
InversOS: E�cient Control-Flow Protection for
AArch64 Applications with Privilege Inversion

Zhuojia Shen
University of Rochester
Rochester, NY, USA

zshen10@cs.rochester.edu

John Criswell
University of Rochester
Rochester, NY, USA

criswell@cs.rochester.edu

Abstract

With the increasing popularity of AArch64 processors in
general-purpose computing, securing software running on
AArch64 systems against control-�ow hijacking attacks has
become a critical part toward secure computation. Shadow
stacks keep shadow copies of function return addresses and,
when protected from illegal modi�cations and coupled with
forward-edge control-�ow integrity, form an e�ective and
proven defense against such attacks. However, AArch64
lacks native support for write-protected shadow stacks, while
software alternatives either incur prohibitive performance
overhead or provide weak security guarantees.
We present InversOS, the �rst hardware-assisted write-

protected shadow stacks for AArch64 user-space applica-
tions, utilizing commonly available features of AArch64 to
achieve e�cient intra-address space isolation (called Privi-
lege Inversion) required to protect shadow stacks. Privilege
Inversion adopts unconventional design choices that run
protected applications in the kernel mode and mark operat-
ing system (OS) kernel memory as user-accessible; InversOS
therefore uses a novel combination of OS kernel modi�ca-
tions, compiler transformations, and another AArch64 fea-
ture to ensure the safety of doing so and to support legacy
applications. We show that InversOS is secure by design,
e�ective against various control-�ow hijacking attacks, and
performant on selected benchmarks and applications (incur-
ring overhead of 7.0% on LMBench, 7.1% on SPEC CPU 2017,
and 3.0% on Nginx web server).

CCS Concepts: • Security and privacy → Systems secu-

rity; Software and application security.

Keywords: hardware-assisted protected shadow stacks, intra-
address space isolation, AArch64, control-�ow integrity

1 Introduction

AArch64 (64-bit ARM) processors are becoming increasingly
popular, not only in embedded and mobile platforms but also
in personal computers [7] and high-performance servers
and data centers [5, 52, 92, 102]. Given the popularity of
AArch64 processors used in production and in our daily lives,
securing software on such systems is critical. In particular,
a large portion of AArch64 application code is written in
memory-unsafe programming languages (e.g., C and C++)
and is vulnerable to control-�ow hijacking attacks [111, 126]

that exploit memory safety errors. While basic code injection
attacks are prevented by the wide deployment of the W⊕X
policy [105], which disallows memory to be writable and
executable at the same time, advanced code-reuse attacks like
return-oriented programming (ROP) [111, 116] and jump-
oriented programming (JOP) [13] are still possible. These
attacks hijack a program’s control �ow by corrupting code
pointers (e.g., return addresses and function pointers) to
point to reusable code of the attacker’s choosing. Worse yet,
recent research [28] has demonstrated automation of ROP
attacks on AArch64, necessitating e�ective and practical
defenses to be deployed.
Control-�ow integrity (CFI) [1, 2], a seminal mitigation

to control-�ow hijacking attacks, restricts a program’s con-
trol �ow to follow its intended control-�ow graph. While
ine�ective by itself [20, 29, 36, 50], CFI necessitates a mecha-
nism that protects the integrity of return addresses, such as
write-protected shadow stacks [18, 25], to form an e�ective
defense [19]. However, software approaches to protecting
return address integrity either su�er from high performance
overhead (e.g., software-based shadow stacks [25, 30, 46, 133,
153]) or only provide probabilistic guarantees (e.g., informa-
tion hiding [18, 107, 119, 155]). Hardware-assisted shadow
stack protection, such as Control-�ow Enforcement Technol-
ogy (CET) [117] on x86, o�ers the best security and perfor-
mance but is not natively available on AArch64.

In this paper, we present InversOS, a system that provides
AArch64 user-space applications with hardware-assisted
write-protected shadow stacks. InversOS does so without
requiring the most recent hardware security features on
AArch64 or modifying hardware. Instead, InversOS uses
two widely available AArch64 features [9], namely unprivi-
leged load/store instructions and Privileged Access Never, in a
novel way to create an e�cient domain-based instruction-
level intra-address space isolation technique which we call
Privilege Inversion. With Privilege Inversion, InversOS runs
protected applications in the same privilege mode as an op-
erating system (OS) kernel, sets up incorruptible shadow
stack memory accessible only by unprivileged load/store
instructions, and ensures the safety of running privileged
user-space code via a combination of OS kernel modi�ca-
tions and compiler transformations. To keep compatibility
with legacy untransformed application binaries, InversOS

1

a
rX

iv
:2

3
0
4
.0

8
7
1
7
v
2

[c

s.
C

R
]

 1
9
 J

u
l

2
0
2
3

AArch64 [9] supports page-level access permissions, con-
trolled by the UXN (Unprivileged eXecution Never) bit, the
PXN (Privileged eXecution Never) bit, and two AP[2:1] (Ac-
cess Permission) bits in last-level page table entries (PTEs).
As the names imply, UXN and PXN, when set, disable unprivi-
leged and privileged instruction access of the corresponding
page, respectively. AP[1] disables unprivileged data access
when cleared, and AP[2] disables write access when set.

In addition to the above PTE bits, AArch64 [9] also sup-
ports hierarchical access permission control via the UXNTable
bit, the PXNTable bit, and two APTable[1:0] bits in top- and
mid-level PTEs (PTEs that point to a next-level page table
rather than a page). Unlike their last-level PTE counterparts,
these bits can apply access restrictions to the whole corre-
sponding address range on top of the permission of subse-
quent levels. When set, UXNTable and PXNTable disallow
unprivileged and privileged instruction access, respectively.
APTable[0] disallows unprivileged data access when set,
and APTable[1] disallows write access when set. The Linux
kernel, as of v4.19.219, always keeps these bits cleared and
instead only controls access permissions at page level [78].

Unprivileged Load/Store Instructions. A special fea-
ture of AArch64 [9] (and many other ARM ISAs such as
ARMv7-M [8]) is unprivileged load and store (LSU) instruc-
tions. These instructions, with mnemonics starting with
LDTR or STTR on AArch64, check unprivileged memory ac-
cess permissions even when executed in the privileged mode.
This makes LSU instructions useful in accessing user-space
memory inside the OS kernel (e.g., Linux’s get_user() and
put_user() functions [15]).

Architecture Extensions. AArch64 [9] has architecture
extensions; the initial ISA is called ARMv8.0-A, and subse-
quent releases (e.g., ARMv8.1-A) are based on the previous
ISA with new hardware features. Speci�cally, we focus on
the following hardware features: Privileged Access Never
(PAN), User Access Override (UAO), Hierarchical Permission
Disable (HPDS), and E0PD.
PAN [9] is an ARMv8.1-A feature which prevents privi-

leged code from accessing unprivileged-accessible data mem-
ory, similar to x86’s Supervisor Mode Access Prevention
(SMAP) [3, 61]. When PAN is enabled via setting the PAN bit
in the processor state PSTATE, all loads and stores (except
LSU instructions) executed in the privileged mode that try
to access memory accessible in the unprivileged mode will
generate a permission fault.

UAO [9] is an ARMv8.2-A feature which, when enabled via
setting the PSTATE.UAO bit, allows LSU instructions executed
in the privileged mode to act as regular loads/stores.
HPDS [9], introduced in ARMv8.1-A, allows disabling

hierarchical access permission bits (UXNTable, PXNTable,
and APTable[1:0]) during page table lookups. Software
running in the privileged mode can set the HPD{0,1} bits

in Translation Control Register TCR_EL1 to disable hier-
archical access permission checks in address translation
from TTBR{0,1}_EL1. However, as AArch64 allows caching
TCR_EL1.HPD{0,1} in translation lookaside bu�ers (TLBs),
�ipping either bit may require a local TLB �ush to take e�ect.

