APPENDIX
A.1 Different Aggregation Mechanisms

Plurality voting. In a plurality voting system, each voter is allowed
to vote for one candidate, and the candidate who receives the most
votes wins, regardless of whether they secure a majority of the votes.
This system is straightforward and easy to understand but can result
in a "winner-takes-all" outcome where the elected representative
may not reflect the preference of the majority of voters. For instance,
in our current example, Zoey wins the plurality vote with just 3
ballots in her favor. However, Zoey is also the least favored choice
of 5 voters, underscoring the system’s limitation in capturing the
majority’s true preference.

Scoring based. In scoring-based voting systems, voters score each
candidate independently on a scale (e.g., 0 to 5 or 1 to 10). The scores
for each candidate are then aggregated to determine the winner.
This system allows voters to express not just a preference order
but also the intensity of their preferences. Examples of scoring-
based voting systems include Range Voting and Approval Voting.
However, when the users provide preferences in a ranked order,
there is no standard way to convert those preferences to scores.
Positional voting. Positional voting systems allow voters to rank
candidates in order of preference. The most common form of po-
sitional voting is the Borda Count, where points are assigned to
positions on the voters’ preference lists. Using the running example,
Gina emerged as the clear winner of Borda Count with a total of
17 points (3 points from Emma, 1 point from Monica, 0 point from
Daniel, 2 points from John, 4 points from Amy, 3 points from Alice,
3 points from Bob, 1 points from Steve.). Gina’s consistent ranking
as a second top choices of many voters secured her victory.

A.2 IRV Properties

IRV is known to satisfy properties [14] that other preference aggre-
gation measures are unable to accommodate.

IRV promotes proportional representation for solid coali-
tions. Definition. In social choice theory, a solid coalition for a
set of candidates is defined as a set of voters who all rank every
candidate in that set higher than any candidates outside that set.
This criterion requires that if the number of such voters is at least
half of the total number of voters, then one of those candidates
from that set must win.

Consider a scenario in which two candidates with similar ide-
ologies compete over the same pool of voters, resulting in divided
votes and potentially allowing a third candidate with a different
ideology that has fewer overall votes to win. IRV fulfills this crite-
rion, whereas plurality voting [20] fails to do so. To demonstrate
this property, notice that in our running example, there exists a
solid coalition of voters who like ML (refer to Table 1 which shows
5 of the 10 users, John, Amy, Alice, Bob, and Steve rank the three
ML candidates Gina, Kim, Sara higher than any other candidate).
Clearly, if user preferences are aggregated using plurality voting,
none of the ML candidates will be returned as the winner since Zoey
has the highest number of first place votes, and will be selected as
the winner. On the contrary, IRV will select Sara as the winner, and
hence it is resistant to the ballot splitting problem.

10

Anon.

IRV promotes anti-plurality. In social choice theory, the majority

loser criterion was proposed to evaluate single-winner elections. It
states that if a majority of voters prefer every other candidate over

a given candidate, then that candidate must not win. IRV fulfills
this criterion [14] (as there is a solid coalition for the rest of the
candidates). Indeed, the candidate Zoey is the last choice of 6 out
of the 10 users (Table 1), and thus IRV will not select it. Contrarily,
plurality voting will select Zoey as the winner. In [14] this criterion
is extended to define anti-plurality which requires that no candidate
among the bottom x% of the ranked choices for the majority of the
voters should be selected. Although not guaranteed, it is empirically
shown in [14] that IRV fulfills this extended criterion anti-plurality
frequently.

IRV vs. Plurality Voting A popular voting mechanism is plurality
voting, that selects that the winner that receives the highest number
of top ranked votes. Using Table 1, note that plurality voting will
choose Laura as the winner among the candidates in DM area,
even though it is clear that between Laura and Molly, the latter is
more preferred by the users. As we will demonstrate later our IRV
based process will indeed choose Molly. Finally, it is known that
finding the margin (the number of ballots that must be substituted
in order to change the original winner [16, 23, 34, 36]) for IRV is
NP-hard [11], making IRV less susceptible to manipulation.

IRV vs. Scoring based Voting Scoring-based voting systems face
challenges in terms of the proportionality of solid coalitions, anti-
plurality, and having the complete preferences of voters in a way
that accurately reflects voter intent. In scoring-based voting sys-
tems, the proportionality of solid coalitions as a strong preference
for a particular candidate can be undermined if voters give nearly
as high scores to other candidates, thus not providing a clear ad-
vantage to the coalition’s preferred candidate. This aspect can also
impact anti-plurality; since voters might give high scores to a can-
didate who is the last choice by the majority of the voters, this can
lead to a winner who is disliked by most. In contrast, IRV upholds
all three of these properties.

