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Abstract

This paper investigates the asymptotic distribution of the maximum-likelihood
estimate (MLE) in multinomial logistic models in the high-dimensional regime
where dimension and sample size are of the same order. While classical large-
sample theory provides asymptotic normality of the MLE under certain conditions,
such classical results are expected to fail in high-dimensions as documented for the
binary logistic case in the seminal work of Sur and Candes [2019]. We address this
issue in classification problems with 3 or more classes, by developing asymptotic
normality and asymptotic chi-square results for the multinomial logistic MLE
(also known as cross-entropy minimizer) on null covariates. Our theory leads to a
new methodology to test the significance of a given feature. Extensive simulation
studies on synthetic data corroborate these asymptotic results and confirm the
validity of proposed p-values for testing the significance of a given feature.

1 Introduction

Multinomial logistic modeling has become a cornerstone of classification problems in machine
learning, as witnessed by the omnipresence of both the cross-entropy loss (multinomial logistic loss)
and the softmax function (gradient of the multinomial logistic loss) in both applied and theoretical
machine learning. We refer to Cramer [2002] for an account of the history and early developments of
logistic modeling.

Throughout, we consider a classification problem with K + 1 possible labels where K is a fixed
constant. This paper tackles asymptotic distributions of multinomial logistic estimates (or cross-
entropy minimizers) in generalized linear models with moderately high-dimensions, where sample
size n and dimension p have the same order, for instance n, p — +oo simultaneously while the ratio
p/n converges to a finite constant. Throughout the paper, let [n] = {1,2,...,n} foralln € N, and
I{statement} be the 0-1 valued indicator function, equal to 1 if statement is true and O otherwise
(e.g., I{y; = 1} in the next paragraph equals 1 if y; = 1 holds and 0 otherwise).

The case of binary logistic regression. Let p(t) = log(1 + €') be the logistic loss and p'(t) =
1/(1+4e~*) be its derivative, often referred to as the sigmoid function. In the current moderately-high
dimensional regime where n,p — +oo with p/n — x > 0 for some constant s, recent works
[Candes and Sur, 2020, Sur and Candes, 2019, Zhao et al., 2022] provide a detailed theoretical
understanding of the behavior of the logistic Maximum Likelihood Estimate (MLE) in binary logistic
regression models. Observing independent observations (z;, ¥;)ic[,) from a logistic model defined
as P(y; = 1]a;) = p/(xF B) where z; ~ N(0,n711,), and lim,,_, || 3]|?/n = ~? for a constant
~ for the limiting squared norm of the unknown regression vector 5. These works prove that the
behavior of the MLE 3 = arg minycg, S, p(z7b) — I{y; = 1}2Tbis summarized by the solution
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(s, 0%, Ay of the system of three equations

o? = HER20 (vZ1) (M (prox,,(—avZi + VKo Zs)))?]
0 =Bl (vZ)M (proxy (—anZs + Vo Za)) , (.1
1—r =E[20/(vZ1)/ (1 + N" (proxy,(—avZ1 + VKo Z2)))]

where (Z1,Z5) are i.i.d. N(0,1) random variables and the proximal operator is defined as
prox,,(z) = argmin,cx{Ap(t) + (t — z)?/2}. The system (1.1) characterize, among others,
the following behavior of the MLE B : for almost any (7, k), the system admits a solution if and only
if 3 exists with probability approaching one and in this case, ||3]|?/n and ||3 — 3||?/n both have

finite limits that may be expressed as simple functions of (., 0, \.), and for any feature j € [p]
such that 8; = 0 (i.e., j is a null covariate), the j-th coordinate of the MLE satisfies

3;-N(0,02).

The proofs in Sur and Candes [2019] are based on approximate message passing (AMP) techniques;
we refer to Berthier et al. [2020], Feng et al. [2022], Gerbelot and Berthier [2021] and the references
therein for recent surveys and general results. More recently, Zhao et al. [2022] extended the result
of Sur and Candes [2019] from isotropic design to Gaussian covariates with an arbitrary covariance
structure: if now z; ~ N(0,X) for some positive definite 3 and lim,, p—4 oo BTYB = k, null
covariates j € [p] (in the sense that y; is independent of x;; given (x4 )re[p)\{;3) of the MLE satisfy

(n/S2;)/23;-5N (0, 02), (1.2)

where o, is the same solution of (1.1) and 2 = X ~!. Zhao et al. [2022] also obtained asymptotic
normality results for non-null covariates, that is, features j € [p] such that 5; # 0. The previous
displays can be used to test the null hypothesis Hy : y; is independent of x;; given (Zix)re[p)\{;}
and develop the corresponding p-values if o, is known; in this binary logistic regression model the
ProbeFrontier [Sur and Candes, 2019] and SLOE Yadlowsky et al. [2021] give means to estimate
the solutions (a, 0., i) of system (1.1) without the knowledge of . Mai et al. [2019] studied the
performance of Ridge regularized binary logistic regression in mixture models. Salehi et al. [2019]
extended Sur and Candes [2019] to separable penalty functions. Bellec [2022] derived asymptotic
normality results similar to (1.2) in single-index models including binary logistic regression without
resorting to the system (1.1), showing that for a null covariate j € [p] in the unregularized case that

(n/Q) 2 (6/7) ;-5 N (0, 1) (1.3)

where 0 = L5 p"(xTB) — p" (a7 B)22T [N, wup” (xF B)aT] a, is scalar and so is 72 =

LS (I{y; = 1} — p'(2T 8))*. In summary, in this high dimensional binary logistic model,

(i) The phase transition from Candés and Sur [2020] splits the (-, ) plane into two connected
components: in one component the MLE does not exist with high probability, in the other

component the MLE exists and ||£!/23||2 is bounded with high probability (boundedness is
a consequence of the fact that ||X1/253||2 or ||2'/2(5 — 3)||? admit finite limits);

(ii) In the component of the (v, k) plane where the MLE exists, for any null covariate j € [p],
the asymptotic normality results (1.2)-(1.3) holds.

Multiclass classification. The goal of this paper is to develop a theory for the asymptotic normality
of the multinomial logistic regression MLE (or cross-entropy minimizer) on null covariates when the
number of classes, K + 1, is greater than 2 and n, p are of the same order. In other words, we aim to
generalize results such as (1.2) or (1.3) for three or more classes. Classification datasets with 3 or
more classes are ubiquitous in machine learning (MNIST, CIFAR to name a few), which calls for such
multiclass generalizations. In Gaussian mixtures and logistic models, Thrampoulidis et al. [2020]
derived characterizations of the performance of of least-squares and class-averaging estimators,
excluding cross-entropy minimizers or minimizers of non-linear losses. Loureiro et al. [2021]
extended Sur and Candes [2019], Zhao et al. [2022], Salehi et al. [2019] to multiclass classification
problems in a Gaussian mixture model, and obtained the fixed-point equations that characterize the
performance and empirical distribution of the minimizer of the cross-entropy loss plus a convex
regularizer. In the same vein as Loureiro et al. [2021], Cornacchia et al. [2022] studied the limiting



fixed-point equations in a multiclass teacher-student learning model where labels are generated by
a noiseless channel with response argmingc ¢y gy xT Bi, where 3, € RP is unknown for each
class k. These two aforementioned works assume a multiclass Gaussian mixture model, which is
different than the normality assumption for x; used in the present paper. More importantly, these
results cannot be readily used for the purpose testing significant covariates (cf. (1.10) below) since
solving the fixed-point equations require the knowledge of several unknown parameters, including
the limiting spectrum of the mixture covariances and empirical distributions of the mixture means (cf.
for instance Corollary 3 in Loureiro et al. [2021]). In the following sections, we fill this gap with a
new methodology to test the significance of covariates. This is made possible by developing new
asymptotic normality results for cross-entropy minimizers that generalize (1.3), without relying on
the low-dimensional fixed-point equations.

Notation. Throughout, I, € RP*? is the identity matrix, for a matrix A € R™*", AT denotes the
transpose of A, At denotes the Moore-Penrose inverse of A. If A is psd, A'/2 denotes the unique
symmetric square root, i.e., the unique positive semi-definite matrix such that (4'/2)2 = A. The
symbol ® denotes the Kronecker product of matrices. Given two matrices A € R"** B € R"*4
with the same number or rows, (A, B) € R™* (k%) i5 the matrix obtained by stacking the columns of
A and B horizontally. If v € R™ is a column vector with dimension equal to the number of rows in
A, we construct (A, v) € R"*(+1) similarly. We use 0,, and 1,, to denote the all-zeros vector and
all-ones vector in R", respectively; we do not bold vectors and matrices other than 0,, and 1,,. We

may omit the subscript giving the dimension if clear from context; e.g., in Ix 11 — %ﬂ the vector 1

is in RE+1, The Kronecker product between two matrices is denoted by ® and vec(M) € R™? is
the vectorization operator applied to a matrix M € R™*<, For an integer K > 2 and « € (0, 1), the
quantile % («) is the unique real number satisfying IF’(CI{V > x2%-(a)) = a where W has a chi-square
distribution with K degrees of freedom. The symbols — and — denote convergence in distribution
and in probability.

Throughout, classical asymptotic regime refers to the scenario where the feature dimension p is fixed

and the sample size n goes to infinity. In contrast, the term high-dimensional regime refers to the
situation where n and p both tend to infinity with the ratio p/n converging to a limit smaller than 1.

1.1 Multinomial logistic regression

Consider a multinomial logistic regression model with K + 1 classes. We have n i.i.d. data samples
{(zi,yi) Y1, where z; € RP is the feature vector and y; = (y;1, .‘.,yi(K_H))T € REF! is the
response. Each response y; is the one-hot encoding of a single label, i.e., y; € {0, 1}5+! with

Zkl,(jll yit = 1 such that y;; = 1 if and only if the label for i-th observation is k. A commonly used
generative model for y; is the multinomial regression model, namely

exp(zIB*ey)
Plyik = 1|z:) = =53 Ton
21 exp(z Bep)

where B* € RP*(K+1) i5 an unknown logistic model parameter and e;, € REX+! ¢, € RE+! are
the k-th and k’-th canonical basis vectors. The MLE for B* in the model (1.4) is any solution that
minimizes the cross-entropy loss,

. ke{l,2,... K+1} (1.4)

B € arg mingcpox sy > ory Li(BTz;), (1.5)

where L; : RE+! — R is defined as L;(u) = — Zf:ll YikUg + log Zg: exp(ug ). If the solution
set in (1.5) is non-empty, we define for each observation ¢ € [n] the vector of predicted probabilities
A L A . A T .

Pi = (Pi1s s Pi(k+1))" With

L def exp(xT Bey,)
pi =P(Yir = 1) = :
>ty exp(al Bey)

Our results will utilize the gradient and Hessian of L; evaluated at BZ'z;, denoted by

foreach k € {1,..., K + 1}. (1.6)

def ~ R def E . ~ ~A A
gi = VL;(BT2;)) = —y; +pi;,  H; = V2L(BT2;) = diag(p:) — pipy - (1.7)



The quantities (I:%, Pi, &, H;) can be readily computed from the data {(z;,y;)}" ;. To be spe-
cific, the MLE B in (1.5) can be obtained by invoking a multinomial regression solver (e.g.,
sklearn.linear_model.LogisticRegression from Pedregosa et al. [2011]), and the quanti-
ties p;, g;, H; can be further computed from eqs. (1.6) and (1.7) by a few matrix multiplications and
application of the softmax function.

