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Abstract

This paper investigates the asymptotic distribution of the maximum-likelihood
estimate (MLE) in multinomial logistic models in the high-dimensional regime
where dimension and sample size are of the same order. While classical large-
sample theory provides asymptotic normality of the MLE under certain conditions,
such classical results are expected to fail in high-dimensions as documented for the
binary logistic case in the seminal work of Sur and Candès [2019]. We address this
issue in classification problems with 3 or more classes, by developing asymptotic
normality and asymptotic chi-square results for the multinomial logistic MLE
(also known as cross-entropy minimizer) on null covariates. Our theory leads to a
new methodology to test the significance of a given feature. Extensive simulation
studies on synthetic data corroborate these asymptotic results and confirm the
validity of proposed p-values for testing the significance of a given feature.

1 Introduction

Multinomial logistic modeling has become a cornerstone of classification problems in machine
learning, as witnessed by the omnipresence of both the cross-entropy loss (multinomial logistic loss)
and the softmax function (gradient of the multinomial logistic loss) in both applied and theoretical
machine learning. We refer to Cramer [2002] for an account of the history and early developments of
logistic modeling.

Throughout, we consider a classification problem with K + 1 possible labels where K is a fixed
constant. This paper tackles asymptotic distributions of multinomial logistic estimates (or cross-
entropy minimizers) in generalized linear models with moderately high-dimensions, where sample
size n and dimension p have the same order, for instance n, p → +∞ simultaneously while the ratio
p/n converges to a finite constant. Throughout the paper, let [n] = {1, 2, . . . , n} for all n ∈ N, and
I{statement} be the 0-1 valued indicator function, equal to 1 if statement is true and 0 otherwise
(e.g., I{yi = 1} in the next paragraph equals 1 if yi = 1 holds and 0 otherwise).

The case of binary logistic regression. Let ρ(t) = log(1 + et) be the logistic loss and ρ′(t) =
1/(1+ e−t) be its derivative, often referred to as the sigmoid function. In the current moderately-high
dimensional regime where n, p → +∞ with p/n → κ > 0 for some constant κ, recent works
[Candès and Sur, 2020, Sur and Candès, 2019, Zhao et al., 2022] provide a detailed theoretical
understanding of the behavior of the logistic Maximum Likelihood Estimate (MLE) in binary logistic
regression models. Observing independent observations (xi, yi)i∈[n] from a logistic model defined

as P(yi = 1|xi) = ρ′(xT
i β) where xi ∼ N(0, n−1Ip), and limn→∞ ∥β∥2/n = γ2 for a constant

γ for the limiting squared norm of the unknown regression vector β. These works prove that the

behavior of the MLE β̂ = argminb∈Rp

∑n
i=1 ρ(x

T
i b)−I{yi = 1}xT

i b is summarized by the solution
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(α∗, σ∗, λ∗) of the system of three equations







σ2 = 1
κ2E[2ρ

′(γZ1)(λρ
′(proxλρ(−αγZ1 +

√
κσZ2)))

2]

0 = E[ρ′(γZ1)λρ
′(proxλρ(−αγZ1 +

√
κσZ2))]

1− κ = E[2ρ′(γZ1)
/(

1 + λρ′′(proxλρ(−αγZ1 +
√
κσZ2))

)
]

, (1.1)

where (Z1, Z2) are i.i.d. N(0, 1) random variables and the proximal operator is defined as

proxλρ(z) = argmint∈R

{
λρ(t) + (t − z)2/2

}
. The system (1.1) characterize, among others,

the following behavior of the MLE β̂: for almost any (γ, κ), the system admits a solution if and only

if β̂ exists with probability approaching one and in this case, ∥β̂∥2/n and ∥β̂ − β∥2/n both have
finite limits that may be expressed as simple functions of (α∗, σ∗, λ∗), and for any feature j ∈ [p]
such that βj = 0 (i.e., j is a null covariate), the j-th coordinate of the MLE satisfies

β̂j
d−−→N(0, σ2

∗).

The proofs in Sur and Candès [2019] are based on approximate message passing (AMP) techniques;
we refer to Berthier et al. [2020], Feng et al. [2022], Gerbelot and Berthier [2021] and the references
therein for recent surveys and general results. More recently, Zhao et al. [2022] extended the result
of Sur and Candès [2019] from isotropic design to Gaussian covariates with an arbitrary covariance
structure: if now xi ∼ N(0,Σ) for some positive definite Σ and limn,p→+∞ βTΣβ = κ, null
covariates j ∈ [p] (in the sense that yi is independent of xij given (xik)k∈[p]\{j}) of the MLE satisfy

(n/Ωjj)
1/2β̂j

d−−→N(0, σ2
∗), (1.2)

where σ∗ is the same solution of (1.1) and Ω = Σ−1. Zhao et al. [2022] also obtained asymptotic
normality results for non-null covariates, that is, features j ∈ [p] such that βj ̸= 0. The previous
displays can be used to test the null hypothesis H0 : yi is independent of xij given (xik)k∈[p]\{j}
and develop the corresponding p-values if σ∗ is known; in this binary logistic regression model the
ProbeFrontier [Sur and Candès, 2019] and SLOE Yadlowsky et al. [2021] give means to estimate
the solutions (α∗, σ∗, λ∗) of system (1.1) without the knowledge of γ. Mai et al. [2019] studied the
performance of Ridge regularized binary logistic regression in mixture models. Salehi et al. [2019]
extended Sur and Candès [2019] to separable penalty functions. Bellec [2022] derived asymptotic
normality results similar to (1.2) in single-index models including binary logistic regression without
resorting to the system (1.1), showing that for a null covariate j ∈ [p] in the unregularized case that

(n/Ωjj)
1/2(v̂/r̂)β̂j

d−−→N(0, 1) (1.3)

where v̂ = 1
n

∑n
i=1 ρ

′′(xT
i β̂) − ρ′′(xT

i β̂)
2xT

i [
∑n

l=1 xlρ
′′(xT

l β̂)x
T
l ]

−1xi is scalar and so is r̂2 =
1
n

∑n
i=1(I{yi = 1} − ρ′(xT

i β̂))
2. In summary, in this high dimensional binary logistic model,

(i) The phase transition from Candès and Sur [2020] splits the (γ, κ) plane into two connected
components: in one component the MLE does not exist with high probability, in the other

component the MLE exists and ∥Σ1/2β̂∥2 is bounded with high probability (boundedness is

a consequence of the fact that ∥Σ1/2β̂∥2 or ∥Σ1/2(β̂ − β)∥2 admit finite limits);

(ii) In the component of the (γ, κ) plane where the MLE exists, for any null covariate j ∈ [p],
the asymptotic normality results (1.2)-(1.3) holds.

Multiclass classification. The goal of this paper is to develop a theory for the asymptotic normality
of the multinomial logistic regression MLE (or cross-entropy minimizer) on null covariates when the
number of classes, K + 1, is greater than 2 and n, p are of the same order. In other words, we aim to
generalize results such as (1.2) or (1.3) for three or more classes. Classification datasets with 3 or
more classes are ubiquitous in machine learning (MNIST, CIFAR to name a few), which calls for such
multiclass generalizations. In Gaussian mixtures and logistic models, Thrampoulidis et al. [2020]
derived characterizations of the performance of of least-squares and class-averaging estimators,
excluding cross-entropy minimizers or minimizers of non-linear losses. Loureiro et al. [2021]
extended Sur and Candès [2019], Zhao et al. [2022], Salehi et al. [2019] to multiclass classification
problems in a Gaussian mixture model, and obtained the fixed-point equations that characterize the
performance and empirical distribution of the minimizer of the cross-entropy loss plus a convex
regularizer. In the same vein as Loureiro et al. [2021], Cornacchia et al. [2022] studied the limiting
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fixed-point equations in a multiclass teacher-student learning model where labels are generated by
a noiseless channel with response argmink∈{1,...,K} x

T
i βk where βk ∈ R

p is unknown for each

class k. These two aforementioned works assume a multiclass Gaussian mixture model, which is
different than the normality assumption for xi used in the present paper. More importantly, these
results cannot be readily used for the purpose testing significant covariates (cf. (1.10) below) since
solving the fixed-point equations require the knowledge of several unknown parameters, including
the limiting spectrum of the mixture covariances and empirical distributions of the mixture means (cf.
for instance Corollary 3 in Loureiro et al. [2021]). In the following sections, we fill this gap with a
new methodology to test the significance of covariates. This is made possible by developing new
asymptotic normality results for cross-entropy minimizers that generalize (1.3), without relying on
the low-dimensional fixed-point equations.

Notation. Throughout, Ip ∈ R
p×p is the identity matrix, for a matrix A ∈ R

m×n, AT denotes the

transpose of A, A† denotes the Moore-Penrose inverse of A. If A is psd, A1/2 denotes the unique

symmetric square root, i.e., the unique positive semi-definite matrix such that (A1/2)2 = A. The

symbol ⊗ denotes the Kronecker product of matrices. Given two matrices A ∈ R
n×k, B ∈ R

n×q

with the same number or rows, (A,B) ∈ R
n×(k+q) is the matrix obtained by stacking the columns of

A and B horizontally. If v ∈ R
n is a column vector with dimension equal to the number of rows in

A, we construct (A, v) ∈ R
n×(k+1) similarly. We use 0n and 1n to denote the all-zeros vector and

all-ones vector in R
n, respectively; we do not bold vectors and matrices other than 0n and 1n. We

may omit the subscript giving the dimension if clear from context; e.g., in IK+1 − 11
T

K+1 the vector 1

is in R
K+1. The Kronecker product between two matrices is denoted by ⊗ and vec(M) ∈ R

nd is

the vectorization operator applied to a matrix M ∈ R
n×d. For an integer K ≥ 2 and α ∈ (0, 1), the

quantile χ2
K(α) is the unique real number satisfying P(W > χ2

K(α)) = α where W has a chi-square
distribution with K degrees of freedom. The symbols

d−−→ and
p−−→ denote convergence in distribution

and in probability.

Throughout, classical asymptotic regime refers to the scenario where the feature dimension p is fixed
and the sample size n goes to infinity. In contrast, the term high-dimensional regime refers to the
situation where n and p both tend to infinity with the ratio p/n converging to a limit smaller than 1.

1.1 Multinomial logistic regression

Consider a multinomial logistic regression model with K + 1 classes. We have n i.i.d. data samples
{(xi, yi)}ni=1, where xi ∈ R

p is the feature vector and yi = (yi1, ..., yi(K+1))
T ∈ R

K+1 is the

response. Each response yi is the one-hot encoding of a single label, i.e., yi ∈ {0, 1}K+1 with
∑K+1

k=1 yik = 1 such that yik = 1 if and only if the label for i-th observation is k. A commonly used
generative model for yi is the multinomial regression model, namely

P(yik = 1|xi) =
exp(xT

i B
∗ek)

∑K+1
k′=1 exp(x

T
i B

∗ek′)
, k ∈ {1, 2, . . . ,K + 1} (1.4)

where B∗ ∈ R
p×(K+1) is an unknown logistic model parameter and ek ∈ R

K+1, ek′ ∈ R
K+1 are

the k-th and k′-th canonical basis vectors. The MLE for B∗ in the model (1.4) is any solution that
minimizes the cross-entropy loss,

B̂ ∈ argminB∈Rp×(K+1)

∑n
i=1 Li(B

Txi), (1.5)

where Li : R
K+1 → R is defined as Li(u) = −

∑K+1
k=1 yikuk + log

∑K+1
k′=1 exp(uk′). If the solution

set in (1.5) is non-empty, we define for each observation i ∈ [n] the vector of predicted probabilities
p̂i = (p̂i1, ..., p̂i(K+1))

T with

p̂ik
def
:= P(ŷik = 1) =

exp(xT
i B̂ek)

∑K+1
k′=1 exp(x

T
i B̂ek′)

for each k ∈ {1, ...,K + 1}. (1.6)

Our results will utilize the gradient and Hessian of Li evaluated at B̂Txi, denoted by

gi
def
:= ∇Li(B̂

Txi) = −yi + p̂i, Hi
def
:= ∇2Li(B̂

Txi) = diag(p̂i)− p̂ip̂
T
i . (1.7)
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The quantities (B̂, p̂i, gi,Hi) can be readily computed from the data {(xi, yi)}ni=1. To be spe-

cific, the MLE B̂ in (1.5) can be obtained by invoking a multinomial regression solver (e.g.,
s❦❧❡❛r♥✳❧✐♥❡❛r❴♠♦❞❡❧✳▲♦❣✐st✐❝❘❡❣r❡ss✐♦♥ from Pedregosa et al. [2011]), and the quanti-
ties p̂i, gi,Hi can be further computed from eqs. (1.6) and (1.7) by a few matrix multiplications and
application of the softmax function.