IRV vs. Positional Voting Positional Voting, like the Borda Count,
focuses on selecting the most preferred candidate rather than re-
flecting the depth of support among multiple choices. This may
lead to a winner-takes-all outcome, often favoring the candidate
with the highest first-choice or second-choice support, potentially
disregarding the proportional strength of coalitions. For the same
reason, Positional Voting can select a winner who is the last choice
by the majority of voters. Let’s consider an example where voters
rank five candidates A, B, C, D, and E in order of preference. In
this election, there are 20 votes of preference order {A, D, E, C},
indicating that A is ranked first, followed by D, E, and C; 10 votes of
preference order {B, C, E, A}; and 11 votes of preference order {C, B,
D, A} are cast. Applying the Borda Count, Candidate A accumulates
60 points (20 votes * 3 points), Candidate B, C, D, E accumulates
52, 53,51 and 30 points respectively. Therefore, under the Borda
Count, Candidate A emerges as the winner with the highest total
points of 60. However, notice there is a solid coalition of B and C
formed by 21 voters (they are preferred by 21 voters, more than
half of voters, than any other candidates). IRV will select one of the
candidates of group B or C. Again, A is the last preference by the
majority of voters (21 voters), yet still wins the election, showing
an anti-plurality scenario.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Promoting Fairness and Priority in k-Winners Selection Using IRV

A.3 Why Ballot Modification?

Without loss of generality, imagine that there are n voters that
have provided their top-3 (¢) preferences over m candidates, out of
which only 3 candidates satisfy priority orders (these candidates are
A, B, C). Voters preferences are as follows: n/4 voters have provided
the top-3 choices as A > B > someone other than C. Another n/4
voters have provided the top-3 choices as B > A > and someone
other than C. The remaining n/2 voters prefer other candidates
in the top-2 positions, but like C in the third position. Any aggre-
gation mechanism based on filtering will choose C as the winner,
but clearly A or B are better choices (as they are in the higher
ranked order for half of the voters). Ballot modification, on the
other hand, will select either A or B. Section 5.2.1 contains a case
study validating this aspect using an election dataset.

A.4 Hardness Results: MqIRV is NP-Complete
THEOREM A.1. MqIRVis NP-Complete, even when £ = 2.

Proor. (sketch). The proof is done by taking an instance of
the known NP-hard problem 3-Exact Cover problem (3XC) to an
instance of MqIRV. O

Consider an election in which m voters need to elect k = 1
candidate out of n candidates. In the election, each voter casts
his/her ballot for two candidate in ranked order. The final candidate
is determined using the IRV process. For a given instance of the
election, we define the margin as the number of ballot changes
required to ensure that a specific candidate wins.

We prove that computing the margin is NP-Complete. Our proof
is inspired by the NP-Hardness proof of [6]. It is straightforward
that the problem is in NP since the outcome of an IRV election
can be computed in polynomial time. The NP-hardness is proved
by reduction from the 3-Exact Cover problem (3XC). In this prob-
lem, we are given a universal set {eq, ..., e3,}, and m > n subsets
S1,...,Sm of size 3 each. We need to determine whether there are
n sets whose union is the universal set.

Suppose that we are given an instance of the 3XC problem. We
show how to define a related IRV margin problem and then prove
that the IRV has a margin n if and only if the answer to the respective
3XC problem is Yes.

The IRV problem has 2m+3n+2 candidates by, . . ,Cm,
e1,...,e3,n and u, v. We must ensure that u wins the election. There
are 6m + m? + m(m +5) + 3n(2m + 10) + 2m + 11 + 2m + 13 =
2m? + 6mn + 15m + 30n + 24 ballots as follows:

bm,c1, ...

e Foreveryi € [1..m],letS; = {ex, ey, e, }. There are 6 ballots
that we call “cover ballots”. These ballots are two of each
[bi, ex], [bi, ey], and [b;, ez]

For every i € [1..m] there are m ballots [b;, ¢;]

For every i € [1..m] there are m + 5 ballots [c;, b;]

For every i € [1..3n] there are 2m + 10 ballots [e;, v]
There are 2m + 11 ballots [v, u]

There are 2m + 13 ballots [u, v]

Suppose that the 3XC instance has an exact cover. Let the indices
of the sets in the cover be ji ..., jn. We change n ballots as follows.
For every i € [1..n] change a ballot [bj;,cj,] to [cj;, bj;].

