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Abstract—Large Language Models (LLMs) have extensive ability to
produce promising output. Nowadays, people are increasingly relying on
them due to easy accessibility, rapid and outstanding outcomes. However,
the use of these results without appropriate scrutiny poses serious security
risks, particularly when they are integrated with other software, APIs,
or plugins. This is because the LLM outputs are highly dependent on
the prompts they receive. Therefore, it is essential to carefully clean these
outputs before using them in additional software environments. This paper
is designed to teach students about the potential dangers of contaminated
LLM output within the context of web development through prelab, hands-
on, and postlab experiences. Hands-on lab provides practical guidance
on how to handle LLM vulnerabilities to make applications safe with
some real-world examples in Python. This approach aims to provide
students with a deeper understanding of the precautions necessary to
ensure software against the vulnerabilities introduced by LLM output.

Index Terms—Large Language Models, Cybersecurity, Insecure Output,
Sanitization, Authentic Learning.

I. INTRODUCTION

The Large Language Model has rapidly gained huge popularity
worldwide and has already been widely adopted by a diverse range of
users for generating human-like text outcomes. LLM has also recently
been widely accepted in academia. The output of LLM is basically
influenced by the input prompts, and it can be modified iteratively by
changing the prompts. This means that although the LLM relies on a
large amount of training data, the final output can still be controlled
by carefully providing the prompts [1]. Although the LLM output is
different in various contexts, this paper aims mainly to focus on some
specific areas for students to learn possible vulnerabilities of the LLM
output and to understand how to handle them properly in the real
world. This paper also aims to equip students with the knowledge
and skills necessary to critically evaluate and secure LLM output,
ensuring safer integration into web development and other software
applications.

Our approach utilizes authentic learning [2] concepts to equip
students with the skills needed to identify and address security
vulnerabilities in the LLM output. The reason we focus on hands-
on learning is because it deepens understanding and proficiency by
directly involving students with real-world problems and solutions.
Engaging in practical tasks not only enhances active learning but also
boosts a sense of competence and mastery, significantly improving
knowledge and acquisition. Furthermore, by integrating authentic
learning principles, we highlight the relevance and applicability of
the skills taught, enhancing how effectively this knowledge can be
transferred and applied in real-world situations [3, 4].
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To address these things, we propose authentic learning modules
meticulously designed to guide students about handling insecure
outputs from Large Language Models (LLMs). These modules are
carefully designed to include prelab orientations, hands-on activities,
and postlab reflections, creating a comprehensive educational experi-
ence that prepares students for their future endeavors. To get an overall
visual understanding, please follow Figure 1:

In Figure 1, we illustrate the complete process of cleaning the output
of a large language model (LLM) to ensure that it is safe to use as input
for other software services. We started with an arbitrary actor who
intentionally offers a biased prompt to the LLM in order to generate
vulnerable results that are passed to a tool to thoroughly filter out
vulnerable parts from it. After proper cleansing, the final output then
becomes safe and it can now be fed into the other software, API, or
plugins.

We demonstrate to students with real-world scenarios illustrating
the risks associated with directly rendering HTML and JavaScript in
browsers without proper security measures. We discussed how image
and iframe HTML tags, when src tags are improperly generated by
the LLM, can initiate HTTP requests to external sites, potentially
compromising browser security and leading to data privacy violations.
Additionally, we cover the dangers of arbitrary executable JavaScript
code generated by LLMs, which can be dangerously harmful when
rendered directly in browsers without further scrutiny. To address these
issues, we showed Python code how to clean HTML and JavaScript
using the escape method, and applied regular expressions to thoroughly
remove any JavaScript code from the HTML.

We also presented a case study on URL query strings that is
produced by LLMs. If these query strings contain malicious data, they
pose a significant risk to web servers. To mitigate this risk, we utilized
Python’s quote method to safely encode these query strings into URLSs.

Moreover, we delved into the common issue of SQL injection, a
well-known concern in database management systems. We explain
how SQL queries, if partially generated by LLMs and used without
scrutiny, can expose databases to attacks. To safeguard databases, we
encouraged the use of parameterized query execution, which helps
ensure the security and integrity of database operations.