Log-odds model and reference class. The matrix B* in (1.4) is not identifiable since the conditional
distribution of y;|z; in the model (1.4) remains unchanged if we replace columns of B* by B* —b1% 41
for any b € RP. In order to obtain an identifiable model, a classical and natural remedy is to model
the log-odds, here with the class K + 1 as the reference class:

P(ysr = 1|z;)

log
]P(Yi(K+1) = 1lz;)

=zl A*e,,  Vk < [K] (1.8)

where e, is the k-th canonical basis vector of R, and A* € RP*X is the unknown parameter.
The matrix A* € RP*X in log-odds model (1.8) is related to B* € RP*(K+1) in the model (1.4)
by A* = B*(Ix, —1x)T. This log-odds model has two benefits: First it is identifiable since the
unknown matrix A* is uniquely defined. Second, the matrix A* lends itself well to interpretation as
its k-th column represents the contrast coefficient between class &k and the reference class K + 1.

The MLE A of A* in (1.8) is A = arg Ny ey x i S 1 ((A 0,)7'z;). If the solution set in (1.5)
is non-empty, A is related to any solution Bin (1.5) by A= B(I i, —1x)T. Equivalently,

Aj =Bk — Bjiryn) (1.9)

for each j € [p] and k € [K]. If there are three classes (i.e. K + 1 = 3), this parametrization allows
us to draw scatter plots of realizations of v/ne] A = (v/nA;1,/nA; ) as in Figure 1.

1.2 Hypothesis testing for the j-th feature and classical asymptotic normality for MLE

Hypothesis testing for the j-th feature. Our goal is to develop a methodology to test the sig-
nificance of the j-th feature. Specifically, for a desired confidence level (1 — «) € (0,1) (say,
1 — o = 0.95) and a given feature j € [p] of interest, our goal is to test

Hj :y; is conditionally independent of z;; given (1) jsc[p)\ {5} - (1.10)

Namely, we want to test whether the j-th variable is independent from the response given all other
explanatory variables (x;;, j' € [p] \ {j}). Assuming normally distributed ; and a multinomial
model as in (1.4) or (1.8), it is equivalent to test

Hg:ej A" = 0j versus Hy:ej A" # 0, (1.11)
where e; € R? is the j-th canonical basis vector.

If the MLE B in (1.5) exists in the sense that the solution set in (1.5) is nonempty, the conjecture that

rejecting Hy when ejTé is far from O 41 is a reasonable starting point. The important question, then,
is to determine a quantitative statement for the informal “far from O ", similarly to (1.2) or (1.3)
in binary logistic regression.

Classical theory with p fixed. If p is fixed and n — oo in model (1.8), classical maximum
likelihood theory [Van der Vaart, 1998, Chapter 5] provides the asymptotic distribution of the MLE

A, which can be further used to test (1.11). Briefly, if « has the same distribution as any x;, the MLE
A in the multinomial logistic model is asymptotically normal with

Vn(vec(A) — vec(A*))&N(O,I_l) where 7 = E[(z2”) ® (diag(r*) — 7*7*7)]

is the Fisher information matrix evaluated at the true parameter A*, vec(+) is the usual vectorization
operator, and 7* € R¥ has random entries 7} = exp(z” A%ey) /(1 + Zf,:l exp(zT A*ey)) for
each k € [K]. In particular, under Hy : e] A* = 0F,

VnATe;~4N (0, S;) (1.12)



where S; = (el © Ig)T ! (e; ® Ix) = el (cov(z))'e;[E (diag(w*) — 7*7*7)] 1. When (1.12)
holds, by the delta method we also have ﬁS;1/2ATej i>N(07 Ir) and

—1/2 2 d
nl|S; 2 AT e; |2 Loxk (1.13)

where the limiting distribution is chi-square with K degrees of freedom. This further suggests the
size « test that rejects Hy when T7(X,Y) > x%(«), where T7(X,Y) = nHS;lmflTejHQ is the
test statistic. If (1.13) holds, this test is guaranteed to have a type I error converging to «. The p-value
of this test is given by

+
xS (Dt (1.14)
where fxi (+) is the density of the chi-square distribution with K degrees of freedom.

As discussed in the introduction, Sur and Candes [2019] showed that in binary logistic regression,
classical normality results for the MLE such as (1.12) fail in the high-dimensional regime because
the variance in (1.12) underestimates the variability of the MLE even for null covariates; see also
the discussion surrounding (1.2). Our goal is to develop, for classification problems with K + 1 > 3
classes, a theory that correctly characterize the asymptotic distribution of ATe ; for a null covariate
j € [p] in the high-dimensional regime.

We present first some motivating simulations that demonstrate the failure of classical normal ap-
proximation (1.12) in finite samples. These simulations are conducted for various configurations
of (n,p) with K 4+ 1 = 3 classes. We fix the true parameter A* and obtain 1000 realizations of
(Aj1, Ajo) by independently resampling the data {(x;,y;)}?, 1000 times. If the result (1.12) holds,
then P(y/nATe; € CJ) — 1 — o, where CJ, = {u € RX : ||S;1/2
scatter plots of \/ﬁ(/ljl, Ajg) along with the boundary of 95% confidence set CJ, with o = 0.05. We
observe that, across the three different configurations of (n, p), the 95% confidence sets from our
theory (Theorem 2.2 presented in next section) cover around 95% of the realizations, while the set
CJ from classical theory only covers approximately 30% of the points, which is significantly lower
than the desired coverage rate of 95%. Intuitively and by analogy with results in binary classification
[Sur and Candes, 2019], this is because the classical theory (1.12) underestimates the variation of
the MLE in the high-dimensional regime. Motivated by this failure of classical MLE theory and the
results in binary classification [Sur and Candes, 2019, among others], the goal of this paper is to
develop a theory for multinomial logistic regression that achieves the following objectives:

u|| < x% () }. Figure 1 displays

[ classical; coverage:30.5%

- 20 [ classical; coverage:35.5% == [ classical; coverage:28.8%
5 [ modern; coverage:94.3% ==+ . . - .

1 modern; coverage:95.3% 20 [ modern; coverage:95.1% ==, _ ' .-

(@) (n, p) = (2000, 600) (b) (n,p) = (3500, 1000) (©) (n,p) = (5000, 1500)

Figure 1: Scatter plot of pairs (v/7.A 1, /nA;2) with K = 2 over 1000 repetitions. The blue ellipsoid
is the boundary of the 95% confidence set for \/nA”e; under Hy from the classical MLE theory
(1.12)-(1.13) based on the Fisher information, the dashed red ellipsoids are the boundaries of the 95%
confidence set for \/HATej under Hy from this paper (cf. (2.3) below). Each of the 1000 repetition
gives a slightly different dashed ellipsoid. The solid red ellipsoid is the average of these 1000 dashed
ellipsoids. Each row of X is i.i.d. sampled from N (0, %) with ¥ = (0.5/"~71),,5,,. The first [p/4]
rows of A* are i.i.d. sampled from N (0, I ) while other rows are set to zeros. We further normalize
A* such that A*TYA* = I . The last coordinate j = p is used as the null coordinate.



* Establish asymptotic normality of the multinomial MLE ATej for null covariates as n,p —
+o0 simultaneously with a finite limit for n/p.

* Develop a valid methodology for hypothesis testing of (1.10) in this regime, i.e., testing for
the presence of an effect of a feature j € [p] on the multiclass response.

The contribution of this paper is two-fold: (i) For a null covariate j € [p], we establish asymptotic

normality results for ATej that are valid in the high-dimensional regime where n and p have the
same order; (i) we propose a user-friendly test for assessing the significance of a feature in multiclass
classification problems.

2 Main result: asymptotic normality of B”¢; and A”¢; on null covariates

In this section, we present the main theoretical results of our work and discuss their significance. We
work under the following assumptions.

Assumption 2.1. For constants § > 1, assume that n,p — oo with p/n < 61, and that the
design matrix X € R"*? has n i.i.d. rows (2;);e[) ~ N (0, X) for some invertible ¥ € RP*P. The
observations (4, Y;)ie[n) are i.i.d. and each y; is of the form y; = f(U;, xT'B*) for some deterministic

function f, deterministic matrix B* € RP* (K+1)
U; independent of x;.

such that B*1x 1 = 0,, and latent random variable

Assumption 2.2 (One-hot encoding). The response matrix Y is in R"*(K+1) _[ts j-th row y; is a

one-hot encoded vector, that is, valued in {0, 1}%+! with 25:11 yir = 1 for each i € [n].

The model y; = f(U;, xI' B*) for some deterministic f and B* and latent random variable U; in
Assumption 2.1 is more general than a specific generative model such as the multinomial logistic
conditional probabilities in (1.4), as broad choices for f are allowed. In words, the model y; =
f(U;, I B*) with B*1x 41 = 0, means that y; only depends on z; through a K dimensional
projection of z; (the projection on the row-space of B*). The assumption p/n < J~! is more
general than assuming a fixed limit for the ratio p/n; this allows us to cover low-dimensional settings
satisfying p/n — 0 as well.

The following assumption requires the labels to be “balanced”: we observe each class at least yn times
for some constant y > 0. If (y;) ;e[ are i.i.d. as in Assumption 2.1 with distribution independent of
n, p, by the law of large numbers this assumption is equivalent to minge(x 1] P(yix = 1) > 0.

Assumption 2.3. There exits a constant v € (0, %H], such that for each k € [K + 1], with

probability approaching one at least yn observations ¢ € [n] are such that y;;; = 1. In other words,
P> I(yik = 1) > yn) — 1foreach k € [K + 1].

As discussed in item list (i) on page 2, in binary logistic regression, Candes and Sur [2020], Sur
and Candes [2019] show that the plane (2, ||$1/28%||) is split by a smooth curve into two connected
open components: in one component the MLE does not exist with high probability, while in the other
component, with high probability the MLE exists and is bounded in the sense that [|%1/23]2 < 7/
or equivalently 2 ||X B2 < 7 for constants 7, 7 independent of n, p. The next assumption requires

the typical situation of the latter component, in the current multiclass setting: B in (1.5) exists in the
sense that the minimization problem has solutions, and at least one solution is bounded.

Assumption 2.4. Assume P(B exists and | XB(Ix1 — %)H% <nr)— lasn,p — +oo for
some large enough constant 7.

Note that the validity of Assumption 2.4 can be assessed using the data at hand; if a multino-
mial regression solver (e.g. sklearn.linear_model.LogisticRegression) converges' and

~ T . .
LIXB(Ig41 — %ﬂ) |% is no larger than a predetermined large constant 7, then we know Assump-

tion 2.4 holds. Otherwise the algorithm does not converge or produces an unbounded estimate: we
know Assumption 2.4 fails to hold and we need collect more data.

"Here, we refer to standard convergence assessment methods for convex solvers, e.g., looking at the
gradient/Hessian values at the current iterate, or looking at the duality gap if available.



Our first main result, Theorem 2.1, prov1des the asymptotic distribution of BTeJ where j € [p] is

a null covariate, where B is any minimizer B of (1.5). Throughout, we denote by () the precision
matrix defined as Q = X1

Theorem 2.1. Let Assumptions 2.1 to 2.4 be fulfilled. Then for any j € [p| such that Hy in (1.10)
holds, and any minimizer B of (1.5), we have

n 1 — 20t 1 O R | i
@((nzgig?) ) (ﬁ Zvi) BT, —>N(0, Tt — 25 ) 2.1
=1 i=1

—— —_——
scalar R(K+1)x (K+1) R(K+1)x(K+1) RK+1 cov, RIK+1) X (K+1)

where g; = —y; + p;asin(L.7)yandV; =H;, — (H; ® a:ZT)[Z;L:l H® (xlxlT)}T(Hi ® x;).