E0PD [9], introduced in ARMv8.5-A as a hardware mitiga-
tion to side-channel attacks that leverage fault timing (e.g.,
Meltdown [79]), prevents code running in the unprivileged
mode from accessing (lower or upper or both) halves of the
virtual address space and generates faults in constant time.
Similar to HPDS, there are two bits TCR_EL1.E0PD{0,1} that
privileged software can use to control whether unprivileged
access to which half of the address space is disabled.

3 Threat Model

We assume a powerful attacker trying to achieve arbitrary
code execution on a benign but potentially buggy application
by exploiting arbitrary memory read/write vulnerabilities
to hijack the control �ow. We assume that the underlying
OS kernel and hardware are trusted and unexploitable, pro-
viding the user space with the basic W⊕X protection [105].
Non-control data attacks [22] (such as data-oriented pro-
gramming [59] and block-oriented programming [63]), side-
channel attacks, and physical attacks are out of scope. This
threatmodel is in linewith recentwork on user-space control-
�ow hijacking attacks [28, 29] and defenses [18, 74, 75, 136].

4 Design

In this section, we present the design of InversOS. The goal
of InversOS is to provide low-cost return address integrity
to user-space applications running on commodity AArch64
systems, which may or may not come with the most recent
hardware security features such as Pointer Authentication
(PAuth), Branch Target Identi�cation (BTI), and Memory
Tagging Extension (MTE) [9]. To do so, InversOS must only
rely on AArch64 features from the early ISA versions. We
therefore require InversOS’s target platform to support at
least PAN and HPDS (i.e., conforming to ARMv8.1-A [9]);
this allows InversOS to be deployed on most of AArch64
systems released since 2017 [139].
Overall, we devise InversOS as a co-design between an

OS kernel and a compiler. The InversOS-compliant OS ker-
nel utilizes Privilege Inversion, a novel intra-address space
isolation technique we invented, to provide user-space appli-
cations an extra protection domain accessible only by LSU
instructions. The InversOS-compliant compiler then instru-
ments user-space code to leverage the protection domain
for e�cient protected shadow stacks as well as to enforce
forward-edge CFI [1, 2], allowing InversOS to protect user-
space applications without modifying their source code. The
nature of Privilege Inversion dictates running user-space
applications in the privileged mode; we therefore combine
CFI, a compile-time bit-masking compiler pass, a load-time

3

CFI and bit-masking instrumentation ensures that control-
�ow transfers in elevated tasks never reach the kernel space.
As for attacks on availability, we argue that InversOS does
not introduce new availability problems; running an elevated
task in the privileged mode does not prioritize it on resource
allocation over all other legacy or elevated tasks and the OS
kernel. The remaining case is privileged instructions, the
execution of which is restricted by hardware automatically
for legacy tasks and by InversOS’s load-time code scanner
for elevated tasks. Conclusively, InversOS does not introduce
new security �aws and is secure by design.

6.2 E�cacy against Control-Flow Hijacking

To answer SQ2, we �rst de�ne and explain a list of invariants
that InversOS maintains for guaranteeing return address in-
tegrity of elevated tasks and then reason about why return
address integrity signi�cantly reduces the control-�ow hi-
jacking attack surface. Speci�cally, InversOS maintains the
following invariants for elevated tasks:

Invariant 1. A function in an elevated task either pushes
its return address in LR to a shadow stack, or never spills the
return address to memory.

Invariant 2. If a function in an elevated task pushed its return
address to a shadow stack, its epilogue will always load the
return address from the shadow stack location in which its
prologue saved the return address.

Invariant 3. An elevated task cannot corrupt shadow stacks
by itself or by using a system call as a “confused deputy” (e.g.,
calling read(fd, buf, size) where buf points to shadow
stack memory [138]).

Invariant 1 is easily upheld by our shadow stack pass,
which instruments LR-saving function prologues to push
LR to the shadow stack. With the counterpart instrumenta-
tion on epilogue(s) of these functions to pop LR from the
shadow stack, our shadow stack pass guarantees that only a
function’s prologue and epilogue(s) can update the shadow
stack pointer with a matched decrement/increment, con-
tributing to Invariant 2. Since our forward-edge CFI pass
ensures that all indirect calls and tail-call indirect jumps
target the beginning of a function and all non-tail-call indi-
rect jumps are restricted within their containing function,
shadow stack pointer decrements and increments are guar-
anteed to occur in a matched order, sustaining Invariant 2.
Finally, Invariant 3 is maintained because the shadow stacks
are unprivileged and no existing/new LSU instructions can
be exploited/introduced to corrupt the shadow stacks (due
to CFI/W⊕X), and because of the benign nature of elevated
tasks assumed by our threat model in Section 3.
With return address integrity, control-�ow hijacking at-

tacks that require corrupting return addresses (such as return-
into-libc [126] and ROP [111, 116]) are e�ectively prevented.
Furthermore, as non-tail-call indirect jumps cannot break the

“jail” of their containing function, attacks that exploit indi-
rect jumps (such as JOP [13]) no longer work. The remaining
attack surface requires attackers to do purely call-oriented
programming (i.e., using only corrupted function pointers);
while such attacks are possible [44, 114], they are limited by
forward-edge CFI and can be further restrained if InversOS
re�nes CFI’s granularity. In short, InversOS greatly reduces
the control-�ow hijacking attack surface for elevated tasks.

7 Performance Evaluation

We evaluated the performance of InversOS on a Station P2
mini-PC which has an RK3568 quad-core Cortex-A55 proces-
sor implementing the ARMv8.2-A architecture that can run
up to 2.0 GHz. The mini-PC comes with 8 GB of LPDDR4
DRAM up to 1,600 MHz, 64 GB of internal eMMC storage
(unused), and 1 TB of SATA SSD. It runs Ubuntu 20.04 LTS
modi�ed by the manufacturer.

We ran all our experiments using two con�gurations: Base-
line and InversOS. In Baseline, we compiled program and
library code using LLVM/Clang v13.0.1 [73] without the
InversOS compiler transformations and ran the generated
binary executables on a Linux v4.19.219 kernel [78] with-
out our kernel modi�cations. In InversOS, all program and
library code was compiled with the InversOS compiler trans-
formations (i.e., shadow stack, forward-edge CFI, and bit-
masking transformations) and executed on the same version
of the Linux kernel modi�ed with our kernel changes. When
running an InversOS executable, we set an environment
variable INVERSOS=1 to inform the OS kernel that the pro-
gram should be started as an elevated task, as Section 5.1
describes. As the processor lacks E0PD support, we rely on
HPDS to prevent legacy tasks from accessing kernel mem-
ory. Both con�gurations used -O2 optimizations and per-
formed static linking against the musl libc v1.2.2 [45] and
LLVM’s compiler-rt builtin runtime library v13.0.1 [85]. C++
code in our experiments was compiled with and statically
linked against libc++ [82], libc++abi [83], and libunwind [84]
from LLVM v13.0.1. Libraries for Baseline and InversOS are
compiled without and with our modi�cations described in
Section 5.2, respectively.

7.1 Microbenchmarks

To understand the performance impact of the InversOS Linux
kernel modi�cations, we used LMBench v3.0-alpha9 [90], a
microbenchmark suite that measures the latency and band-
width of various OS services. For each microbenchmark that
supports parallelism, we ran four parallel workloads to re-
duce variance.We report an average and a standard deviation
of 10 rounds of execution for each microbenchmark.

