Brief Announcement: Racos: a Leaderless Erasure Coding State
Machine Replication

Jonathan Zarnstorff*
jonathanzarnstorff@gmail.com
Unaffiliated
Boston, MA, USA

Colin Ruiz
cruiz@clarku.edu
Clark University
Worcester, MA, USA

ABSTRACT

Cloud storage systems often use state machine replication (SMR) to
ensure reliability and availability. Erasure coding has recently been
integrated with SMR to reduce disk and network I/O costs. This
brief announcement shares our experience in developing a leaderless
erasure coding SMR system. We integrate our system Racos with
etcd, a distributed key-value storage that powers Kubernetes. Racos
outperforms competitors by up to 3.36x in throughput.

CCS CONCEPTS

« Computer systems organization — Reliability.

KEYWORDS

State machine replication, Erasure coding, Leaderless, Rabia

ACM Reference Format:

Jonathan Zarnstorff*, Lucas Lebow, Dillon Remuck, Colin Ruiz, and Lewis
Tseng. 2024. Brief Announcement: Racos: a Leaderless Erasure Coding
State Machine Replication. In Proceedings of the 36th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA "24), June 17-21, 2024,
Nantes, France. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3626183.3660273

1 INTRODUCTION

Modern distributed systems in clouds often use state machine repli-
cation (SMR) [15] to guarantee reliability and availability. SMR
provides strong consistency, which simplifies and lowers the de-
velopment and deployment efforts [4, 5, 7]. Production systems
usually use Multi-Paxos [10] or Raft [12] to implement the SMR
component, e.g., Google Spanner [7], Microsoft Azure Storage [4],
and etcd [1]. Both Multi-Paxos and Raft adopt “full copy” replication,
which replicates a complete copy of data to all nodes.

“This material is based upon work partially supported by the National Science Foun-
dation under Grant CNS-2238020.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA °24, June 17-21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0416-1/24/06

https://doi.org/10.1145/3626183.3660273

Lucas Lebow
lucasphone75@gmail.com
Unaffiliated
Denver, CO, USA

Dillon Remuck
dremuck@clarku.edu
Clark University
Worcester, MA, USA

Lewis Tseng"
lewistseng@acm.org
Clark University
Worcester, MA, USA

For modern workloads in highly reliable and available systems,
full copy replication is facing performance degradation, mainly
due to two reasons: (i) Data size is ever-growing in data-intensive
systems. The larger the data size, the larger the storage and net-
work costs when using full copy replication; and (ii) For reliability
and durability, many production systems (e.g., etcd and Azure)
choose to flush data to disk, before acknowledging a write (or an
update) operation. Disk I/O quickly becomes the performance and
scalability bottleneck.

More concretely, writing M units of data into the system requires
M units of storage space and incurs M units of disk I/O on each
node. For an n-node leader-based SMR (such as Multi-Paxos and
Raft), the leader node needs to perform M * n units of network I/O.

Recent SMR systems, such as RS-Paxos [11] and CRaft [17], adopt
erasure coding to reduce costs, and show improved performance.
However, combining leader-based SMR and erasure coding brings
two main practical limitations: (i) During leader failover, the new
leader needs to perform recovery (which reconstructs each piece
of data from coded segments). Such a recovery workload is propor-
tional to the size of the entire system and takes much longer than
recovery in full-copy protocols. No operation can be performed
during the recovery, causing a loss of availability; and (ii) In the
phase of a slow or saturated leader, the read availability is impacted.

Motivated by the observations, this paper aims to answer: “How
do we build an erasure coding SMR that improves performance and
availability, by further alleviating the bottlenecks at the leader?” In
particular, we share our experience in (i) combining erasure coding
with a recent leaderless SMR system, Rabia [13]; (ii) integrating
our design “Racos (RAbia COded System)” with etcd [1]; and (iii)
evaluating Racos under realistic workloads using YCSB [6].

2 WHY LEADERLESS ERASURE CODING SMR?

Erasure coding within individual datacenters has been widely adopted
in production cloud storage and file systems, e.g., Microsoft Azure
[4] and Facebook’s Tectonic Filesystem [14]. This is mainly because
erasure coding allows the systems to explore the tradeoff among
storage cost, availability, and reliability. Such an economic argu-
ment and operation flexibility are appealing to cloud providers in
the era of ever-increasing data volume and velocity.