The proof of Theorem 2.1 is given in Supplementary Section S3. Theorem 2.1 establishes that under
Hy, BT eJ converges to a singular multivariate Gaussian distribution in RE+L Tn (2.1), the two
matrices = 3" (y; — p;)(y; — pi)T and L 37 | V; are symmetric with kernel being the linear span
of 1,1, and similarly, if a solution exists, we may replace B by I%(I K+1 — % +1) which is also
solution in (1.5). In this case, all matrix-matrix and matrix-vector multiplications, matrix square root
and pseudo-inverse in (2.1) happen with row-space and column space contained in the orthogonal
component of 1, 1, so that the limiting Gaussian distribution in RE+1L s also supported on this
K -dimensional subspace.

Since the distribution of the left-hand side of (2.1) is asymptotically pivotal for all null covariates
j € [p], Theorem 2.1 opens the door of statistical inference for multinomial logistic regression in
high-dimensional settings. By construction, the multinomial logistic estimate A € RP*¥ in (1.9)

ensures (1217 0,) is a minimizer of (1.5). Therefore, we can deduce the following theorem from
Theorem 2.1.

Theorem 2.2. Define the matrix R = (I, 0)T € READXK ysing block matrix notation. Let
Assumptions 2.1 to 2.4 be fulfilled. For A in (1.9) and any j € [p| such that Hy in (1.10) holds,

(IK n %)RT \/QTM((:L lzzgig;f)m)T (% gviR) ATe; LN (0, Ix) (2.2)

matrix RE X (K+1) scalar  matrix R(K+1) x (K+1) R(K+1)X K RE

where g; is defined in (1.7) and V; is defined in Theorem 2.1. Furthermore, for the same j € [p),
; &f M I~ 2\t 1 < 12 ; d o
TIX,Y) 4 %H(<n;gg ) ) (n;vi)}m ejH satisfies T9(X,Y)-Soy2.. (2.3)

Note that Equations (2.2) and (2.3) is stated using §;; = e}wZ*lej. When X is unknown, the

quantity Q;; in above results can be replaced by its consistent estimate ij defined in (2.5), and the
convergence in distribution results still hold.

Theorem 2.2 is proved in Supplementary Section S4. To the best of our knowledge, Theorem 2.2 is

the first result that characterizes the distribution of null MLE coordinate A”e ; in high-dimensional
multinomial logistic regression with 3 or more classes. It is worth mentioning that the quantities

(8, Vi, A) used in Theorem 2.2 can be readily computed from the data (X,Y'). Therefore, Theo-
rem 2.2 lets us test the significance of a specific feature: for testing H, this theorem suggests the test

statistic 7,7 (X,Y") in (2.3) and the rejection region &7 = {(X,Y): TI(X,Y) > x%(a)}. Under
the null hypothesis Hy in (1.10), Theorem 2.2 guarantees P((X,Y) € £1) — . In other words, the
test that rejects Hy if (X,Y’) € £J has type I error converging to . The p-value of this test is

p-value = [50 L) foa (£)dt, 2.4)
where fx2 (+) is the density of the chi-square distribution with K degrees of freedom.

Unknown ;; = e X~ 'e;. If ¥ is unknown, we describe a consistent estimate of the quantity £2;;
appearing in (2 1), (2 2), and (2.3). Under the Gaussian Assumption 2.1, the quantity 2;; is the
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Figure 2: Q-Q plots of the test statistic in the left-hand side of (1.13) (in orange) and in the left-hand
side of (2.3) (in blue) for different (n, K') and p = 1000.

reciprocal of the conditional variance Var(x;;|z; —;), which is also the noise variance in the linear
model of regressing Xe; onto X_; (the submatrix of X excluding the j-th column). According
to standard results in linear models, we have Qj;[|[7, — X _;(XT, X ;) ' X ]Xej]12 ~ x2_ 1.
Since X7 _,,1/(n —p+ 1) — 1 almost surely by the strong law of large numbers,

Qjj = (n—p+ /|l — X_;(XT;X_;) ' XT;] Xey|? 2.5)
is a consistent estimator of €2;;. Therefore, the previous asymptotic results in Theorems 2.1 and 2.2
still hold by Slutsky’s theorem if we replace ;; by the estimate (;; in (2.5).

3 Numerical experiments

This section presents simulations and a real data analysis to examine finite sample properties of the
above results and methods. The source code for generating all of the experimental results in this
paper can be found in the supplementary material.

Simulation settings. We set p = 1000 and consider different combinations of (n, K'). The covariance
matrix X is specified to be the correlation matrix of an AR(1) model with parameter p = 0.5, that is,
¥ = (0.51"7 |)pX »- We generate the regression coefficients A* € RP*¥ once and for all as follows:
sample Ay € RP*¥ with first [p/4] rows being i.i.d. N (0, I ), and set the remaining rows to 0. We
then scale the coefficients by defining A* = Ag(AFXAg)~1/2 so that A*TSA* = Iy, With this
construction, the p-th variable is always a null covariate , and we use this null coordinate j = p to
demonstrate the effectiveness of our theoretical results presented in Theorem 2.2 and the suggested
test for testing H as described in (1.10). Using the above settings, we generate the design matrix
X € R™ P from N (0, X), and then simulate the labels from a multinomial logistic model as given in
(1.8), using the coefficients A* € RP*X_ For each simulation setting, we perform 5,000 repetitions.

Assessment of y2 approximations. To assess the y? approximation (2.3) from this paper and that of
the classical theory (1.13), we compute the two X% test statistics for each sample (z;, y;)?_,. Figure 2
shows the empirical quantiles of the two statistics versus the x% distribution quantiles. The results
demonstrate that the quantiles (in blue) from our high-dimensional theory closely match the 45-degree
line (in red), whereas the quantiles (in orange) from the classical theory significantly deviate from the
45-degree line. These findings highlight the accuracy of our proposed x? approximation (2.3) over
the classical result (1.13) when p is not sufficiently small compared to n.

Uniformity of null p-values. Recall that the p-value from the classical test (1.13) is given by
(1.14), while the p-value from this paper taking into account high-dimensionality is given by (2.4).
Figure 3 displays the histograms of these two sets of p-values out of 5000 repetitions. The results in
Figure 3 show that the p-values obtained from the classical test deviate significantly from the uniform
distribution, with a severe inflation in the lower tail. This indicates that the classical test tends to
produce large type I errors due to the excess of p-values close to 0. In contrast, the p-values proposed
in this paper exhibit a uniform distribution, further confirming the effectiveness and applicability of
the theory in Theorem 2.2 for controlling type I error when testing for null covariates with (1.10).
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Figure 3: Histogram for p-values of the classical test (1.14) (in orange) and of the proposed test (2.4)
(in blue) under Hy in simulated data with different (n, K') and p = 1000.

Unknown (;;. In the situation where the covariance matrix X is unknown, we can estimate the
diagonal element ©2;; = e X" 'e; by Q;; defined in (2.5). To evaluate the accuracy of the normal and
chi-square approximations and the associated test with §2;; replaced by €2;;, we conduct simulations
similar to those in Figures 2 and 3, but we replace 2;; with its estimate €2;;. The results are presented
in Figure S1. The plots are visually indistinguishable from the plots using €2;;. These confirm that
the chi-square approximation and the associated test using €2;; are accurate.

Non-Gaussian covariates and unknown (2. Although our theory assumes Gaussian covariates,
we expect that the same results hold for other distributions with sufficiently light tails. To illustrate
this point, we consider the following two types of non-Gaussian covariates: (i) The design matrix
X has i.i.d. Rademacher entries, i.e., P(x;; = £1) = %, (i1) Each z;; takes on values 0, 1 and 2
with respectively probabilities a3, 2a;(1 — a;), and (1 — a;)?, where a; varies in [0.25,0.75]. Each
columns of X are then centered and normalized to have 0 mean and unit variance. This generation
of non-Gaussian covariates is adopted from single-nucleotide poly-morphisms (SNPs) example in
Sur and Candes [2019]. For these two types of non-Gaussian covariates, we further rescale the
feature vectors to ensure that z; has the same covariance as in the Gaussian case at the beginning of
Section 3, thatis ¥ = (0.5“’]" )pxp- We present the Q-Q plots in Figure S2 using the same settings
as in Figure S1, with the only difference being that the covariates in Figure S2 are non-Gaussian
distributed. The Q-Q plots of 7,7 (X, Y") in (2.3) plotted in Figure S2 still closely match the diagonal
line. These empirical successes suggest that the normal and % approximations (2.1)-(2.3) apply to
a wider range of covariate distributions beyond normally distributed data.

Real data example. We conduct a real data analysis by applying the proposed test to heart disease
data from the UCI Machine Learning Repository (link: http://archive.ics.uci.edu/ml/machine-learning-
databases/heart-disease/processed.cleveland.data). After standard data-cleaning processes, the dataset
has 297 instances with 13 features, including age, sex, and other attributes. The response variable
was transformed into 3 classes (0, 1, and 2) after converting the labels 3 and 4 to 2. To demonstrate
the validity of the proposed significance test, we generate a noise variable from a standard normal
distribution, resulting in a dataset with 297 instances and 14 variables. We test the significance of this
noise variable using both the proposed chi-square test and the classical test, repeating the experiment
10,000 times. The type I error of our proposed test is 0.0508, aligning well with the desired type I
error of 0.05. In contrast, the classical test exhibits a type I error of 0.0734, significantly exceeding
the desired rate of 0.05. These results confirm the validity of our proposed test on real data corrupted
with fake covariate, while the classical test concludes that the fake covariate is significant in more
than 7% of experiments, leading to false discoveries exceeding the desired 0.05 type I error.

4 Discussion and future work

Multinomial logistic regression estimates and their p-values are ubiquitous throughout the sciences
for analyzing the significance of explanatory variables on multiclass responses. Following the seminal
work of Sur and Candes [2019] in binary logistic regression, this paper develops the first valid tests
and p-values for multinomial logistic estimates when p and n are of the same order. For 3 or more



classes, this methodology and the corresponding asymptotic normality results in Theorems 2.1 and 2.2
are novel and provide new understanding of multinomial logistic estimates (also known as cross-
entropy minimizers) in high-dimensions. We expect similar asymptotic normality and chi-square
results to be within reach for loss functions different than the cross-entropy or a different model for
the response y;; for instance Section S1 provides an extension to the g-repeated measurements model,
where ¢ responses are observed for each feature vector z;.

Let us point a few follow-up research directions that we leave open for future work. A first open
problem regards extensions of our methodology to confidence sets for eJTB* when Hj in (1.10) is
violated for the j-th covariate. This would require more stringent assumptions on the generative
model than Assumption 2.1 as B* there is not identifiable (e.g., modification of both B* and f(-, -) in
Assumption 2.1 is possible without changing y;). A second open problem is to relate this paper’s
theory to the fixed-point equations and limiting Gaussian model obtained in multiclass models, e.g.,
Loureiro et al. [2021]. While it may be straightforward to obtain the limit of % S gig! and of
the empirical distribution of the rows of A in this context (e.g., using Coro}lary 3 in Loureiro et al.

