
1.  Introduction
The Laramide tectonomorphic region of the western USA is dominated by rugged high elevation ranges bounded 
by relatively flat basins creating some of the highest relief in North America (N.A.), exceeding 2 km in some 
areas. The Laramide region extends from Montana to northern Sonora, Mexico and is marked by local magma-
tism and basement-involved uplifts that disrupted the regional N.A. Cordilleran foreland basin ∼1,000  km 
inboard of the plate margin (Figure 1, Dickinson & Snyder, 1978; Dickinson et al., 1988; Henderson et al., 1984; 
Jordan, 1981; Jordan & Allmendinger, 1986; Lawton, 2008). Deformation, exhumation, subsidence, and uplift 
of the Laramide region have been explained by upper and lower plate processes (Bird,  1984,  1998; Carrapa 
et  al.,  2019; Coney, 1972; Coney & Reynolds, 1977; Copeland et  al.,  2017; Cross & Pilger, 1978; Currie & 
Copeland, 2022; Dickinson, 1989; Dickinson & Snyder, 1978; Henderson et al., 1984; Lipman & Sawyer, 1985; 
Liu et  al., 2010;  Saleeby, 2003). The timing of thick-skinned “Laramide” deformation has long been studied 
using structural, geomorphological, geochemical, sedimentological, geochronological, and thermochronologi-
cal records which provide constraints for models of Laramide tectonomorphic evolution (Carrapa et al., 2019; 
Copeland et al., 2017; Currie & Copeland, 2022; Liu et al., 2010). However, post-Laramide basin filling and 
subsequent sediment evacuation, and their role in establishing the modern topography of the Laramide region in 
its type locality of Wyoming remain debated. Some workers suggest that these basins were filled with late Eocene–
early Miocene sedimentary and volcaniclastic units up to high elevations (>2 km), effectively burying all but the 
highest peaks of the surrounding Laramide ranges (Mckenna & Love, 1972; Steidtmann & Middleton, 1991; 
Steidtmann et al., 1989). This model implies that by the mid-Miocene, the Laramide region in Wyoming expe-
rienced significant relief reduction by basin filling, creating a subdued topography possibly resembling the Alti-
plano of Bolivia. Following burial, the modern topography between the Laramide ranges and basins began to 
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develop as basins were incised and evacuated after the late Miocene. This model also has implications for the 
formation of high elevation low relief surfaces (HELR) observed in many of the Laramide ranges. However, clear 
evidence of such basin filling, incision, and evacuation are lacking from existing thermochronological records.

This study presents new apatite fission track (AFT) results and thermal models from classic localities in the Lara-
mide region of Wyoming including the Bighorn Mountains and Powder River Basin and the Wind River Range 
and Wind River Basin (Figure 1). Our results address the following questions: (a) When did Laramide erosion 
initiate in these ranges? and (b) How much basin burial and subsequent incision/erosion did Laramide basins and 
ranges experience? Understanding the thermal history of the Laramide region is important for understanding 
tectonomorphic processes associated with the development of the modern Laramide topography. Thus, our study 

Figure 1.  (a) General location and tectonic province map of the western USA (b) Digital elevation model of Wyoming showing Laramide ranges and basins. (c) Inset 
generalized geological map of the Bighorn Mountains and Powder River Basin showing locations of samples in this study. (d) Inset generalized geological map of the 
Wind River Range and Wind River Basin showing locations of samples in this study. Geologic map modified after Love and Christiansen (1985) and Ranz (2000).
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holds important implications for the tectonic and paleotopographic evolution of the Laramide region and other 
high relief regions on Earth affected by similar tectonic, erosional, and depositional histories.

1.1.  Geologic Setting

The Laramide region is characterized by basement-cored uplifts and intervening intraforeland basins that devel-
oped by flexural and dynamic subsidence during the Late Cretaceous–early Eocene (Dickinson et al., 1988; Fan & 
Carrapa, 2014; Heller & Liu, 2016; Painter & Carrapa, 2013). Topography within these ranges is characterized by 
>4 km-high peaks and broad, low-relief surfaces exposed at high elevations (∼3.5 km). The development and age 
of HELR surfaces that are observed in many of the Laramide ranges remains uncertain. Some models interpret 
the HELR surfaces as low-elevation peneplains that were later uplifted during the Laramide (Blackwelder, 1915; 
Chamberlin, 1919; Davis, 1911). Other models infer that these surfaces are Late Cretaceous–Eocene and formed 
by erosion during Laramide uplift and subsequent basin filling (Steidtmann & Middleton, 1991). Post-Laramide 
development models suggest that HELR surfaces are remnants of Oligocene–Miocene erosional surfaces 
(Mckenna & Love, 1972) or relatively young features that attained high elevations during Laramide uplift and 
later experienced Pleistocene glacial erosion (e.g., Egholm et al., 2009).