8

Table 2. LMBench Latency (Lower is Better)

Microbenchmark Baseline (`s) stdev (`s) InversOS (×) stdev (×)

null syscall 0.148 0.000 1.047 0.007

read 0.482 0.001 1.054 0.004

write 0.351 0.002 0.991 0.003

stat 4.928 0.023 1.066 0.003

fstat 0.422 0.003 1.052 0.005

open/close 9.744 0.017 0.989 0.003

select 500 fd 24.365 0.017 1.002 0.001

signal install 0.375 0.001 1.059 0.003

signal catch 3.801 0.009 1.493 0.002

protection fault 0.408 0.005 0.980 0.029

pipe 16.115 0.067 0.948 0.004

AF_UNIX stream 27.314 0.618 1.051 0.008

AF_UNIX connect 99.329 0.733 1.012 0.009

fork+exit 266.767 6.945 1.256 0.012

fork+exec 562.585 7.046 1.188 0.009

fork+shell 2,878.983 12.869 4.007 0.015

page fault 0.910 0.016 1.038 0.009

mmap 1 MB 42.700 3.318 1.019 0.007

udp 76.490 0.214 1.018 0.005

tcp 63.472 0.200 1.011 0.002

connect 102.196 0.503 1.004 0.006

context switch 59.318 0.880 0.993 0.014

fcntl 8.772 1.643 0.992 0.219

semaphore 3.083 0.515 0.954 0.162

usleep 78.661 1.579 0.995 0.020

Geomean — — 1.103 —

Table 3. LMBench Bandwidth (Higher is Better)

Microbenchmark
Baseline stdev InversOS stdev

(MB/s) (MB/s) (×) (×)

pipe 1,096.147 72.703 0.991 0.049

AF_UNIX stream 931.933 6.753 1.003 0.011

read 1 MB 3,706.665 65.823 0.978 0.013

read 1 MB open2close 3,474.633 45.699 0.990 0.015

mmap 1 MB 10,689.636 36.243 1.006 0.001

mmap 1 MB open2close 6,365.563 43.215 0.972 0.008

tcp 720.056 48.645 0.987 0.013

Geomean — — 0.989 —

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

0k 1k 4k 10k

#
 o

f
F

il
es

 p
er

 S
ec

o
n

d

File Size

Baseline Create
InversOS Create

Baseline Delete
InversOS Delete

Figure 6. LMBench File Operation Rate (Higher is Better)

Tables 2 and 3 and Figure 6 show LMBench performance of
both Baseline and InversOS. Overall, InversOS incurred a geo-
metricmean of 7.0% overhead: 10.3% on latency, 1.1% on band-
width, and 2.2% on �le operation rate. In most microbench-
marks the overhead is miniscule. Most notably, fork+shell

exhibited a 4× slowdown because InversOS had to scan every
code page of a newly executed shell. The same goes with
fork+exec, in which the executed program is much smaller
than the shell and thus incurred much less overhead (18.8%).
In fork+exit, the 25.6% overhead comes from an optimiza-
tion of copying code page PTEs upfront; Linux by default
only sets up shared page table mappings of a child process
at page faults (i.e., when the child �rst accesses the page),
which, however, would cause redundant code scanning in
InversOS as InversOS invokes the code scanner whenever a
page in an elevated task is marked executable. We therefore
optimized InversOS to avoid redundant code scanning by
copying an elevated task’s code page PTEs during fork()

and enabled this optimization in all InversOS experiments.
InversOS incurred 49.3% overhead in signal catching because
of additional �ipping of PSTATE.UAO (due to PAN being dis-
abled) when setting up and tearing down a signal frame; this
could be optimized away by simply disabling UAO support
in the Linux kernel, which we opted not to in order to avoid
introducing less relevant changes.

7.2 Macrobenchmarks and Applications

To see how InversOS performs on real workloads, we used
SPEC CPU 2017 v1.1.9 [121] and Nginx v1.23.3 [124]. SPEC
CPU 2017 is a comprehensive benchmark suite containing
CPU- and memory-intensive programs written in C, C++,
and/or Fortran that stress a computer system’s performance.
Nginx is a high performance web server written in C that
has been widely used in the real world.
For SPEC CPU 2017, we evaluated 28 (out of 43) bench-

mark programs in C/C++ as LLVM/Clang cannot compile
Fortran code. We used the train (instead of the larger ref)
input set because train yielded execution time of at least
20 seconds in each benchmark already. We report average
execution time with 10 rounds of execution for each bench-
mark; standard deviations are negligible (less than 1%).
For Nginx, we used Nginx to host randomly generated

static �les ranging from 1 KB to 512 MB with one worker
process listening to port 8080 for HTTP requests. We then
ran ApacheBench (ab) [6] on the same machine to measure
Nginx’s bandwidth of transferring �les within a period of
10 seconds. We report an average and a standard deviation
over 10 rounds of execution for each �le size.

Table 4 and Figure 7 present the Baseline performance of
SPECCPU 2017 andNginx, respectively. Figures 8 and 9 show
the performance overhead InversOS incurred on SPEC CPU
2017 and Nginx, respectively. Overall, InversOS increased
the execution time of SPEC CPU 2017 by a geometric mean
of 7.1% and degraded the bandwidth of Nginx by a geometric
mean of 3.0%. We studied the overhead on SPEC CPU 2017
and discovered that our software-based forward-edge CFI
caused most of the overhead; with that disabled, the over-
head decreased to a geometric mean of 1.9% (in particular,
xalancbmk’s overhead dropped down from more than 40%

9

Table 4. SPEC CPU 2017 Execution Time (Lower is Better)

Benchmark (Rate)
Baseline

Benchmark (Speed)
Baseline

(s) (s)

500.perlbench_r 135.795 600.perlbench_s 135.289

502.gcc_r 268.035 602.gcc_s 268.294

505.mcf_r 431.810 605.mcf_s 428.423

520.omnetpp_r 354.081 620.omnetpp_s 353.981

523.xalancbmk_r 242.465 623.xalancbmk_s 242.501

525.x264_r 96.540 625.x264_s 96.527

531.deepsjeng_r 203.713 631.deepsjeng_s 227.060

541.leela_r 216.941 641.leela_s 217.306

557.xz_r 128.610 657.xz_s 127.926

508.namd_r 157.894

510.parest_r 330.373

511.povray_r 25.722

519.lbm_r 231.428 619.lbm_s 1,718.814

526.blender_r 533.649

538.imagick_r 167.810 638.imagick_s 168.136

544.nab_r 396.789 644.nab_s 397.586

 0

 100

 200

 300

 400

 500

 600

1
 K

B

2
 K

B

4
 K

B

8
 K

B

1
6

 K
B

3
2

 K
B

6
4

 K
B

1
2

8
 K

B

2
5

6
 K

B

5
1

2
 K

B

1
 M

B

2
 M

B

4
 M

B

8
 M

B

1
6

 M
B

3
2

 M
B

6
4

 M
B

1
2

8
 M

B

2
5

6
 M

B

5
1

2
 M

B

B
a
n

d
w

id
th

 (
M

B
/s

)

Baseline

Figure 7. Nginx Bandwidth (Higher is Better)

to less than 3%). This indicates that InversOS’s shadow stack
and bit-masking transformations and kernel modi�cations
have minimal performance impact on SPEC CPU 2017, com-
pared with software-based forward-edge CFI. Incorporating
BTI [9], we expect InversOS’s performance overhead to be
greatly reduced; with BTI, no explicit CFI checks (as shown
in Figure 5) are needed. However, as BTI does not provide
protected shadow stacks by itself, (post-)ARMv8.5-A systems
can still leverage InversOS’s Privilege Inversion to protect
the integrity of shadow stacks. Nginx saw signi�cant vari-
ance especially on �le sizes ≤ 128 KB. We suspect that the
cause of high variance is caching and �le system behaviors.

8 Related Work

8.1 Control-Flow Integrity

Since the introduction of the original CFI work [1, 2], a long
line of research has been proposed to improve its precision,
performance, and/or applicability [4, 12, 14, 16–18, 21, 24,
27, 31, 33–35, 37, 39, 41, 43, 48, 49, 53, 56, 58, 60, 62, 64–
68, 74–76, 80, 88, 93, 97–100, 103, 107, 108, 117, 125, 128,
129, 133, 134, 136, 137, 143, 146–151, 153, 155]. As InversOS

leverages label-based CFI for forward edges and protected
shadow stacks for backward edges, we compare InversOS
with various types of CFI schemes.