The rest of the paper is structured as follows. Section II outlines
a detailed labware setup, which is divided into subsections covering
pre-lab, hands-on, and post-lab activities. Section III discusses related
work, Section IV details the results of the student surveys, Section V
explores potential directions for future research, Section VI concludes
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Fig. 1: Life cycle of Insecure output handling of LLM

the paper and finally Section VII contains acknowledgements.

II. LABWARE SETUP

The labware is organized into three main sections: prelab, hands-
on, and postlab. They are carefully structured to provide a thorough
learning experience which offers a comprehensive learning experience,
enabling students to progressively build their knowledge from the basic
to advanced level. The pre-lab section equips learners with essential
foundational knowledge to the topic. This is followed by the hands-on
lab, which offers detailed insights and hands-on with Python examples,
enhancing deeper understanding and skill. The post-lab section lastly
inspires students to delve deeper into the subject, supporting further
research. More importantly, we have provided URLs to the Google
website for easy access from anywhere. Refer to the labware design
as a learning pathway depicted in Figure 2: The base of the pyramid
represents the foundational aspects, the middle section encompasses
the hands-on experience, and the upper part, the post-lab, advances
the learners to a higher level of expertise.

A. Pre-lab

The pre-lab section covers the basics of very common web vul-
nerabilities such as Cross Site Request Forgery(CSRF), Cross Site
Scripting (XSS), Server Side Request Forgery (SSRF), and SQL
Injection. It shows how these problems can show up in the outputs
from Large Language Models (LLMs) when used in web development.
It also explains why it is important to handle these issues carefully,
especially when we use these outputs directly as inputs for other
software services without checking them. This is essential to prevent
security risks that could harm software and associated data.

B. Hands-On

In the hands-on lab section, students will dive deeper into the prac-
tical applications of handling outputs from Large Language Models
(LLMs) to enhance security and vulnerabilities in software develop-
ment workflows. This section provides real-world examples, complete
with Python code snippets, detailed explanations, and screenshots,
showing how to address vulnerabilities associated with LLM output.
We demonstrated using an open-source LLM model from Hugging
Face’s Transformers library, and we developed a Python method that
accepts a prompt and generates an output. The output of this Python
method is flexible and smart, as it can handle any given instructions
and deliver Al-powered results based on the prompts provided. By
frequently calling this method, students have the opportunity to freely
experiment and observe how the LLM might generate biased output.

Web browsers are the primary means through which users interact
with the internet daily, but many users do not regularly update their
browsers. As a result, their devices are at risk of being compromised
when they visit vulnerable or insecure websites[S, 6]. The rendering
of unfiltered content directly in a browser can pose serious security
threats [7]. Likewise, accepting arbitrary content in APIs and plugins
is risky because they might contain malicious data or executable code.

So, in the context of web development, we discussed how directly
rendering this output in a browser could lead to serious security risks
such as XSS [8] and CSRF [9], if not properly cleaned up. We
demonstrated how these outputs can be cleaned up using techniques
like Python provided methods named ‘escape’, ‘quote’, and regular ex-
pressions. We explain how a query string for an URL could potentially
pose Server Side Request Forgery(SSRF) [10, 11] if it is generated
from LLM and we show techniques such as URL encoding to mitigate
this issue. Furthermore, we explain the risks of SQL injection attacks
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[12], a very well-known issue, in databases, particularly when parts
of SQL queries are derived from LLM output, and showed how to
eliminate such SQL injection attacks.

C. Post-lab

The post-lab section is designed to inspire students to dive deeper
into the subject matter and engage in more thorough research. It
encourages them to reflect on their hands-on experiences and apply
their newly acquired knowledge in broader contexts.