The Bighorn and Wind River Ranges in Wyoming are prominent Laramide uplifts primarily composed of 
∼2.9–2.55 Ga Archean basement (Figure 1, Arth et al., 1980; Frost et al., 2000) that was uplifted during the Late 
Cretaceous–Eocene (∼75–40 Ma). The Bighorn Mountains are bound to the east by east-verging thrusts that 
placed Archean basement in contact with Paleocene–Eocene synorogenic strata filling the Powder River Basin 
(Hoy & Ridgway, 1997). The Wind River Range is bound by the southwest-verging Wind River thrust and Green 
River Basin on its western margin and the Wind River Basin along its northeastern margin (Fan & Carrapa, 2014; 
Fan et al., 2011; Steidtmann & Middleton, 1991). Thermochronological data from these ranges document rapid 
cooling at ∼65–50 Ma interpreted to be a minimum temporal estimate of Laramide deformation with the onset of 
exhumation occurring sometime before the late Paleocene (Peyton et al., 2012; Stevens et al., 2016). Early studies 
in the Wind River Range combining geologic evidence with AFT thermochronology interpreted cooling to have 
commenced as early as ∼100 Ma (Steidtmann & Middleton, 1991).

The Powder River and Wind River basins consist of >2 km of Maastrichtian–Eocene synorogenic sedimentary 
units (Fan & Carrapa, 2014; Hoy & Ridgway, 1997; Steidtmann & Middleton, 1991; Winterfeld & Conrad, 1983). 
Maastrichtian–early Paleocene deposits in both basins are composed of fine-grained facies that are interpreted to 
represent initial slow phases of uplift and unroofing of Paleozoic sedimentary cover (Shuster & Steidtmann, 1988). 
Accelerated Laramide deformation and erosion of Archean basement occurred during the late Paleocene–early 
Eocene and is recorded by up-section changes in synorogenic conglomerates from predominantly Paleozoic clasts 
to Archean basement clasts (e.g., the Wasatch Formation, Kingsbury and Moncrief conglomerate units, and the 
Indian Meadows and Wind River Formations (Fan et al., 2011; Hoy & Ridgway, 1997).

Regional sedimentation in the Laramide basins persisted until Oligocene–Miocene time as evidenced by tuffa-
ceous fluvial and eolian deposits of the White River and Arikaree Groups preserved at high elevations (e.g., 
∼2.8  km, Malone et  al.,  2022; Mckenna & Love,  1972). These deposits show evidence of basin filling and 
suggest that the Laramide basins and bounding ranges were partially buried by sedimentary deposits that have 
since been incised and evacuated along major drainage systems (Galloway et al., 2011; McMillan et al., 2006; 
Steidtmann et al., 1989). Thermochronological data recording such a history have been documented in the Bear-
tooth Range (Carrapa et al., 2019; Omar et al., 1994; Ronemus et al., 2023), although this thermal signature has 
not been shown in other Laramide ranges and basins. Late Miocene incision of Laramide basins is supported 
by thermochronological data, albeit sparse, and reconstructions of post-Laramide basin fill surfaces suggesting 
that >1.5 km of incision has occurred in the Laramide region and western Great Plains since the late Miocene 
(Cerveny & Steidtmann, 1993; McMillan et al., 2006; Naeser, 1992; Omar et al., 1994; Steidtmann et al., 1989).

2.  Methods
We analyzed 11 basement samples from three transects in the Bighorn Mountains and 6 basement samples from 
two transects in the northern Wind River Range (Figure 1). In the Wind River Range, we targeted vertical profiles 
that capture significant elevation change (>3 km) and low internal relief (<300 m) surfaces. In addition, we 
analyzed four orthogneiss clasts, one from the Kingsbury Conglomerate and two from the Moncrief Conglom-
erate in the Powder River Basin; and one from the Wind River Formation in the Wind River Basin (Figure 1).
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Samples were prepared for AFT thermochronology by separating, mounting, and etching in 5.5 M nitric acid for 
20 s at 21°C and mica prints were etched in 40% HF for 45 min following protocols of Donelick (2005). For each 
sample, 20–30 apatite grains were dated using the external detector method and confined fission track lengths 
and Etch-pit diameter (Dpar) measurements were collected for thermal modeling (Table S3, Gleadow et al., 1986; 
Wagner & Van den Haute, 1992).