Log-odds model and reference class. The matrix B∗ in (1.4) is not identifiable since the conditional
distribution of yi|xi in the model (1.4) remains unchanged if we replace columns of B∗ by B∗−b1T

K+1
for any b ∈ R

p. In order to obtain an identifiable model, a classical and natural remedy is to model
the log-odds, here with the class K + 1 as the reference class:

log
P(yik = 1|xi)

P(yi(K+1) = 1|xi)
= xT

i A
∗ek, ∀k ∈ [K] (1.8)

where ek is the k-th canonical basis vector of RK , and A∗ ∈ R
p×K is the unknown parameter.

The matrix A∗ ∈ R
p×K in log-odds model (1.8) is related to B∗ ∈ R

p×(K+1) in the model (1.4)
by A∗ = B∗(IK ,−1K)T . This log-odds model has two benefits: First it is identifiable since the
unknown matrix A∗ is uniquely defined. Second, the matrix A∗ lends itself well to interpretation as
its k-th column represents the contrast coefficient between class k and the reference class K + 1.

The MLE Â of A∗ in (1.8) is Â = argminA∈Rp×K

∑n
i=1 Li((A,0p)

Txi). If the solution set in (1.5)

is non-empty, Â is related to any solution B̂ in (1.5) by Â = B̂(IK ,−1K)T . Equivalently,

Âjk = B̂jk − B̂j(K+1) (1.9)

for each j ∈ [p] and k ∈ [K]. If there are three classes (i.e. K + 1 = 3), this parametrization allows

us to draw scatter plots of realizations of
√
neTj Â = (

√
nÂj1,

√
nÂj,2) as in Figure 1.

1.2 Hypothesis testing for the j-th feature and classical asymptotic normality for MLE

Hypothesis testing for the j-th feature. Our goal is to develop a methodology to test the sig-
nificance of the j-th feature. Specifically, for a desired confidence level (1 − α) ∈ (0, 1) (say,
1− α = 0.95) and a given feature j ∈ [p] of interest, our goal is to test

H0 : yi is conditionally independent of xij given (xij′)j′∈[p]\{j}. (1.10)

Namely, we want to test whether the j-th variable is independent from the response given all other
explanatory variables (xij′ , j

′ ∈ [p] \ {j}). Assuming normally distributed xi and a multinomial
model as in (1.4) or (1.8), it is equivalent to test

H0 : eTj A
∗ = 0

T
K versus H1 : eTj A

∗ ̸= 0
T
K , (1.11)

where ej ∈ R
p is the j-th canonical basis vector.

If the MLE B̂ in (1.5) exists in the sense that the solution set in (1.5) is nonempty, the conjecture that

rejecting H0 when eTj B̂ is far from 0K+1 is a reasonable starting point. The important question, then,
is to determine a quantitative statement for the informal “far from 0K+1”, similarly to (1.2) or (1.3)
in binary logistic regression.

Classical theory with p fixed. If p is fixed and n → ∞ in model (1.8), classical maximum
likelihood theory [Van der Vaart, 1998, Chapter 5] provides the asymptotic distribution of the MLE

Â, which can be further used to test (1.11). Briefly, if x has the same distribution as any xi, the MLE

Â in the multinomial logistic model is asymptotically normal with

√
n(vec(Â)− vec(A∗))

d−−→N(0, I−1) where I = E[(xxT )⊗ (diag(π∗)− π∗π∗T )]

is the Fisher information matrix evaluated at the true parameter A∗, vec(·) is the usual vectorization

operator, and π∗ ∈ R
K has random entries π∗

k = exp(xTA∗ek)
/
(1 +

∑K
k′=1 exp(x

TA∗ek′)) for

each k ∈ [K]. In particular, under H0 : eTj A
∗ = 0

T
K ,

√
nÂT ej

d−−→N(0, Sj) (1.12)
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• Establish asymptotic normality of the multinomial MLE ÂT ej for null covariates as n, p →
+∞ simultaneously with a finite limit for n/p.

• Develop a valid methodology for hypothesis testing of (1.10) in this regime, i.e., testing for
the presence of an effect of a feature j ∈ [p] on the multiclass response.

The contribution of this paper is two-fold: (i) For a null covariate j ∈ [p], we establish asymptotic

normality results for ÂT ej that are valid in the high-dimensional regime where n and p have the
same order; (ii) we propose a user-friendly test for assessing the significance of a feature in multiclass
classification problems.

2 Main result: asymptotic normality of B̂T ej and ÂT ej on null covariates

In this section, we present the main theoretical results of our work and discuss their significance. We
work under the following assumptions.

Assumption 2.1. For constants δ > 1, assume that n, p → ∞ with p/n ≤ δ−1, and that the
design matrix X ∈ R

n×p has n i.i.d. rows (xi)i∈[n] ∼ N(0,Σ) for some invertible Σ ∈ R
p×p. The

observations (xi, yi)i∈[n] are i.i.d. and each yi is of the form yi = f(Ui, x
T
i B

∗) for some deterministic

function f , deterministic matrix B∗ ∈ R
p×(K+1) such that B∗

1K+1 = 0p, and latent random variable
Ui independent of xi.

Assumption 2.2 (One-hot encoding). The response matrix Y is in R
n×(K+1). Its i-th row yi is a

one-hot encoded vector, that is, valued in {0, 1}K+1 with
∑K+1

k=1 yik = 1 for each i ∈ [n].

The model yi = f(Ui, x
T
i B

∗) for some deterministic f and B∗ and latent random variable Ui in
Assumption 2.1 is more general than a specific generative model such as the multinomial logistic
conditional probabilities in (1.4), as broad choices for f are allowed. In words, the model yi =
f(Ui, x

T
i B

∗) with B∗
1K+1 = 0p means that yi only depends on xi through a K dimensional

projection of xi (the projection on the row-space of B∗). The assumption p/n ≤ δ−1 is more
general than assuming a fixed limit for the ratio p/n; this allows us to cover low-dimensional settings
satisfying p/n → 0 as well.

The following assumption requires the labels to be “balanced”: we observe each class at least γn times
for some constant γ > 0. If (yi)i∈[n] are i.i.d. as in Assumption 2.1 with distribution independent of

n, p, by the law of large numbers this assumption is equivalent to mink∈[K+1] P(yik = 1) > 0.

Assumption 2.3. There exits a constant γ ∈ (0, 1
K+1 ], such that for each k ∈ [K + 1], with

probability approaching one at least γn observations i ∈ [n] are such that yik = 1. In other words,
P(
∑n

i=1 I(yik = 1) ≥ γn) → 1 for each k ∈ [K + 1].

As discussed in item list (i) on page 2, in binary logistic regression, Candès and Sur [2020], Sur

and Candès [2019] show that the plane ( pn , ∥Σ1/2β∗∥) is split by a smooth curve into two connected
open components: in one component the MLE does not exist with high probability, while in the other

component, with high probability the MLE exists and is bounded in the sense that ∥Σ1/2β̂∥2 < τ ′

or equivalently 1
n∥Xβ̂∥2 < τ for constants τ, τ ′ independent of n, p. The next assumption requires

the typical situation of the latter component, in the current multiclass setting: B̂ in (1.5) exists in the
sense that the minimization problem has solutions, and at least one solution is bounded.

Assumption 2.4. Assume P(B̂ exists and ∥XB̂(IK+1 − 11
T

K+1 )∥2F ≤ nτ) → 1 as n, p → +∞ for

some large enough constant τ .

Note that the validity of Assumption 2.4 can be assessed using the data at hand; if a multino-
mial regression solver (e.g. s❦❧❡❛r♥✳❧✐♥❡❛r❴♠♦❞❡❧✳▲♦❣✐st✐❝❘❡❣r❡ss✐♦♥) converges1 and
1
n∥XB̂(IK+1 − 11

T

K+1 )∥2F is no larger than a predetermined large constant τ , then we know Assump-

tion 2.4 holds. Otherwise the algorithm does not converge or produces an unbounded estimate: we
know Assumption 2.4 fails to hold and we need collect more data.

1Here, we refer to standard convergence assessment methods for convex solvers, e.g., looking at the
gradient/Hessian values at the current iterate, or looking at the duality gap if available.
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Our first main result, Theorem 2.1, provides the asymptotic distribution of B̂T ej where j ∈ [p] is

a null covariate, where B̂ is any minimizer B̂ of (1.5). Throughout, we denote by Ω the precision
matrix defined as Ω = Σ−1.

Theorem 2.1. Let Assumptions 2.1 to 2.4 be fulfilled. Then for any j ∈ [p] such that H0 in (1.10)

holds, and any minimizer B̂ of (1.5), we have

√
n

Ωjj
︸ ︷︷ ︸

scalar

(( 1

n

n∑

i=1

gig
T
i

)1/2

︸ ︷︷ ︸

R(K+1)×(K+1)

)† ( 1

n

n∑

i=1

Vi

)

︸ ︷︷ ︸

R(K+1)×(K+1)

B̂T ej

︸ ︷︷ ︸

RK+1

d−−→N
(

0, IK+1 − 11
T

K+1

︸ ︷︷ ︸

cov. R(K+1)×(K+1)

)

, (2.1)

where gi = −yi + p̂i as in (1.7) and Vi = Hi − (Hi ⊗ xT
i )[

∑n
l=1 Hl ⊗ (xlx

T
l )]

†(Hi ⊗ xi).

The proof of Theorem 2.1 is given in Supplementary Section S3. Theorem 2.1 establishes that under

H0, B̂T ej converges to a singular multivariate Gaussian distribution in R
K+1. In (2.1), the two

matrices 1
n

∑n
i=1(yi − p̂i)(yi − p̂i)

T and 1
n

∑n
i=1 Vi are symmetric with kernel being the linear span

of 1K+1, and similarly, if a solution exists, we may replace B̂ by B̂(IK+1 − 11
T

K+1 ) which is also

solution in (1.5). In this case, all matrix-matrix and matrix-vector multiplications, matrix square root
and pseudo-inverse in (2.1) happen with row-space and column space contained in the orthogonal
component of 1K+1, so that the limiting Gaussian distribution in R

K+1 is also supported on this
K-dimensional subspace.

Since the distribution of the left-hand side of (2.1) is asymptotically pivotal for all null covariates
j ∈ [p], Theorem 2.1 opens the door of statistical inference for multinomial logistic regression in

high-dimensional settings. By construction, the multinomial logistic estimate Â ∈ R
p×K in (1.9)

ensures (Â,0p) is a minimizer of (1.5). Therefore, we can deduce the following theorem from
Theorem 2.1.

Theorem 2.2. Define the matrix R = (IK ,0K)T ∈ R
(K+1)×K using block matrix notation. Let

Assumptions 2.1 to 2.4 be fulfilled. For Â in (1.9) and any j ∈ [p] such that H0 in (1.10) holds,

(

IK +
1K1

T
K√

K + 1 + 1

)

RT

︸ ︷︷ ︸

matrix RK×(K+1)

√
n

Ωjj
︸ ︷︷ ︸

scalar

(( 1

n

n∑

i=1

gig
T
i

)1/2

︸ ︷︷ ︸

matrix R(K+1)×(K+1)

)† ( 1

n

n∑

i=1

ViR
)

︸ ︷︷ ︸

R(K+1)×K

ÂT ej

︸ ︷︷ ︸

RK

d−−→N(0K , IK) (2.2)

where gi is defined in (1.7) and Vi is defined in Theorem 2.1. Furthermore, for the same j ∈ [p],

T j
n (X,Y )

def
:=

n

Ωjj

∥
∥
∥

(( 1

n

n∑

i=1

gig
T
i

)1/2)†( 1

n

n∑

i=1

Vi

)

RÂT ej

∥
∥
∥

2

satisfies T j
n (X,Y )

d−−→χ2
K . (2.3)

Note that Equations (2.2) and (2.3) is stated using Ωjj = eTj Σ
−1ej . When Σ is unknown, the

quantity Ωjj in above results can be replaced by its consistent estimate Ω̂jj defined in (2.5), and the
convergence in distribution results still hold.

Theorem 2.2 is proved in Supplementary Section S4. To the best of our knowledge, Theorem 2.2 is

the first result that characterizes the distribution of null MLE coordinate ÂT ej in high-dimensional
multinomial logistic regression with 3 or more classes. It is worth mentioning that the quantities

(gi,Vi, Â) used in Theorem 2.2 can be readily computed from the data (X,Y ). Therefore, Theo-
rem 2.2 lets us test the significance of a specific feature: for testing H0, this theorem suggests the test

statistic T j
n (X,Y ) in (2.3) and the rejection region Ej

α

def
:=

{
(X,Y ) : T j

n (X,Y ) ≥ χ2
K(α)

}
. Under

the null hypothesis H0 in (1.10), Theorem 2.2 guarantees P
(
(X,Y ) ∈ Ej

α

)
→ α. In other words, the

test that rejects H0 if (X,Y ) ∈ Ej
α has type I error converging to α. The p-value of this test is

p-value =
∫ +∞
T j
n (X,Y )

fχ2
K
(t)dt, (2.4)

where fχ2
K
(·) is the density of the chi-square distribution with K degrees of freedom.