[2021]), the relationship between the fixed-point equations and the matrix ;- >, V; appearing in
(2.1) is unclear and not explained by typical results from this literature. A third open problem is
to characterize the exact phase transition below which the multinomial logistic MLE exists and is
bounded with high-probability (Assumption 2.4); while this is settled for two classes [Candes and
Sur, 2020] and preliminary results are available for 3 or more classes [Loureiro et al., 2021, Kini
and Thrampoulidis, 2021], a complete understanding of this phase transition is currently lacking. A
last interesting open problem is to prove that our theory extend to non-Gaussian data, as observed in
simulations. This challenging problem is often referred to as “universality” and has received intense
attention recently [Gerace et al., 2022, Han and Shen, 2022, Montanari and Saeed, 2022, Pesce et al.,
2023, Dandi et al., 2023], showing that in several settings of interest (although none exactly matching
the one considered in the present paper), the asymptotic behavior of the minimizers is unchanged
if the distribution of the covariates is modified from normal to another distribution with the same
covariance.
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Supplementary Material of “Multinomial Logistic Regression:
Asymptotic Normality on Null Covariates in High-Dimensions”

Let us define some standard notation that will be used in the rest of this supplement. For a vector
v € R™, let [|vloc = max;e[y) |vi| denote the infinity norm of vector v. If A is symmetric, we define
Amin (A) and || A||op as the minimal and maximal eigenvalues of A, respectively. For two symmetric
matrices A, B of the same size, we write A < B if and only if B — A is positive semi-definite.

Diagram: Organization of the proofs

The following diagram summarizes the different theorems and lemmas, and the relationships between

them.

Theorem 2.2

Asymptotic normality for
ATe; on null covariates,
where A € RP*¥ is the
multinomial logistic MLE
with class K + 1 fixed
as the reference class (see

(1.9)).

K-dimensional orthogo-
nal parametrization de-

fined by the matrix the @

Section S3.1 defines the
matrix Q € REFDXK
and discusses a conve-
nient parametrization of
the model isometric to
the subspace orthogonal
tolxt1.

Lemma S5.5 computes
the derivatives of the min-

imizer with respect to X,
used in the proof of Theo-
rem S5.2.

<+

Theorem 2.1

Asymptotic normality for
I%Tej on null covariates,
where B € RPX(K+1) jg
the multinomial logistic
MLE in (1.5).

Control of g; and H; for
the cross-entropy loss

Lemmas S6.1 and S6.2
give deterministic ar-
guments to control the
gradients and Hessians
of the cross-entropy
loss. Lemma S6.4 con-
trols the Hessian of the
cross-entropy loss at the
minimizer, in a specific
high-probability  event.
Lemma S6.3 defines this
high-probability event.

Normal and x? approxi-
mations for random vari-
ables defined as a differen-
tiable function of standard
normal vectors.
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Theorem S3.1

Asymptotic normality for
BTej on null covariates,
where B € RP*¥ is the
multinomial logistic MLE
using the parameter space
from Section S3.1.

The proof uses that
the conditions in The-
orem S5.1 on the loss
function are satisfied by
the cross-entropy.

Theorem S5.1

Asymptotic normality on
null covariates for general
loss functions, ¥ # I,.
Deduced from Theo-
rem S5.2 by rotational
invariance.

Asymptotic normality on
null covariates for general
loss functions, ¥ = Ij,.




S1 Extension: ¢ repeated measurements

Let integer ¢ > 1 be a constant independent of n, p. Our results readily extend if ¢ labels are observed
for each observed feature vector x;, and the corresponding ¢ one-hot encoded vectors are averaged
intoy; € {0, %, t q, ..., 1} 1 Concretely, for each observation ¢ € [n], ¢ i.i.d. labels (Y;™),,e(q

3
are observed with each ;" € {0, 1}K *1 one-hot encoded and y;, = % 3n=1 Y%, for instance

in a repeated multinomial regression model with P(Y;7* = 1|z;) equal to right-hand side of (1.4).

In this case where (Y;™),,¢[q are i.i.d., Assumption 2.3 is satisfied by the law of large numbers

if minge(r41) P(Y;) = 1) > 0 since ¢ is constant. For this g repeated measurements model, the
negative log-likelihood function of a parameter B € RP*(K+1) jg

n q K+1 K+1
fzz Z g [x BekflogZexpx Bek/)]
i=1 m=1 k=1 k'=1
n K+1 K+1
=00 v eTBer o S exp(e B )|
i=1 k=1 k=1
n K+1 K+1
= (JZ [Z —yik; Bey, + log Z eXP(IiTBGk/)}
i=1 k=1 k=1
= ¢» Li(B"x),
i=1

where the first equality uses y;;, = % 4 _, Y7, the second equality uses ZkK:ll yir = 1 under the

following Assumption S1.1, and the last equality uses the definition of L; after (1.5).
Assumption S1.1. For all i € [n], the response y; is in {0,1/¢,2/q, ..., 1}5X+ 1 with Sr yi = 1.

In such repeated measurements model, we replace Assumption 2.2 with Assumption S1.1 under
which the following Theorem S1.1 holds.

Theorem S1.1. Let ¢ > 2 be constant. Let Assumptions S1.1, 2.1, 2.3 and 2.4 be fulfilled. For any
J € [p] such that Hy in (1.10) holds, we have the convergence in distribution (2.1), (2.2) and (2.3).

Proof of Theorem S1.1. Under the assumptions in Theorem S1.1, the MLE B for this q repeated
measurements model is the minimizer of the optimization problem

Be argmin ZL (BT z;)

BeRpx(K+1)

as in (1.5). Similar to the non-repeated model, the MLE A for the identifiable log-odds model can be
expressed as

A=argmin} L;((4,0,)Tx;).
AeRPXKZ

The only difference between this g repeated measurements model and the non-repeated model
considered in the main text is that the response y; for this ¢ repeated measurements model is now
valued in {0,1/q,2/q, ..., 1}. Because the proofs of Theorems 2.1 and 2.2 do not require the value of
yir to be {0, 1}-valued. Theorem S1.1 can be proved by the same arguments used in the proof of
Theorems 2.1 and 2.2. O

S2 Implementation details and additional figures

The pivotal quantities in our main results Theorems 2.1 and 2.2 involve only observable quantities that
can be computed from the data (z;,y;);c[n). In this section we provide an efficient way of computing
the matrix V; appearing in Theorems 2.1 and 2.2.
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Fast computation of V,. Recall the definition of V; in Theorem 2.1,
Vi = H; — (H; ® 27) {i Hi @ (o) "My © 22).
The majority of computational cost in calculating V; lies in the step of calculating its second term
T) [En: He @ (@) "H @ 2T).
=1

Here we provide an efficient way to compute this term using the Woodbury matrix identity. Since
Hilx+1 = Og1, we have ker(H; ® (z;z))) is the span of {1x 41 ® €; : j € [p]}, where 154 is
the all-ones vector in R¥*1. Therefore, the second term in V; can be rewritten as

n

(H; ® 2]) {Z H @ (xlxlT)] T(Hi ® ;)
=1

n D 1
- (Himf)[z 1@ () =Y (1 @ey) 1®ej)T} (H; ® ).
=1 j=1

We now apply the Woodbury matrix identity to compute the matrix inversion in the above display.
Recall H; = diag(p;) — p;p., we have

n K+1 n n
> Hi@ (wiw]) =Y (exel) @ O pinmia]) =Y (pi @ i) (pi @ )"
=1 k=1 i=1 =1

Let A= Y1 (erel) @ (X0, pinwial), and U € RPEFX(+p) with the first n columns being
(P ®;)ic[n) and the following p columns (1®e;)e[p)- Then the term we want to invertis A—UU7,
where A is a block diagonal matrix and can be inverted by inverting each block separately. By the
Woodbury matrix identity, we have

(A-UUD) ' =A" - AU (-1, + UT AT D) TUT AT

The gain of using the above formula is significant for large K: instead of inverting the p(K +1) x
p(K + 1) matrix >_;", H; ® (z;2}) in the left-hand side, the right-hand side only requires to invert

a block diagonal matrix A and a (n + p) x (n + p) matrix —I,,, + UT A71U.
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Figure S1: The upper row: Q-Q plots of the test statistics from (2.3) (in blue) and (1.13) (in orange)
for different (n, K') and p = 1000 using €2,;. The lower row: histograms of p-values from classical
test and our test for different (n, K') and p = 1000 using €2,;.
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Figure S2: Q-Q plots of the test statistics from (2.3) (in blue) and (1.13) (in orange) for different

(n,K) and p = 1000 using €2;;. The upper row: covariates are sampled from Rademacher
distribution. The lower row: covariates are sampled from distribution of SNPs.
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Figure S3: Scatter plot of pairs (\/ﬁAjl, \/ﬁflﬂ) with the same data generating process as in Figure 1
(a) except using different q.

S3 Proof of Theorem 2.1

Before proving Theorem 2.1, we present another parametrization of the multinomial logistic regres-
sion model. The asymptotic theory of MLE for this new parametrized multinomial logistic model
will be used to prove Theorem 2.1.

S3.1 Another parametrization of multinomial logistic regression

Recall the symbol “€" is used in (1.5) to emphasize that the minimizer B in (1.5) is not unique: if B
is a minimizer of (1.5) then B — bl};+1 is also a minimizer of (1.5), for any b € R? and the all-ones

vector 1k in RE+L Besides the log-odds model (1.8), here we consider another identifiable

parametrization of multinomial logistic regression, whose unknown parameter, denoted by B*, is in
RPXK,

Orthogonal complement. To obtain an identifiable multinomial logistic regression model from
(1.4), we consider the symmetric constraint B*1 = £<2+11 B*e, = 0 as in [Zhu and Hastie, 2004],
thus B* = B*(Ic 41 — %:1), where 1 is the all-ones vector in R+, Let Q € RE+DXK pe any
matrix such that

Iy — 725117 = QQ7, QTQ = Ik. (S3.1)
We fix one choice of @) satisfying (S3.1) throughout this supplement. Let B* = B*(Q), then B* =
B*QT and the model (1.4) can be parameterized using B* as

exp(zl B*Qey)

Zgii exp(zl B*Qeyr)
The multinomial logistic MLE of B* in (S3.2) is given by

Py, = 1|z;) = . ke{l,2,... K+1}. (S3.2)

B = argminpgepoxx Y5y Li(BTx;) (S3.3)

where L; : RE — R is defined by L;(u) = L;(Qu) for all u € R¥. By this construction, we have
B = BQ for any minimizer B of (1.5). Furthermore, by the chain rule using the expressions (1.7),
the gradient and Hessian of L; evaluated at BTy, are

g; ‘*— VLZ(BTZ‘Z) = QTgi, Hi = VQLZ(BTCBZ) = QTHiQ. (S34)

Throughout, we use serif upright letters to denote quantities defined on the unidentifiable parameter
space RP* (K+1)

B*,é eRpx(K—',—l)’ LL 2RK+1 —)R, f’Ly“gL ERK+1, Hi ER(K+1)X(K+1)
and the normal italic font to denote analogous quantities for the identifiable parameter space RP* X

B*BeR*K  L[,:RE SR, ¢ eRE, H; € REXK,
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Theorem S3.1 provides the asymptotic normality and the chi-square approximation of null MLE
coordinates in high-dimensions where n, p — oo with the ratio n/p converging to a finite limit.

Theorem S3.1 (Proof is given on page 27). Let Assumptions 2.1, 2.3 and 2.4 be fulfilled. Assume that
either Assumption 2.2 or Assumption S1.1 holds. Then for any j € [p| such that Hy in (1.10) holds,

\/mgjl”(lzn:gigf) 1/2( ZV)BTeJ—W(o Ix), (S3.5)
=1

where V; = H; — (H; @ 2]) >, Hi @ (xz])] " (H; @ ;).
A direct consequence of (S3.5) is the X result,
1/2 —172/1 = - d
VA2, (S ggh) (23 e 12k (83.6)
i=1 i=1
The proof of Theorem S3.1 is deferred to Section S5 and Section S6. In the next subsection, we prove

Theorem 2.1 using Theorem S3.1.