Stateless CFI. The original CFI [1, 2] restricts forward-
edge indirect control-�ow targets via a coarse-grained context-
insensitive analysis, which statically assigns a distinct label
to allowed targets (an equivalence class or EC) of each indi-
rect call or jump and inserts checks for a matched label at
indirect call and jump sites. Subsequent research on stateless
forward-edge CFI makes trade-o�s between granularity and
performance [12, 97–99, 107, 125, 129, 134, 148, 150, 151],
strengthens other security policies [21, 43, 93, 149], or ap-
plies to new platforms [4, 14, 17, 31, 34, 41, 49, 64–66, 100,
108, 133, 137, 153]. Hardware support for stateless forward-
edge CFI (such as HAFIX [35], HCFI [27], Intel CET [117],
and ARM BTI [9]) has been proposed, which further lowers
the performance overhead but only provides coarse-grained
protection similar to the original CFI. InversOS’s forward-
edge CFI, while currently prototyped with two labels, can
seamlessly adopt any of the above available �ner-grained
schemes for better security. It can also utilize BTI on newer
processors for better performance.

Stateful CFI. Due to imprecision of context-insensitive
CFI, researchers have focused on context-sensitive CFI poli-
cies that take previous execution history into account. Us-
ing a runtime monitor (inlined or as a separate process),
these systems track executed branches [24, 56, 103, 143,
147], paths [39, 58, 128], call-sites [67, 68], code pointer ori-
gins [68], or complete control �ows [48, 80] to reduce the size
of ECs. However, such dynamic CFI schemes require hard-
ware features only found on x86 processors, such as Branch
Trace Store (BTS) [143], Last Branch Record (LBR) [24, 103,
128, 147], Performance Monitoring Unit (PMU) [147], Pro-
cessor Trace (PT) [39, 48, 56, 58, 80], Transactional Synchro-
nization Extensions (TSX) [67, 68], and MPX [68], limiting
their applicability on AArch64. Compared with stateful CFI,
InversOS o�ers a weaker protection on forward edges but
provides the strongest security on backward edges with bet-
ter performance and less resource consumption.

Shadow Stacks. The original CFI [1, 2] uses shadow stacks
for backward-edge protection; their debut dates back to
RAD [25] and StackGhost [46], which all used the compact
shadow stack design. Dang et al. [33] proposed the paral-
lel shadow stack design, improving the performance but
wasting more memory. As described in Section 2.1, in or-
der to guarantee return address integrity, shadow stacks
need a protection mechanism that forbids unauthorized tam-
pering. A few systems [33, 37] simply leave shadow stacks
unprotected, while some rely on system calls [25, 46, 133] or
SFI [30, 153] for protection but incur prohibitive overhead.
More commonly used is information hiding (i.e., ASLR [106]),

10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

500.perlbench_r

502.gcc_r

505.m
cf_r

520.om
netpp_r

523.xalancbm
k_r

525.x264_r

531.deepsjeng_r

541.leela_r

557.xz_r

508.nam
d_r

510.parest_r

511.povray_r

519.lbm
_r

526.blender_r

538.im
agick_r

544.nab_r

600.perlbench_s

602.gcc_s

605.m
cf_s

620.om
netpp_s

623.xalancbm
k_s

625.x264_s

631.deepsjeng_s

641.leela_s

657.xz_s

619.lbm
_s

638.im
agick_s

644.nab_s

G
eom

eanE
x
ec

u
ti

o
n
 T

im
e

w
.r

.t
.
B

as
el

in
e

InversOS w/o Forward-Edge CFI
InversOS

Figure 8. SPEC CPU 2017 Execution Time (Normalized, Lower is Better)

 0 1
 K

B

2
 K

B

4
 K

B

8
 K

B

1
6
 K

B

3
2
 K

B

6
4
 K

B

1
2
8
 K

B

2
5
6
 K

B

5
1
2
 K

B

1
 M

B

2
 M

B

4
 M

B

8
 M

B

1
6
 M

B

3
2
 M

B

6
4
 M

B

1
2
8
 M

B

2
5
6
 M

B

5
1
2
 M

B

 0.9

 0.95

 1

 1.05

 1.1

B
a
n
d
w

id
th

 w
.r

.t
.
B

a
s
e
li

n
e Baseline InversOS

Figure 9. Nginx Bandwidth (Normalized, Higher is Better)

which places shadow stacks at a random location in the ad-
dress space to increase the di�culty for attackers to locate
the shadow stacks [18, 107, 119, 155]. Though achieving
the best performance among software-only solutions, infor-
mation hiding provides the weakest guarantee and is vul-
nerable to information disclosure attacks [11, 47, 51, 101,
120, 122]. Hardware-assisted shadow stack protection sig-
ni�cantly lowers the performance cost and can be ful�lled
di�erently on di�erent ISAs. On x86_32, segmentation [1, 2]
provides the most e�cient implementation. CET [117] o�ers
native support for protected shadow stacks on x86_64 but
is only available on most recent processors [3, 61]; a few
solutions repurposed MPX [18, 60, 65] or MPK [18, 53] for
non-CET-equipped Intel processors but reported vastly dif-
ferent overhead numbers. HCFI [27] implements an in-chip
non-memory-mapped shadow stack on SPARC via a custom
ISA extension. In the microcontroller world, Silhouette [153]
and Kage [41] transform regular store instructions into LSU
stores on ARMv7-M [8], while CaRE [100] and TZmCFI [66]
leverage TrustZone-M on ARMv8-M [10]. To the best of
our knowledge, InversOS is the �rst to provide hardware-
assisted protected shadow stacks on AArch64; our Privilege
Inversion technique is inspired by Silhouette-Invert [153].

Cryptographic CFI. Mashtizadeh et al. [88] created Cryp-
tographic CFI (CCFI), which uses message authentication

codes (MACs) to sign and verify code pointers and leverages
x86’s AES-NI instructions to accelerate MAC calculation.
ARMv8.3-A’s PAuth [9] adds hardware support for pointer
authentication codes (PACs) and places PACs in unused up-
per bits of pointers. Qualcomm has adopted PAuth to en-
force CFI [110]. However, CCFI and plain PAuth su�er from
pointer reuse attacks, in which attackers use bu�er overread
vulnerabilities [122] to harvest signed pointers for later reuse.
Utilizing PAuth, PARTS [76] signs code pointers with type
IDs; this limits reuse of signed return addresses within the
same functions and signed function pointers within the same
types. PACStack [75] and PACtight [62] are also based on
PAuth; both solutions sign a return address with the PAC of
the previous return address, creating an authenticated stack.
PACtight further signs a function pointer with its address
and a random tag. Studies on type-ID-based PACs [136] and
authenticated chain of return addresses [74] have also been
explored on RISC-V as custom ISA extensions. PAL [146]
uses PAuth to provide CFI for OS kernels.

As PACStack [75] and PACtight [62] share themost similar
threat model, assumptions, and security guarantees with In-
versOS, we compare InversOS with them in more detail. PAC-
Stack claims that its authenticated stack “achieves security
comparable to hardware-assisted shadow stacks without re-
quiring dedicated hardware”; we show that InversOS achieves
hardware-assisted shadow stacks with even less hardware
requirements (ARMv8.1-A’s PAN and HPDS vs. ARMv8.3-
A’s PAuth). Furthermore, PACStack requires forward-edge
CFI but reported performance numbers without accounting
its overhead. For an apples-to-apples comparison, InversOS
without forward-edge CFI outperforms PACStack (1.9% vs.
≈3.0% on SPEC CPU 2017 and ≤3.0% vs. 6–13% on Nginx).
PACtight enforces �ner-grained forward-edge CFI than In-
versOS and its performance (4.0% on Nginx) is roughly on par
with InversOS. However, PACtight maintains an in-memory
metadata storage for the random tags at runtime and relies
on ASLR [106] to hide its location. Essentially, PAC-based
systems only o�er probabilistic security even if the entropy

11

they provide is large. In contrast, InversOS’s shadow stacks
are integrity-enforced, providing the strongest guarantees.