Unknown Ωjj = eTj Σ
−1ej . If Σ is unknown, we describe a consistent estimate of the quantity Ωjj

appearing in (2.1), (2.2), and (2.3). Under the Gaussian Assumption 2.1, the quantity Ωjj is the
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classes, this methodology and the corresponding asymptotic normality results in Theorems 2.1 and 2.2
are novel and provide new understanding of multinomial logistic estimates (also known as cross-
entropy minimizers) in high-dimensions. We expect similar asymptotic normality and chi-square
results to be within reach for loss functions different than the cross-entropy or a different model for
the response yi; for instance Section S1 provides an extension to the q-repeated measurements model,
where q responses are observed for each feature vector xi.

Let us point a few follow-up research directions that we leave open for future work. A first open
problem regards extensions of our methodology to confidence sets for eTj B

∗ when H0 in (1.10) is
violated for the j-th covariate. This would require more stringent assumptions on the generative
model than Assumption 2.1 as B∗ there is not identifiable (e.g., modification of both B∗ and f(·, ·) in
Assumption 2.1 is possible without changing yi). A second open problem is to relate this paper’s
theory to the fixed-point equations and limiting Gaussian model obtained in multiclass models, e.g.,
Loureiro et al. [2021]. While it may be straightforward to obtain the limit of 1

n

∑n
i=1 gig

T
i and of

the empirical distribution of the rows of Â in this context (e.g., using Corollary 3 in Loureiro et al.
[2021]), the relationship between the fixed-point equations and the matrix 1

n

∑n
i=1 Vi appearing in

(2.1) is unclear and not explained by typical results from this literature. A third open problem is
to characterize the exact phase transition below which the multinomial logistic MLE exists and is
bounded with high-probability (Assumption 2.4); while this is settled for two classes [Candès and
Sur, 2020] and preliminary results are available for 3 or more classes [Loureiro et al., 2021, Kini
and Thrampoulidis, 2021], a complete understanding of this phase transition is currently lacking. A
last interesting open problem is to prove that our theory extend to non-Gaussian data, as observed in
simulations. This challenging problem is often referred to as “universality” and has received intense
attention recently [Gerace et al., 2022, Han and Shen, 2022, Montanari and Saeed, 2022, Pesce et al.,
2023, Dandi et al., 2023], showing that in several settings of interest (although none exactly matching
the one considered in the present paper), the asymptotic behavior of the minimizers is unchanged
if the distribution of the covariates is modified from normal to another distribution with the same
covariance.
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Supplementary Material of “Multinomial Logistic Regression:
Asymptotic Normality on Null Covariates in High-Dimensions”

Let us define some standard notation that will be used in the rest of this supplement. For a vector
v ∈ R

n, let ∥v∥∞ = maxi∈[n] |vi| denote the infinity norm of vector v. If A is symmetric, we define

λmin(A) and ∥A∥op as the minimal and maximal eigenvalues of A, respectively. For two symmetric
matrices A,B of the same size, we write A ⪯ B if and only if B −A is positive semi-definite.

Diagram: Organization of the proofs

The following diagram summarizes the different theorems and lemmas, and the relationships between
them.

Theorem 2.2

Asymptotic normality for

ÂT ej on null covariates,

where Â ∈ R
p×K is the

multinomial logistic MLE
with class K + 1 fixed
as the reference class (see
(1.9)).

Theorem 2.1

Asymptotic normality for

B̂T ej on null covariates,

where B̂ ∈ R
p×(K+1) is

the multinomial logistic
MLE in (1.5).

Theorem S3.1

Asymptotic normality for

B̂T ej on null covariates,

where B̂ ∈ R
p×K is the

multinomial logistic MLE
using the parameter space
from Section S3.1.
The proof uses that
the conditions in The-
orem S5.1 on the loss
function are satisfied by
the cross-entropy.

K-dimensional orthogo-
nal parametrization de-
fined by the matrix the Q

Section S3.1 defines the
matrix Q ∈ R

(K+1)×K

and discusses a conve-
nient parametrization of
the model isometric to
the subspace orthogonal
to 1K+1.

Control of gi and Hi for
the cross-entropy loss

Lemmas S6.1 and S6.2
give deterministic ar-
guments to control the
gradients and Hessians
of the cross-entropy
loss. Lemma S6.4 con-
trols the Hessian of the
cross-entropy loss at the
minimizer, in a specific
high-probability event.
Lemma S6.3 defines this
high-probability event.

Theorem S5.1

Asymptotic normality on
null covariates for general
loss functions, Σ ̸= Ip.
Deduced from Theo-
rem S5.2 by rotational
invariance.

Theorem S5.2

Asymptotic normality on
null covariates for general
loss functions, Σ = Ip.

Lemma S5.3

Normal and χ2 approxi-
mations for random vari-
ables defined as a differen-
tiable function of standard
normal vectors.

Lemma S5.5

Lemma S5.5 computes
the derivatives of the min-
imizer with respect to X ,
used in the proof of Theo-
rem S5.2.
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S1 Extension: q repeated measurements

Let integer q ≥ 1 be a constant independent of n, p. Our results readily extend if q labels are observed
for each observed feature vector xi, and the corresponding q one-hot encoded vectors are averaged
into yi ∈ {0, 1

q ,
2
q , ..., 1}K+1. Concretely, for each observation i ∈ [n], q i.i.d. labels (Y m

i )m∈[q]

are observed with each Y m
i ∈ {0, 1}K+1 one-hot encoded and yik = 1

q

∑q
m=1 Y

m
ik , for instance

in a repeated multinomial regression model with P(Y m
ik = 1|xi) equal to right-hand side of (1.4).

In this case where (Y m
i )m∈[q] are i.i.d., Assumption 2.3 is satisfied by the law of large numbers

if mink∈[K+1] P(Y
m
ik = 1) > 0 since q is constant. For this q repeated measurements model, the

negative log-likelihood function of a parameter B ∈ R
p×(K+1) is

−
n∑

i=1

q
∑

m=1

K+1∑

k=1

Y m
ik

[

xT
i Bek − log

K+1∑

k′=1

exp(xT
i Bek′)

]

= q

n∑

i=1

K+1∑

k=1

yik

[

−xT
i Bek + log

K+1∑

k′=1

exp(xT
i Bek′)

]

= q

n∑

i=1

[K+1∑

k=1

−yikx
T
i Bek + log

K+1∑

k′=1

exp(xT
i Bek′)

]

= q

n∑

i=1

Li(B
Txi),

where the first equality uses yik = 1
q

∑q
m=1 Y

m
ik , the second equality uses

∑K+1
k=1 yik = 1 under the

following Assumption S1.1, and the last equality uses the definition of Li after (1.5).

Assumption S1.1. For all i ∈ [n], the response yi is in {0, 1/q, 2/q, ..., 1}K+1 with
∑K+1

k=1 yik = 1.

In such repeated measurements model, we replace Assumption 2.2 with Assumption S1.1 under
which the following Theorem S1.1 holds.

Theorem S1.1. Let q ≥ 2 be constant. Let Assumptions S1.1, 2.1, 2.3 and 2.4 be fulfilled. For any
j ∈ [p] such that H0 in (1.10) holds, we have the convergence in distribution (2.1), (2.2) and (2.3).

Proof of Theorem S1.1. Under the assumptions in Theorem S1.1, the MLE B̂ for this q repeated
measurements model is the minimizer of the optimization problem

B̂ ∈ argmin
B∈Rp×(K+1)

n∑

i=1

Li(B
Txi)

as in (1.5). Similar to the non-repeated model, the MLE Â for the identifiable log-odds model can be
expressed as

Â = argmin
A∈Rp×K

n∑

i=1

Li((A,0p)
Txi).

The only difference between this q repeated measurements model and the non-repeated model
considered in the main text is that the response yik for this q repeated measurements model is now
valued in {0, 1/q, 2/q, ..., 1}. Because the proofs of Theorems 2.1 and 2.2 do not require the value of
yik to be {0, 1}-valued. Theorem S1.1 can be proved by the same arguments used in the proof of
Theorems 2.1 and 2.2.

S2 Implementation details and additional figures

The pivotal quantities in our main results Theorems 2.1 and 2.2 involve only observable quantities that
can be computed from the data (xi, yi)i∈[n]. In this section we provide an efficient way of computing
the matrix Vi appearing in Theorems 2.1 and 2.2.
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Fast computation of Vi. Recall the definition of Vi in Theorem 2.1,

Vi = Hi − (Hi ⊗ xT
i )

[ n∑

l=1

Hl ⊗ (xlx
T
l )

]†
(Hi ⊗ xi).

The majority of computational cost in calculating Vi lies in the step of calculating its second term

(Hi ⊗ xT
i )

[ n∑

l=1

Hl ⊗ (xlx
T
l )

]†
(Hi ⊗ xT

i ).

Here we provide an efficient way to compute this term using the Woodbury matrix identity. Since
Hi1K+1 = 0K+1, we have ker(Hi ⊗ (xix

T
i )) is the span of {1K+1 ⊗ ej : j ∈ [p]}, where 1K+1 is

the all-ones vector in R
K+1. Therefore, the second term in Vi can be rewritten as

(Hi ⊗ xT
i )

[ n∑

l=1

Hl ⊗ (xlx
T
l )

]†
(Hi ⊗ xi)

= (Hi ⊗ xT
i )

[ n∑

l=1

Hl ⊗ (xlx
T
l )−

p
∑

j=1

(1⊗ ej)(1⊗ ej)
T
]−1

(Hi ⊗ xi).

We now apply the Woodbury matrix identity to compute the matrix inversion in the above display.
Recall Hi = diag(p̂i)− p̂ip̂

T
i , we have

n∑

i=1

Hi ⊗ (xix
T
i ) =

K+1∑

k=1

(eke
T
k )⊗ (

n∑

i=1

p̂ikxix
T
i )−

n∑

i=1

(p̂i ⊗ xi)(p̂i ⊗ xi)
T .

Let A =
∑K+1

k=1 (eke
T
k )⊗ (

∑n
i=1 p̂ikxix

T
i ), and U ∈ R

p(K+1)×(n+p) with the first n columns being

(p̂i⊗xi)i∈[n] and the following p columns (1⊗ej)j∈[p]. Then the term we want to invert is A−UUT ,
where A is a block diagonal matrix and can be inverted by inverting each block separately. By the
Woodbury matrix identity, we have

(A− UUT )−1 = A−1 −A−1U(−In+p + UTA−1U)−1UTA−1.

The gain of using the above formula is significant for large K: instead of inverting the p(K + 1)×
p(K + 1) matrix

∑n
l=1 Hl ⊗ (xlx

T
l ) in the left-hand side, the right-hand side only requires to invert

a block diagonal matrix A and a (n+ p)× (n+ p) matrix −In+p + UTA−1U .
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Theorem S3.1 provides the asymptotic normality and the chi-square approximation of null MLE
coordinates in high-dimensions where n, p → ∞ with the ratio n/p converging to a finite limit.

Theorem S3.1 (Proof is given on page 27). Let Assumptions 2.1, 2.3 and 2.4 be fulfilled. Assume that
either Assumption 2.2 or Assumption S1.1 holds. Then for any j ∈ [p] such that H0 in (1.10) holds,

√
nΩ

−1/2
jj

( 1

n

n∑

i=1

gig
T
i

)−1/2( 1

n

n∑

i=1

Vi

)

B̂T ej
d−−→N(0, IK), (S3.5)

where Vi = Hi − (Hi ⊗ xT
i )[

∑n
l=1 Hl ⊗ (xlx

T
l )]

−1(Hi ⊗ xi).

A direct consequence of (S3.5) is the χ2 result,

∥
√
nΩ

−1/2
jj

( 1

n

n∑

i=1

gig
T
i

)−1/2
( 1

n

n∑

i=1

Vi

)

B̂T ej∥2 d−−→χ2
K . (S3.6)

The proof of Theorem S3.1 is deferred to Section S5 and Section S6. In the next subsection, we prove
Theorem 2.1 using Theorem S3.1.

S3.2 Proof of Theorem 2.1

We restate Theorem 2.1 for convenience.