S3.2  Proof of Theorem 2.1

We restate Theorem 2.1 for convenience.
Theorem 2.1. Let Assumptions 2.1 to 2.4 be fulfilled. Then for any j € [p| such that Hy in (1.10)
holds, and any minimizer B of (1.5), we have

\/QTﬁ((iigig?)l/z)f (izn;v) BT, LN(O, I — 25 ) 2.1)

—— N———’
scalar ROK+1)x (K+1) RK+1)x(K+1) REK+1 cov. RIK+1)X (K+1)

where g; = —y; + p; asin (1.7) and V; = H; — (H; @ 1) [Y 1L, Hi @ (z2])]T(H; @ ;).

The proof of Theorem 2.1 is a consequence of Theorem S3.1. To begin with, we state the following
useful lemma.

Lemma S3.2. For V; and V; defined in Theorems 2.1 and S3.1, we have V; = QTV;Q.
Proof of Lemma S3.2. Since H; = QTH;Q, we have

V; =H; — (H; ® x] [ZH ® (zx } 1(Hi®.%‘i>

H, - [(@HQ) ©2T1[3 QM) ® (@] (@7H@) 901
=1

—H;— Q" (i@ s (@® ) (@ 9 L)Y Mo Qo 5] (@ 0 )M 92)Q

T
=QTHQ - Q"(Hi waT) |y (H; @ aia])] (Hi 0 2)Q
i=1
:QTVin
where the penultimate equality is proved as follows.
Let A=Q®I,and D = ZZ 1 Hi ® (2, 7Y only in the remaining of this proof. It remains to prove
A[ATDA]T'AT = D (S3.7)
Since H;1 = 0, we have D(1®1,,) = 0. Since Q71 = O by deﬁnition of @, we have AT (1®1,) = 0.
If we write the eigen-decomposition of D as D = Z L diwgul, then ul (1 ® I,,) = 0. Hence, with
= AT,
pK
ATDA = Z Aﬂ}ﬂ}iT.

i=1
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Since v} vy = ul AATw; = ul [(Igs1 — K1+T1) ® Ipuir = ufuy = I(i = i), we have
pK
A[ATDA] AT = Z)\ viv] ) AT =" AT uuf =
where the second equality uses Av; = AATu; = u;. The proof of (S3.7) is complete. O
Now we are ready to prove that Theorem 2.1 is a consequence of Theorem S3.1.
Proof of Theorem 2.1. By definition of g; and V;, we have 17g; = 0 and 17V; = 07" Thus, we

have QQ7g; = g; and QQTV; = V,. Therefore, we can rewrite the left-hand side of (2.1) (without
\/ﬁQ;jl/ %) as

Il
~~ ~~ ~~
~~
3
O
O
~
o
O
(.
N
~—
= 3
<
~~
S| =
O
O
~
<
O
O
~
~—

=1
(2> anaren)”) (2 aver)ere,
i=1
(;zgzgl )" @ra(L s vier)eTe
i=1
(3 2a0r) ") ()
=1

where the first equality uses QQ7'g; = g; and QQTV; = V;, the second equality uses g; = Q”'g;
and V; = QTV;(Q from Lemma S3.2, the third equality follows from the same argument of (S3.7),

and the last equality uses Q7Q = I and B = BQ.
Therefore, Theorem S3.1 implies that the limiting covariance for the left-hand side of (2.1) is
QQT =1Ix — %fl This completes the proof. O

(
(

Q

S4 Proof of Theorem 2.2

‘We restate Theorem 2.2 for convenience.

Theorem 2.2. Define the matrix R = (Irc,05)T € READXK ysing block matrix notation. Let
Assumptions 2.1 to 2.4 be fulfilled. For A in (1.9) and any j € [p] such that Hy in (1.10) holds,

(IK n %)RT \/QTM((:L igigf)l/z)T (% gviR) ATe; SN (0k, Ix) (22)

matrix RE X (K+1) scalar  matrix ROS+H1) X (K+1) RIKFD)XK  RK

where g; is defined in (1.7) and V; is defined in Theorem 2.1. Furthermore, for the same j € [p],
df N 1< /2yt /1 <& . 2

Fan = (( X)) (X v R
Note that Equations (2.2) and (2.3) is stated using Q;; = ejTZ_lej. When ¥ is unknown, the

quantity §);; in above results can be replaced by its consistent estimate ij defined in (2.5), and the
convergence in distribution results still hold.

satisfies T (X,Y) Lx% . (2.3)

The proof is a direct consequence of Theorem 2.1.
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Proof of Theorem 2.2. By definition of A in (1.9), we have A = B(Ix, —1x)7 and
A (IK,OK) = é(]}(, —1K)T(IK,OK) = é(IK+1 — 6K+11T) = é — (é€K+1)1T7

which is of the form B — 517 with b = I:%eKH. Therefore, A (Ix,0k) is also a solution of (1.5).
Taking B in Theorem 2.1 to be A (Ix,0x) = ART gives the desired x? result (2.3) and

Va2 ((% i gie!) 1/2)T(% ivi)RATejiw (0. 11 = #25). (S4.1)
i=1 i=1

Multiplying (R (I 1 — %)R}fl/ 2RT to the left of the above display gives the desired normality

result (2.2) by observing (R” (Ixc41 — 11{1:1 YR)™Y? = (I + \/EKT%H ). This completes the proof.
O

S5 Preliminary results for proving Theorem S3.1

S5.1 Results for general loss functions

In this subsection, we will work under the following assumptions with a general convex loss function.
Later in Section S6, we will apply the general results of this subsection to the multinomial logistic
loss discussed in Section S3.1.

Assumption S5.1. Suppose we have data (Y, X), where Y € R™*(E+1) with rows (y1, ..., yn),
and X € R™*? has i.i.d. rows (21, ..., zy) with z; ~ N (0, X) and invertible ¥. The observations

(Yi> Zi)ic[n are ii.d. and y; has the form y; = f(U;,z; B*) for some deterministic function f,

deterministic B* € RP*X  and latent random variable U; independent of x;. Assume p/n < § -1 <
1.

Assumption S5.2. Given data (Y, X), consider twice continuously differentiable and strictly convex
loss functions (L;);e[n) With each L; : RX — R depending on y; but not on x;.

Provided that the following minimization problem admits a solution, define
n
B(Y,X) = argmin »_ L;i(B"x,).
BeRpx K T—]
Define for each i € [n],
g:(Y,X) =VL(B(Y,X)"a;), Hi(Y,X)=VLy(B(Y,X)"z;),

so that g;(Y, X) € RX and H;(Y, X) € RE*K Define

GV, X) =) egi(Y,X)",
=1

VY.X) = Y (B X) — (v, X) @ 2D) [ (Y. X) @ ()] (v, X) @ ).
i=1 =1

so that G(Y, X) € R™*¥ and V (Y, X) € RE*K_If the dependence on data (Y, X) is clear from
context, we will simply write B, g;, H; G, and V.

Theorem S5.1. Let Assumptions S5.1 and S5.2 be fulfilled. Let c., my, m*, K be positive constants
independent of n, p. Let U* C RP*(E+1) 5 R"XP he an open set satisfying

(1) If{(Y,X) € U*}, then the minimizer B(Y, X) in Assumption S5.2 exists, H; < I for each
i€n], L3  H;(Y,X)® (ziz]) = ec.(Ixk ® ) and m.Jx < 2G(Y, X)TG(Y, X) =<
m*IK.

(2) Forany {(Y,X),(Y,X)} c U, ||G(Y,X) — G(Y, X)||r < L||(X — X)2~/2||p holds

for some positive constant L.
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Then for any j € [p] such that ejTB * = 0L, there exists a random variable ¢ € RY such that

!(GTG')fl/ZVBTEj —5”2] S %7

VAYT]

and P(||¢)* > x%(a)) < a for all « € (0,1), C is a positive constant depending on
(c*7m*7mz7 K, L) only. If additionally P((Y,X) € U*) — 1, then & in the previous display
satisfies E— N (0, I ) and

E[I{(Y,X) € U"}

T\ —1/2 BT .
(G G)" VB e 4L N(0, Ix).
V85

The proof of Theorem S5.1 is given in next subsection.

S5.2 Proof of Theorem S5.1

In this subsection and next subsection, we will slightly abuse the notations A* and fl which have
different definitions than the definitions in the main text.

Let X1/2B* = Z,[f:l spugv} be the singular value decomposition of 31/2B*, where uy, ..., ug are
the left singular vectors and vy, ..., v, the right singular vectors. If ¥'/2 B* is of rank strictly less than
K, we allow some s, to be equal to O so that »i/2p* = Zszl skukv,{ still holds with orthonormal
(u1, ..., u ) and orthonormal (vy, ..., vx ). We consider an orthogonal matrix P € RP*? such that

~ ~ ~ ~ ~ 2_1/26'
pPPT=pP"P=1, P—7>’
S DR

=e, Pup=-e, i, Vke[K] (S5.1)
Since e7' B* = 07 implies 7' £ ~'/2u;, = 0, we can always find a matrix P satisfying (S5.1). From
now on we fix this matrix P and consider the following change of variable,

Z=Xx"12pT, A* = PY'/?2B*, (S5.2)

It immediately follows that Z has i.i.d. N(0, 1) entries and the first p — K rows of A* are all zeros.
Since the response y; has the expressiony; = f(U;, z] B*), Y is unchanged by the change of variable
(585.2) from ZA* = X B*. We now work on the multinomial logistic estimation with data (Y, Z) and

the underlying coefficient matrix A* in (S5.2). Parallel to the estimate Bof B* in Assumption S5.2,
we define the estimate of A* using data (Y, Z) as

A(Y,Z) = arg minz Li(AT %),
AERPXK 4

where z; = ZTe; is the i-th row of Z. By construction, we have A= ]521/23, hence ZA = X B
and e’ A = eT' B/,/Q;;. Furthermore, the quantities depending on (Y, X B) remain unchanged after
the change of7 variable. In particular, the gradient and Hessian
VLi(BTSCZ‘) = VLi(ATZi), V2Li(BTJ}Z‘) = VQLi<ATZ,‘)

are unchanged. It follows that the matrix G' and V' are unchanged. Therefore, we have

eI BV(GTG)~1/?

Vi

In conclusion, with the change of variables (S5.2), we only need to prove Theorem S5.1 in the special

case, where the design matrix X i.i.d. N(0,1) entries and the response Y is independent of the
first p — K columns of X. To this end, we introduce the following Theorem S5.2, and the proof of

Theorem S5.1 is a consequence of Theorem S5.2 as it proves the desired result for e7 AV (GTG)~1/2,

=elAV(GTG)~1/2,

Theorem S5.2. Let ¢, m., m*, K be constants independent of n,p. Let Z € R"™*P have i.i.d. rows
(21, vy 2n) With z; ~ N(0,1,). Letyy,...,yn € REFD such that (yy,...,y,) is independent of
the first p — K columns of Z. Consider twice continuously differentiable and strictly convex loss
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Sfunctions (L;)i=1,... n with each L; : RE — R depending on'y; but not on z; and define, provided
that the minimizer admits a solution,

A(Y,Z) =argmin ¥ Li(A"z), g:(Y,2) = VL(A(Y,2)"z), Hi(Y,Z)=V’Li(A(Y,2)" =
AERPXK 5

G(Y, Z) Yiieigi(V,Z)T € RK, and V(Y,Z) = 30_  (H; — (H; ® 2)[3)L Hi ®

(12 )] (H; ® z;)) € RE*E where we dropped the dependence of H; on (Y, Z) for simplicity.

Let O ¢ R (E+1) 5 R™XP he an open set satisfying

« If (Y, Z) € O, then the minimizer A(Y, Z) exists, H; < I for eachi € [n], c.l,x =
% 2?21 H,(Y,Z)® (zzzzT), and m, I =< % Z?zl G, 2)TG(Y,Z) = m*Ik.