These cloud systems are designed to handle larger data or files
in the range of several megabytes (MBs) or more (e.g., blob or
data warehouse storage). These systems typically implement state

SPAA 24, June 17-21, 2024, Nantes, France

machine replication (SMR) and erasure coding separately. In other
words, SMR is a standalone component.

Prior Erasure Coding SMRs. It was not until recently that erasure
coding SMR was introduced to handle smaller data, from kilobytes
(KBs) to MBs. The novelty is on the integration of erasure coding
with an SMR protocol. RS-Paxos [11] integrates erasure coding with
Paxos. CRaft [17] integrates coding with Raft. Both systems out-
perform the original protocols in local-area networks. Subsequent
works improve on various aspects [9, 16, 18].

All these erasure coding SMR systems adopt a leader-based so-
lution; hence, these systems suffer the limitations mentioned in
Section 1. While these systems have generally stable and good
performance in the common case when the leader is responsive,
both performance and availability are impacted when the leader is
saturated or even crashed. As availability is the first-class citizen
in almost all modern cloud systems, these erasure coding solutions
are not as appealing for production systems. This motivates us to
explore a leaderless design.

All these systems use Reed-Solomon (RS) codes [8], which we
also adopt. In particular, the RS code has two parameters k and m,
both positive integers. In using a (k, m) code, each piece of data
is divided into k “data segments” with equal sizes. These k data
segments can be used to generate m “parity segments,” through
encoding. In total, there are k + m segments such that any k out of
these k + m segments (namely coded segments) are sufficient for
recovering the original data, through decoding. In our design, each
node is assigned to store at least one single data or parity segment;
hence, k + m = n, which is the number of nodes in the SMR system.

Towards a Leaderless Erasure Coding SMR.

Consider erasure coding SMRs that use an (k, m) Reed-Solomon
codes and each write operation writes 1 unit of data. In this case,
each data or coded segment has a size of 1/k units. Prior leader-
based systems (e.g., [9, 11, 17, 18]) has storage cost and disk I/O
equal to M/k for the follower and M for the leader. This is because
the leader stores the full copy of the data (for the purpose of serving
reads). For each write operation, the leader needs to obtain the
original data from the client and forward the coded segment to a
follower, resulting in M(1 + "T_l) network costs.

We choose Rabia [13] as our base SMR protocol; hence, we name
our system Racos (RAbia COded System). Each replica in Racos has
storage cost and disk I/O equal to M /k. The workload of forwarding
segments and communicating with clients are distributed evenly;
thus, the cost is %(1 + %) + w% = %(l + @)

In addition, the following reasons justify the integration of era-
sure coding with a leaderless SMR protocol:

e Performance: In our targeted scenarios, the nodes have to
flush data to disk, resulting in disk I/O being the main bot-
tleneck. The analysis above shows a clear advantage for a
leaderless design for writes. Our evaluation also confirms
this analysis. Compared to the closest competitor (RS-Paxos
[11]), Racos has a 3.36x throughput improvement in all-write
workload and 1.6x improvement in the workload with bal-
anced reads and writes.

o Availability: The liveness of leader-based systems depends
on the responsiveness of the leader. In addition, the expen-
sive failover of leader-based erasure coding SMR brings a

Zarnstorff et al.

concern of unavailability. Finally, since Rabia is based on an
asynchronous consensus protocol, reads can be made non-
blocking, using a quorum-based protocol, which is generally
not easy for leader-based SMR.

e Development: Another benefit is the lower development ef-
fort in building a complete system. Again, this is due to the
complication of failover. It is non-trivial to recover from a
leader failure, which requires leader election, fetching coded
segments, and decoding to recover the original data, etc.
In comparison, Rabia does not require a failover due to its
leaderless design.

3 RACOS: DESIGN AND EVALUATION

Due to page limitation, we only briefly discuss our key designs,
without the full specification. Rabia [13] is a recent leaderless SMR
system that builds on top of Ben-Or’s binary agreement protocol
[3]. Rabia consists of (i) a spreader that exchanges client requests;
and (ii) a consensus component that takes 1.5 RTTs to complete on
the fast path and 5 RTTs on average. Rabia is leaderless; thus, each
replica can serve client requests directly.

Since the consensus component relies on Ben-Or’s randomized
protocol and the usage of a common coin, Rabia may take more
than 1.5 RTTs to agree on a request for each slot (of the SMR log). It
was shown in [13] that Rabia outperforms Multi-Paxos in a 3-node
cluster when network is well-behaving (i.e., delivering messages in
roughly the same order).