Theorem 2.1. Let Assumptions 2.1 to 2.4 be fulfilled. Then for any j ∈ [p] such that H0 in (1.10)

holds, and any minimizer B̂ of (1.5), we have
√

n

Ωjj
︸ ︷︷ ︸

scalar

(( 1

n

n∑

i=1

gig
T
i

)1/2

︸ ︷︷ ︸

R(K+1)×(K+1)

)† ( 1

n

n∑

i=1

Vi

)

︸ ︷︷ ︸

R(K+1)×(K+1)

B̂T ej

︸ ︷︷ ︸

RK+1

d−−→N
(

0, IK+1 − 11
T

K+1

︸ ︷︷ ︸

cov. R(K+1)×(K+1)

)

, (2.1)

where gi = −yi + p̂i as in (1.7) and Vi = Hi − (Hi ⊗ xT
i )[

∑n
l=1 Hl ⊗ (xlx

T
l )]

†(Hi ⊗ xi).

The proof of Theorem 2.1 is a consequence of Theorem S3.1. To begin with, we state the following
useful lemma.

Lemma S3.2. For Vi and Vi defined in Theorems 2.1 and S3.1, we have Vi = QTViQ.

Proof of Lemma S3.2. Since Hi = QTHiQ, we have

Vi =Hi − (Hi ⊗ xT
i )

[ n∑

i=1

Hi ⊗ (xix
T
i )

]−1

(Hi ⊗ xi)

=Hi − [(QTHiQ)⊗ xT
i ]
[ n∑

i=1

(QTHiQ)⊗ (xix
T
i )

]−1

[(QTHiQ)⊗ xi]

=Hi −QT (Hi ⊗ xT
i )(Q⊗ Ip)

[

(QT ⊗ Ip)[

n∑

i=1

Hi ⊗ (xix
T
i )](Q⊗ Ip)

]−1

(QT ⊗ Ip)(Hi ⊗ xi)Q

=QTHiQ−QT (Hi ⊗ xT
i )

[ n∑

i=1

(Hi ⊗ xix
T
i )

]†
(Hi ⊗ xi)Q

=QTViQ,

where the penultimate equality is proved as follows.

Let A = Q⊗ Ip and D =
∑n

i=1 Hi ⊗ (xix
T
i ) only in the remaining of this proof. It remains to prove

A[ATDA]−1AT = D†. (S3.7)

Since Hi1 = 0, we have D(1⊗Ip) = 0. Since QT
1 = 0 by definition of Q, we have AT (1⊗Ip) = 0.

If we write the eigen-decomposition of D as D =
∑pK

i=1 λiuiu
T
i , then uT

i (1⊗ Ip) = 0. Hence, with

vi = ATui,

ATDA =

pK
∑

i=1

λiviv
T
i .
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Since vTi vi′ = uT
i AATui′ = uT

i [(IK+1 − 11
T

K+1 )⊗ Ip]ui′ = uT
i ui′ = I(i = i′), we have

A[ATDA]−1AT = A
(
pK
∑

i=1

λ−1
i viv

T
i

)
AT =

pK
∑

i=1

λ−1
i uiu

T
i = D†,

where the second equality uses Avi = AATui = ui. The proof of (S3.7) is complete.

Now we are ready to prove that Theorem 2.1 is a consequence of Theorem S3.1.

Proof of Theorem 2.1. By definition of gi and Vi, we have 1
T gi = 0 and 1

TVi = 0
T . Thus, we

have QQT gi = gi and QQTVi = Vi. Therefore, we can rewrite the left-hand side of (2.1) (without√
nΩ

−1/2
jj ) as

(( 1

n

n∑

i=1

gig
T
i

)1/2)†( 1

n

n∑

i=1

Vi

)

B̂T ej

=
(( 1

n

n∑

i=1

QQT gig
T
i QQT

)1/2)†( 1

n

n∑

i=1

QQTViQQT
)

B̂T ej

=
(( 1

n

n∑

i=1

Qgig
T
i Q

T
)1/2)†( 1

n

n∑

i=1

QViQ
T
)

B̂T ej

= Q
(( 1

n

n∑

i=1

gig
T
i

)1/2)†
QTQ

( 1

n

n∑

i=1

ViQ
T
)

B̂T ej

= Q
(( 1

n

n∑

i=1

gig
T
i

)1/2)†( 1

n

n∑

i=1

Vi

)

B̂T ej ,

where the first equality uses QQT gi = gi and QQTVi = Vi, the second equality uses gi = QT gi
and Vi = QTViQ from Lemma S3.2, the third equality follows from the same argument of (S3.7),

and the last equality uses QTQ = IK and B̂ = B̂Q.

Therefore, Theorem S3.1 implies that the limiting covariance for the left-hand side of (2.1) is

QQT = IK − 11
T

K+1 . This completes the proof.

S4 Proof of Theorem 2.2

We restate Theorem 2.2 for convenience.

Theorem 2.2. Define the matrix R = (IK ,0K)T ∈ R
(K+1)×K using block matrix notation. Let

Assumptions 2.1 to 2.4 be fulfilled. For Â in (1.9) and any j ∈ [p] such that H0 in (1.10) holds,

(

IK +
1K1

T
K√

K + 1 + 1

)

RT

︸ ︷︷ ︸

matrix RK×(K+1)

√
n

Ωjj
︸ ︷︷ ︸

scalar

(( 1

n

n∑

i=1

gig
T
i

)1/2

︸ ︷︷ ︸

matrix R(K+1)×(K+1)

)† ( 1

n

n∑

i=1

ViR
)

︸ ︷︷ ︸

R(K+1)×K

ÂT ej

︸ ︷︷ ︸

RK

d−−→N(0K , IK) (2.2)

where gi is defined in (1.7) and Vi is defined in Theorem 2.1. Furthermore, for the same j ∈ [p],

T j
n (X,Y )

def
:=

n

Ωjj

∥
∥
∥

(( 1

n

n∑

i=1

gig
T
i

)1/2)†( 1

n

n∑

i=1

Vi

)

RÂT ej

∥
∥
∥

2

satisfies T j
n (X,Y )

d−−→χ2
K . (2.3)

Note that Equations (2.2) and (2.3) is stated using Ωjj = eTj Σ
−1ej . When Σ is unknown, the

quantity Ωjj in above results can be replaced by its consistent estimate Ω̂jj defined in (2.5), and the
convergence in distribution results still hold.

The proof is a direct consequence of Theorem 2.1.
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Proof of Theorem 2.2. By definition of Â in (1.9), we have Â = B̂(IK ,−1K)T and

Â (IK ,0K) = B̂(IK ,−1K)T (IK ,0K) = B̂(IK+1 − eK+11
T ) = B̂− (B̂eK+1)1

T ,

which is of the form B̂ − b1T with b = B̂eK+1. Therefore, Â (IK ,0K) is also a solution of (1.5).

Taking B̂ in Theorem 2.1 to be Â (IK ,0K) = ÂRT gives the desired χ2 result (2.3) and

√
nΩ

−1/2
jj

(( 1

n

n∑

i=1

gig
T
i

)1/2)†( 1

n

n∑

i=1

Vi

)

RÂT ej
d−−→N

(

0, IK+1 − 11
T

K+1

)

. (S4.1)

Multiplying (RT (IK+1− 11
T

K+1 )R)−1/2RT to the left of the above display gives the desired normality

result (2.2) by observing (RT (IK+1 − 11
T

K+1 )R)−1/2 = (IK +
1K1

T
K√

K+1+1
). This completes the proof.

S5 Preliminary results for proving Theorem S3.1

S5.1 Results for general loss functions

In this subsection, we will work under the following assumptions with a general convex loss function.
Later in Section S6, we will apply the general results of this subsection to the multinomial logistic
loss discussed in Section S3.1.

Assumption S5.1. Suppose we have data (Y,X), where Y ∈ R
n×(K+1) with rows (y1, ..., yn),

and X ∈ R
n×p has i.i.d. rows (x1, ..., xn) with xi ∼ N(0,Σ) and invertible Σ. The observations

(yi, xi)i∈[n] are i.i.d. and yi has the form yi = f(Ui, x
T
i B

∗) for some deterministic function f ,

deterministic B∗ ∈ R
p×K , and latent random variable Ui independent of xi. Assume p/n ≤ δ−1 <

1.

Assumption S5.2. Given data (Y,X), consider twice continuously differentiable and strictly convex
loss functions (Li)i∈[n] with each Li : R

K → R depending on yi but not on xi.

Provided that the following minimization problem admits a solution, define

B̂(Y,X) = argmin
B∈Rp×K

n∑

i=1

Li(B
Txi).

Define for each i ∈ [n],

gi(Y,X) = ∇Li(B̂(Y,X)Txi), Hi(Y,X) = ∇2Li(B̂(Y,X)Txi),

so that gi(Y,X) ∈ R
K and Hi(Y,X) ∈ R

K×K . Define

G(Y,X) =

n∑

i=1

eigi(Y,X)T ,

V (Y,X) =

n∑

i=1

(

Hi(Y,X)− (Hi(Y,X)⊗ xT
i )

[ n∑

l=1

Hl(Y,X)⊗ (xlx
T
l )

]†
(Hi(Y,X)⊗ xi)

)

,

so that G(Y,X) ∈ R
n×K and V (Y,X) ∈ R

K×K . If the dependence on data (Y,X) is clear from

context, we will simply write B̂, gi, Hi G, and V .

Theorem S5.1. Let Assumptions S5.1 and S5.2 be fulfilled. Let c∗,m∗,m∗,K be positive constants
independent of n, p. Let U∗ ⊂ R

p×(K+1) × R
n×p be an open set satisfying

(1) If {(Y,X) ∈ U∗}, then the minimizer B̂(Y,X) in Assumption S5.2 exists, Hi ⪯ IK for each
i ∈ [n], 1

n

∑n
i=1 Hi(Y,X)⊗ (xix

T
i ) ⪰ c∗(IK ⊗Σ) and m∗IK ⪯ 1

nG(Y,X)TG(Y,X) ⪯
m∗IK .

(2) For any {(Y,X), (Y, X̃)} ⊂ U∗, ∥G(Y,X) −G(Y, X̃)∥F ≤ L∥(X − X̃)Σ−1/2∥F holds
for some positive constant L.
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Then for any j ∈ [p] such that eTj B
∗ = 0

T
K , there exists a random variable ξ ∈ R

K such that

E
[
I{(Y,X) ∈ U∗}

∥
∥ (GTG)−1/2V B̂T ej√

Ωjj

− ξ
∥
∥
2] ≤ C

p−K ,

and P(∥ξ∥2 > χ2
K(α)) ≤ α for all α ∈ (0, 1), C is a positive constant depending on

(c∗,m∗,m∗,K, L) only. If additionally P((Y,X) ∈ U∗) → 1, then ξ in the previous display
satisfies ξ

d−−→N(0, IK) and

(GTG)−1/2V B̂T ej
√
Ωjj

d−−→N(0, IK).

The proof of Theorem S5.1 is given in next subsection.

S5.2 Proof of Theorem S5.1

In this subsection and next subsection, we will slightly abuse the notations A∗ and Â, which have
different definitions than the definitions in the main text.

Let Σ1/2B∗ =
∑K

k=1 skukv
T
k be the singular value decomposition of Σ1/2B∗, where u1, ..., uK are

the left singular vectors and v1, ..., vk the right singular vectors. If Σ1/2B∗ is of rank strictly less than

K, we allow some sk to be equal to 0 so that Σ1/2B∗ =
∑K

k=1 skukv
T
k still holds with orthonormal

(u1, ..., uK) and orthonormal (v1, ..., vK). We consider an orthogonal matrix P̃ ∈ R
p×p such that

P̃ P̃T = P̃T P̃ = Ip, P̃
Σ−1/2ej

∥Σ−1/2ej∥
= e1, P̃ uk = ep−K+k, ∀k ∈ [K]. (S5.1)

Since eTj B
∗ = 0

T implies eTj Σ
−1/2uk = 0, we can always find a matrix P̃ satisfying (S5.1). From

now on we fix this matrix P̃ and consider the following change of variable,

Z = XΣ−1/2P̃T , A∗ = P̃Σ1/2B∗. (S5.2)

It immediately follows that Z has i.i.d. N(0, 1) entries and the first p−K rows of A∗ are all zeros.
Since the response yi has the expression yi = f(Ui, x

T
i B

∗), Y is unchanged by the change of variable
(S5.2) from ZA∗ = XB∗. We now work on the multinomial logistic estimation with data (Y, Z) and

the underlying coefficient matrix A∗ in (S5.2). Parallel to the estimate B̂ of B∗ in Assumption S5.2,
we define the estimate of A∗ using data (Y, Z) as

Â(Y, Z) = argmin
A∈Rp×K

∑

i

Li(A
T zi),

where zi = ZT ei is the i-th row of Z. By construction, we have Â = P̃Σ1/2B̂, hence ZÂ = XB̂

and eT1 Â = eTj B̂/
√
Ωjj . Furthermore, the quantities depending on (Y,XB̂) remain unchanged after

the change of variable. In particular, the gradient and Hessian

∇Li(B̂
Txi) = ∇Li(Â

T zi), ∇2Li(B̂
Txi) = ∇2Li(Â

T zi)

are unchanged. It follows that the matrix G and V are unchanged. Therefore, we have

eTj B̂V (GTG)−1/2

√
Ωjj

= eT1 ÂV (GTG)−1/2.