Other Approaches. Kuznetsov et al. [71] developed code-
pointer integrity (CPI), an approach to ensuring memory
safety of all code pointers and data related to code pointers.
CPI identi�es such data via static analysis and instrumenta-
tion and places the data in isolated safe regions. Again, seg-
mentation [3, 61] and ASLR [106] were used to protect the
safe regions on x86_32 and x86_64, respectively. PACtight-
CPI [62] implements CPI using PAuth, incurring 4.07% perfor-
mance overhead on average. InversOS’s Privilege Inversion
provides an alternative option to protect CPI’s safe regions
with potentially less overhead. `RAI [4] enforces return ad-
dress integrity on microcontrollers by encoding return ad-
dresses in a reserved register and ensuring that the register
value is never corrupted; it relies on system calls to spill the
register value to protected memory when needing to fold a
call chain longer than what a single register can hold. While
`RAI is in theory applicable to general-purpose systems like
x86 and AArch64, we believe such an approach provides
poor scalability and may incur high performance overhead
due to more nested function calls than on microcontrollers.

8.2 Intra-Address Space Isolation

InversOS uses Privilege Inversion for e�cient intra-address
space isolation. We omit discussing custom hardware modi�-
cations that compartmentalize software (e.g., CODOMs [130]
and Mondrian [140, 141]) and limit our discussion on related
work utilizing recent commodity hardware. Approaches used
to enforce CFI are also not repeated here.
SFI [89, 132] instruments program loads and stores to

prevent them from accessing certain memory regions and
has been used to sandbox untrusted code [70, 115, 145].
While some systems [40, 69] accelerate SFI checks using
MPX on x86, the overhead of SFI is still considered high
(on both performance [138] and memory usage [18]) and
grows as the number of isolated regions increases. Further-
more, SFI often requires CFI to ensure that SFI checks are
not bypassed by attacker-manipulated control �ow. Another
address-based isolation technique is hardware-enforced ad-
dress range monitoring. PicoXOM [118] enforces execute-
only memory (XOM) by con�guring ARM debug registers
to watch over a code segment against read accesses. Such
approaches are limited by hardware resources available and
cannot scale up.

Recent defenses enforce domain-based isolation; memory
regions are associated with a protection domain, and di�er-
ent mechanisms are used to allow or disallow accesses to the
protection domain at runtime. On x86, researchers have ex-
plored domain-based memory access control using hardware
features such as Virtual Machine Extensions (VMX) [54, 57,
69, 81, 91, 96, 109, 138], MPK [54, 55, 57, 104, 112, 113, 123,
127, 131, 135], SMAP [138], and CET [144]. ARMlock [154]

and Shreds [23] use ARM domains, which are only available
on AArch32 [9]. Previous work has also used LSU instruc-
tions for isolation. ILDI [26] utilizes LSU instructions and
PAN to protect a safe region inside the OS kernel; it relies on
a more privileged hypervisor to moderate sensitive kernel
operations. uXOM [72] transforms regular loads/stores to
LSU instructions to enforce XOM onmicrocontrollers, where
application code typically executes in the privileged mode
already. InversOS, employing Privilege Inversion, is the �rst
to extend domain-based isolation to AArch64 user space.

We notice that Privbox [70] and SEIMI [138], like InversOS,
also proposed executing user-space code in the privileged
mode (x86’s ring 0). Privbox does so to accelerate system call
invocation and uses SFI to safely run elevated code. The over-
head of its heavy instrumentation, however, may outweigh
its speedup from faster system calls on certain programs. In-
versOS can bene�t from the idea of system call acceleration
for elevated tasks, which we leave as future work. SEIMI
�ips SMAP (x86 equivalence to PAN) to create a safe region
for trusted user-space code; its OS kernel is then elevated to
run in ring -1 via VMX. Compared with SEIMI, InversOS’s
Privilege Inversion provides instruction-level isolation and
requires no frequent domain switching.

9 Conclusions and Future Work

In conclusion, we presented InversOS, a hardware-assisted
protected shadow stack implementation for AArch64, which
utilizes common hardware features to create novel and e�-
cient intra-address space isolation and safely executes user-
space code in the privileged mode via OS kernel and compiler
restraints. InversOS is backward-compatible with existing ap-
plication binaries by a novel use of another AArch64 feature.
Our analysis shows that InversOS is secure and e�ective in
mitigating attacks, and our performance evaluation demon-
strates the low costs of InversOS on real-world benchmarks
and applications. Our prototype of InversOS is open-sourced
at https://github.com/URSec/InversOS.
We see several directions for future work. First, we can

explore system call optimizations (such as Privbox [70]) for
elevated tasks; these tasks already run in the privileged mode
and can accelerate system call invocation by avoiding the
costly SVC instructions. Second, we can leverage Privilege
Inversion to enforce other security policies such as CPI [71]
and full memory safety [38, 94, 95, 152], reducing their over-
heads signi�cantly. Finally, we intend to investigate potential
performance improvements to InversOS by using more re-
cent ISA features (e.g., BTI and E0PD) [9] on real hardware.

Acknowledgments

This work was supported by ONR Award N00014-17-1-2996
and NSF Awards CNS-1955498 and CNS-2154322.

12

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.

Control-Flow Integrity. In Proceedings of the 12th ACM Conference on

Computer and Communications Security (CCS ’05). ACM, Alexandria,
VA, USA, 340–353. https://doi.org/10.1145/1102120.1102165

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009.
Control-Flow Integrity Principles, Implementations, and Applications.
ACM Transactions on Information and System Security 13, 1, Article 4
(Nov. 2009), 40 pages. https://doi.org/10.1145/1609956.1609960

[3] AdvancedMicro Devices Inc. 2023. AMD64 Architecture Programmer’s

Manual. Advanced Micro Devices Inc. https://www.amd.com/en

/support/tech-docs/amd64-architecture-programmers-manual-

volumes-1-5 40332 Rev 4.06.
[4] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and

Mathias Payer. 2020. `RAI: Securing Embedded Systems with Return
Address Integrity. In Proceedings of the 2020 Network and Distributed

System Security Symposium (NDSS ’20). Internet Society, San Diego,
CA, USA, 18 pages. https://doi.org/10.14722/ndss.2020.24016

[5] Amazon Web Services 2023. Amazon EC2 A1 Instances: Optimized

cost and performance for scale-out workloads. https://aws.amazon.c

om/ec2/instance-types/a1

[6] Apache 2023. ab - Apache HTTP server benchmarking tool. https:

//httpd.apache.org/docs/current/programs/ab.html

[7] Apple 2020. Apple unleashes M1. https://www.apple.com/newsroom

/2020/11/apple-unleashes-m1

[8] Arm Holdings 2021. Arm®v7-M Architecture Reference Manual. Arm
Holdings. https://developer.arm.com/documentation/ddi0403/ee

DDI 0403E.e.
[9] ArmHoldings 2022. Arm® Architecture Reference Manual: for A-pro�le

architecture. Arm Holdings. https://developer.arm.com/documentat

ion/ddi0487/ia DDI 0487I.a.
[10] Arm Holdings 2022. Arm®v8-M Architecture Reference Manual. Arm

Holdings. https://developer.arm.com/documentation/ddi0553/bv

DDI 0553B.v.
[11] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and

Dan Boneh. 2014. Hacking Blind. In Proceedings of the 2014 IEEE

Symposium on Security and Privacy (SP ’14). IEEE Computer Society,
San Jose, CA, USA, 227–242. https://doi.org/10.1109/SP.2014.22

[12] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating Code-
Reuse Attacks with Control-Flow Locking. In Proceedings of the 27th

Annual Computer Security Applications Conference (ACSAC ’11). ACM,
Orlando, FL, USA, 353–362. https://doi.org/10.1145/2076732.2076783

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011.
Jump-Oriented Programming: A New Class of Code-Reuse Attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security (ASIACCS ’11). ACM, Hong Kong, China,
30–40. https://doi.org/10.1145/1966913.1966919

[14] Dimitar Bounov, Rami Gökhan Kıcı, and Sorin Lerner. 2016. Pro-
tecting C++ Dynamic Dispatch Through VTable Interleaving. In Pro-

ceedings of the 2016 Network and Distributed System Security Sym-

posium (NDSS ’16). Internet Society, San Diego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2016.23421