We used the modeling software QTQt (v. 5.8.0) to generate inverse thermal models based on AFT age, length, and 
Dpar measurements (Gallagher, 2012). QTQt applies the Bayesian transdimensional Markov chain Monte Carlo 
inversion scheme to determine the time-temperature cooling pathway of a given sample. Fifteen basement and four 
cobble samples were suitable for thermal modeling. Models were initially run unconstrained to explore statistical 
space and allow the maximum degree of freedom; then model parameters were adjusted to consider geological 
constraints (Table S2). Modeling results presented in this study were generated based on time–temperature paths 
for ≥200,000 runs. Samples from the Squaretop Mountain transect were modeled together as a vertical profile to 
reduce uncertainties in the model results. Individual sample data and model parameters and outputs are available 
in Supporting Information S1.

3.  Results
3.1.  Bighorn Mountains–Powder River Basin

Basement samples from the Bighorn Mountains were collected along the Bighorn South, Hazelton Peak, and 
Lake Angeline transects (Figure 1). Three samples produced central ages ranging from ∼155 to ∼85 Ma (B2, 
HP1, HP3), six samples produced ages ranging from ∼85 to ∼60 Ma (HP2, HP4, HP5, LA1, LA6, LA7), and two 
samples produced ages ranging from ∼60 to ∼50 Ma (B1, B4). Cobble samples from the Kingsbury (KB1) and 
Moncrief (C2, D1) Conglomerates produced ages of ∼384, ∼224, and ∼143 Ma, respectively (Table S1).

Thermal modeling results for these samples show cooling between ∼130 and ∼50 Ma with most samples showing 
rapid cooling between ∼75 and 50 Ma (Figure 2a). Four basement samples show continued and slow cooling after 
50 Ma. The remaining five samples show a consistent period of reheating between ∼50 and ∼10 Ma followed by 
cooling after 10 Ma. Models for cobble samples from the Kingsbury and Moncrief Conglomerates were run with 
and without deposition of the Wasatch Formation at ∼50–45 Ma (Hoy & Ridgway, 1997) and indicate relatively 
slow cooling between ∼800 and ∼50 Ma, followed by post-depositional reheating between ∼50 and ∼10 Ma and 
cooling after 10 Ma (Figure 2b). We note that inverse modeling results from the Kingsbury and Moncrief cobble 
samples document long thermal histories prior to 200 Ma, outside of the scope of this study, and are therefore not 
discussed in this paper (Figures S12, S13, and S14).

3.2.  Wind River Range

Basement samples from the Wind River Range were collected along the Squaretop Mountain and Goat Flat tran-
sects (Figure 1). These samples produced one AFT age at ∼94 Ma (GRSM-02), three ages ranging from ∼85 to 
∼60 Ma (GRSM-01, GRSM-03, GRSM-04), and two ages between ∼60 and ∼50 Ma (GF1, GF5). The cobble 
sample from the Wind River Formation (2DIB) produced an AFT age of ∼59 Ma.

Samples from the Squaretop Mountain transect follow a near-vertical profile over a total relief of ∼600  m 
(Figure 2). Results from this thermal model show cooling at ∼100–80 Ma. Samples from the Goat Flat transect 
were modeled individually as these samples were collected too far apart to be considered a true vertical profile 
(Figures 2b and 2d). Sample GF1 collected from the highest elevation shows cooling at ∼70 Ma and sample 
GF5 from the lowest elevation shows cooling at ∼55 Ma. Both transects show reheating between ∼30 and 10 Ma 
followed by cooling to surface temperatures after 5 Ma.

The thermal model for the Wind River Formation cobble sample (2DBI) was run with and without deposition of 
the Wind River Formation at ∼52 Ma (Clyde et al., 1997; Robinson et al., 2004; Smith et al., 2008). These models 
are similar to basement samples from the Goat Flat transect showing cooling between ∼70 and ∼50 Ma, followed 
by post-depositional reheating between ∼50 and ∼10 Ma, and cooling after 3 Ma (Figure 2d).

4.  Discussion
Combined AFT ages and thermal modeling results reveal a multi-phase thermal history of the Laramide region 
in Wyoming during the Mesozoic–Cenozoic. We focus on the Late Cretaceous–modern thermal record, pertinent 
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to the development of the topographic relief between Laramide ranges and intervening Laramide basins, and 
the physiographic development of HELR surfaces within these ranges. Thermal models from cobble samples 
in the Powder River Basin document thermal histories prior to 200  Ma outside of the scope of this study 
(Figures S12, S13, and S14).