In conclusion, with the change of variables (S5.2), we only need to prove Theorem S5.1 in the special
case, where the design matrix X i.i.d. N(0, 1) entries and the response Y is independent of the
first p−K columns of X . To this end, we introduce the following Theorem S5.2, and the proof of

Theorem S5.1 is a consequence of Theorem S5.2 as it proves the desired result for eT1 ÂV (GTG)−1/2.

Theorem S5.2. Let c∗,m∗,m∗,K be constants independent of n, p. Let Z ∈ R
n×p have i.i.d. rows

(z1, ..., zn) with zi ∼ N(0, Ip). Let y1, ..., yn ∈ R
(K+1) such that (y1, ..., yn) is independent of

the first p −K columns of Z. Consider twice continuously differentiable and strictly convex loss
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functions (Li)i=1,...,n with each Li : R
K → R depending on yi but not on zi and define, provided

that the minimizer admits a solution,

Â(Y, Z) = argmin
A∈Rp×K

n∑

i=1

Li(A
T zi), gi(Y, Z) = ∇Li(Â(Y, Z)T zi), Hi(Y, Z) = ∇2Li(Â(Y, Z)T zi),

G(Y, Z) =
∑n

i=1 eigi(Y, Z)T ∈ R
n×K , and V (Y, Z) =

∑n
i=1

(
Hi − (Hi ⊗ zTi )

[∑n
l=1 Hl ⊗

(zlz
T
l )

]†
(Hi ⊗ zi)

)
∈ R

K×K , where we dropped the dependence of Hi on (Y, Z) for simplicity.

Let O ⊂ R
n×(K+1) × R

n×p be an open set satisfying

• If (Y, Z) ∈ O, then the minimizer Â(Y, Z) exists, Hi ⪯ IK for each i ∈ [n], c∗IpK ⪯
1
n

∑n
i=1 Hi(Y, Z)⊗ (ziz

T
i ), and m∗IK ⪯ 1

n

∑n
i=1 G(Y, Z)TG(Y, Z) ⪯ m∗IK .

• With the notation G(Y, Z) =
∑n

i=1 eigi(Y, Z)T , we have if two Z, Z̃ ∈ R
n×p satisfy

{(Y, Z), (Y, Z̃)} ⊂ O then ∥G(Y, Z)−G(Y, Z̃)∥ ≤ L∥Z − Z̃∥.

For e1 ∈ R
p the first canonical basis vector, there exists a random variable ξ ∈ R

K such that

E
[
I{(Y, Z) ∈ O}

∥
∥(GTG)−1/2V ÂT e1 − ξ

∥
∥
2] ≤ C

p−K ,

and P(∥ξ∥2 > χ2
K(α)) ≤ α for all α ∈ (0, 1), C is a positive constant depending on

(c∗,m∗,m∗,K, L) only. If additionally P((Y, Z) ∈ O) → 1, then ξ in the previous display satisfies
ξ

d−−→N(0, IK) and

eT1 ÂV (GTG)−1/2 d−−→N(0, IK).

The proof of Theorem S5.2 is presented in Section S5.3.

S5.3 Proof of Theorem S5.2

We first present a few useful lemmas, whose proofs are given at the end of this subsection.

Lemma S5.3 (Proof is given on page 24). Let z ∼ N(0, σ2In) and F : Rn → R
n×K be weakly

differentiable with E∥F (z)∥2F < ∞. Let z̃ be an independent copy of z. Then

E

[∥
∥
∥zTF (z)− σ2

n∑

i=1

∂eTi F (z)

∂zi
− zTF (z̃)

∥
∥
∥

2]

≤ 3σ4
E

n∑

i=1

∥
∥
∥
∂F (z)

∂zi

∥
∥
∥

2

F
.

Lemma S5.4 (Proof is given on page 25). If G, G̃ ∈ R
n×K satisfy m∗IK ⪯ 1

nG
TG ⪯ m∗IK and

m∗IK ⪯ 1
n G̃

T G̃ ⪯ m∗IK for some positive constants m∗ and m∗. Then

∥(GTG)−1/2 − (G̃T G̃)−1/2∥F ≤ L1n
−1∥G− G̃∥F ,

∥G(GTG)−1/2 − G̃(G̃T G̃)−1/2∥F ≤ L2n
−1/2∥G− G̃∥F ,

where L1, L2 are positive constants depending on (K,m∗,m∗) only.

Lemma S5.5 (Proof is given on page 26). Let the assumptions in Theorem S5.2 be fulfilled. Let

Y ∈ R
n×(K+1) be fixed. If a minimizer Â(Y, Z) exists at Z, then Z 7→ Â(Y, Z) exists and is

differentiable in a neighborhood of Z with derivative

∂ vec(Â)

∂zij
= −M [gi ⊗ ej + (HiÂ

T ej ⊗ zi)],

∂gl
∂zij

= −(Hl ⊗ zTl )M [gi ⊗ ej + (HiÂ
T ej ⊗ zi)] + I(l = i)HlÂ

T ej ,

where M = [
∑n

i=1 Hi ⊗ (ziz
T
i )]

−1. It immediately follows that

∂gi
∂zij

= [Hi − (Hi ⊗ zTi )M(Hi ⊗ zi)]Â
T ej − (Hi ⊗ zTi )M(gi ⊗ ej).
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Corollary S5.6 (Proof is given on page 26). Under the same conditions of Lemma S5.5, for G =
∑n

i=1 eig
T
i , we have for each i ∈ [n], j ∈ [p],

n∑

i=1

∂eTi G(GTG)−1/2

∂zij

= eTj ÂV T
i (GTG)−1/2 +

n∑

i=1

[

−(gTi ⊗ eTj )M(Hi ⊗ zi)(G
TG)−1/2 + eTi G

∂(GTG)−1/2

∂zij

]

.

Now we are ready to prove Theorem S5.2.

Proof of Theorem S5.2. Let h : O → R
n×K be h(Y, Z) = G(Y, Z)(G(Y, Z)TG(Y, Z))−1/2. In

most of this proof, we will omit the dependence (Y, Z) on h, Â, gi, Hi, G, V to lighten notation. By

Lemma S5.4, we know this h is LL2n
−1/2-Lipschitz in the sense that ∥h(Y, Z) − h(Y, Z̃)∥F ≤

LL2n
−1/2∥Z − Z̃∥F for all {(Y, Z), (Y, Z̃)} ⊂ O. By Kirszbraun theorem, there exists a func-

tion H : Rn×(K+1) × R
n×p → R

n×K (an extension of h from O to R
n×(K+1) × R

n×p) such

that H(Y, Z) = h(Y, Z) for all (Y, Z) ∈ O, ∥H(Y, Z)∥op ≤ 1 and ∥H(Y, Z) − H(Y, Z̃)∥F ≤
LL2n

−1/2∥Z − Z̃∥F for all {(Y, Z), (Y, Z̃)} ⊂ R
n×(K+1) × R

n×p.

For each j ∈ [p], let zj = Zej be the j-th column of Z to distinguish it from the notation zi, which
means the i-th row of Z. Let ž ∼ N(0, In) be an independent copy of each columns of Z, and

Žj = Z(Ip − eje
T
j ) + žeTj . That is, Žj replaces the j-th column of Z by ž. By definition, z1 ⊥ ž

and z1 ⊥ Ž1.

Let ξ = −[H(Y, Ž1)]T z1 ∈ R
K , then ∥ξ∥2 ≤ ∥z1∥ since ∥H(Y, Ž1)∥op ≤ 1. It follows that

P(∥ξ∥2 > χ2
K(α)) ≤ P(∥z1∥2 > χ2

K(α)) = α.

Note that the first p−K columns of Z are exchangeable, because they are i.i.d. and independent of
the response Y , we have for each ℓ ∈ [p−K],

E
[
I{(Y, Z) ∈ O}

∥
∥(GTG)−1/2V ÂT e1 − ξ

∥
∥
2]

= E

[

I{(Y, Z) ∈ O}∥eT1 ÂV (GTG)−1/2 + zT1 H(Y, Ž1)∥2
]

= E

[

I{(Y, Z) ∈ O}∥eTℓ ÂV (GTG)−1/2 + zTℓ H(Y, Žℓ)∥2
]

,

where the last line holds for any ℓ ∈ [p−K] because (z1, e
T
1 Â, Ž)

d
= (zℓ, e

T
ℓ Â, Žℓ). Therefore,

E

[

I{(Y, Z) ∈ O}
∥
∥
∥eT1 ÂV (GTG)−1/2 + zT1 H(Y, Ž1)

∥
∥
∥

2]

=
1

p−K

p−K
∑

ℓ=1

E

[

I{(Y, Z) ∈ O}
∥
∥
∥eTℓ ÂV (GTG)−1/2 + zTℓ H(Y, Žℓ)

∥
∥
∥

2]

=
1

p−K

p−K
∑

ℓ=1

E

[

I{(Y, Z) ∈ O}
∥
∥
∥

∑

i

∂eTi G(GTG)−1/2

∂ziℓ
+ zTℓ H(Y, Žℓ)− Remℓ

∥
∥
∥

2]

,

where Remℓ =
∑n

i=1

[
−(gTi ⊗eTℓ )M(Hi⊗zi)(G

TG)−1/2+eTi G
∂(GTG)−1/2

∂ziℓ

]
from Corollary S5.6,

and M = [
∑n

i=1(Hi ⊗ ziz
T
i )]

−1 from Lemma S5.5. Using (a+ b)2 ≤ 2a2 + 2b2, the above display
can be bounded by sum of two terms, denoted by (RHS)1 and (RHS)2.

For the first term,

(RHS)1 =
2

p−K

p−K
∑

ℓ=1

E

[

I{(Y, Z) ∈ O}
∥
∥
∥

∑

i

∂eTi h(Y, Z)

∂ziℓ
+ zTℓ H(Y, Žℓ)

∥
∥
∥

2]

.
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Let F (zℓ) = H(Y, Z(I − eℓe
T
ℓ ) + zℓe

T
ℓ ) = H(Y, Z), then F (ž) = H(Y, Žℓ). Apply Lemma S5.3

to F (zℓ) conditionally on Z(I − eℓe
T
ℓ ), we obtain

E

[

I{(Y, Z) ∈ O}
∥
∥
∥

∑

i

∂eTi h(Y, Z)

∂ziℓ
+ zTℓ F (ž)

∥
∥
∥

2]

= E

[

I{(Y, Z) ∈ O}
∥
∥
∥z

T
ℓ F (zℓ)−

∑

i

∂eTi F (zℓ)

∂ziℓ
− zTℓ F (ž)

∥
∥
∥

2]

≤ E

[∥
∥
∥z

T
ℓ F (zℓ)−

∑

i

∂eTi F (zℓ)

∂ziℓ
− zTℓ F (ž)

∥
∥
∥

2]

≤ 3
∑

i

E

∥
∥
∥
∂F (zℓ)

∂ziℓ

∥
∥
∥

2

F

= 3
∑

i

E

∥
∥
∥
∂H(Y, Z)

∂ziℓ

∥
∥
∥

2

F
,

where the first equality uses zTℓ h(Y, Z) = 0 from the KKT conditions ZTG = 0 and h(Y, Z) =

G(GTG)−1/2. It follows that

(RHS)1 ≤ 6

p−K
E

[ p
∑

ℓ=1

n∑

i=1

∥
∥
∥
∂H(Y, Z)

∂ziℓ

∥
∥
∥

2

F

]

.

Note that the integrand in the last display is actually the squared Frobenius norm of the Jacobian
of the mapping from R

n×p to R
n×K : Z 7→ H(Y, Z). This Jacobian is a matrix with nK rows and

np columns, has rank at most nK and operator norm at most LL2n
−1/2 because Z 7→ H(Y, Z) is

LL2n
−1/2-Lipschitz from Lemma S5.4. Using ∥A∥2F ≤ rank(A)∥A∥2op, we obtain

(RHS)1 ≤ 6K(LL2)
2/(p−K).