We successively eliminated all candidates who got the least num-
ber of votes, which is initially m+5. There are m candidates with this

11

KDD’24, August 25-29, 2024, Barcelona, Spain

number of votes: m — n candidates ¢y, for x € [1.m] \ {j1 ..., jn}>
and n candidates by, for x € {ji ..., jn}. As a result of eliminating
the m — n candidates c,, the number of votes of the candidates by,
forx € [1.m] \ {j1..., jn} jumps to 2m + 11. As a result of elimi-
nating the n candidates by, the number of votes of the candidates
cx, for x € {j1...,jn}, jumps to 2m + 5. Also, since the union of
the n sets Sx, x € {j1 ..., jn}, is the universal set, the elimination
of by in the 6n “cover ballots” causes the number of votes of every
e; to jump to 2m + 12.

Next, the n remaining candidates cy, for x € {ji ..., jn}, with
2m + 5 votes are eliminated. This does not change the vote of
any other candidate. Lastly, the m — n candidates by, for x €
[1.m]\ {j1...,Jjn} and v each with 2m + 11 votes are eliminated.
None of the e; is eliminated at this point because all of them have
2m + 12 votes. Then, all e;s will be deleted, each with 2m + 12 votes,
and, finally, u wins with 2m + 11 + 2m + 13 = 4m + 24 votes.

We need to prove the other direction. Namely, if the margin
is n then there is an exact cover. Suppose that the outcome of
the elections can be changed to be u by at most n ballot changes.
Since candidate v has one more vote than each of the 3n candi-
dates e, . . ., e3,, we need to increase the votes of all the candidates
e1,...,e3n by atleast 2 so that none of the e; is eliminated before v is
eliminated. Because if any of e;s is eliminated before v is eliminated,
then the second choice of e;’s ballot goes to v and the votes of v
increase to 4m + 21. Then all e; and u will be eliminated, and v wins
the election, and u loses. The only way to ensure that none of ;s
is eliminated before v is by eliminating some of the candidates b;.
This can be done by ballot changes that reduce the number of votes
of some of the candidates b; by 1 and increase the number of votes
of the respective candidates c;. This will cause some candidates
b;j to be eliminated and thus increase the votes of the resulting
elements e; in the “cover ballots” corresponding to these candidates
bj. Since we can make only n ballot changes and since the cover
ballots of any candidate b change the votes of only the 3 candidates
from {ey, ..., e3n} that correspond to the set S, the n candidates
bj eliminated first must correspond to an exact set.

A.5 Hardness Results: DistTo is NP-hard

THEOREM A.2. DistTo is NP-hard, even when £ = 3.

Proor. First, we prove that DistTo is NP-hard when instead
of ballot modifications we consider ballot deletions. The proof is
by reduction from the 3-Exact Cover problem (3XC) described ear-
lier. In the 3XC problem we are given a universal set {v1,...,03,},
and m > n subsets Si,...,S; of size 3 each. We need to deter-
mine whether there are n subsets whose union is the universal
set. Given an instance of the 3XC problem, we show how to re-
duce it to an instance of DistTo. The instance of DistTToconsists
of 3n + 1 candidates v1, vy, . . ., 03,41, and the elimination order 7 =
01,02, ...,03n4+1 (7[1] = 07 is eliminated first, and 7 [3n+1] = 03541
is the winner). We show that this elimination order can be achieved
with n ballot deletions iff the 3XC instance has a positive answer.
The polynomial number of ballots in the instance varies in size
from 3 to 1 and is described below.

Ballots of size 3: There are m ballots of size 3, one per every subset
Si, 1 < i < m. Consider a subset S; = {vx, vy, vz }. From now on, we

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

KDD’24, August 25-29, 2024, Barcelona, Spain

assume that the subset is “ordered”, thatis, 1 < x <y < z < 3n.
For every such subset S;, the ballot (vx, vy, v;) is added, namely vy
is the top candidate in the ballot, vy is the second candidate, and v,
is the bottom candidate.

Ballots of size 2: For 1 < x < y < 3n, let cxy be the sum of the
following 2 numbers: (1) number of ballots of size 3 in which vy is
the top candidate and v, is the second candidate and (2) the number
of ballots of size 3 in which vy is the second candidate and v, is
the bottom candidate (note that the index of the top candidate in
this case is lower than x). Let maxcy, = max?}lx +11¢xy}. For every
x < y < 3n, there are maxcx — cxy ballots of size 2 consisting of
candidate vy as the top candidate and vy, as the second candidate.
There are also maxc; ballots consisting of candidate v; as the top
candidate and candidate v3,+1 as the second candidate.