[15] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux

Kernel (3rd ed.). O’Reilly & Associates Inc, Sebastopol, CA, USA.
[16] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,

Stefan Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity:
Precision, Security, and Performance. Comput. Surveys 50, 1, Article
16 (April 2017), 33 pages. https://doi.org/10.1145/3054924

[17] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer.
2018. CFIXX: Object Type Integrity for C++. In Proceedings of the

2018 Network and Distributed System Security Symposium (NDSS ’18).
Internet Society, San Diego, CA, USA, 14 pages. https://doi.org/10.1

4722/ndss.2018.23279

[18] Nathan Burow, Xinping Zhang, andMathias Payer. 2019. SoK: Shining
Light on Shadow Stacks. In Proceedings of the 2019 IEEE Symposium on

Security and Privacy (SP ’19). IEEE Computer Society, San Francisco,
CA, USA, 985–999. https://doi.org/10.1109/SP.2019.00076

[19] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. 2015. Control-Flow Bending: On the E�ectiveness
of Control-�ow Integrity. In Proceedings of the 24th USENIX Security

Symposium (Security ’15). USENIX Association, Washington, DC,
USA, 161–176. https://www.usenix.org/conference/usenixsecurity

15/technical-sessions/presentation/carlini

[20] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous:
BreakingModern Defenses. In Proceedings of the 23rd USENIX Security

Symposium (Security ’14). USENIX Association, San Diego, CA, USA,
385–399. https://www.usenix.org/conference/usenixsecurity14/tec

hnical-sessions/presentation/carlini

[21] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast Byte-Granularity Software Fault Isolation. In Proceedings

of the 22nd ACM SIGOPS Symposium on Operating Systems Principles

(SOSP ’09). ACM, Big Sky, MT, USA, 45–58. https://doi.org/10.1145/

1629575.1629581

[22] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. 2005. Non-Control-Data Attacks Are Realistic Threats. In
Proceedings of the 14th USENIX Security Symposium (Security ’05).
USENIX Association, Baltimore, MD, USA, 177–191. https://www.us

enix.org/conference/14th-usenix-security-symposium/non-control-

data-attacks-are-realistic-threats

[23] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and
Long Lu. 2016. Shreds: Fine-Grained Execution Units with Private
Memory. In Proceedings of the 2016 IEEE Symposium on Security and

Privacy (SP ’16). IEEE Computer Society, San Jose, CA, USA, 56–71.
https://doi.org/10.1109/SP.2016.12

[24] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H.
Deng. 2014. ROPecker: A Generic and Practical Approach for Defend-
ing Against ROP Attacks. In Proceedings of the 2014 Network and Dis-

tributed System Security Symposium (NDSS ’14). Internet Society, San
Diego, CA, USA, 14 pages. https://doi.org/10.14722/ndss.2014.23156

[25] Tzi-Cker Chiueh and Fu-Hau Hsu. 2001. RAD: A Compile-Time
Solution to Bu�er Over�ow Attacks. In Proceedings of the 21st In-

ternational Conference on Distributed Computing Systems (ICDCS

’01). IEEE Computer Society, Mesa, AZ, USA, 409–417. https:

//doi.org/10.1109/ICDSC.2001.918971

[26] Yeongpil Cho, Donghyun Kwon, and Yunheung Paek. 2017.
Instruction-Level Data Isolation for the Kernel on ARM. In Pro-

ceedings of the 54th ACM/EDAC/IEEE Annual Design Automation

Conference (DAC ’17). ACM, Austin, TX, USA, Article 26, 6 pages.
https://doi.org/10.1145/3061639.3062267

[27] Nick Christoulakis, George Christou, Elias Athanasopoulos, and
Sotiris Ioannidis. 2016. HCFI: Hardware-Enforced Control-Flow In-
tegrity. In Proceedings of the 6th ACM Conference on Data and Appli-

cation Security and Privacy (CODASPY ’16). ACM, New Orleans, LA,
USA, 38–49. https://doi.org/10.1145/2857705.2857722

[28] Tobias Cloosters, David Paaßen, Jianqiang Wang, Oussama Draissi,
Patrick Jauernig, Emmanuel Stapf, Lucas Davi, and Ahmad-Reza
Sadeghi. 2022. RiscyROP: Automated Return-Oriented Programming
Attacks on RISC-V and ARM64. In Proceedings of the 25th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID ’22).
ACM, Limassol, Cyprus, 30–42. https://doi.org/10.1145/3545948.35

45997

[29] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. 2015. Losing Control: On the E�ectiveness of Control-
Flow Integrity under Stack Attacks. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (CCS

13

’15). ACM, Denver, CO, USA, 952–963. https://doi.org/10.1145/2810

103.2813671

[30] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. 2005. Using
DISE to Protect Return Addresses from Attack. SIGARCH Computer

Architecture News 33, 1 (March 2005), 65–72. https://doi.org/10.114

5/1055626.1055636

[31] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI:
Complete Control-Flow Integrity for Commodity Operating System
Kernels. In Proceedings of the 2014 IEEE Symposium on Security and

Privacy (SP ’14). IEEE Computer Society, San Jose, CA, USA, 292–307.
https://doi.org/10.1109/SP.2014.26

[32] Christo�er Dall and Jason Nieh. 2014. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceedings of the

19th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’14). ACM, Salt Lake
City, UT, USA, 333–348. https://doi.org/10.1145/2541940.2541946

[33] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The
Performance Cost of Shadow Stacks and Stack Canaries. In Proceed-

ings of the 10th ACM Symposium on Information, Computer and Com-

munications Security (ASIACCS ’15). ACM, Singapore, Republic of
Singapore, 555–566. https://doi.org/10.1145/2714576.2714635

[34] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer,
Thorsten Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. 2012. MoCFI: A Framework to Mitigate Control-Flow At-
tacks on Smartphones. In Proceedings of the 2012 Network and Dis-

tributed System Security Symposium (NDSS ’12). Internet Society, San
Diego, CA, USA, 17 pages. https://www.ndss-symposium.org/nd

ss2012/ndss-2012-programme/mocfi-framework-mitigate-control-

flow-attacks-smartphonesoverlay-contextmocfi- framework-

mitigate-control-flow-attacks-smartphones

[35] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi,
Patrick Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015.
HAFIX: Hardware-Assisted Flow Integrity Extension. In Proceedings

of the 52nd ACM/EDAC/IEEE Annual Design Automation Conference

(DAC ’15). ACM, San Francisco, CA, USA, Article 74, 6 pages. https:

//doi.org/10.1145/2744769.2744847

[36] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. 2014. Stitching the Gadgets: On the Ine�ectiveness of Coarse-
Grained Control-Flow Integrity Protection. In Proceedings of the 23rd

USENIX Security Symposium (Security ’14). USENIX Association, San
Diego, CA, USA, 401–416. https://www.usenix.org/conference/usen

ixsecurity14/technical-sessions/presentation/davi

[37] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPde-
fender: A Detection Tool to Defend against Return-Oriented Program-
ming Attacks. In Proceedings of the 6th ACM Symposium on Informa-

tion, Computer and Communications Security (ASIACCS ’11). ACM,
Hong Kong, China, 40–51. https://doi.org/10.1145/1966913.1966920

[38] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-
Code: Enforcing Alias Analysis for Weakly Typed Languages. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’06). ACM, Ottawa, ON,
Canada, 144–157. https://doi.org/10.1145/1133981.1133999

[39] Ren Ding, Chenxiong Qian, Chengyu Song, William Harris, Taesoo
Kim, andWenke Lee. 2017. E�cient Protection of Path-Sensitive Con-
trol Security. In Proceedings of the 26th USENIX Security Symposium

(Security ’17). USENIX Association, Vancouver, BC, Canada, 131–148.
https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/ding