For the second term (RHS)2 = 2
p−K

∑p−K
ℓ=1 E

[
I{(Y, Z) ∈ O}∥Remℓ ∥2

]
. By definition of Remℓ

and (a+ b)2 ≤ 2a2 + 2b2, we obtain

(RHS)2 ≤ 4

p−K

p−K
∑

ℓ=1

E

[

I{(Y, Z) ∈ O}
∥
∥
∥

n∑

i=1

(gTi ⊗ eTℓ )M(Hi ⊗ zi)(G
TG)−1/2

∥
∥
∥

2]

(S5.3)

+
4

p−K

p−K
∑

ℓ=1

E

[

I{(Y, Z) ∈ O}
∥
∥
∥

n∑

i=1

eTi G
∂(GTG)−1/2

∂ziℓ

∥
∥
∥

2]

. (S5.4)

We next bound (S5.3) and (S5.4) one by one. For (S5.3), we focus on the norm without (GTG)−1/2

which is ∥∑n
i=1(g

T
i ⊗ eTℓ )M(Hi ⊗ zi)∥. With ∥a∥ = maxu:∥u∥=1 a

Tu in mind, let us multiply to

the right by a unit vector u ∈ R
K and instead bound

n∑

i=1

(gTi ⊗eTℓ )M(Hi⊗zi)u = Tr
[

(IK⊗eTℓ )M
∑

i

(Hiu⊗zi)g
T
i

]

≤ K∥(IK⊗eTℓ )M∥op∥
∑

i

(Hiu⊗zi)g
T
i ∥op

because the rank of the matrix inside the trace is at most K and Tr[·] ≤ K∥ · ∥op holds. Then

∥
∑

i

(Hiu⊗zi)g
T
i ∥op = ∥(IK⊗ZT )

∑

i

(Hiu⊗ei)e
T
i G∥op ≤ ∥Z∥op∥

∑

i

(Hiu⊗eie
T
i )∥op∥G∥op.

Next, ∥
∑

i(Hiu⊗ eie
T
i )∥op = ∥

∑

i(Hi ⊗ eie
T
i )(u⊗ In)∥op ≤ 1 because Hi ⪯ IK and ∥u∥ = 1.

In summary, the norm in (S5.3) is bounded from above by

K∥(GTG)−1/2∥op∥M∥op∥Z∥op∥G∥op.

To bound (S5.3), since in the event (Y, Z) ∈ O, m∗IK ⪯ 1
nG

TG ⪯ m∗IK and 1
n

∑n
i=1(Hi ⊗

ziz
T
i ) ⪰ c∗IpK , we have ∥G∥op ≤

√
m∗n, hence ∥M∥op ≤ c−1

∗ . Thus, the above display can be
bounded by

K(m∗n)
−1/2c−1

∗ ∥Z∥op
√
m∗n = (m∗/m∗)

1/2c−1
∗ K∥Z∥op.
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Since Z ∈ R
n×p has i.i.d. N(0, 1) entries, [Davidson and Szarek, 2001, Theorem II.13] implies that

E∥Z∥op ≤ √
n+

√
p ≤ 2

√
n. Therefore,

(S5.3) ≤ C(c∗,K, L)n−1.

Now we bound (S5.4). Since

p−K
∑

ℓ=1

∥
∥
∥

n∑

i=1

eTi G
∂(GTG)−1/2

∂ziℓ

∥
∥
∥

2

≤
p

∑

j=1

∥
∥
∥

n∑

i=1

eTi G
∂(GTG)−1/2

∂zij

∥
∥
∥

2

=

p
∑

j=1

K∑

k′=1

( n∑

i=1

K∑

k=1

eTi Geke
T
k

∂(GTG)−1/2

∂zij
ek′

)2

≤
p

∑

j=1

K∑

k′=1

[ n∑

i=1

K∑

k=1

(eTi Gek)
2

n∑

i=1

K∑

k=1

(

eTk
∂(GTG)−1/2

∂zij
ek′

)2]

= ∥G∥2F
n∑

i=1

p
∑

j=1

∥
∥
∥
∂(GTG)−1/2

∂zij

∥
∥
∥

2

.

Using ∥G∥2F ≤ nK, and the mapping Z 7→ (GTG)−1/2 is LL1n
−1- Lipschitz on O using

Lemma S5.4, we conclude that

(S5.4) ≤ 4K3LL1/(p−K).

Combining the above bounds on (RHS)1 and (RHS)2, we have

E

[

I{(Y, Z) ∈ O}∥(GTG)−1/2V ÂT e1 − ξ∥2
]

≤ C(c∗,K,m∗,m∗, L, L1, L2)

p−K
, (S5.5)

where the constant depends on (c∗,K,m∗,m∗, L) only because L1 and L2 are constants depending
on (K,m∗,m∗) only.

If additionally P((Y, Z) ∈ O) → 1, we have P((Y, Ž1) ∈ O) → 1 using (Y, Z)
d
= (Y, Ž1).

Therefore,

ξ = −[h(Y, Ž1)T z1]I((Y, Ž
1) ∈ O)− [H(Y, Ž1)T z1]I((Y, Ž

1) /∈ O)
d−−→N(0, IK). (S5.6)

By (S5.5), we know (GTG)−1/2V ÂT e1 − ξ
d−−→0 when P((Y, Z) ∈ O) → 1. Hence, we conclude

(GTG)−1/2V ÂT e1
d−−→N(0, IK) and ∥(GTG)−1/2V ÂT e1∥2 d−−→χ2

K .

We next prove Lemmas S5.3 to S5.5 and corollary S5.6.

Proof of Lemma S5.3. Let z0 = (zT , z̃T )T ∈ R
2n, then z0 ∼ N(0, σ2I2n). For each k ∈ [K], let

f (k) : R2n → R
2n be

f (k)(z0) =

(
[F (z)− F (z̃)]ek

0n

)

,

so that zT0 f
(k)(z0) = zT [F (z) − F (z̃)]ek, and div f (k)(z0) =

∑n
i=1

∂eTi F (z)ek
∂zi

. Applying the

second order Stein formula [Bellec and Zhang, 2021] (see also [Tan et al., 2022, Lemma F.1] for a
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collection of such formulas) to f (k) gives, with Jac denoting the Jacobian,

E

[(

zTF (z)ek − σ2
n∑

i=1

∂eTi F (z)ek
∂zi

− zTF (z̃)ek

)2]

= E

[(

zT0 f
(k)(z0)− σ2 div f (k)(z0)

)2]

= σ2
E∥f (k)(z0)∥2 + σ4

ETr[(Jac f (k)(z0))
2]

= σ2
E∥[F (z)− F (z̃)]ek∥2 + σ4

ETr
[(

Jac[F (z)ek] − Jac[F (z̃)ek]
0n×n 0n×n

)2]

= 2σ2
E∥[F (z)− EF (z)]ek∥2 + σ4

ETr((Jac[F (z)ek])
2)

≤ 3σ4
E∥ Jac[F (z)ek]∥2F ,

where the last inequality uses the Gaussian Poincaré inequality, and the Cauchy-Schwarz inequality
Tr(A2) ≤ ∥A∥2F . Summing over k ∈ [K] gives the desired inequality.

Proof of Lemma S5.4. We first prove G 7→ GTG is Lipschitz by noting

∥GTG− G̃T G̃∥op
= ∥(G− G̃)TG+ G̃T (G− G̃)∥op
≤ ∥G− G̃∥op(∥G∥op + ∥G̃∥op)
≤ 2

√
m∗n∥G− G̃∥op.

Then we show GTG 7→ (GTG)−1 is Lipschitz. Let A = GTG and Ã = G̃T G̃, we have

∥A−1 − Ã−1∥op
= ∥A−1(Ã−A)Ã−1∥op
≤ ∥A− Ã∥op∥A−1∥op∥Ã−1∥op
≤ (m∗n)

−2∥A− Ã∥op.

We next prove (GTG)−1 7→ (GTG)−1/2 is Lipschitz. Let S = (GTG)−1, S′ = (G̃T G̃)−1, and if u

with ∥u∥ = 1 is the eigenvector of
√
S −

√

S̃ with eigenvalue d, then

uT (S − S̃)u = uT (
√
S −

√

S̃)
√
Su+ uT

√

S̃(
√
S −

√

S̃)u

= duT
√
Su+ duT

√

S̃u

= duT (
√
S +

√

S̃)u.

As d can be chosen as ±∥
√
S −

√

S̃∥op (this argument is a special case of the Hemmen-Ando
inequality [van Hemmen and Ando, 1980]), this implies

∥
√
S −

√

S̃∥op =
|uT (S − S̃)u|

uT (
√
S +

√

S̃)u
≤ ∥S − S̃∥op

λmin(
√
S +

√

S̃)
≤ ∥S − S̃∥op

2/
√
m∗n

.

Combining the above Lipschitz results, we have

∥(GTG)−1/2 − (G̃T G̃)−1/2∥op ≤ (m∗n)1/2(m∗n)
−2(m∗n)1/2∥G− G̃∥op =

m∗

m2
∗
n−1∥G− G̃∥op.

It immediately follows that

∥(GTG)−1/2 − (G̃T G̃)−1/2∥F ≤
√
K

m∗

m2
∗
n−1∥G− G̃∥F .

That is, the mapping G 7→ (GTG)−1/2 is L1n
−1-Lipschitz, where L1 =

√
Km−2

∗ m∗.
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For the second statement, the result follows by

∥G(GTG)−1/2 − G̃(G̃T G̃)−1/2∥op
≤ ∥G− G̃∥op∥(GTG)−1/2∥op + ∥G̃∥op∥(GTG)−1/2 − (G̃T G̃)−1/2∥op
≤ ∥G− G̃∥op(m∗n)

−1/2 + (m∗n)1/2L1n
−1∥G− G̃∥op

Hence,

∥G(GTG)−1/2 − G̃(G̃T G̃)−1/2∥F
≤

√
K
(
m

−1/2
∗ + (m∗)1/2L1

)
n−1/2∥G− G̃∥F ,

where L2 =
√
K
(
m

−1/2
∗ + (m∗)1/2L1

)
.

Proof of Lemma S5.5. Recall the KKT conditions
∑n

l=1 zlg
T
l = 0p×K . We look for the derivative

with respect to zij . Denoting derivatives with a dot, we find by the chain rule and product rule

żl =
∂zl
∂zij

= I(l = i)ej ,

ġl =
∂gl
∂zij

=
∂gl

∂Â⊤zl

∂Â⊤zl
∂zij

= Hl[Ȧ
⊤zl + I(l = i)Â⊤ej ].

Thus, differentiating the KKT conditions w.r.t. zij by the product rule gives

n∑

l=1

[
I(l = i)ejg

T
l + xl

(
Ȧ⊤zl + I(l = i)Â⊤ej

)T
Hl

]
= 0.

That is,

ejg
T
i +

n∑

l=1

zlz
T
l ȦHl + zie

T
j ÂHi = 0.

We then move the term involving Ȧ to one side, and vectorize both sides,

gi ⊗ ej + (HiÂ
T ej ⊗ zi) = −

n∑

l=1

(Hl ⊗ zlz
T
l ) vec(Ȧ).

With M = [
∑n

l=1(Hl ⊗ zlz
T
l )]

−1, we obtain

vec(Ȧ) = −M [gi ⊗ ej + (HiÂ
T ej ⊗ zi)].

Hence, using vec(HlȦ
⊤zl) = vec(zTl ȦHl) = (Hl ⊗ zTl ) vec(Ȧ) gives

ġl = (Hl ⊗ zTl ) vec(Ȧ) + I(l = i)HlÂ
T ej

= −(Hl ⊗ zTl )M [gi ⊗ ej + (HiÂ
T ej ⊗ zi)] + I(l = i)HlÂ

T ej .

Thus,

ġi = −(Hi ⊗ zTi )M [gi ⊗ ej + (HiÂ
T ej ⊗ zi)] +HiÂ

T ej

= −(Hi ⊗ zTi )M(HiÂ
T ej ⊗ zi) +HiÂ

T ej − (Hi ⊗ zTi )M(gi ⊗ ej)

= [Hi − (Hi ⊗ zTi )M(Hi ⊗ zi)]Â
T ej − (Hi ⊗ zTi )M(gi ⊗ ej)

= ViÂ
T ej − (Hi ⊗ zTi )M(gi ⊗ ej),

where Vi = [Hi − (Hi ⊗ zTi )M(Hi ⊗ zi)].
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Proof of Corollary S5.6. For each i ∈ [n], j ∈ [p], we have by the product rule

∂eTi G(GTG)−1/2

∂zij

=
∂gTi
∂zij

(GTG)−1/2 + eTi G
∂(GTG)−1/2

∂zij

= [ViÂ
T ej − (Hi ⊗ zTi )M(gi ⊗ ej)]

T (GTG)−1/2 + eTi G
∂(GTG)−1/2

∂zij

= eTj ÂVi(G
TG)−1/2 +

[

−(gTi ⊗ eTj )M(Hi ⊗ zi)(G
TG)−1/2 + eTi G

∂(GTG)−1/2

∂zij

]

.