The total number of size 2 ballots is bounded by 6nm — 2m since

there are at most (3n — 1) - maxcy size 2 ballots with vy as the top
candidate for 1 < i < 3n, and Zi’il maxcy < 2m.
Ballots of size 1: For 1 < x < 3n, let dyx be the total number
of ballots of size 3 and size 2 in which vy is the top candidate.
Let maxd = max311{dy}. There are maxd — dy ballots of size 1
consisting only of candidate v, as the top candidate and the only
candidate. There are also maxd — 1 ballots consisting of only can-
didate v3p41 as the top and only candidate. The number of ballots
of size 1 is bounded by 18n?m — 3nm since at most 3n candidates
have single ballots, and for each of these candidates, there are at
most m + 6nm — 2m ballots of size 1, since this is an upper bound
on the number of ballots of size 2 and 3 per candidate.

We prove that if there is an exact cover, then the margin is n.
Suppose that the 3XC instance has an exact cover consisting of n
sets. Each such set corresponds to a ballot of size 3. We call these
ballots the “cover ballots”. For 1 < x < 3n, let b(x) be the unique
cover ballot containing x. We prove below that after deleting the n
cover ballots the IRV process will result in the elimination order
01,02...03p+1-

By our construction, before the deletion of the cover ballots, each
of the candidates vy, . . ., v3p, is the top candidate on the maxd ballots
and v3p41 is the top candidate on the maxd — 1 ballots. Since the
candidates on every ballot are ordered, v; must be the top candidate
in ballot (1) and thus after the removal of this ballot, v; is the top
candidate in maxd — 1 ballots. Also, since no candidate appears
more than once in the cover ballots, after their removal, each of the
candidates vy, . .., v3, is the top candidate on either maxd — 1 or
maxd ballots. Recall that ties are broken arbitrarily, and thus we can
eliminate v;. As a result of the elimination of v; the top candidate in
all ballots that included v; (and are not of size 1) is updated. By our
construction, there are exactly maxcq such ballots for each of the
candidates vy, . . ., v3,+1. After the elimination of v1, v must be the
top candidate in ballot b(2) and therefore after the removal of this
ballot vy is the top candidate in maxc; + maxd — 1 ballots. Again,
no candidate can be the top candidate in less than maxc; + maxd —
1 ballots and thus vz can be eliminated. Continuing in the same
manner, after the elimination of v1, . .., v5x_1, candidate v, must be
the top candidate in ballot b(x) and thus after the removal of this
ballot vy is the top candidate in }}* ;11 maxcy +maxd — 1 ballots and
can be eliminated as dictated by the required elimination order.

In the other direction, we prove that if the margin is n then there

is an exact cover. To achieve this goal, we show that any set of

12

Anon.

ballots whose removal results in the elimination order v1, v2...03p41
must include the candidates vy, v3...v3,. We prove this by contra-
diction. Assume that this is not the case and that there exists a set
of ballots that do not include a candidate v, whose removal results
in the required elimination order. Let vy be the candidate with the
minimum index that is not included in the deleted ballots. In this
case, by our construction, when vy is about to be eliminated, it is
the top candidate of Z’;;ll maxcy +maxd ballots, while v3p,41 is the

top candidate of }* ;11 maxcy + maxd — 1 ballots. A contradiction.
Clearly, the only way to delete n ballots that include all 3n candi-
dates v1, v2...035, is by choosing ballots of size 3 that correspond to
an exact cover.

Next, we extend this proof to the case of ballot modifications. We
use the same ballot profile as before with only one difference: candi-
date vs3,+1 has maxd — n — 1 ballots, that is, n + 1 fewer ballots than
any other candidate (instead of having 1 ballot less than the others).
By a similar reduction, it can be shown that in this scenario, the 3XC
problem instance has an exact cover iff the optimal solution to the
DistToinstance consists of n ballot modifications where the ballots
removed in these modifications include candidates v1, vs...v3, and
each of the added n ballots includes candidate v3541 as the top and
only candidate.

O

A.6 Algorithm ALGAPPRX

In this section, we discuss a highly scalable Algorithm ALGAP-
PRX which could be used as a subroutine inside ALGEXACT to calcu-
late MqIRVUB, as well as, could serve as a standalone algorithm
to solve MqIRV.

The basic idea of ALGAPPRX simply leverages the fact that for
every possible winner w € W, w must have more first choice votes
(tally) than the rest of the candidates (e € C \ w). An upper bound
of ballot modification to ensure the winning of candidate w is thus
the maximum difference in the first choice votes (tally) between w
and each e. Finally, given W, MqQIRVUB is the smallest (minimum)
over these bounds considering w € W.