* With the notation G(Y,Z) = Y1, eigi(Y, Z)T, we have if two Z,Z € R™ P satisfy
{(V,2),(Y,2)} € O then | G(Y. Z) - G(Y, 2)| < L|Z — Z|.

For ey € RP the first canonical basis vector, there exists a random variable ¢ € R¥ such that
_ P 2
E[I{(Y,Z) € O}|(G"G) " /?VATe; —¢|'] < -,
and P(||¢)> > x%(a)) < a for all « € (0,1), C is a positive constant depending on
(C*d my, m*, K, L) only. If additionally P((Y, Z) € O) — 1, then & in the previous display satisfies

E—N(0,Ik) and
eTAV(GTG) 2L N(0, Ik).

The proof of Theorem S5.2 is presented in Section S5.3.

S5.3 Proof of Theorem S5.2

We first present a few useful lemmas, whose proofs are given at the end of this subsection.

Lemma S5.3 (Proof is given on page 24). Let z ~ N(0,02I,) and F : R" — R"*¥ be weakly
differentiable with E||F (2)||% < cc. Let Z be an independent copy of z. Then

QZaeF _ TR ]<3 4EZH 5

Lemma S5.4 (Proof is given on page 25). If G, G e R*K satisfy my I < %GTG <m*Ix and
myd g < %CNJTC:' = m* I for some positive constants m, and m*. Then

B[

’F'

(GTG)™? = (GTG)V2|lr < Lin™ MG = G|,
IG(GTG) ™2 = G(GTG) 2 |lp < Lan™V2||G — G F,
where Ly, Ly are positive constants depending on (K, m.,m*) only.

Lemma S5.5 (Proof is given on page 26). Let the assumptions in Theorem S5.2 be fulfilled. Let
Y € RYEHY pe fived. If a minimizer A(Y, Z) exists at Z, then Z +— A(Y, Z) exists and is
differentiable in a neighborhood of Z with derivative

m;;g& = —Mlgi®e; + (HiATe;  2)),

gi; = —(H @z YMgi ® ej + (H;ATe; @ 2)] + I(1 = i) H; A" e;,
where M = [3"1" | H; ® (z;2])] ™1, It immediately follows that

gzg; =[H;— (H; @zl YM(H; ® zi)]flTej — (H; @ 2 )M (g; @ e;).
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Corollary S5.6 (Proof is given on page 26). Under the same conditions of Lemma S5.5, for G =
S eigl, we have for eachi € [n], j € [p),

n a GTG) 1/2

D,

i=1
a(GTG)_1/2

— JTAVT(GT )12 ) . T \—1/2 T
TAVT(GTG) +Z[ (oF @ YM(H; @ 2)(GTG) 2 4 TG 5

i=1

Now we are ready to prove Theorem S5.2.

Proof of Theorem S5.2. Let h : O — R™ X be h(Y,Z) = G(Y, Z2)(G(Y, Z)TG(Y, Z))"'/?. In
most of this proof, we will omit the dependence (Y, Z) on h, A, gi, H;, G,V to lighten notation. By
Lemma S5.4, we know this & is LLyn~'/?-Lipschitz in the sense that ||(Y, Z) — h(Y, Z)||r <
LLon~Y2||Z — Z||r for all {(Y, Z),(Y,Z)} C O. By Kirszbraun theorem, there exists a func-
tion H : R (K41 5 Rnxp —y R*K (an extension of h from O to R™*(K+1) » R"*P) such
that H(Y, Z) = h(Y,Z) for all (Y, Z) € O, |H(Y,Z)|lop < 1 and [|[H(Y,Z) — H(Y,Z)|p <

LLon™Y?||Z — Z||p forall {(Y, Z), (Y, Z)} € R+ 5 Rrxp,

For each j € [p], let z; = Ze; be the j-th column of Z to distinguish it from the notation z;, which
means the i-th row of Z. Let z~ N (0 I,,) be an independent copy of each columns of Z, and

77 = Z(I, — eje 1) + ze] . That is, 77 replaces the j-th column of Z by z. By definition, z; L 7
andz; L 7%

Let ¢ = —[H(Y, ZY)]7z € RE then ||€]|? < ||z1| since || H(Y, Z')||,p < 1. It follows that
P(IE]* > x% () < P(lz1]]* > xic(a)) = .

Note that the first p — K columns of Z are exchangeable, because they are i.i.d. and independent of
the response Y, we have for each ¢ € [p — K],

E[I{(Y,Z) € O}||(GTG) 2V ATe, —¢||’]
E|{(Y,2) € O}l T AV(GTG) /2 + 2 H(Y, 2") 2]

E[I{(Y,2) € O} e] AV(GTG) M2 2L H(Y, 2|1
where the last line holds for any ¢ € [p — K] because (z1,eT A, Z) < (z,, el A, Z%). Therefore,
2
[ (Y, 2) ¢ O}H TAV(GTG)~Y? + 2T H(Y, Zl)H }

5 K]E[I{ Y, Z) GO}He AV(GTG) V2 + 2T H(Y, 2% H }

p— K

’UN
k:»—t

e 2 00 <o) AT st 2 e ]

=1

o~

where Rem, = 37" | [—(9f ®@el )M (H; ®2)(GTG) Y2 + TG%} from Corollary S5.6,
and M = Y1 | (H; ® z;z1)] 7! from Lemma S5.5. Using (a + b)? < 2a* + 2b?, the above display
can be bounded by sum of two terms, denoted by (RHS); and (RHS)s.

For the first term,

p—K

(RHS) = = KLIE[[{YZ eO}HZ

8eTh(Y 7)
Zil

2T H(Y, Zf)m.
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Let F(z)) = H(Y, Z(I — egel) + zel') = H(Y, Z), then F(z) = H(Y, Z*). Apply Lemma S5.3
to F'(z,) conditionally on Z(I — egel’), we obtain
]

E[I{(v,2) e O}H Z %122) + 2T F(z)

(96 FZ[

_ E[I{(Y,Z) € O}||2F F( Z v 7] F(2) 2}
< B[ reo ae@fii”) -ar@) |
<337 2y

N b e R

where the first equality uses z; h(Y, Z) = 0 from the KKT conditions Z7G = 0 and h(Y, Z) =
G(GTG)~1/2, Tt follows that

(RHS)1 <

SRE[3 > |

Note that the integrand in the last display is actually the squared Frobenius norm of the Jacobian
of the mapping from R"*? to R"*¥X: Z ++ H(Y, Z). This Jacobian is a matrix with nK rows and
np columns, has rank at most nK and operator norm at most LLyn~ /2 because Z +— H (Y, Z) is
LLyn~'/2-Lipschitz from Lemma S5.4. Using || A[|% < rank(A)||A|%,, we obtain

(RHS); < 6K(LL2>2/(p - K).

For the second term (RH.S)z = = 23 [I{(Y, Z) € O}|| Remg ||%]. By definition of Rem,
and (a + b)? < 2a® + 2b?, we obtain

(RHS), gp _4K p_KE[I{(Y, Z) e O}H i(gf ®@el YM(H; ® zi)(GTg)—l/zm (S5.3)
=1 =1
+p_4KpKE{I{(Y, ) eO}HiJGWHQ]. (S5.4)
=1 i=1 v

We next bound (S5.3) and (S5.4) one by one. For (S5.3), we focus on the norm without (GTG)’l/2
which is || 31" (g7 ® e} )M (H; ® z;)|. With [|a]| = maxy|j,=1 a’ v in mind, let us multiply to
the right by a unit vector v € R¥ and instead bound

n

> (gF @el )M (Hiwz)u = T [(Ix@el )M Y (Hiuwz)g! | < K| (Ixel )Mlop| 3 (Hiuwz)g! o
i=1 i i
because the rank of the matrix inside the trace is at most X and Tr[-] < K|| - ||, holds. Then

I Z(Hw@zz')gﬂop = Ik ©2") ) (Huwe)e] Gllop < 1Z]opll Y (Hiueie])opl|Gllop-

A [

Next, || Y=, (Hyu ® e;el)||op = || S (H @ eel)(u® I,)|lop < 1 because H; < Ifc and ||ul| = 1.
In summary, the norm in (S5.3) is bounded from above by

EINGTG) | opl Mllopl| Z o |Gl op-

To bound (S5.3), since in the event (Y, Z) € O, m.Ix = %GTG =< m*Ig and %Z:L:l(HZ ®
zizl) = .l i, we have ||G|lop < v/m*n, hence || M]||,, < c'. Thus, the above display can be
bounded by

K (man) "2 M| Z ) opy/min = (m* fma) ' 2e K 2] op.
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Since Z € R™*? has i.i.d. N(0, 1) entries, [Davidson and Szarek, 2001, Theorem II.13] implies that
E|Zlop < v/n+ /P < 24/n. Therefore,

(85.3) < C(es, K, L)n™*

Now we bound (S5.4). Since

p—K

n T \—1/2
>[5 et
< Y[So et

1

<.
—

<.
[

n

K K o GTG) 1/2 2
Z(Z; el Genek =5 ew)

1k'=1 =1 1

[
NE

<.
Il

n n

i[zi TGek2zi( ngz_l/zek/)j

1k'=1 ¢ k= i=1 k=1
n p
IGIE ZZ

Using ||G||2 < nK, and the mapping Z ~ (GTG)~'/2? is LLin~'- Lipschitz on O using
Lemma S5.4, we conclude that

NE

<.
Il
B
—
—_

8GTG —1/2
‘ 0zi; H '

(S5.4) <4K3LL,/(p — K).

Combining the above bounds on (RHS); and (RH S)s, we have

Clew, K,mu,m*, L, Ly, Lo)
p— K

E|1{(Y,Z) € O}|(GTG)" Y2V ATe, — gH?] < , (S5.5)

where the constant depends on (¢, K, m,, m*, L) only because Ly and Ly are constants depending
on (K, m,,m*) only.

If additionally P((Y,Z) € O) — 1, we have P((Y,Z') € O) — 1 using (Y, 2) 4 (Y, Z").
Therefore,

€= —[h(Y,Z)T)I((Y, Z") € O) — [H(Y, Z)T2]I((Y, Z) ¢ 0)-25N(0,Ix).  (S5.6)
By (S5.5), we know (GTG)~1/2V ATe; — ¢-250 when P((Y,Z) € O) — 1. Hence, we conclude

(GTG) V2V ATe,L5N(0,Ix) and  ||(GTG) V2V AT eq|>~Lx %

We next prove Lemmas S5.3 to S5.5 and corollary S5.6.
Proof of Lemma S5.3. Let 29 = (27, 27)T € R?", then 29 ~ N(0,0%I5,). For each k € [K], let

f® LRI — R?" be
F®) (z9) = ([F(Z) —()F(Z)]ek> ,

n

so that 2 f(®)(z9) = 2T[F(2) — F(2)]ey, and div f*)(z) = 37, %. Applying the

second order Stein formula [Bellec and Zhang, 2021] (see also [Tan et al., 2022, Lemma F.1] for a
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collection of such formulas) to f (%) gives, with Jac denoting the Jacobian,

E {(ZTF(Z)ek —o? g W - ZTF(E)ek)z}
= E[(= £9(z0) o div £ (20)) |

= "E|[f® (20)|* + o "E Tx[(Jac f*)(20))?]

o?E||[F(2) — F(3)]ex|? + 04Eﬁ[<JaC([)F (2)er] - Jac[F(%)ek])Q}

nxXn nxn

= 20°E||[F(z) — EF(2)]ex||* + o' ETr((Jac[F(2)ex])?)