[40] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sand-
hya Dwarkadas. 2018. Shielding Software from Privileged Side-
Channel Attacks. In Proceedings of the 27th USENIX Security Sympo-

sium (Security ’18). USENIX Association, Baltimore, MD, USA, 1441–
1458. https://www.usenix.org/conference/usenixsecurity18/present

ation/dong

[41] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J. Walls,
and John Criswell. 2022. Holistic Control-Flow Protection on Real-
Time Embedded Systems with Kage. In Proceedings of the 31st USENIX

Security Symposium (Security ’22). USENIX Association, Boston, MA,
USA, 2281–2298. https://www.usenix.org/conference/usenixsecurity

22/presentation/du

[42] Alexandru Elisei. 2019. bhyvearm64: CPU andMemory Virtualization
on Armv8.0-A. In The BSDCan Conference. Ottawa, ON, Canada.
https://www.bsdcan.org/2019/schedule/events/1074.en.html

[43] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. 2006. XFI: Software Guards for System Address
Spaces. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’06). USENIX Association,
Seattle, WA, USA, 75–88. https://www.usenix.org/conference/osdi-

06/xfi-so�ware-guards-system-address-spaces

[44] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015.
Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow
Integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Com-

puter and Communications Security (CCS ’15). ACM, Denver, CO, USA,
901–913. https://doi.org/10.1145/2810103.2813646

[45] Rich Felker et al. 2021. musl libc. https://musl.libc.org

[46] Mike Frantzen and Mike Shuey. 2001. StackGhost: Hardware Facil-
itated Stack Protection. In Proceedings of the 10th USENIX Security

Symposium (Security ’01). USENIXAssociation,Washington, DC, USA,
11 pages. https://www.usenix.org/conference/10th-usenix-security-

symposium/stackghost-hardware-facilitated-stack-protection

[47] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany,
and Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to
Overcome Diversi�cation and Information Hiding. In Proceedings of

the 2016 Network and Distributed System Security Symposium (NDSS

’16). Internet Society, San Diego, CA, USA, 15 pages. https://doi.org/

10.14722/ndss.2016.23262

[48] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding
Control Flows Using Intel Processor Trace. In Proceedings of the 22nd

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’17). ACM, Xi’an, China,
585–598. https://doi.org/10.1145/3037697.3037716

[49] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016.
Fine-Grained Control-Flow Integrity for Kernel Software. In Proceed-

ings of the 2016 IEEE European Symposium on Security and Privacy

(EuroSP ’16). IEEE Computer Society, Saarbruecken, Germany, 179–
194. https://doi.org/10.1109/EuroSP.2016.24

[50] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. 2014. Out of Control: Overcoming Control-Flow Integrity.
In Proceedings of the 2014 IEEE Symposium on Security and Pri-

vacy (SP ’14). IEEE Computer Society, San Jose, CA, USA, 575–589.
https://doi.org/10.1109/SP.2014.43

[51] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopou-
los, Georgios Portokalidis, Cristiano Giu�rida, and Herbert Bos.
2016. Undermining Information Hiding (and What to Do about
It). In Proceedings of the 25th USENIX Security Symposium (Secu-

rity ’16). USENIX Association, Austin, TX, USA, 105–119. https:

//www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/goktas

[52] Google Cloud 2023. Arm VMs on Compute. https://cloud.google.com

/compute/docs/instances/arm-on-compute

[53] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and
Michael L. Scott. 2021. Fast Intra-Kernel Isolation and Security with
IskiOS. In Proceedings of the 24th International Symposium on Research

in Attacks, Intrusions and Defenses (RAID ’21). ACM, San Sebastian,
Spain, 119–134. https://doi.org/10.1145/3471621.3471849

[54] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK:
Scalable and E�cient Memory Protection Keys. In Proceedings of

14

the 2022 USENIX Annual Technical Conference (ATC ’22). USENIX
Association, Carlsbad, CA, USA, 609–624. https://www.usenix.org/c

onference/atc22/presentation/gu-jinyu

[55] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia,
and Haibo Chen. 2020. Harmonizing Performance and Isolation in
Microkernels with E�cient Intra-Kernel Isolation and Communi-
cation. In Proceedings of the 2020 USENIX Annual Technical Confer-

ence (ATC ’20). USENIX Association, Virtual Event, 401–417. https:

//www.usenix.org/conference/atc20/presentation/gu

[56] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017.
PT-CFI: Transparent Backward-Edge Control Flow Violation Detec-
tion Using Intel Processor Trace. In Proceedings of the 7th ACM Con-

ference on Data and Application Security and Privacy (CODASPY ’17).
ACM, Scottsdale, AZ, USA, 173–184. https://doi.org/10.1145/302980

6.3029830

[57] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC

’19). USENIX Association, Renton, WA, USA, 489–503. https:

//www.usenix.org/conference/atc19/presentation/hedayati-hodor

[58] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing
Unique Code Target Property for Control-Flow Integrity. In Proceed-

ings of the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS ’18). ACM, Toronto, ON, Canada, 1470–1486.
https://doi.org/10.1145/3243734.3243797

[59] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. 2016. Data-Oriented Program-
ming: On the Expressiveness of Non-Control Data Attacks. In Pro-

ceedings of the 2016 IEEE Symposium on Security and Privacy (SP

’16). IEEE Computer Society, San Jose, CA, USA, 969–986. https:

//doi.org/10.1109/SP.2016.62

[60] Wei Huang, Zhen Huang, Dhaval Miyani, and David Lie. 2016. LMP:
Light-Weighted Memory Protection with Hardware Assistance. In
Proceedings of the 32nd Annual Conference on Computer Security

Applications (ACSAC ’16). ACM, Los Angeles, CA, USA, 460–470.
https://doi.org/10.1145/2991079.2991089

[61] Intel Corporation 2022. Intel® 64 and IA-32 Architectures Software

Developer’s Manual. Intel Corporation. https://www.intel.com/cont

ent/www/us/en/developer/articles/technical/intel-sdm.html Order
Number: 325462-078US.

[62] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. 2022. Tightly Seal Your Sensitive Pointers
with PACTight. In Proceedings of the 31st USENIX Security Symposium

(Security ’22). USENIX Association, Boston, MA, USA, 3717–3734.
https://www.usenix.org/conference/usenixsecurity22/presentation/

ismail

[63] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. 2018. Block Oriented Programming: Automating Data-Only
Attacks. In Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security (CCS ’18). ACM, Toronto, ON,
Canada, 1868–1882. https://doi.org/10.1145/3243734.3243739

[64] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDis-
patch: Securing C++ Virtual Calls from Memory Corruption Attacks.
In Proceedings of the 2014 Network and Distributed System Security

Symposium (NDSS ’14). Internet Society, SanDiego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2014.23287

[65] Ethan Johnson, Colin Pronovost, and John Criswell. 2022. Hardening
Hypervisors with Ombro. In Proceedings of the 2022 USENIX Annual

Technical Conference (ATC ’22). USENIX Association, Carlsbad, CA,
USA, 415–435. https://www.usenix.org/conference/atc22/presentati

on/johnson

[66] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara, and Hiroaki
Takada. 2021. TZmCFI: RTOS-Aware Control-Flow Integrity Using
TrustZone for Armv8-M. International Journal of Parallel Program-

ming 49 (April 2021), 216–236. https://doi.org/10.1007/s10766-020-

00673-z

[67] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin
Zhou, and Yueqiang Cheng. 2019. Adaptive Call-Site Sensitive Control
Flow Integrity. In Proceedings of the 2019 IEEE European Symposium on

Security and Privacy (EuroSP ’19). IEEE Computer Society, Stockholm,
Sweden, 95–110. https://doi.org/10.1109/EuroSP.2019.00017

[68] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang,
and Jie Yang. 2019. Origin-Sensitive Control Flow Integrity. In Proceed-
ings of the 28th USENIX Security Symposium (Security ’19). USENIX
Association, Santa Clara, CA, USA, 195–211. https://www.usenix.o

rg/conference/usenixsecurity19/presentation/khandaker

[69] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giu�rida, and Elias
Athanasopoulos. 2017. No Need to Hide: Protecting Safe Regions on
Commodity Hardware. In Proceedings of the 12th European Conference

on Computer Systems (EuroSys ’17). ACM, Belgrade, Serbia, 437–452.
https://doi.org/10.1145/3064176.3064217