Algorithm 3 Algorithm ALGAPPRX: An Improved MqQIRVUB

Input: B, candidate set C, winners W.
Output: MqIRVUBor margin

1: MqIRVUB= o

2: forw € W do

3: ub = O, C/ =C

4: i=1

5 whilei <n-1do

6: e=argmingcc,, ti(c)

7: C.remove(e)

8: Distribute e’s vote following IRV rules and update tally

of the remaining candidates

9 ub = max(ub, [ti(e) — t;(w)])
10: end while

11: c=cC
12: end for

13: MqIRVUB = min(MqIRVUB, ub)
14: Return MqIRVUBor margin

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

Promoting Fairness and Priority in k-Winners Selection Using IRV

Algorithm 4 DisTTOADDALG

Input: B,C, I, 7 = {cy,. ..
Output: DisTToADD
1: addone = Add(8B, C,)
2: D1sTTOADD = Merge(8, C, &, addone, I)
3: Return DisTTOADD

,Cn}

Algorithm 3 has the pseudocode, which simulates n — 1 rounds

of IRV run-offs for each w € W. In round i, the candidate e with
the smallest tally is removed from C. After that, the remaining first-
choice votes of e are redistributed and the tally of the remaining
candidates is updated. The current upper bound ub is updated by
the difference t;[e] —t;[w] of tally between the eliminated candidate
e and w (indeed, if t;[e] — t;[w] number of extra votes could be
added to w, it will never be eliminated before e). Finally, if |[W| > 1,
Algorithm 3 runs for all w € W, and the minimum of the ub’s is
returned as the output of MqQIRVUB problem.
Running example. Consider that Mira is the preferred winner (w
= Mira). Initially, it has 1 ballot in its tally. The candidates Zoey,
Gina, Laura (having ballot 0, 1 and 1 respectively) are eliminated in
the first three rounds. To ensure that Kim with ballot 2 is eliminated,
1 ballot needs to be added to Mira. Similarly, to ensure that Zoey
is eliminated next, 2 ballots must be added to Mira. In the last
round, Sara will have 8 ballots in its tally and Mira will have 2
ballots. As a result, 6 more ballots are required for American Psycho
to avoid elimination. Therefore, the MqQIRVUB(American Psycho)
= max(0,0,0,1,2,6) = 6. Using the running example in figure 9,
for W ={Mira, Zoey}, MqQIRVUB(Mira, Zoey) =2, which is a tighter
upper bound than oo and saves expensive DisTTo calls.

THEOREM A.3. Algorithm 3 returns a valid upper bound on MqIRV.

ProorF skeTcH. Each round of the algorithm calculates the dif-
ference of tally between the eliminated candidate in that round and
w. Let us assume that ub is the maximum of those differences after
n — 1 rounds. Indeed, if the tally of w increases by ub, w will be the
surviving candidate after n — 1 rounds of elimination. Modifying
a single ballot amounts to adding a new ballot and removing an
existing one. This could be facilitated starting from the candidate
who is eliminated first, then repeat the process for the next elimi-
nated candidate, and so on, until ub number of ballot additions has
been accounted for. Similarly, the MqIRVUB will be the smallest
of ub’s for each candidate w € W. O

THEOREM A.4. Algorithm ALGAPPRXis an approximate solution
for MqIRV.

Lemma 2. The running time of Algorithm 3 is O (m€+min{n?, n+
m(logn)*)}).

A.7 DistTToADDALG for DisTTOADD

Algorithm D1sTTOADDALG (Pseudocode in Algorithm 4) takes B,C,¢
as inputs, and returns the minimum number of ballot additions to
ensure 7. The algorithm has two main procedures: Add and Merge.
Add finds the number of size 1 ballots needed to ensure 7. Merge
merges multiple size 1 ballots and produces ballots up to size n.
Algorithm 4 first calls Subroutine Add which returns addone. Then,

13

KDD’24, August 25-29, 2024, Barcelona, Spain

it passes addone to Subroutine Merge, which returns the output of
DisTTOADDALG.

Subroutine Add (Algorithm 5) returns a two dimensional array
addone. Each element addone[c][r] represents the number of bal-
lots of size one added to candidate c’s tally at round r. It repeats in
|| rounds. In round r, it computes the tally ¢, (c) of candidates ¢ € 7,
as well as keeping track of the sum of ballot additions up to round

- _ .
ot clmfidted in s55iid v mal (e 7 (O (S TN
number of ballots of size one ballot additions is required for c.
addone(c][r] is updated based on that. Finally, when all the candi-
dates in 7 are popped, addone is returned.