4.1.  Thermal Record and Implications for Erosion and Basin Burial

The earliest record of rapid cooling is identified during the Late Cretaceous (∼100–80 Ma) by three basement 
samples from the Bighorn Mountains and samples from the Squaretop Mountain transect in the Wind River Range 
(Figure 2). Previous thermochronological studies in the Wind River Range document rapid cooling ∼66–50 Ma 
and suggest that these results provide only a minimum age of Laramide deformation-driven exhumation (Peyton 
et al., 2012; Steidtmann & Middleton, 1991; Stevens et al., 2016). Several additional lines of evidence support 
mid-Late Cretaceous cooling in the Wind River Range. First, Upper Cretaceous–lower Paleocene strata in the 
Green River Basin record a shift in paleocurrent direction from southeastward to southward-flowing systems 
accompanied by a change in sandstone composition from lithic-rich units derived from Paleozoic–Mesozoic 
cover strata to feldspar-rich units derived from Precambrian basement. This suggests that by early Paleocene time, 

Figure 2.  Inverse thermal models for samples in this study (0–200 Ma). Bold lines represent best-fit time-temperature path, transparent areas correspond with good fit 
envelopes. (a) Basement samples from the Bighorn Mountains, (b) cobble samples from the Kingsbury and Moncrief Conglomerates in Powder River Basin, (c) vertical 
profile basement samples from the Squaretop Mountain transect in the northern Wind River Range, and (d) basement samples from the Goat Flat transect in the Wind 
River Range and cobble sample from the Wind River Formation in the Wind River Basin.
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Paleozoic–Mesozoic cover strata had been stripped away to expose Precambrian basement in the Wind River 
Range (Shuster & Steidtmann, 1988; Steidtmann & Middleton,  1991). Moreover, Late Cretaceous cooling is 
consistent with studies in southwestern Montana that document cooling at ∼100–90 Ma, interpreted as evidence 
for early Laramide exhumation (Carrapa et al., 2019; Ronemus et al., 2023). Our results from Squaretop Moun-
tain combined with previous evidence support an early phase of cooling and erosion during the Late Cretaceous, 
although the exact mechanism is not well understood. We note the difference in cooling ages between our samples 
along the Squaretop Mountain transect (∼100–80 Ma) and samples from previous transects in the Wind River 
Range (∼65–50 Ma, Peyton et al., 2012; Stevens et al., 2016). We speculate that samples from the previous stud-
ies were collected in areas from which the rocks containing the earlier (Cretaceous) record of cooling and erosion 
have been erosionally removed.

By the Late Cretaceous–Paleocene, Laramide-style deformation and range exhumation were well underway 
throughout the Wyoming Laramide Province, with the peak magnitude of exhumation occurring between the late 
Paleocene and early Eocene (∼65–50 Ma). The timing of cooling indicated by our model results (∼75–50 Ma) 
is supported by existing thermochronological data, stratigraphic, provenance, paleoaltimetry, and basin subsid-
ence data (DeCelles et al., 1991; Fan & Carrapa, 2014; Fan et al., 2011; Gries, 1983; Hoy & Ridgway, 1997; 
Peyton et al., 2012; Stevens et al., 2016). This signal is consistent with an erosional response to Late Cretaceous–
Paleocene Laramide flat slab subduction and subsequent Paleocene-Eocene slab rollback (Fan & Carrapa, 2014).