Practical Concerns and Challenges. As pointed out in [2], there are
a few concerns about deploying Rabia under practical workloads:
(i) Rabia does not have a natural support for pipelining and only
shows a good performance when using batching. However, in our
targeted scenarios, batching is not a viable solution for larger data;
(ii) Rabia only has a favorable or competitive performance in a 3-
node cluster with a well-behaving network; and (iii) Rabia requires
more messages and rounds even on fast-path, and may derail from
it under high workload.

These limitations are mainly because that Rabia’s design requires
all-to-all communication and its usage of randomization to break
a tie. Our main intuition behind the design of Racos is that using
erasure coding, performing all-to-all communication is no longer
a bottleneck. In addition, with larger data, conflict is less likely,
which means that Racos is mostly on fast-path (without using
randomization to break a tie).

Racos: Our Design. We first change the spreader component.
Instead of the full data copy, the spreader sends a corresponding
coded segment to each node, upon receiving a write request from
a client. It was designed in a way that only the segments that are
received by a sufficient number of nodes (i.e., k + f) will be used
as candidates for the consensus component. We then use the same
architecture of the consensus component (i.e., Ben-Or and common
coin), except that we change the threshold from f+1 in Rabia to k+f.
This ensures that all the committed writes are decodable for future
reads, even if f nodes crash. As a result, Racos guarantees liveness
if n > 2f + k, which achieves the same resilience for RS-Paxos.!

!CRaft [17], HRaft [9], and FlexRaft [18] improve the resilience; however, they assume
a perfect failure detector, which is usually not available in real systems.

Brief Announcement: Racos: a Leaderless Erasure Coding State Machine Replication

We also present two practical optimizations to further improve
performance and scalability over the original Rabia:

e We reduce the fast-path latency of the consensus component
from 1.5 RTTs to 0.5 RTTs. In the exchange phase, as long
as nodes observe n — f identical requests, then they can
immediately agree, without entering the Ben-Or phase. This
is possible whenever n > 3f + 1, since enough redundancy
ensures that any node in the Ben-Or phase must agree on
the same value (for the SMR slot).

e We increase the chance of staying on the fast path by using
a quorum-based approach for read operations.

Evaluation. We evaluate Racos by comparing it against three other
systems Raft [12] (the original SMR used by etcd), Rabia [13] (our
base SMR system), and RS-Paxos [11]. RS-Paxos has the best perfor-
mance in the common case, compared to other leader-based SMRs
[9, 17, 18]. We implement Rabia, RS-Paxos, and Racos into etcd, by
following the implementation of Raft as closely as possible, e.g.,
using a similar pattern to exchange messages and accessing disks.

g
8
S

e bl e T T — Y
- -®- Racos

—e— Rs-Paxos
@ Raft (3)
—®- Rabia (3)

3
)
\

\

\

g
3
.

‘Throughput (Mbps)
g

°

]
g
8
g

1000 1250 1500 1750 2000 2250
Data Size (KB)

(a) All-write workload. Throughput across different data sizes, ranging
from 1.3 KBs to 2 MBs.

40007 mmm Rs-Paxos g
3000 | ™ Raft (3)
EEm Rabia (3)
BN Racos

Latency (ms)
~
S
S
3

1000

1 6 13 66 133 666 1333 2000
Data Size (KB)

(b) All-write workload. Median latency (bar) and tail latencies (p95/p99).

— 2000{ —8— RS-Paxos 0y is
E -e- Racos \
515007 e. Raft(3) ® 4
g F \
£ 1000 \
k]

Q s00

2

200 300 400 500 600 700 800 900
Throughput (Mbps)

(c) YCSB-A: 50% reads and 50% writes with data size = 1.33 MBs.

Our cluster consists of 8 nodes running Ubuntu 20.04.5 LTS. Each
node is equipped with two 2.4 GHz 64-bit 8-Core CPUs, 64 GB RAM,
and one 200 GB SSD. The network bandwidth between each pair of
nodes is measured at 9.41 Gbits/s, using iperf. 1 RTT is 0.125 ms.
In our experiments, we have 5 or 7 server nodes that run etcd and
1 client node that runs Go-YCSB, which is Go port of YCSB [6], to
simulate realistic workloads that follow Zipfian distribution.