Subroutine Merge (Algorithm 6) reduces the number of ballots
by merging the ballots of size 1 into ballots of size at most n. The
intuition behind this subroutine is as follows. A ballot of signature
(cx,) corresponding to addone[cy, |[ry,] can be merged with a bal-
lot (cx,) corresponding to addone[cy, | [ry,] into a new ballot of sig-
nature (cy,, ¢x,) if 771 [ex,] < 771 [ex,] and 77 ey,] < ry,- Since,
first (cx,, cx,) will contribute to cx, in round ry;,, and then after cy,
is eliminated, this ballot will contribute to cy, at round ry,. After the
merge, we can reduce addone[cy, | [ry,] by one, keeping the value of
addone[cx,|[ry,] the same. We can keep merging ballots this way
as long as it is feasible. The size of a merged ballot (cx,, Cx,, . . - Cx,,)
is at most n since 77 [x1] < 77 [xp] < -+ < w7 [xn].

Subroutine Merge runs in n rounds. We maintain two variable

mergeFrom and mergeTo, initially they are 0 (line 1). In each round
r, the sum of the addone entries in the row corresponding to the
candidate 7 [r] is added to mergeFrom, and mergeTo is set to the
sum of the column r + 1 (line 2-4). If we merge the ballots from
mergeFrom with the ballots counted in mergeTo then the resulting
ballot will always satisfy the conditions specified above. As we
are merging in n rounds, the merged ballot length will never be
more than n. After merging, we reduce mergeFrom by mergeTo,
making sure mergeFrom is not negative (line 5). Finally, we return
mergeFrom.
Running example. Consider an elimination order 7 = {Molly, Mira,
Gina, Kim, Laura, Zoey, Sara}. To ensure that Laura is not eliminated
before Kim in round 4, we need to add 1 ballot of signature (Laura).
Similarly, to make sure Zoey is the winner, 4 ballots of signature
(Zoey) have to be added at round 6. Total ballots of size one equals
4+ 1 = 5. We can merge (Laura) and (Zoey) to (Laura, Zoey). When
Laura is eliminated this ballot counts toward Zoey. Hence, required
ballot additions = 4.

Lemma 3. The minimum number of ballots of size one required to

be added to ensure elimination order it is), .cc erzll addone|c][r].

Proor skeTcH. Consider a round r where e is the eliminated
candidate and c is a standing candidate. To ensure c is not eliminated
in round c, it must satisfy: t,(e) +t,_;(e) < ty(c) —t/_;(c). For a
candidate ¢ and round r, addone[c][r] is the number of ballots of
size one that are required to ensure that c is not eliminated before e.

Hence, Y, .cc erzll addone[c][r] is the minimum number of ballots

of size one required to ensure . O
THEOREM A.5. DiSTTOADDALG returns an exact solution.

ProoF skETCH. Using Lemma 3, addone (returned by Subrou-
tine Add) represents all the ballots of size one required to be added

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

1501

KDD’24, August 25-29, 2024, Barcelona, Spain

Algorithm 5 Subroutine: Add

Input: B8, C, =
Output: addone

1: addone[c][x] =0,YceCxe{L,...,|n|}

2 r=1,

3: while |7|.notEmpty() do

4 tr(c) = determine tally of c at round r, Vc € &

5= t/_ (c) = X"} addone[c][x],Vc € C

6: e = 1.pop_front()

7: e’s first choice votes are redistributed according to IRV
8: for ce {r—e} do

9 addone(c][r] = max(0,tr(e)+t]_,(e)—tr(c)—t/_,(c))
10: end for

11: r=r+1

12: end while
13: Return addone

Algorithm 6 Subroutine: Merge

Input: B, C, &, addone
Output: margin
: mergeFrom = 0, mergeTo =0
: forr=1tondo
mergeFrom = mergeFrom + Z,:ll addone[x[r]][i]
mergeTo = Z?:r+1 addone[x[j]][r]
mergeFrom = min(0, mergeFrom — mergeTo)
. end for
: Return mergeFrom

P - N B N N

to ensure 7. Next, we show that Subroutine Merge merges max-
imum number of size one ballots of addone. Subroutine Merge
always produces a merged ballot such that after replacing the origi-
nal ballots with the merged ballot, the resulting elimination order of
the election does not change. In each round, the algorithm 6 merges
the maximum number of ballots possible. Repeating this process n
times produces a minimum number for mergeFrom. Hence, DI1sT-
ToADDALG returns the optimum value of DiSTTOADD. O

Lemma 4. The running time for DISTTOADDALG is O(m£ + n?).