< 30'E|| Jac[F(2)ex]||%,
where the last inequality uses the Gaussian Poincaré inequality, and the Cauchy-Schwarz inequality
Tr(A?) < ||Al|%. Summing over k € [K] gives the desired inequality. O
Proof of Lemma S5.4. We first prove G — GT G is Lipschitz by noting
IGTG ~ GTGllop
(G = G)TG+CT (G~ G)llop

< NG = Gllop(IGlop + 1Gllop)
< 2Vm*n||G = G| op-

Then we show GTG +— (GTG)~" is Lipschitz. Let A = GTG and A = GT G, we have
1A™ = A7 Yoy

IATHA = A)A™|op

14 = Allopl A lopl A7 lop

(m.n) "% A = Allop.

A

IN

We next prove (GTG)~! — (GTG)~1/? is Lipschitz. Let S = (GTG)~1, 8" = (GTG)~', and if u
with ||u|| = 1 is the eigenvector of v/'S — /S with eigenvalue d, then
uT(S — 8)u = uT (VS — VE)VSu+uTVE(WS — V38)u
= du”V/Su + duTV/Su
= duT (V'S + \/E)u

As d can be chosen as +|[v/S — VS |lop (this argument is a special case of the Hemmen-Ando
inequality [van Hemmen and Ando, 1980]), this implies

= uT(S — S)u S — 8|, 1S — S|,
||\/§—\/§||op= | ( ~‘ < ” P _ < |2 *| P
W (VS + VS~ (VS +VS) T 2/Vmn
Combining the above Lipschitz results, we have

*

— T A\ — * — * ~ m
(GTG)™2 = (GTC) V2 lop < (m*n)' 2 (man) 2 (m*n) 2| G = Glop = m2

*

nHG = Gllop.
It immediately follows that

I(GTG)™V2 —(GTC) 2 |lp < VE 07 Y|G — Gl

m*
m?
That is, the mapping G — (GTG)~/? is Lin~'-Lipschitz, where L; = v Km_2m*.
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For the second statement, the result follows by

IG(GTG)™Y2 = G(GTG) 2o

<G = Gllopll(GTG) 2 |lop + G llop I (GTG) T2 = (GTC) 0y
<G = Gllop(mun) ™% + (m*n) 2 Lin ™! |G = Gllop
Hence,
IG(@TG) 2 = GGG |r
< \/>( 1/2 ( *)1/2L1)n71/2”G_é”F’
where Ly = \/X(m,fl/z + (m*)Y/2Ly). O

Proof of Lemma S5.5. Recall the KKT conditions Zle 2 ng = 0,x k. We look for the derivative
with respect to z;;. Denoting derivatives with a dot, we find by the chain rule and product rule

. Oz ,
Z = . =I(l =1i)ey,

691 - 891 aATZl
Dzij  OATz 0Oz

g = = H[AT 2+ I(1=14)AT¢j].

Thus, differentiating the KKT conditions w.r.t. z;; by the product rule gives

S I =i)ejgf +ar(ATz +1(1 = i)ATe;)" ] = 0.
=1

That is,

ejgiT + Z zlleAHl + zie?lei =0.
=1

We then move the term involving A to one side, and vectorize both sides,
gi®ej+ (HiATe; ® 2;) = Z H, @ 225 ) vec(A).
=1

With M = Y, (H, @ z2] )] ™!, we obtain
vec(A) = —Mlg; @ ej + (H;ATe; @ 2)].
Hence, using vec(H; AT 2)) = vec(zf AH)) = (H, ® z]") vec(A) gives

g = (H @ 2 ) vec(A) + I(l = i)H, A e;
—(H ® ZlT)M[gz ®Xe;+ (HiATej ®z)|+I(l= i)HlATej.

Thus,
gi = _(Hz (4 ZZT)M[gZ (024 €; + (HZ‘ATGJ' ® ZZ)} + HiATej
= —(Hi X zi:F)M(HiATej X Zz) + HiATej — (Hl ® ZlT)M(gl X Ej)
=Vid"e; — (H; @ 2] )M (g: ® ¢),
where V; = [H; — (H; ® z] YM (H; ® z;)]. =
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Proof of Corollary §5.6. For eachi € [n], j € [p], we have by the product rule
el G(GTG)~1/?

8zij

_ 09 -1/2 , .T (GTG)"2
= %(G G) +e; Gi@zz‘j

N T\—1/2
= [V;ATe; — (H; @ 25 )M (g; @ ¢;)]7(GTG)~Y? + JG%

iJ

N o GTG —1/2

= el AV(GTG)? + [—(gf@e;‘-r)M(Hi ® z)(GTG)~1/? —&—eiTG((%ii .
With V = >"" | V;, we further have
i el G(GTG)~1/?
i=1 0z
X n T\—1/2
= TAVTGTG) T+ Y [ @ M @ 2)(GT6) 2 4 f X
1]

i=1

S6 Proof of Theorem S3.1

Recall that Theorem S5.1 holds for general loss function L; : RE SR provided that conditions (1)
and (2) in Theorem S5.1 hold. In this section, we consider the multinomial logistic loss function L;
defined in Section S3.1. To be specific,

K+1 K+1

Li(u) = — Z yirer Qu + log Z exp(et, Qu), Yu € RE. (S6.1)
k=1 k'=1
In order to apply Theorem S5.1, we need to verify that, when L; in (S6.1) is used, the two conditions
(1) and (2) in Theorem S5.1 hold. To this end, we present a few lemmas in the following two
subsections, which will be useful for asserting the conditions (1) and (2) when we apply Theorem S5.1
to prove Theorem S3.1.

S6.1 Control of the singular values of the gradients and Hessians

Before stating the lemmas that assert the conditions in Theorem S5.1, define

U={(Y.X)e R EHD) 5 RPXP B exists, || XB(Ix11 — %)H% <nt},

n
U, = {y e RV S I(yy = 1) = ynforall k € [K + 1]}.
i=1
Lemma S6.1 (deterministic result on gradient). Let L; be defined as in (S6.1). Assume that either
Assumption 2.2 or Assumption S1.1 holds. IfY € U,, for any M € R"™¥ such that || MQT ||% < nr,
we have .
mdg 2n~' Y VL(MTe;)VLi(M"e;)" < K,

i=1

where m. is a positive constant depending on (K, ~y, T) only.

Proof of Lemma S6.1. Without loss of generality, let’s assume that vn is an integer. Otherwise, we
can replace it with the greatest integer less than or equal to yn, denoted as |yn|.

If Y € Uy, there exists at least yn many disjoint index sets {51, ..., Sy, } such that the following
hold for each [ € [yn],

(i) Sy C [n]; (id) |Si] = K +1; (iid) >y =1, Vk € [K+1].
i€S;
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Since .S; are disjoint and U}, .S; C [n], we have

n n
YoM e <Y QM el = |QMT||E < nr.
I1=114€S; i=1

It follows that at most an many of | € {1,2,...,yn} s.t. 3 .cq QM7 e;||*> > 7/a, otherwise

the previous display can not hold. In other words, there exists a subset L* C {1,2,...,yn} with
IL*[ > (y —a)n st Y, [IQM™ ;|| < 7/aforall | € L*. Define the index set I = Ujer+ Sy,

then |I| > (K + 1)n(y — a), and ||QM7Te;||oo < \/7/a foralli € I. Let us take a = 7/2, then
|L*| > Znand |I| > v(K + 1)n/2. Recall that L;(u) = L;(Qu), we have VL;(u) = QT VL;(Qu).
Thus,

VLi(M"e;) = Q"VL(QMTe;) = Q" (—yi + pi),
where p; € RE+1 and its k-th entry satisfying

o = exp(el QM7Te;)
ik = SKT1
iy exp(ef, QMTe;)

€ le,1—¢], (S6.2)
for some constant ¢ € (0, 1) depending on (7, v, K) only. Therefore,
n
nt Z VL;(MTe;)VL;(MTe;)T

i=1

QT (i = pi)lyi — i)' Q
=1

1Y

QT N (yi—pi)yi —p)TQ

I=114€S;

QT Y (vi—p)(vi —p)TQ
leL* i€S;

QT Y AT AQ,
l

eL

Y

where 4; € REHDX(KE+D) hag K + 1 rows {y; — p; : i € S;}. We further note that A is of the
form (I 11 — P;) up to a rearrangement of the columns, where P; € RUE+1x(K+1) ig 3 stochastic
matrix with entries of the form

exp(egQMTei)
Seiiexp(efQMTe;)’

€S, kel[K+1].

By (S6.2), for each [ € L*, the stochastic matrix P; is irreducible and aperiodic and ker(Ix+1 — P;)
is the span of the all-ones vector 1. Therefore,

T

(Ix11 —P)QQ" = (I 11 — P)(Ix 11 — #55) = Ik 41 — P).
It follows that
K =rank(Ix 1 — P;) = rank((Ix 11 — P))QQT) < rank((Ix 41 — P;)Q) < K.

We conclude that the rank of (Ix41 — P;)Q is K.
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If P denotes the set of matrices {P € RUK+DX(K+1) . gtochastic with entries in [c, 1 — |}, and
SK-1 = fq € RE : ||a|| = 1}. By compactness of P and S ~!, we obtain

1 n
— Amin Li(M%e))VLi(MTe;)"
L (3 VL (MTe) V(M e, ))

1=1
1
S2 Z (AT AT
= & )\mm(Q Al AZQ)

1 .
> min aTQTAlTAlQa
n acSK-1
leL*

1
>—|L* i TQT (I —P)' (Igy1 — P
2 I gmin @@ (I = P) (I = P)Qa

> 20T Q" (Ic41 = Po)T (Iic+1 = P.)Qu.

> 20T Q" (Ic41 = Po)T (Iics1 — P.)Qu.
=M,

where a, € SK—1, P, € P, and m, is a positive constant depending on (K, ~, 7) only. The first
inequality above uses the property Apmin(A4 + B) > Amin(4) + Amin(B), where A and B are two
positive semi-definite matrices.

In other words, £ > | VL;(M7Te;)VL;(MTe;)T = m.Ix. For the upper bound, since ||Q||,, < 1

by definition of @ and all the entries of (y; — p;)(y; — p;)” are between —1 and 1 if Assumption 2.2

or Assumption S1.1 holds, we have

1D VLM e) VLM e)" op = 1Q7 > (vi — pi) (yi — pi) " Qllop < nK.

i=1 =1
O

Lemma S6.2 (deterministic result on Hessian). Let L; be defined as in (S6.1). For all i € [n], we
have V?L;(u) = I for any u € R¥ and

min V2Li(u) = e,
wERK [|Qulloe <7

where c, is a positive constant depending on (K, ) only.

Proof of Lemma S6.2. Recall that L;(u) = L;(Qu), we have
V2Li(u) = QT V2Li(Qu)Q,
where V2L;(Qu) = diag(p;) — p;p! and the k-th entry of p; € RE*! is defined as p;z =
T
—2Plee @) gor all § € [n],k € [K +1). Thus, pi < 1foralli € [n],k € [K + 1].
Zk/:l eXp(ek/Qu)
For any vector a € SX~1, we have
aTV?Li(u)a =a” QT [diag(p;) — pipl|Qa

<a® Q" diag(p;)Qa

<[1Q" diag(pi)Qllop

<1,
where the last inequality uses ||Q||o, < 1 and p;, < 1 for any k. Hence, V2L;(u) < Ik for any
i€ [n].
Now we prove the lower bound. For any u € R¥ such that || Qu|o, < r, we have
B exp(egQu)

Sty exp(el Qu)

Pik €le,1—(
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for some constant ¢ depending on (K, 7) only. For any vector a € SX~1, let n = Qa € RE*!, then
17y =0and

aT [V2L;(u)]a =a QT [diag(p;) — pip!]Qa

=n"[diag(p;) — piP} 1
K+1 K+1

= Z Pikli — Z Pirik)?
> Z pzknk Z PikM Z Pik
= Z pirme (1 — Z Pik)

k k

:O’

where the last equality uses Zf:ll pir = 1, and the inequality follows by (3, piknk)? =

Ok VPiky Pikik)® < Dok Pik D puﬂ],% using the Cauchy-Schwarz inequality, and here “ = ”
holds if and only if /p;r o \/Pini for each k, which is not true since p;x € [¢,1 — ¢] and 1T77 = 0.