III. RELATED WORKS

Calo et al. [13] introduce a new way to use large language models
(LLM) to help people generate websites by describing what they want
in plain words through prompts. Their main idea is to guide the LLM
to produce a website draft using a special setup that makes sure the
LLM sticks to a certain template. They show how users describe
website features, and the LLM generates the corresponding HTML
and CSS in response. Le et al. [14] discuss the use of Large Language
Models (LLMs) like ChatGPT and Bard for the automatic repair
of vulnerabilities in JavaScript code. The authors also contribute to
how LLM-generated outputs can be refined to reduce risks, especially
in programming and web development scenarios where security is
critical. Hong et al. [15] introduce the Knowledge-to-SQL framework,
designed to improve SQL generation from text by integrating a
specialized Data Expert Large Language Model (DELLM). Their
innovation addresses the limitations of existing text-to-SQL models
that often produce inaccurate SQL due to an incomplete understanding
of the database schema and the context of the queries. The paper
details the development and fine-tuning of DELLM, including a
novel training strategy through natural language processing. Oh et
al. [16] explore the real-world implications of poisoning attacks on
Al-powered coding assistant tools like ChatGPT. They investigate
how such attacks can literally introduce vulnerabilities into the code
suggestions provided by LLM tools, potentially leading to security
breaches in software development. Siddiq and Santos [17] introduce
the security vulnerabilities in code produced by Large Language
Models (LLMs). They highlight that while the functional correctness
of code is frequently assessed, security aspects are often neglected.

To address this, the authors introduce the SALLM framework, which
includes a new dataset of security-focused Python prompts for testing
generated code, along with innovative metrics specifically designed to
evaluate the security of code generated by LLMs. This framework
aims to reduce potential security risks in code that is generated
automatically. He and Vechev [18] focus on enhancing the security of
code generated by Large Language Models (LLMs) through a novel
framework named SVEN which introduces controlled code generation,
where code security is manipulated via binary properties that guide the
LLM to produce secure code. Luo et al. [19] propose a novel method
called Guide-Align, focusing on improving the safety and quality
of outputs from Large Language Models (LLMs). Their approach
involves creating a comprehensive library of detailed guidelines. Their
proposed method uses a two-stage process where a safety-trained
model initially identifies potential risks and formulates appropriate
guidelines for different inputs. These guidelines are then used by a
retrieval model to guide LLMs during response generation to ensure
that safe, reliable outputs align with human values. Jesse et al. [20]
investigate the susceptibility of Codex, Al-enabled Copilot by Github,
to generate coding errors, particularly focusing on a type of bug known
as single statement bugs (SStuBs). Codex, which is trained on public
GitHub code that may contain bugs and vulnerabilities. This research
finds that while Codex can help avoid some types of these simple
bugs, they are twice as likely to produce known, exact copies of
these bugs compared to correct code. The authors propose strategies to
minimize the occurrence of these bugs while increasing the generation
of accurate, bug-free code. Voros et al. [21], introduces a cutting-edge
method for URL categorization using Large Language Models (LLMs)
aimed at enhancing web content filtering to protect organizations from
legal and ethical risks. It restricts access to high-risk or dubious sites,
and promotes a secure, professional workplace.

While these studies provide very useful information, it is important
to note that none specifically address how to manage insecure LLM
output for the academic domain. Although learning methods such
as project-based, case study-based, and authentic learning have been
extensively used in numerous fields, there is still a gap in the literature
in focusing on the implementation of insecure LLM output handing in



the web development context. Therefore, our research seeks to bridge
this gap by developing authentic learning modules to manage insecure
LLM production in the educational sector.

IV. STUDENTS SURVEY

We conducted surveys for the prelab and postlab on large language
model security by asking various questions. The surveys are offered
in both quantitative and qualitative formats.

A. Pre-lab Survey

We asked students based on their prior work experience related to
Computer and Artificial Intelligence and found different level of their
roles such as Android Developer, Programmer, Software Developer
and Software Engineer. The students were asked to identify their
level of experience in the Large Language Model(LLM). According
to the pre-lab survey, a majority of the students lacked experience
in it. Among them, 33% of the students had no experience and
66% of students had limited themselves to a moderate level of
knowledge about it. We also asked about their level of experiences
at vulnerabilities in Large Language Model. It was surprising that
almost 45% of the students had almost no experience in this area and
the rest had very little knowledge about it. Furthermore, we asked
students very important questions regarding their learning preferences
with five different choices: Strongly Agree, Agree, Neutral, Disagree
and Strongly Disagree. From the learning preference questions, it is
observed that significant number of students are strongly agreed on
learning better by hands on lab which are 78%. It proves that learning
through hands-on is more effective for pupils.

TABLE I: Responses of students on their learning preferences

included questions with five options: Strongly Agree, Agree, Neutral,
Disagree, and Strongly Disagree. We observed some interesting facts
from the post-lab survey. We found that the category “Strongly Agree”
is between 78% and 89% on the benefits of the post-lab session
concerning LLM security. Nobody disagreed or strongly disagreed our
authentic learning process. Table II displays the results in percentages,
while Figures 3, 4 and 5 illustrate the detailed responses from the nine
students, presented as counts.