Extension to ballots of bounded size. We remark that Subrou-
tine Merge can be generalized also to the case of ballots of bounded
size £ < n. In this case, we need to optimize the way we merge
ballots as it may not be beneficial to merge a ballot (cy) correspond-
ing to addone(cx][ry] where 7[x] = n and ry; << n to a ballot of
length << ¢ as this will block us from using this ballot in future
rounds (after round r). One way to compute the best way to merge
the ballots is by modeling this problem as a min cost flow problem
where the (negative) cost rewards the merged ballots and the flow
value is the total number of ballots of size 1.

A.8 Proofs

THEOREM A.6. An optimal solution for MqKIRV corresponds to
solving MqIRYV optimally k times.

Proor. It follows from the definition of the problem that an op-
timal solution of M@KIRV can be expressed as a sum of k indepen-
dent MqIRYV instances. Therefore, solving MqKIRYV optimally is
equivalent to solving each of the k MqIRYV instances optimally. O

Anon.

THEOREM A.7. Algorithm 2 returns a valid lower bound on D1stTo(r).

Proor skeTcH. Each round of the algorithm calculates half of
the difference of the first choice votes between the eliminated can-
didate and other standing candidates based on . Notice that the
eliminated candidate must have fewer or equal votes in its tally
than any of the standing candidates. For any pair of candidates, the
minimum number of ballot modifications required to ensure that
the eliminated candidate has less or equal votes than the standing
ti(e)—-ti(c’)

2

candidate could be achieved by reducing Ib [] number

of votes from the eliminated one and adding that to the standing
one. This is true for all pairs of eliminated and standing candidates
in all rounds. Therefore, the maximum of all [b’s serves is indeed
DistToLB(DistTo(x)). m]

THEOREM A.8. Algorithm ALGAPPRXis an approximate solution
for MqIRV.

PROOF SKETCH. According to Theorem A.3, ALGAPPRX is an up-
per bound of MqIRV. Therefore, ALGAPPRX also solves an instance
of MqIRV approximately. O

A.9 Running Time Proofs
Lemma 5. The running time of Algorithm 2 is O(n® + m¢).

ProoOF. The running time of Algorithm 2 has two components:
(i) time to calculate the tally and (ii) time to find the maximum Ib
(lines 4-6). Tally can be calculated efficiently as follows: for each
candidate, maintain the number of ballots in which this candidate
is the top choice, as well as a linked list of all these ballots. In every
elimination round, pick a candidate that appears as a top candidate
in the minimum number of ballots, and eliminate this candidate
by going over its linked list and adding each ballot in the linked
list to the next surviving candidate (and update this candidate’s
number of ballots). While finding the next surviving candidate,
delete the ones that have already been eliminated from the ballot.
In this way, the number of operations performed on a single ballot
during the tally calculation is O(f). Hence, the running time to
calculate the tally is O(m¢). To find the maximum of /b in each of
the n rounds (lines 4-6), the algorithm iterates over the remaining
O(n) candidates. This totals to O(n?) time. Therefore, the running
time of Algorithm 2 is O(n? + m¢). O

Lemma 6. The running time of Algorithm 3 is O(mf+min{n?, n+
m(logn)®)}).

Proor. The running time of Algorithm 3 has two components: (i)
time for calculating the tally (ii) time for finding the candidate with
minimum tally. Tally can be calculated efficiently in O(m¢) time
as explained in the analysis of Algorithm 2. Finding the candidate
with a minimum tally can be done using two methods depending
on the value of n and m. Method 1: Perform a linear search on all
remaining candidates to find the one with the minimum tally in each
round. The linear search requires O(n) time per round, and thus
a total O(n?) time in n rounds. Method 2: The candidate with the
minimum tally can be found using a min heap to store the tally of
the remaining candidates. The creation of the heap takes O(n) time.

1567

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682

Promoting Fairness and Priority in k-Winners Selection Using IRV

Finding the initial candidate with the smallest tally takes constant
time. A single update of the heap takes O(log n) time. The number
of times that heap needs to be updated is bounded by the number of
ballots that need to be redistributed when a candidate is eliminated.
Since we eliminate the candidate with the minimum tally, if a round
has x surviving candidates, then the minimum tally is no more than
m/x. So, summing over all elimination rounds, we get that the
number of heap updates is upper bounded by m(1/n+1/(n—1) +
-+-+1/2) which is O(mlog n) (Harmonic number). Therefore, the
total time to update the heap is O(m(log n)?). and the running time
for Algorithm 3 is O(m¢ + min{n?, n + m(logn)?)}). O

Lemma 7. The running time for DISTTOADDALG is O(m¢ + n?).