Thermal models of basement samples from the Bighorn and Wind River Ranges and cobble samples from Eocene 
synorogenic deposits from the Powder River and Wind River basins show similar Cenozoic thermal histories 
indicating these regions experienced Eocene–Miocene (∼50–10  Ma) reheating to temperatures of ∼35–80°C 
(Figure 2). Reheating can be attributed to either: (a) an elevated regional geothermal gradient during late Eocene–
early Miocene magmatism, or (b) burial by late Eocene–early Miocene basin filling units, that is, the White 
River and Arikaree Groups and their correlative units. In the Bighorn Mountains, reheating via sediment burial is 
supported by remnant exposures of basin fill at high elevations (∼2.8 km) along the flanks of the Bighorn Moun-
tains, approximately ∼1.2 km above the average Wyoming Laramide basin level of ∼1.5 km (Fan & Carrapa, 2014; 
Fan et al., 2011; Malone et al., 2022; Mckenna & Love, 1972; McMillan et al., 2006). We note that there are no 
exposures of Oligocene–Miocene basin fill units along the northern flanks of the Wind River Range where our 
samples were collected. However, these deposits are preserved along the southern flanks of the range (Steidtmann 
& Middleton,  1991). Although it is possible that Cenozoic reheating may be associated with Late Eocene–
Oligocene magmatism in Wyoming, the reconstructed thickness and distribution of basin-fill remnants (McMillan 
et al., 2006) along with the magnitude of reheating indicated by our data can explain partial reheating caused 
by a period of sustained sedimentation within the Laramide basins, burying the flanks of the Laramide ranges. 
We note that a thermochronological signature of post-Laramide burial may not be preserved everywhere in the 
Laramide region due to different magnitudes of exhumation and burial; nevertheless, this signature has also been 
documented by studies in the Beartooth Range (Carrapa et al., 2019; Omar et al., 1994; Ronemus et al., 2023).

The final phase of cooling, recorded by basement and cobble samples in both study regions, began after 10 Ma and 
is consistent with the timing of widespread incision across the Rocky Mountain region (McMillan et al., 2006). 
The late Miocene regional shift from basin filling to basin incision is indicated by the reconstructed minimum 
basin fill surface based on the elevation and age of sedimentary and volcanic basin fill remnants (Mckenna & 
Love, 1972; McMillan et al., 2006 and reference therein; Pelletier, 2009), and thermochronological data from 
Laramide uplifts (Cerveny, 1990; Cerveny & Steidtmann, 1993; Omar et al., 1994; Peyton et al., 2012; this study). 
Basin incision and sediment evacuation are suggested to have occurred via major fluvial systems draining the 
Wyoming Laramide region, that is, the paleo-Mississippi, paleo-Red, and paleo-Platte river systems (Galloway 
et al., 2011). Since the Middle Miocene, these rivers served as major sediment routing systems to the Gulf of 
Mexico Basin as indicated by significant proportions of detrital zircon populations derived from western Cordil-
leran sources found in Early–Middle Miocene sedimentary units of the Gulf of Mexico Basin (Xu et al., 2022) 
and paleogeographic reconstructions from industry well and seismic databases (Galloway, 2008).

4.2.  Regional Post-Laramide Topography

By the Eocene, relief between the Laramide ranges and basins was comparable to the modern relief in the Wyoming 
Laramide Province (∼2.3 km, Fan et al., 2011). Regional erosion of highlands and sedimentation within the Lara-
mide basins persisted through the Oligocene–Early Miocene resulting in thick accumulations of sedimentary to 
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volcanic basin fill (i.e., the White River and Arikaree Groups) and relief reduction between Laramide ranges 
and basins (Mckenna & Love, 1972; McMillan et al., 2006). The magnitude of basin filling remains contentious 
with some workers suggesting a minimum ∼1 km of burial (Stevens et al., 2016) while others suggest ∼4 km of 
burial, sufficient to obscure all but the highest peaks of the Laramide ranges (Steidtmann & Middleton, 1991). 
To estimate the depth of burial, we divided the maximum temperature during reheating indicated by our models 
by 60°C/km, a geothermal gradient appropriate for the volcanic setting at the time (Coney & Reynolds, 1977).

Our calculations indicate that reheated samples in the Bighorn Mountains were buried to depths of 0.4–1.1 km 
and suggest that the sedimentary fill in the Powder River Basin reached elevations of ∼3.4 km along the eastern 
flank of the Bighorn Mountains (Figure 3a). Samples from the Wind River Range and Wind River Basin show 
similar magnitudes of burial between 0.2 and 0.8 km and suggest that basin fill reached elevations of ∼4.2 km 
in some areas of the Wind River Range (Figure 3b). Our calculated basin fill elevations are comparable with the 
highest modern peaks in Wyoming that do not show partial reheating during the Late Eocene–Early Miocene, 
for example, Gannett Peak (∼4.21 km) and Freemont Peak (∼4.19 km), suggesting that by the Miocene, only the 
highest peaks were exposed (Peyton et al., 2012; Steidtmann & Middleton, 1991). Our results provide estimates 
of maximum burial and the establishment of a subdued low internal-relief topography in the Wyoming Laramide 
region during Early Miocene time and are comparable with minimum elevations reconstructed from basin-fill 
elevations predicted by McMillan et al. (2006).