TABLE II: Responses of 9 students on LLM post lab survey

Question Title Neutral Disagree Strongl
Dis-

agree

Strongly
Agree

Agree

y

I liked working with 78% 22% | 0% 0% 0%

python and Colab

The outline tutorials on 78% 22% 0% 0% 0%

pre-lab help me more on
the pre-lab

Question Title Neutral | Disagree| Strongly

Dis-
agree

Strongly
Agree

Agree

I learn better 78% 22% 0% 0% 0%

by hands-on lab
work

I learn better by 22% 67% 11% 0% 0%

listening to lec-
tures

The hands-on on lab 0% 0%
helps me understand bet-
ter on Cybersecurity is-
sues in Large Language
Model during develop-

ment and operation

89% 11% | 0%

The hands-on lab helps
me learning experience
Cybersecurity on Large
Language Model

89% 0% 11% 0% 0%

The real world relevant 78% 22% 0% 0% 0%

applications engage my
learning on Cybersecu-
rity in Large Language
Model

The learning modules 78% 22% | 0% 0% 0%

help me apply learned
knowledge to  solve
cybersecurity  problems
in Large Language

I learn better by 44% 33% 11% 11% 0%

personally do-
ing or writing
by examples

I learn better 22% 44% 33% 0% 0%

by reading the
material on my
own

I learn better by 44% 44% 11% 0% 0%

having a learn-
ing/tutorial sys-
tem that pro-
vides feedback

B. Post-lab Survey

In the post-lab survey, we collected responses from a total of 9
students. The survey was conducted after the students participated
in the hands-on module. We asked various questions to the students
about the benefits of the hands-on lab and also asked whether pre-
lab session adequately prepared them to grasp the topic. The results
indicated that authentic learning practices in the field of Cybersecurity
issues in LLM outcomes are viewed promisingly positive. The survey

Model

It is important to note that students not only answered the questions
we asked but provided insightful feedback on our another question.
The question was “Please add any additional comments about this
LLM security hands on project, either what you liked or disliked
and make any suggestions for further improvement”. Here are some
positive comments we received: “The hands on module is great to
build basic foundation on Software security on Large Language Model
Output Concerns”, “I liked the detail examples and code for demo on
LLM vulnerabilities”, “liked the process”, “The labs are well designed
and conveyed the concepts clearly with code and example”, “Really
helpful explanation of each line of code”.

V. FUTURE RESEARCH DIRECTIONS

In our research, we concentrated exclusively on handling insecure
LLM outputs within the context of web development. However, it is
also essential to evaluate LLM responses across various use cases and
further research is needed to thoroughly examine the results produced
by LLM in other scopes. The LLM output needs thorough scrutiny
in sectors such as Healthcare advice, legal and compliance, business
and finance, public safety and emergency response, journalism and
media, customer service and support, personal data and privacy, and
Interactions with Children, etc. As we increasingly rely on Al-enabled
services in our daily lives due to their promising results these days, it
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Fig. 5: Figure (a), and (b) displays the responses from the post-survey questions

is also very crucial to carefully examine the outcome of LLM before
making any decisions in these critical areas. Furthermore, we aim to
disseminate our google site among various students, possibly more
than 1500, to allow them to learn and get feedbacks from them and
improve our lab based on the feedbacks.

VI. CONCLUSION

Our labware is designed to tackle the challenges associated with
learning how to handle insecure outputs in Large Language Models
(LLMs) effectively focused on software security through authentic
learning. We have structured the labware progressively to guide
students from basic to advanced levels. In order to overcome the gap
between typical learning environments and engaging practical experi-
ences, we have proposed an approach which provides both theoretical
knowledge as well as practical coding-level training that are directly
relevant to the authentic learning for the learners. The preliminary
feedback from students has been very positive. They have not only
been able to understand the concepts but have also actively applied
these skills through the hands-on labs. This reinforces our belief
that practical experience combined with theoretical understanding is
crucial in educating students about insecure output handling of LLMs.
Through this labware, we aim to equip students with the necessary
skills to navigate and mitigate the vulnerabilities of LLM outputs in
their future endeavors in the software development domain.
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