Let H = {QT (diag(p) — pp?)Q : p € [¢,1 — ¢]K+1}, then H is compact and

min Amin (V2L (u)) > min o’ Ha=alH.a, >0
wERE || Qul| oo <7 acSEK-1 HecH

for some a, € SX~! and H, € H. Therefore,

min V2Li(u)) = eIk
u€ERK || Qulloo<r

where ¢, is a positive constant depending on (X, ) only. O
S6.2 Lipschitz conditions

We first restate the definitions of following sets,
U={(Y,X) e RETD 7P Bexists, | XB(Ixr1 — 227)[1% < n7},
U, = {Y e R K+ . ZI(yik =1) >~ nforallk € [K + 1]}
i=1

Lemma S6.3. Assume p/n < 571 < 1 — o for some a € (0,1) and § > 1. Let T = {I C [n] :
[I| = [n(1 — )1} and P; = Y, e;el. Define

_ - 1/2
U, = {X c R"XP . rlnei%)‘min(z 1/2XT71:IXE 1/2) > ¢2 HXE Hop < ¢ } (863)

for some positive constants ¢, d*, which depend on (6,c) only. Let U* = {(V,X) e U : Y €
Uy, X € U,}. Then under Assumptions 2.1, 2.3 and 2.4, and if either Assumption 2.2 or Assump-
tion S1.1 holds, we have

i) P((Y,X)eU*) = lasn,p — oo
(ii) Let G be defined in Assumption 85.2. If {(Y, X), (Y, X)} C U*, we have
IG(Y, X) = G(Y, X)|r < LIX = X)Z72|

where L is a positive constant depending on (K, ~, T, «) only.

Proof of Lemma S6.3. We first prove statement (i). Under Assumption 2.1, [Bellec, 2022, Lemma
7.7] implies

. —1/2+T —1/2
P(min Amin (S ———725—) > 6) = 1
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for some positive constant ¢, depending on (d, «) only. Furthermore, [Davidson and Szarek, 2001,
Theorem II.13] implies

|‘X271/2‘|0P *
PN Pllen < ) 1
for some positive constant ¢* depending on § only. Therefore, P(X € U,) — 1. Under Assump-

tion 2.3, we have P(Y € U,) — 1. Under Assumption 2.4, we have P((Y,X) € U) — 1. In
conclusion, under Assumptions 2.1, 2.3 and 2.4, we have P((Y, X) € U*) — las n,p — cc.

Now we prove the statement (ii). For a fixed Y, let (Y, X), (Y, X) € U*, B, B be their corresponding
minimizers of (S3.3), and G, G be their corresponding gradient matrices. We first provide some
useful results derived from the KKT conditions. From the KKT conditions X7G = XTG = 0, we
have
(XB-XB,G-G)=(B-B,XTG-X"G)+ (XB-XB,G-G)
=— (X -X)(B-B),G)+ (X - X)B,G - G).

Since || V2L;(u)]|op < 1 for any u € R¥ from Lemma S6.2, VL;(-) is 1-Lipschitz. Thus,
(XB-XB,G-G)=>» (B"x; - B"%;,VL;(B"x;) - VLi(B"i,))

7

Il
_

>N (VLB ;) — VLB %;),VL;(BT2;) — VL;(BT%,))

v

|
-

1=

=G - Gl%.
If (Y, X), (Y, X) € U, we have || X BQT|% + | X BQT||% < 2n7. That s,

S (IQB i + |QB %:[)%) < 2nr.
i=1
Define the index set R i
I'={i€n: QB |* + QB & < 2},
then we have |I| > (1 — a)n by Markov’s inequality. Thus, for all i € I, we have || QBT ;|| V
|QBT#i]loe < /2.

Applying Lemma S6.2 with r = /2T gives

min VQLi(u) = ol
IQulloe </ 22
where ¢, is a constant depending on (K, 7, «). Therefore,
¢.|PI(XB = XB)|% =c. Y _||B 2 — B &;)?
icl
i€l
< Z(éTﬂ?i — B"#;,VL(B"z;) — VL;(B";))
i=1

=(XB-XB,G-G)
= (X -X)(B-DB),G) + (X -X)B,G - G).
We next bound the first line from below by expanding the squares,
IPH(XB = XB)|% = |P1X(B - B) + Pr(X - X) B[
> |P X(B - B)|% +2(P X(B - B), P(X — X)B)
> ng?|SV3(B - B)|% +2(X(B - B), Pi(X - X)B),
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where in the last inequality we use the constant ¢* in (S6.3). Therefore, we obtain
cdin||=V2(B - B)|7
<—{((X-X)(B-B),G)+ (X -X)B,G - G) —2c.(X(B - B),P(X — X)B).
Together with the inequality that |G — G||% < (X B — X B, G — G, we obtain
e dIn||SV2(B — B)|3 + G — Gl
<—2((X - X)(B-B),G)+2((X - X)B,G — G) — 2¢.(X(B - B), Pi(X — X)B)

<+ 26X = D) 2152208 - Bl v IEZ 20 (2 1)

n
where we bound (X (B — B), P;(X — X)B) by definition of ¢*,
(X(B-B),Pi(X - X)B)

=(x'2(B-B),2"2XTP; (X — X)B)

<IEV2(B = B)llrlPr X2 lop| (X = X)Z72 6| I=12 B

<Ving*|SV2(B — B)llrll(X — X)Z72lop | S2B] 5.
Now we derive a bound of the form ||2'/2B||r < ||G||#/+/n. To this end, since ¢.||S'2B||r <
IPrXBllr/vi < | XBllr/vi = IXBQ"|r/vn < V7.
Applying Lemma S6.1 to M = X B, we have 1 " | g;g7 = m, I 5. Therefore,

LG = 23 gl = " Te(igl) > K.,
i=1

i=1
This implies that

G=2BIE < 7 < IGI%/n.

-
Km,(I)
In conclusion, if {(Y, X), (Y, X)} C U* then

Va|SV2(B = B)|lr +1IG = Gllr < On7V2(X = X))o |Gllr < CE|(X = X)E7Y2|0p,
where C is a constant depending on (K, 7, 7, @) only. Note that ||G||r < v/nK since all entries of

G arein [—1,1]. O

Lemma S6.4. Ifp/n < 6~ < (1 — «) for some o € (0,1) and § > 1. If (Y, X) € U and X € Uy,
where U, is defined in Lemma S6.3, we have

1 n
- Y Hi@(za]) = ai(Ix @ ),
i=1
where c1 is a positive constant depending on (K, T, v, ¢..) only.

Proof of Lemma $6.4. 1f (Y, X) € U, we have | X BQT||% < nr. Define the index set
I={ien: QB x| < 7},
then we have |I| > (1 — a)n by Markov’s inequality. Therefore, for any i € I, |QBT ;|00 < -
Applying Lemma S6.2 with w = BT xz; and r = I, we have forany i € I, H; = V?L;(Bx;) »=
nd

¢« I for some positive constant ¢, depending on (K, 7, ) only. Therefore, if (Y,X) € U a
X e U,, we have

1 & 1
ﬁZHi ® (wiay ) = EZHi ® (w7 )
=1 el
1
> Cy— 1 iT
= e Dl el)

e (I ® X721y
C*d)*(IK ®E)
cl(IK ®2)7

Y
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where Py = Y., e;el and c; is a positive constant depending on (K, 7, v, ¢.) only. O

iel
S6.3 Proof of Theorem S3.1

The proof of Theorem S3.1 is a direct consequence of Theorem S5.1 by noting
N (l ig-gT) o (l i Vi) BTe; = 0,/ (GTG) AV BT
33 n (4 n g J JJ 7
i=1 i=1

which is a consequence of the identities G = > ;" e;g] and V = """ | V;.

It thus remains to verify the conditions (1) and (2) in Theorem S5.1 from the assumptions in
Theorem S3.1.

Applying Lemma $6.3 with o chosen as 1 — 6 /2, we have for {(Y, X), (Y, X)} c U*,
IG(Y, X) = G(Y. X)||p < L|(X = )= p,
where L is a positive constant depending on (K, 7, ) only.

Apply Lemma S6.4 with the same a = 1 — 6~ 1/2, we have for (Y, X) € U*,

1 n
= "H; @ (via]) = eu(Ix ® 1),
n

i=1
where ¢, is a positive constant depending on (K, 7, d) only.

Applying Lemma S6.1 with M = X B, we have for (Y, X) € U*,

mod 2n~' Y VLM e;)VL;(M"e;)" < Kl
i=1
where m. is a positive constant depending on (K, ~,7) only. Therefore, the conditions (1) and

(2) in Theorem S5.1 hold when the multinomial logistic loss is used. This completes the proof of
Theorem S3.1.

S7 Other proof

S7.1 Proof of Equation (1.12) (Classical asymptotic theory with fixed p)

Here we provide a derivation of the asymptotic distribution of MLE under classical setting, where p
is fixed and n tends to infinity.

We first calculate the Fisher information matrix of the multinomial logistic log-odds model (1.8)
with covariate x ~ N (0,Y) and response y € {0, 1}*+! one-hot encoded satisfying Zf;ll yr = L.
Note that the model (1.8) can be rewritten as

TA*
Py = 1|z) = eip(m k) . Vke{l,.. K}
14> _ exp(aT A*ey)
1
P(yri1 = 1|z) = .
1+ 2521 exp(zT A*eyr)
The likelihood function of a parameter A € RP*¥ is
X eXp(xTAek) Yk 1 YK 41
(A =] [x ] e ]
o1 L+ Do exp(a’ Aew) 14>, exp(aT Aeyr)
A 1
= [exp(z” Aey)]’* ;
k1;[1 1+ 25:1 exp(zT Aeyr)
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K+1

where we used >, ;" yi = 1. Thus, the log-likelihood function is

Zykx Aek - 10g Z eXp xT AEk/

k=1 k'=1

It is more convenient to calculate the Fisher information matrix on the vector space RPX instead of the
matrix space RP*X. To this end, let § = vec(A”), then 2T Aey, = el ATz = (27 @ e]) vec(AT) =
(z7 @ e )0, and the log-likelihood function parameterized by 6 is

K

Zyk @ )0~ logll + 3 exp((a” @ F)0))
k'=1

By multivariate calculus, we obtain the Fisher information matrix evaluated at §* = vec(A*7T),

20 = %3555 -

— E[(x2”) ® (ding(n") — 7],

where 7% € R with k-th entry 7} = HZEXP(ZZQ;ET’CA*W) for each k € [K].
k/=1 4

From classical maximum likelihood theory, for instance [Van der Vaart, 1998, Chapter 5], we have
Vn(d — 615N (0,Z,0),

where 6 = vec(flT) and A is the MLE of A*. Furthermore, if the j-th covariate is independent of the
response, we know e;‘-FA* = 07, then
VAT e; = Vn(ATe; — A*Te;) = vn(e] @ Ik)(0 - 0)-<5N(0,S)),
where
Si = (e] ®Ix)Iy' (e; @ Ik)
= echov(x)_lej [E(diag(r*) — 7*7* 1)) !

holds by the independence between the j-th covariate and the response under Hj in (1.10). This
completes the proof of Equation (1.12).
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