4.3.  Laramide High-Elevation Low-Relief Surfaces

Thermal models for basement samples collected along HELR surfaces in the Wind River Range (i.e., Square-
top Mountain and Goat Flat transects) provide thermal histories for these surfaces and test proposed models of 

Figure 3.  Cross sections of study sites in the (a) Bighorn Mountains and Powder River Basin and (b) Wind River Range 
and Wind River Basin showing exposures of Eocene sedimentary rocks and erosional remnants of Oligocene–Early Miocene 
sedimentary rocks where present. Reheated samples (circles) are superimposed on the profile at their respective elevation 
with a color bar on top of them indicating the calculated amount of burial to reheat each sample. Panel (a) modified after 
Mckenna and Love (1972).
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their origin. Thermal models from both transects show cooling during Late Cretaceous-Paleocene time (∼100–
80 and 75–55 Ma), minor reheating via basin burial heating (∼50–10 Ma), and subsequent cooling to surface 
temperatures during the Late Miocene (<10 Ma). These results are not consistent with models suggesting that 
HELR surfaces are remnants of low-relief surfaces that initially formed at low elevations before being uplifted 
during the Laramide tectonic event, which would require cooling ages before Laramide deformation commenced. 
Whether HELR surfaces were beveled during or after Laramide uplift remains unresolved by the AFT system 
alone due to the temperature sensitivity of this system. However, the abundance of Pleistocene glacial features 
in the Laramide ranges (i.e., glacial lakes, moraines, glacial valleys; Gosse et al., 1995; Leopold, 1980), suggests 
that glaciation may have played an important role in creating low relief surfaces at high elevations in these ranges 
(Figure 4). Additionally, paleoaltimetry records suggest that by the end of the Laramide orogenic event, the Wind 
River Range had already been uplifted to 3–4 km near the Pleistocene equilibrium-line altitude of >3.05 km 
(Davies, 2011; Fan et al., 2011). We therefore suggest that HELR surfaces in the Laramide ranges are remnants of 
a more extensive high-elevation paleolandscape that was shallowly buried during the Late Eocene–Early Miocene 
and then incised by fluvial systems after the Late Miocene, producing isolated surfaces that experienced local 
relief reduction by glacial erosion. Similar models that support glaciation as a mechanism for production and 
preservation of HELR surfaces have been proposed in other high-elevation regions such as the Himalaya (Sherpa 
et al., 2022).

5.  Conclusions
Our study indicates that the Bighorn Mountains and Wind River Range experienced multi-stage Laramide cool-
ing and erosion, as early as ∼100–80 Ma with rapid cooling at ∼75–50 Ma, followed by significant sediment 
burial and reheating between ∼50 and 10 Ma. We estimate that basin fill in the Powder River and Wind River 
Basins reached elevations of ∼3.4 km along the eastern flank of the Bighorn Mountains and ∼4.2 km in the 
northern Wind River Range. Isolated remnants of Oligocene–Early Miocene (∼34–15 Ma) post-Laramide basin 
fill at high elevations throughout Wyoming provide further evidence of post-Laramide regional relief reduction 
and the establishment of low internal-relief topography by the Early Miocene. Our study supports Late Miocene 
incision of the Powder River Basin and regional evacuation of basin fill that resulted in the modern topography 
characterized by >2.5 km of local relief. HELR surfaces within the Wind River Range (Squaretop Mountain 
and Goat Flat) are consistent with this history and record cooling and erosion during Laramide deformation and 
reheating-burial by Late Eocene–Early Miocene. This suggests that the Laramide basins were completely filled, 
partially covering their bounding ranges, possibly across a more extensive high elevation paleolandscape that was 
later dissected during Late Miocene regional incision and sediment evacuation. Our thermochronological data, 

Figure 4.  Schematic block diagram showing the post-Laramide topographic evolution of Laramide uplifts and basins. Panels 
from left to right show high topographic relief by the Eocene (∼50 Ma), relief reduction and maximum basin filling during 
the Early Miocene (∼20 Ma), and the modern high relief configuration including Oligocene–Miocene basin fill remnants 
exposed at high elevations. Modified after Blackwelder (1915).
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combined with Pleistocene glacial features in the Wind River Range, suggest that the Squaretop Mountain and 
Goat Flat surfaces are isolated remnants of this dissected paleolandscape that experienced further relief reduction 
due to glacial erosion.

Data Availability Statement
Data archiving of the results and figures supporting the conclusions presented in this study are available through 
the University of Arizona's Research Data Repository: https://doi.org/10.25422/azu.data.22068719.
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