With V =
∑n

i=1 Vi, we further have

n∑

i=1

∂eTi G(GTG)−1/2

∂zij

= eTj ÂV T
i (GTG)−1/2 +

n∑

i=1

[

−(gTi ⊗ eTj )M(Hi ⊗ zi)(G
TG)−1/2 + eTi G

∂(GTG)−1/2

∂zij

]

.

S6 Proof of Theorem S3.1

Recall that Theorem S5.1 holds for general loss function Li : R
K → R provided that conditions (1)

and (2) in Theorem S5.1 hold. In this section, we consider the multinomial logistic loss function Li

defined in Section S3.1. To be specific,

Li(u) = −
K+1∑

k=1

yike
T
kQu+ log

K+1∑

k′=1

exp(eTk′Qu), ∀u ∈ R
K . (S6.1)

In order to apply Theorem S5.1, we need to verify that, when Li in (S6.1) is used, the two conditions
(1) and (2) in Theorem S5.1 hold. To this end, we present a few lemmas in the following two
subsections, which will be useful for asserting the conditions (1) and (2) when we apply Theorem S5.1
to prove Theorem S3.1.

S6.1 Control of the singular values of the gradients and Hessians

Before stating the lemmas that assert the conditions in Theorem S5.1, define

U =
{
(Y,X) ∈ R

n×(K+1) × R
n×p : B̂ exists, ∥XB̂(IK+1 − 11

T

K+1 )∥
2
F < nτ

}
,

Uy =
{

Y ∈ R
n×(K+1) :

n∑

i=1

I(yik = 1) ≥ γn for all k ∈ [K + 1]
}

.

Lemma S6.1 (deterministic result on gradient). Let Li be defined as in (S6.1). Assume that either
Assumption 2.2 or Assumption S1.1 holds. If Y ∈ Uy , for any M ∈ R

n×K such that ∥MQT ∥2F ≤ nτ ,
we have

m∗IK ⪯ n−1
n∑

i=1

∇Li(M
T ei)∇Li(M

T ei)
T ⪯ KIK ,

where m∗ is a positive constant depending on (K, γ, τ) only.

Proof of Lemma S6.1. Without loss of generality, let’s assume that γn is an integer. Otherwise, we
can replace it with the greatest integer less than or equal to γn, denoted as ⌊γn⌋.

If Y ∈ Uy, there exists at least γn many disjoint index sets {S1, . . . , Sγn} such that the following
hold for each l ∈ [γn],

(i) Sl ⊂ [n]; (ii) |Sl| = K + 1; (iii)
∑

i∈Sl

yik = 1, ∀k ∈ [K + 1].
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Since Sl are disjoint and ∪γn
l=1Sl ⊂ [n], we have

γn
∑

l=1

∑

i∈Sl

∥QMT ei∥2 ≤
n∑

i=1

∥QMT ei∥2 = ∥QMT ∥2F < nτ.

It follows that at most αn many of l ∈ {1, 2, ..., γn} s.t.
∑

i∈Sl
∥QMT ei∥2 > τ/α, otherwise

the previous display can not hold. In other words, there exists a subset L∗ ⊂ {1, 2, ..., γn} with
|L∗| ≥ (γ − α)n s.t.

∑

i∈Sl
∥QMT ei∥2 ≤ τ/α for all l ∈ L∗. Define the index set I = ∪l∈L∗Sl,

then |I| ≥ (K + 1)n(γ − α), and ∥QMT ei∥∞ ≤
√

τ/α for all i ∈ I . Let us take α = γ/2, then

|L∗| ≥ γ
2n and |I| ≥ γ(K + 1)n/2. Recall that Li(u) = Li(Qu), we have ∇Li(u) = QT∇Li(Qu).

Thus,

∇Li(M
T ei) = QT∇Li(QMT ei) = QT (−yi + pi),

where pi ∈ R
K+1 and its k-th entry satisfying

pik =
exp(eTkQMT ei)

∑K+1
k′=1 exp(e

T
k′QMT ei)

∈ [c, 1− c], (S6.2)

for some constant c ∈ (0, 1) depending on (τ, α,K) only. Therefore,

n−1
n∑

i=1

∇Li(M
T ei)∇Li(M

T ei)
T

= n−1QT
n∑

i=1

(yi − pi)(yi − pi)
TQ

⪰ n−1QT

γn
∑

l=1

∑

i∈Sl

(yi − pi)(yi − pi)
TQ

⪰ n−1QT
∑

l∈L∗

∑

i∈Sl

(yi − pi)(yi − pi)
TQ

:= n−1QT
∑

l∈L∗

AT
l AlQ,

where Al ∈ R
(K+1)×(K+1) has K + 1 rows {yi − pi : i ∈ Sl}. We further note that Al is of the

form (IK+1 − Pl) up to a rearrangement of the columns, where Pl ∈ R
(K+1)×(K+1) is a stochastic

matrix with entries of the form

exp(eTkQMT ei)
∑K+1

k′=1 exp(e
T
k′QMT ei)

, i ∈ Sl, k ∈ [K + 1].

By (S6.2), for each l ∈ L∗, the stochastic matrix Pl is irreducible and aperiodic and ker(IK+1 − Pl)
is the span of the all-ones vector 1. Therefore,

(IK+1 − Pl)QQT = (IK+1 − Pl)(IK+1 − 11
T

K+1 ) = (IK+1 − Pl).

It follows that

K = rank(IK+1 − Pl) = rank((IK+1 − Pl)QQT ) ≤ rank((IK+1 − Pl)Q) ≤ K.

We conclude that the rank of (IK+1 − Pl)Q is K.
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If P denotes the set of matrices {P ∈ R
(K+1)×(K+1) : stochastic with entries in [c, 1 − c]}, and

SK−1 = {a ∈ R
K : ∥a∥ = 1}. By compactness of P and SK−1, we obtain

1

n
λmin(

n∑

i=1

∇Li(M
T ei)∇Li(M

T ei)
T )

≥ 1

n

∑

l∈L∗

λmin(Q
TAT

l AlQ)

≥ 1

n

∑

l∈L∗

min
a∈SK−1

aTQTAT
l AlQa

≥ 1

n
|L∗| min

a∈SK−1,P∈P
aTQT (IK+1 − P)T (IK+1 − P)Qa

≥γ

2
aT∗ Q

T (IK+1 − P∗)
T (IK+1 − P∗)Qa∗

≥γ

2
aT∗ Q

T (IK+1 − P∗)
T (IK+1 − P∗)Qa∗

:=m∗,

where a∗ ∈ SK−1, P∗ ∈ P , and m∗ is a positive constant depending on (K, γ, τ) only. The first
inequality above uses the property λmin(A + B) ≥ λmin(A) + λmin(B), where A and B are two
positive semi-definite matrices.

In other words, 1
n

∑n
i=1 ∇Li(M

T ei)∇Li(M
T ei)

T ⪰ m∗IK . For the upper bound, since ∥Q∥op ≤ 1

by definition of Q and all the entries of (yi − pi)(yi − pi)
T are between −1 and 1 if Assumption 2.2

or Assumption S1.1 holds, we have

∥
n∑

i=1

∇Li(M
T ei)∇Li(M

T ei)
T ∥op = ∥QT

n∑

i=1

(yi − pi)(yi − pi)
TQ∥op ≤ nK.

Lemma S6.2 (deterministic result on Hessian). Let Li be defined as in (S6.1). For all i ∈ [n], we
have ∇2Li(u) ⪯ IK for any u ∈ R

K and

min
u∈RK ,∥Qu∥∞≤r

∇2Li(u) ⪰ c∗IK ,

where c∗ is a positive constant depending on (K, r) only.

Proof of Lemma S6.2. Recall that Li(u) = Li(Qu), we have

∇2Li(u) = QT∇2Li(Qu)Q,

where ∇2Li(Qu) = diag(pi) − pip
T
i and the k-th entry of pi ∈ R

K+1 is defined as pik =
exp(eTk Qu)

∑K+1

k′=1
exp(eT

k′
Qu)

for all i ∈ [n], k ∈ [K + 1]. Thus, pik ≤ 1 for all i ∈ [n], k ∈ [K + 1].

For any vector a ∈ SK−1, we have

aT∇2Li(u)a =aTQT [diag(pi)− pip
T
i ]Qa

≤aTQT diag(pi)Qa

≤∥QT diag(pi)Q∥op
≤1,

where the last inequality uses ∥Q∥op ≤ 1 and pik ≤ 1 for any k. Hence, ∇2Li(u) ⪯ IK for any
i ∈ [n].

Now we prove the lower bound. For any u ∈ R
K such that ∥Qu∥∞ ≤ r, we have

pik =
exp(eTkQu)

∑K+1
k′=1 exp(e

T
k′Qu)

∈ [c, 1− c]
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for some constant c depending on (K, r) only. For any vector a ∈ SK−1, let η = Qa ∈ R
K+1, then

1
T η = 0 and

aT
[
∇2Li(u)

]
a =aTQT [diag(pi)− pip

T
i ]Qa

=ηT [diag(pi)− pip
T
i ]η

=

K+1∑

k=1

pikη
2
k − (

K+1∑

k=1

pikηk)
2

>
∑

k

pikη
2
k −

∑

k

pikη
2
k

∑

k

pik

=
∑

k

pikη
2
k(1−

∑

k

pik)

=0,

where the last equality uses
∑K+1

k=1 pik = 1, and the inequality follows by (
∑

k pikηk)
2 =

(
∑

k

√
pik

√
pikηk)

2 ≤ ∑

k pik
∑

k pikη
2
k using the Cauchy-Schwarz inequality, and here “ = ”

holds if and only if
√
pik ∝ √

pikηk for each k, which is not true since pik ∈ [c, 1− c] and 1
T η = 0.

Let H = {QT (diag(p)− ppT )Q : p ∈ [c, 1− c]K+1}, then H is compact and

min
u∈RK ,∥Qu∥∞≤r

λmin(∇2Li(u)) ≥ min
a∈SK−1,H∈H

aTHa = aT∗ H∗a∗ > 0

for some a∗ ∈ SK−1 and H∗ ∈ H. Therefore,

min
u∈RK ,∥Qu∥∞≤r

∇2Li(u)) ⪰ c∗IK

where c∗ is a positive constant depending on (K, r) only.

S6.2 Lipschitz conditions

We first restate the definitions of following sets,

U =
{
(Y,X) ∈ R

n×(K+1) × R
n×p : B̂ exists, ∥XB̂(IK+1 − 11

T

K+1 )∥
2
F < nτ

}
,

Uy =
{

Y ∈ R
n×(K+1) :

n∑

i=1

I(yik = 1) ≥ γn for all k ∈ [K + 1]
}

Lemma S6.3. Assume p/n ≤ δ−1 < 1 − α for some α ∈ (0, 1) and δ > 1. Let I = {I ⊂ [n] :
|I| = ⌈n(1− α)⌉} and PI =

∑

i∈I eie
T
i . Define

Ux =
{
X ∈ R

n×p : min
I∈I

λmin(
Σ−1/2XTPIXΣ−1/2

n ) ≥ ϕ2
∗,

∥XΣ−1/2∥op√
n

≤ ϕ∗} (S6.3)

for some positive constants ϕ∗, ϕ∗, which depend on (δ, α) only. Let U∗ = {(Y,X) ∈ U : Y ∈
Uy, X ∈ Ux}. Then under Assumptions 2.1, 2.3 and 2.4, and if either Assumption 2.2 or Assump-
tion S1.1 holds, we have

(i) P((Y,X) ∈ U∗) → 1 as n, p → ∞.

(ii) Let G be defined in Assumption S5.2. If {(Y,X), (Y, X̃)} ⊂ U∗, we have

∥G(Y,X)−G(Y, X̃)∥F ≤ L∥(X − X̃)Σ−1/2∥F ,
where L is a positive constant depending on (K, γ, τ, α) only.

Proof of Lemma S6.3. We first prove statement (i). Under Assumption 2.1, [Bellec, 2022, Lemma
7.7] implies

P
(
min
I∈I

λmin(
Σ−1/2XTPIXΣ−1/2

n ) ≥ ϕ2
∗
)
→ 1
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for some positive constant ϕ∗ depending on (δ, α) only. Furthermore, [Davidson and Szarek, 2001,
Theorem II.13] implies

P(
∥XΣ−1/2∥op√

n
≤ ϕ∗) → 1

for some positive constant ϕ∗ depending on δ only. Therefore, P(X ∈ Ux) → 1. Under Assump-
tion 2.3, we have P(Y ∈ Uy) → 1. Under Assumption 2.4, we have P((Y,X) ∈ U) → 1. In
conclusion, under Assumptions 2.1, 2.3 and 2.4, we have P((Y,X) ∈ U∗) → 1 as n, p → ∞.