We first measure a favorable setup for Racos, all-write workload.
In this case, the disk I/O is the bottleneck, even for data as small
as 1.3 KBs. Figure (a) presents the throughput (in Mbps) across
different data sizes. Racos and RS-Paxos have n = 5 and use (3, 2)-
RS code, whereas Raft and Rabia have n = 3. All systems tolerate
1 crash. Racos has 3.36x throughput improvement over RS-Paxos
when the systems saturate, mainly because Racos writes less into
disk. Figure (b) shows the median, 95%tile (p95), and 99%tile (p99)
latencies (in ms). For smaller data, Racos and Rabia suffer from
a higher tail latency due to the usage of Ben-Or and the lack of

SPAA 24, June 17-21, 2024, Nantes, France

pipelining. However, as data size increases, the tail latency improves,
due to Racos’s lower disk I/O cost.

Figure (c) presents the throughput-latency plot using a balanced
workload (YCSB-A). We vary the number of client threads from 1 to
50. The throughput advantage of Racos shrinks to 1.6x, mainly due
to two reasons: (i) RS-Paxos assumes a leader lease; hence, the leader
can immediately return the data without doing any communication;
and (ii) Racos needs to obtain coded segments from other replicas
for decoding. Racos has a slightly higher p99 latency.

The following table measures Racos’s throughput (in Mbps) un-
der different scenarios with all-write workloads. We choose this
workload to stress the consensus component, as our quorum-based
reads can reduce the contention. For n = 5, we compare the case
when the message drop rate (on each link) is somewhat aggressive
at 0.01%. For n = 7, we test both (4,3) and (3,4) erasure codes. The
(4,3) code tolerates 1 fault, whereas the (3,4) code tolerates 2 faults.

datasize | n=5 | n=5;0.01% drop | n=7;(3,4) code | n=7;(4,3) code
1.3 KB 17.36 8.62 18.41 19.17
2 MB 916.8 918.4 923.2 1233.6

Racos suffers performance loss with smaller data and 0.01% mes-
sage drop rate. Interestingly, the impact of message drop is negli-
gible when data becomes larger. In our experience, message drop
is a non-factor when data size is above 500 KB. (Data not shown
for lack of space). Racos also scales well with a larger n, mainly
due to our practical optimizations. Using (4,3) code, Racos has an
improved throughput, as the size of the coded segments is smaller
(1/4 vs. 1/3). However, this comes with a reduced fault-tolerance.

REFERENCES

[1] etcd: A distributed, reliable key-value store for the most critical data of a dis-
tributed system. https://etcd.io/, accessed May 2021.
[2] Reading group. Rabia. https://charap.co/reading-group-rabia-simplifying-state-
machine-replication-through-randomization/, accessed Jan 2024.
[3] M. Ben-Or. Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In PODC 1983.
[4] B. Calder et al.. Windows azure storage: A highly available cloud storage service
with strong consistency. In SOSP 2011.
[5] Y.L.Chen et al. Giza: Erasure coding objects across global data centers. In ATC
2017.
[6] B.F. Cooper et al. Benchmarking cloud serving systems with YCSB. In SoCC
2010.
[7] J. C. Corbett et al. Spanner: Google’s globally-distributed database. In OSDI 2012.
[8] W. C.Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge
University Press, 2003.
[9] Y. Jia et al. HRaft: Adaptive erasure coded data maintenance for consensus in
distributed networks. In IPDPS 2022.
[10] L.Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133-169, 1998.
[11] S. Mu et al. When paxos meets erasure code: reduce network and storage cost in
state machine replication. In HPDC 2014
[12] D.Ongaro and J. Ousterhout. In search of an understandable consensus algorithm.
In ATC 2014.
H. Pan et al. Rabia: Simplifying state-machine replication through randomization.
In SOSP 2021.
S. Pan et al. Facebook’s tectonic filesystem: Efficiency from exascale. In FAST
2021.
[15] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv., 22(4):299-319, 1990.
M. Uluyol et al. Near-optimal latency versus cost tradeoffs in geo-distributed
storage. In NSDI 2020.
Z. Wang et al. CRaft: An erasure-coding-supported version of raft for reducing
storage cost and network cost. In FAST 2020.
[18] M. Zhang et al. Minimizing network and storage costs for consensus with flexible
erasure coding. In ICPP 2023.

13

[14

[16

17

