
Brief Announcement: Racos: a Leaderless Erasure Coding State
Machine Replication

Jonathan Zarnstorff*
jonathanzarnstorff@gmail.com

Unaffiliated
Boston, MA, USA

Lucas Lebow
lucasphone75@gmail.com

Unaffiliated
Denver, CO, USA

Dillon Remuck
dremuck@clarku.edu
Clark University

Worcester, MA, USA

Colin Ruiz
cruiz@clarku.edu
Clark University

Worcester, MA, USA

Lewis Tseng∗

lewistseng@acm.org
Clark University

Worcester, MA, USA

ABSTRACT

Cloud storage systems often use state machine replication (SMR) to

ensure reliability and availability. Erasure coding has recently been

integrated with SMR to reduce disk and network I/O costs. This

brief announcement shares our experience in developing a leaderless

erasure coding SMR system. We integrate our system Racos with

etcd, a distributed key-value storage that powers Kubernetes. Racos

outperforms competitors by up to 3.36x in throughput.

CCS CONCEPTS

• Computer systems organization→ Reliability.

KEYWORDS

State machine replication, Erasure coding, Leaderless, Rabia

ACM Reference Format:

Jonathan Zarnstorff*, Lucas Lebow, Dillon Remuck, Colin Ruiz, and Lewis

Tseng. 2024. Brief Announcement: Racos: a Leaderless Erasure Coding

State Machine Replication. In Proceedings of the 36th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA ’24), June 17–21, 2024,

Nantes, France. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/

3626183.3660273

1 INTRODUCTION

Modern distributed systems in clouds often use state machine repli-

cation (SMR) [15] to guarantee reliability and availability. SMR

provides strong consistency, which simplifies and lowers the de-

velopment and deployment efforts [4, 5, 7]. Production systems

usually use Multi-Paxos [10] or Raft [12] to implement the SMR

component, e.g., Google Spanner [7], Microsoft Azure Storage [4],

and etcd [1]. BothMulti-Paxos and Raft adopt “full copy” replication,

which replicates a complete copy of data to all nodes.

∗This material is based upon work partially supported by the National Science Foun-
dation under Grant CNS-2238020.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3660273

For modern workloads in highly reliable and available systems,

full copy replication is facing performance degradation, mainly

due to two reasons: (i) Data size is ever-growing in data-intensive

systems. The larger the data size, the larger the storage and net-

work costs when using full copy replication; and (ii) For reliability

and durability, many production systems (e.g., etcd and Azure)

choose to flush data to disk, before acknowledging a write (or an

update) operation. Disk I/O quickly becomes the performance and

scalability bottleneck.

More concretely, writing" units of data into the system requires

" units of storage space and incurs " units of disk I/O on each

node. For an =-node leader-based SMR (such as Multi-Paxos and

Raft), the leader node needs to perform" ∗ = units of network I/O.

Recent SMR systems, such as RS-Paxos [11] and CRaft [17], adopt

erasure coding to reduce costs, and show improved performance.

However, combining leader-based SMR and erasure coding brings

two main practical limitations: (i) During leader failover, the new

leader needs to perform recovery (which reconstructs each piece

of data from coded segments). Such a recovery workload is propor-

tional to the size of the entire system and takes much longer than

recovery in full-copy protocols. No operation can be performed

during the recovery, causing a loss of availability; and (ii) In the

phase of a slow or saturated leader, the read availability is impacted.

Motivated by the observations, this paper aims to answer: “How

do we build an erasure coding SMR that improves performance and

availability, by further alleviating the bottlenecks at the leader?” In

particular, we share our experience in (i) combining erasure coding

with a recent leaderless SMR system, Rabia [13]; (ii) integrating

our design “Racos (RAbia COded System)” with etcd [1]; and (iii)

evaluating Racos under realistic workloads using YCSB [6].

2 WHY LEADERLESS ERASURE CODING SMR?

Erasure codingwithin individual datacenters has beenwidely adopted

in production cloud storage and file systems, e.g., Microsoft Azure

[4] and Facebook’s Tectonic Filesystem [14]. This is mainly because

erasure coding allows the systems to explore the tradeoff among

storage cost, availability, and reliability. Such an economic argu-

ment and operation flexibility are appealing to cloud providers in

the era of ever-increasing data volume and velocity.

These cloud systems are designed to handle larger data or files

in the range of several megabytes (MBs) or more (e.g., blob or

data warehouse storage). These systems typically implement state



SPAA ’24, June 17–21, 2024, Nantes, France Zarnstorff et al.

machine replication (SMR) and erasure coding separately. In other

words, SMR is a standalone component.

Prior Erasure Coding SMRs. It was not until recently that erasure

coding SMR was introduced to handle smaller data, from kilobytes

(KBs) to MBs. The novelty is on the integration of erasure coding

with an SMR protocol. RS-Paxos [11] integrates erasure coding with

Paxos. CRaft [17] integrates coding with Raft. Both systems out-

perform the original protocols in local-area networks. Subsequent

works improve on various aspects [9, 16, 18].

All these erasure coding SMR systems adopt a leader-based so-

lution; hence, these systems suffer the limitations mentioned in

Section 1. While these systems have generally stable and good

performance in the common case when the leader is responsive,

both performance and availability are impacted when the leader is

saturated or even crashed. As availability is the first-class citizen

in almost all modern cloud systems, these erasure coding solutions

are not as appealing for production systems. This motivates us to

explore a leaderless design.