Now we prove the statement (ii). For a fixed Y , let (Y,X), (Y, X̃) ∈ U∗, B̂, B̃ be their corresponding

minimizers of (S3.3), and G, G̃ be their corresponding gradient matrices. We first provide some

useful results derived from the KKT conditions. From the KKT conditions XTG = X̃T G̃ = 0, we
have

⟨XB̂ − X̃B̃,G− G̃⟩ =⟨B̂ − B̃, X̃T G̃−XTG⟩+ ⟨XB̂ − X̃B̃,G− G̃⟩
=− ⟨(X − X̃)(B̂ − B̃), G⟩+ ⟨(X − X̃)B̂, G− G̃⟩.

Since ∥∇2Li(u)∥op ≤ 1 for any u ∈ R
K from Lemma S6.2, ∇Li(·) is 1-Lipschitz. Thus,

⟨XB̂ − X̃B̃,G− G̃⟩ =
n∑

i=1

⟨B̂Txi − B̃T x̃i,∇Li(B̂
Txi)−∇Li(B̃

T x̃i)⟩

≥
n∑

i=1

⟨∇Li(B̂
Txi)−∇Li(B̃

T x̃i),∇Li(B̂
Txi)−∇Li(B̃

T x̃i)⟩

=∥G− G̃∥2F .
If (Y,X), (Y, X̃) ∈ U , we have ∥XB̂QT ∥2F + ∥X̃B̃QT ∥2F ≤ 2nτ . That is,

n∑

i=1

(
∥QB̂Txi∥2 + ∥QB̃T x̃i∥2

)
≤ 2nτ.

Define the index set
I = {i ∈ [n] : ∥QB̂Txi∥2 + ∥QB̃T x̃i∥2 ≤ 2τ

α },
then we have |I| ≥ (1 − α)n by Markov’s inequality. Thus, for all i ∈ I , we have ∥QB̂Txi∥∞ ∨
∥QB̃T x̃i∥∞ ≤

√
2τ
α .

Applying Lemma S6.2 with r =
√

2τ
α gives

min

∥Qu∥∞≤
√

2τ
α

∇2Li(u) ⪰ c∗IK ,

where c∗ is a constant depending on (K, τ, α). Therefore,

c∗∥PI(XB̂ − X̃B̃)∥2F =c∗
∑

i∈I

∥B̂Txi − B̃T x̃i∥2

≤
∑

i∈I

⟨B̂Txi − B̃T x̃i,∇Li(B̂
Txi)−∇Li(B̃

T x̃i)⟩

≤
n∑

i=1

⟨B̂Txi − B̃T x̃i,∇Li(B̂
Txi)−∇Li(B̃

T x̃i)⟩

=⟨XB̂ − X̃B̃,G− G̃⟩
=− ⟨(X − X̃)(B̂ − B̃), G⟩+ ⟨(X − X̃)B̂, G− G̃⟩.

We next bound the first line from below by expanding the squares,

∥PI(XB̂ − X̃B̃)∥2F = ∥PIX̃(B̂ − B̃) + PI(X − X̃)B̂∥2F
≥ ∥PIX̃(B̂ − B̃)∥2F + 2⟨PIX̃(B̂ − B̃), PI(X − X̃)B̂⟩
≥ nϕ2

∗∥Σ1/2(B̂ − B̃)∥2F + 2⟨X̃(B̂ − B̃), PI(X − X̃)B̂⟩,
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where in the last inequality we use the constant ϕ∗ in (S6.3). Therefore, we obtain

c∗ϕ
2
∗n∥Σ1/2(B̂ − B̃)∥2F

≤− ⟨(X − X̃)(B̂ − B̃), G⟩+ ⟨(X − X̃)B̂, G− G̃⟩ − 2c∗⟨X̃(B̂ − B̃), PI(X − X̃)B̂⟩.
Together with the inequality that ∥G− G̃∥2F ≤ ⟨XB̂ − X̃B̃,G− G̃⟩, we obtain

c∗ϕ
2
∗n∥Σ1/2(B̂ − B̃)∥2F + ∥G− G̃∥2F

≤− 2⟨(X − X̃)(B̂ − B̃), G⟩+ 2⟨(X − X̃)B̂, G− G̃⟩ − 2c∗⟨X̃(B̂ − B̃), PI(X − X̃)B̂⟩

≤(4 + 2c∗ϕ
∗)∥(X − X̃)Σ−1/2∥op

(
∥Σ1/2(B̂ − B̃)∥F ∨ ∥G− G̃∥F√

n

)(
∥Σ1/2B̂∥F ∨ ∥G∥op√

n

)√
n,

where we bound ⟨X̃(B̂ − B̃), PI(X − X̃)B̂⟩ by definition of ϕ∗,

⟨X̃(B̂ − B̃), PI(X − X̃)B̂⟩
=⟨Σ1/2(B̂ − B̃),Σ−1/2X̃TPI(X − X̃)B̂⟩
≤∥Σ1/2(B̂ − B̃)∥F ∥PIX̃Σ−1/2∥op∥(X − X̃)Σ−1/2∥op∥Σ1/2B̂∥F
≤
√
nϕ∗∥Σ1/2(B̂ − B̃)∥F ∥(X − X̃)Σ−1/2∥op∥Σ1/2B̂∥F .

Now we derive a bound of the form ∥Σ1/2B̂∥F ≲ ∥G∥F /
√
n. To this end, since ϕ∗∥Σ1/2B̂∥F ≤

∥PIXB̂∥F /
√
n ≤ ∥XB̂∥F /

√
n = ∥XB̂QT ∥F /

√
n ≤ √

τ .

Applying Lemma S6.1 to M = XB̂, we have 1
n

∑n
i=1 gig

T
i ⪰ m∗IK . Therefore,

1

n
∥G∥2F =

1

n

n∑

i=1

∥gi∥2 =
1

n

n∑

i=1

Tr(gig
T
i ) ≥ Km∗.

This implies that

ϕ2
∗∥Σ1/2B̂∥2F ≤ τ ≤ τ

Km∗(I)
∥G∥2F /n.

In conclusion, if {(Y,X), (Y, X̃)} ⊂ U∗ then√
n∥Σ1/2(B̂ − B̃)∥F + ∥G− G̃∥F ≤ Cn−1/2∥(X − X̃)Σ−1/2∥op∥G∥F ≤ CK∥(X − X̃)Σ−1/2∥op,

where C is a constant depending on (K, γ, τ, α) only. Note that ∥G∥F ≤
√
nK since all entries of

G are in [−1, 1].

Lemma S6.4. If p/n ≤ δ−1 < (1− α) for some α ∈ (0, 1) and δ > 1. If (Y,X) ∈ U and X ∈ Ux,
where Ux is defined in Lemma S6.3, we have

1

n

n∑

i=1

Hi ⊗ (xix
T
i ) ⪰ c1(IK ⊗ Σ),

where c1 is a positive constant depending on (K, τ, α, ϕ∗) only.

Proof of Lemma S6.4. If (Y,X) ∈ U , we have ∥XB̂QT ∥2F ≤ nτ . Define the index set

I = {i ∈ [n] : ∥QB̂Txi∥ ≤ τ
α},

then we have |I| ≥ (1− α)n by Markov’s inequality. Therefore, for any i ∈ I , ∥QB̂Txi∥∞ ≤ τ
α .

Applying Lemma S6.2 with u = B̂Txi and r = τ
α , we have for any i ∈ I , Hi = ∇2Li(B̂

Txi) ⪰
c∗IK for some positive constant c∗ depending on (K, τ, α) only. Therefore, if (Y,X) ∈ U and
X ∈ Ux, we have

1

n

n∑

i=1

Hi ⊗ (xix
T
i ) ⪰

1

n

∑

i∈I

Hi ⊗ (xix
T
i )

⪰ c∗
1

n

∑

i∈I

IK ⊗ (xix
T
i )

= c∗(IK ⊗ XTPIX
n )

⪰ c∗ϕ∗(IK ⊗ Σ)

= c1(IK ⊗ Σ),
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where PI =
∑

i∈I eie
T
i and c1 is a positive constant depending on (K, τ, α, ϕ∗) only.

S6.3 Proof of Theorem S3.1

The proof of Theorem S3.1 is a direct consequence of Theorem S5.1 by noting

√
nΩ

−1/2
jj

( 1

n

n∑

i=1

gig
T
i

)−1/2( 1

n

n∑

i=1

Vi

)

B̂T ej = Ω
−1/2
jj (GTG)−1/2V B̂T ej ,

which is a consequence of the identities G =
∑n

i=1 eig
T
i and V =

∑n
i=1 Vi.

It thus remains to verify the conditions (1) and (2) in Theorem S5.1 from the assumptions in
Theorem S3.1.

Applying Lemma S6.3 with α chosen as 1− δ−1/2, we have for {(Y,X), (Y, X̃)} ⊂ U∗,

∥G(Y,X)−G(Y, X̃)∥F ≤ L∥(X − X̃)Σ−1/2∥F ,
where L is a positive constant depending on (K, γ, τ, δ) only.

Apply Lemma S6.4 with the same α = 1− δ−1/2, we have for (Y,X) ∈ U∗,

1

n

n∑

i=1

Hi ⊗ (xix
T
i ) ⪰ c∗(IK ⊗ Σ),

where c∗ is a positive constant depending on (K, τ, δ) only.

Applying Lemma S6.1 with M = XB̂, we have for (Y,X) ∈ U∗,

m∗IK ⪯ n−1
n∑

i=1

∇Li(M
T ei)∇Li(M

T ei)
T ⪯ KIK ,

where m∗ is a positive constant depending on (K, γ, τ) only. Therefore, the conditions (1) and
(2) in Theorem S5.1 hold when the multinomial logistic loss is used. This completes the proof of
Theorem S3.1.

S7 Other proof

S7.1 Proof of Equation (1.12) (Classical asymptotic theory with fixed p)

Here we provide a derivation of the asymptotic distribution of MLE under classical setting, where p
is fixed and n tends to infinity.

We first calculate the Fisher information matrix of the multinomial logistic log-odds model (1.8)

with covariate x ∼ N(0,Σ) and response y ∈ {0, 1}K+1 one-hot encoded satisfying
∑K+1

k=1 yk = 1.
Note that the model (1.8) can be rewritten as

P(yk = 1|x) = exp(xTA∗ek)

1 +
∑K

k′=1 exp(x
TA∗ek′)

, ∀k ∈ {1, ...,K}

P(yK+1 = 1|x) = 1

1 +
∑K

k′=1 exp(x
TA∗ek′)

.

The likelihood function of a parameter A ∈ R
p×K is

L(A) =

K∏

k=1

[ exp(xTAek)

1 +
∑K

k′=1 exp(x
TAek′)

]yk[ 1

1 +
∑K

k′=1 exp(x
TAek′)

]yK+1

=

K∏

k=1

[exp(xTAek)]
yk

1

1 +
∑K

k′=1 exp(x
TAek′)

,
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where we used
∑K+1

k=1 yk = 1. Thus, the log-likelihood function is

ℓ(A) =

K∑

k=1

ykx
TAek − log

[
1 +

K∑

k′=1

exp(xTAek′)
]
.

It is more convenient to calculate the Fisher information matrix on the vector space RpK instead of the
matrix space Rp×K . To this end, let θ = vec(AT ), then xTAek = eTkA

Tx = (xT ⊗ eTk ) vec(A
T ) =

(xT ⊗ eTk )θ, and the log-likelihood function parameterized by θ is

ℓ(θ) =
K∑

k=1

yk(x
T ⊗ eTk )θ − log[1 +

K∑

k′=1

exp((xT ⊗ eTk′)θ)].

By multivariate calculus, we obtain the Fisher information matrix evaluated at θ∗ = vec(A∗T ),

I(θ∗) = −E

[ ∂

∂θ

∂ℓ(θ)

∂θT

]∣
∣
∣
θ=θ∗

= E[(xxT )⊗ (diag(π∗)− π∗π∗T )],

where π∗ ∈ R
K with k-th entry π∗

k = exp(xTA∗ek)

1+
∑K

k′=1
exp(xTA∗ek′ )

for each k ∈ [K].

From classical maximum likelihood theory, for instance [Van der Vaart, 1998, Chapter 5], we have

√
n(θ̂ − θ∗)

d−−→N(0, I−1
θ∗ ),

where θ̂ = vec(ÂT ) and Â is the MLE of A∗. Furthermore, if the j-th covariate is independent of the
response, we know eTj A

∗ = 0
T , then

√
nÂT ej =

√
n(ÂT ej −A∗T ej) =

√
n(eTj ⊗ IK)(θ̂ − θ∗)

d−−→N(0, Sj),

where

Sj = (eTj ⊗ IK)I−1
θ∗ (ej ⊗ IK)

= eTj cov(x)
−1ej [E(diag(π

∗)− π∗π∗T )]−1

holds by the independence between the j-th covariate and the response under H0 in (1.10). This
completes the proof of Equation (1.12).
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