PrOOF. (a) Add: the runtime for counting tally is O(mf), and for
calculating addone is O(n?). (b) Merge: each cell of addone is visited
a constant number of times, and hence takes O(n?) time. It follows
that the total running time for DISTTOADDALG is O(mf +n?). O

A.10 Prior Work

We present three types of related work in this section.
Preference aggregation. Preference aggregation is closely studied
in the context of group recommendation [1, 2, 5, 7, 12, 25, 30, 32, 33],
with the goal of selecting one or top-k items that are most suitable
to the preference of all users in the group. These are also studied
while promoting fairness in ranking and recommendation [29, 37].
In[14], the authors empirically demonstrate that multi-stage voting
methods, such as STV and IRV offer benefits over positional prefer-
ence aggregation methods (e.g., plurality voting, approval voting)
in the recommendation contexts by handling hyperactive users in
a more equitable and fair way.

Changing original preferences. The second line of related work
exists in how to minimally update the original preferences of the
users so that the produced outputs satisfy additional criteria. Some
leading criteria include maximizing the satisfaction of some specific
users considering rating based preference aggregation methods in
top-k recommendation [33], changing the original winner, that
is, computing margin, or producing Margin of victory (MoV), or
satisfying fairness criteria, [23, 35], to name a few. Among these, the
most relevant to this work is the previous work on computing MoV.
There are two types of MOV: constructive and destructive. In the
constructive (destructive) version, the goal is to find the minimum
number of changes to the ballots that is needed so that a special
candidate is (not) elected. [36] has investigated the computational

15

KDD’24, August 25-29, 2024, Barcelona, Spain

complexity and (in)approximability of computing MoV for various
voting rules, including approval voting, all positional scoring rules,
etc. [9] has introduced a sampling based probabilistic algorithm for
finding the margin of victory, which can be used for many voting
rules.

Multi-stage preference aggregation methods and their mar-
gin of victory computation. Multi-stage methods, such as STV
and IRV, were introduced in the 19th century in electoral voting
systems. [6] demonstrated that determining whether the MoV in an
IRV election is at most 1 is NP-hard for both constructive and de-
structive versions. Moreover, there is no 2-approximation algorithm
for it unless P = NP. In [15], the coalitional weighted manipula-

tion is investigated. In [24], the authors have shown a branch and
bound algorithm that calculates possible winners when only some

part of the ballots are accessible, not all. The usage of [24] is to
generate information on the result of an election and to announce
it on election night, when there are still some ballots that have not
arrived at the specified place to count the votes. MoV of IRV [27]
and STV [21] is studied in many related works [26], [11], [4], [10].

A.11 Figures

f L]
[5], Ib=1.0 [0], Ib=0.0
ub=2 ub=2 ub=2

. @,;] , |b=3@ (3,5] , |b=1.9 (1,0] , Ib=1.9

]ub:Z

[1,3,5], 5,1, 0],
0 1b=1.0
ub=2 { }ub=2

[4,2,3,5,1,0] [4,2,3,5,1,0],
, 1b=1.0 1b=1.0

ub=2 1

[6,4,2,3,5,1,0],
1b=1.0

Figure 9: Partially explored tree for ALGEXACT , the
candidates are represented with their ids, where red nodes
and their subtrees are pruned

ub=2 ub=2
[0,3,5], [4,6,0] ,
1b=3.0 1b=3.0

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

	Abstract
	1 Introduction
	2 Data Model & Problem
	2.1 Data model
	2.2 Problem Definitions & Hardness

	3 Algorithms for MIRV and MkIRV
	3.1 Required Definitions
	3.2 algEx for MIRV
	3.3 IP for MIRV

	4 Efficient Algorithms
	4.1 An Improved DistToLB Algorithm

	5 Experimental Evaluations
	5.1 Experiment Design
	5.2 Goal 1: Analyzing Anti-plurality
	5.3 Goal 2: Analyzing Quality
	5.4 Goal 3: Analyzing Scalability
	5.5 Summary of Results

	6 Prior Work
	7 Conclusion
	References
	A Appendix
	A.1 Different Aggregation Mechanisms
	A.2 IRV Properties
	A.3 Why Ballot Modification?
	A.4 Hardness Results: MIRV is NP-Complete
	A.5 Hardness Results: DistTo is NP-hard
	A.6 Algorithm AlgApprx
	A.7 DistToAddAlg for DistToAdd
	A.8 Proofs
	A.9 Running Time Proofs
	A.10 Prior Work
	A.11 Figures