All these systems use Reed-Solomon (RS) codes [8], which we

also adopt. In particular, the RS code has two parameters : and<,

both positive integers. In using a (:,<) code, each piece of data

is divided into : “data segments” with equal sizes. These : data

segments can be used to generate < “parity segments,” through

encoding. In total, there are : +< segments such that any : out of

these : +< segments (namely coded segments) are sufficient for

recovering the original data, through decoding. In our design, each

node is assigned to store at least one single data or parity segment;

hence, : +< = =, which is the number of nodes in the SMR system.

Towards a Leaderless Erasure Coding SMR.

Consider erasure coding SMRs that use an (:,<) Reed-Solomon

codes and each write operation writes 1 unit of data. In this case,

each data or coded segment has a size of 1/: units. Prior leader-

based systems (e.g., [9, 11, 17, 18]) has storage cost and disk I/O

equal to"/: for the follower and" for the leader. This is because

the leader stores the full copy of the data (for the purpose of serving

reads). For each write operation, the leader needs to obtain the

original data from the client and forward the coded segment to a

follower, resulting in" (1 + =−1
:

) network costs.

We choose Rabia [13] as our base SMR protocol; hence, we name

our system Racos (RAbia COded System). Each replica in Racos has

storage cost and disk I/O equal to"/: . The workload of forwarding

segments and communicating with clients are distributed evenly;

thus, the cost is "

=
(1 + =−1

:
) +

" (=−1)
=

1
:
=

"

=
(1 +

2(=−1)
:

).

In addition, the following reasons justify the integration of era-

sure coding with a leaderless SMR protocol:

• Performance: In our targeted scenarios, the nodes have to

flush data to disk, resulting in disk I/O being the main bot-

tleneck. The analysis above shows a clear advantage for a

leaderless design for writes. Our evaluation also confirms

this analysis. Compared to the closest competitor (RS-Paxos

[11]), Racos has a 3.36x throughput improvement in all-write

workload and 1.6x improvement in the workload with bal-

anced reads and writes.

• Availability: The liveness of leader-based systems depends

on the responsiveness of the leader. In addition, the expen-

sive failover of leader-based erasure coding SMR brings a

concern of unavailability. Finally, since Rabia is based on an

asynchronous consensus protocol, reads can be made non-

blocking, using a quorum-based protocol, which is generally

not easy for leader-based SMR.

• Development: Another benefit is the lower development ef-

fort in building a complete system. Again, this is due to the

complication of failover. It is non-trivial to recover from a

leader failure, which requires leader election, fetching coded

segments, and decoding to recover the original data, etc.

In comparison, Rabia does not require a failover due to its

leaderless design.

3 RACOS: DESIGN AND EVALUATION

Due to page limitation, we only briefly discuss our key designs,

without the full specification. Rabia [13] is a recent leaderless SMR

system that builds on top of Ben-Or’s binary agreement protocol

[3]. Rabia consists of (i) a spreader that exchanges client requests;

and (ii) a consensus component that takes 1.5 RTTs to complete on

the fast path and 5 RTTs on average. Rabia is leaderless; thus, each

replica can serve client requests directly.

Since the consensus component relies on Ben-Or’s randomized

protocol and the usage of a common coin, Rabia may take more

than 1.5 RTTs to agree on a request for each slot (of the SMR log). It

was shown in [13] that Rabia outperforms Multi-Paxos in a 3-node

cluster when network is well-behaving (i.e., delivering messages in

roughly the same order).

Practical Concerns and Challenges.As pointed out in [2], there are

a few concerns about deploying Rabia under practical workloads:

(i) Rabia does not have a natural support for pipelining and only

shows a good performance when using batching. However, in our

targeted scenarios, batching is not a viable solution for larger data;

(ii) Rabia only has a favorable or competitive performance in a 3-

node cluster with a well-behaving network; and (iii) Rabia requires

more messages and rounds even on fast-path, and may derail from

it under high workload.

These limitations are mainly because that Rabia’s design requires

all-to-all communication and its usage of randomization to break

a tie. Our main intuition behind the design of Racos is that using

erasure coding, performing all-to-all communication is no longer

a bottleneck. In addition, with larger data, conflict is less likely,

which means that Racos is mostly on fast-path (without using

randomization to break a tie).

Racos: Our Design. We first change the spreader component.

Instead of the full data copy, the spreader sends a corresponding

coded segment to each node, upon receiving a write request from

a client. It was designed in a way that only the segments that are

received by a sufficient number of nodes (i.e., : + 5 ) will be used

as candidates for the consensus component. We then use the same

architecture of the consensus component (i.e., Ben-Or and common

coin), except that we change the threshold from 5 +1 in Rabia to:+5 .

This ensures that all the committed writes are decodable for future

reads, even if 5 nodes crash. As a result, Racos guarantees liveness

if = ≥ 25 + : , which achieves the same resilience for RS-Paxos.1

1CRaft [17], HRaft [9], and FlexRaft [18] improve the resilience; however, they assume
a perfect failure detector, which is usually not available in real systems.