[70] Dmitry Kuznetsov and Adam Morrison. 2022. Privbox: Faster System
Calls Through Sandboxed Privileged Execution. In Proceedings of

the 2022 USENIX Annual Technical Conference (ATC ’22). USENIX
Association, Carlsbad, CA, USA, 233–247. https://www.usenix.org/c

onference/atc22/presentation/kuznetsov

[71] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In Pro-

ceedings of the 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’14). USENIX Association, Broom�eld, CO,
USA, 147–163. https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/kuznetsov

[72] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee,
Yeongpil Cho, and Yunheung Paek. 2019. uXOM: E�cient eXecute-
Only Memory on ARM Cortex-M. In Proceedings of the 28th USENIX

Security Symposium (Security ’19). USENIX Association, Santa Clara,
CA, USA, 231–247. https://www.usenix.org/conference/usenixsecu

rity19/presentation/kwon

[73] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2nd International Symposium on Code Generation and Optimiza-

tion (CGO ’04). IEEE Computer Society, Palo Alto, CA, USA, 12 pages.
https://doi.org/10.1109/CGO.2004.1281665

[74] Jinfeng Li, Liwei Chen, Qizhen Xu, Linan Tian, Gang Shi, Kai Chen,
and Dan Meng. 2020. Zipper Stack: Shadow Stacks Without Shadow.
In Proceedings of the 25th European Symposium on Research in Com-

puter Security (ESORICS ’20). Springer-Verlag, Guildford, UK, 338–358.
https://doi.org/10.1007/978-3-030-58951-6_17

[75] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg,
and N. Asokan. 2021. PACStack: an Authenticated Call Stack. In
Proceedings of the 30th USENIX Security Symposium (Security ’21).
USENIX Association, Virtual Event, 357–374. https://www.usenix.o

rg/conference/usenixsecurity21/presentation/liljestrand

[76] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer
Integrity using ARM Pointer Authentication. In Proceedings of the

28th USENIX Security Symposium (Security ’19). USENIX Association,
Santa Clara, CA, USA, 177–194. https://www.usenix.org/conferenc

e/usenixsecurity19/presentation/liljestrand

[77] Linux 2020. Linux Kernel Source Tree v5.6. https://git.kernel.org/pub

/scm/linux/kernel/git/torvalds/linux.git/tree/?h=v5.6

[78] Linux 2021. Linux Kernel Stable Tree v4.19.219. https://git.kernel.org

/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v4.19.219

[79] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

15

Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:
Reading Kernel Memory from User Space. In Proceedings of the 27th

USENIX Security Symposium (Security ’18). USENIX Association, Bal-
timore, MD, USA, 973–990. https://www.usenix.org/conference/us

enixsecurity18/presentation/lipp

[80] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. 2017. Transparent and E�cient CFI Enforcement with
Intel Processor Trace. In Proceedings of the 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA ’17).
IEEE Computer Society, Austin, TX, USA, 529–540. https://doi.org/

10.1109/HPCA.2017.18

[81] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
2015. Thwarting Memory Disclosure with E�cient Hypervisor-
Enforced Intra-Domain Isolation. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (CCS

’15). ACM, Denver, CO, USA, 1607–1619. https://doi.org/10.1145/28

10103.2813690

[82] LLVM 2021. “libc++” C++ Standard Library. https://libcxx.llvm.org

[83] LLVM 2021. “libc++abi” C++ Standard Library Support. https://libc

xxabi.llvm.org

[84] LLVM 2021. libunwind LLVM Unwinder. https://bcain-llvm.readthe

docs.io/projects/libunwind

[85] LLVM 2022. “compiler-rt” runtime libraries. https://compiler-

rt.llvm.org

[86] LLVM 2023. lib/CodeGen/IndirectBrExpandPass.cpp File Reference.
https://llvm.org/doxygen/IndirectBrExpandPass_8cpp.html

[87] LLVM 2023. LLD - The LLVM Linker. https://lld.llvm.org

[88] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
2015. CCFI: Cryptographically Enforced Control Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS ’15). ACM, Denver, CO, USA, 941–951.
https://doi.org/10.1145/2810103.2813676

[89] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a
CISC Architecture. In Proceedings of the 15th USENIX Security Sym-

posium (Security ’06). USENIX Association, Vancouver, BC. Canada,
209–224. https://www.usenix.org/conference/15th-usenix-security-

symposium/evaluating-sfi-cisc-architecture

[90] Larry McVoy and Carl Staelin. 1996. lmbench: Portable Tools for
Performance Analysis. In Proceedings of the 1996 USENIX Annual

Technical Conference (ATC ’96). USENIX Association, San Diego, CA,
USA, 16 pages. https://www.usenix.org/legacy/publications/library

/proceedings/sd96/mcvoy.html

[91] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen.
2019. SkyBridge: Fast and Secure Inter-Process Communication
for Microkernels. In Proceedings of the 14th European Conference on

Computer Systems (EuroSys ’19). ACM, Dresden, Germany, Article 9,
15 pages. https://doi.org/10.1145/3302424.3303946

[92] Microsoft Azure 2022. Azure Virtual Machines with Ampere Altra

Arm–based processors—generally available. https://azure.microsoft.

com/en-us/blog/azure-virtual-machines-with-ampere-altra-arm-

based-processors-generally-available

[93] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen,
and Michael Franz. 2015. Opaque Control-Flow Integrity. In Pro-

ceedings of the 2015 Network and Distributed System Security Sym-

posium (NDSS ’15). Internet Society, San Diego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2015.23271

[94] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spa-
tial Memory Safety for C. In Proceedings of the 2009 ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI ’09). ACM, Dublin, Ireland, 245–258. https://doi.org/10.1145/

1542476.1542504

[95] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for

C. In Proceedings of the 2010 International Symposium on Memory

Management (ISMM ’10). ACM, Toronto, ON, Canada, 31–40. https:

//doi.org/10.1145/1806651.1806657

[96] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. 2020. Lightweight Kernel Isolation with Virtualization
and VM Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE ’20).
ACM, Lausanne, Switzerland, 157–171. https://doi.org/10.1145/3381

052.3381328

[97] Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space
E�ciency and Separate Compilation. In Proceedings of the 2013 ACM

SIGSAC Conference on Computer and Communications Security (CCS

’13). ACM, Berlin, Germany, 199–210. https://doi.org/10.1145/2508

859.2516649

[98] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’14). ACM, Edinburgh,
UK, 577–587. https://doi.org/10.1145/2594291.2594295

[99] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS ’15). ACM, Denver, CO, USA, 914–926.
https://doi.org/10.1145/2810103.2813644

[100] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. 2017.
CFI CaRE: Hardware-Supported Call and Return Enforcement for
Commercial Microcontrollers. In Proceedings of the 20th International

Symposium on Research in Attacks, Intrusions, and Defenses (RAID

’17). Springer-Verlag, Atlanta, GA, USA, 259–284. https://doi.org/10

.1007/978-3-319-66332-6_12

[101] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giu�rida. 2016. Poking Holes in Information Hiding. In
Proceedings of the 25th USENIX Security Symposium (Security ’16).
USENIX Association, Austin, TX, USA, 121–138. https://www.usen

ix.org/conference/usenixsecurity16/technical-sessions/presentatio

n/oikonomopoulos

[102] Oracle Cloud Infrastructure 2023. Ampere A1 Compute. https:

//www.oracle.com/cloud/compute/arm

[103] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
2013. Transparent ROP Exploit Mitigation Using Indirect Branch
Tracing. In Proceedings of the 22nd USENIX Security Symposium (Se-

curity ’13). USENIX Association, Washington, DC, USA, 447–462.
https://www.usenix.org/conference/usenixsecurity13/technical-

sessions/paper/pappas

[104] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo
Kim. 2019. libmpk: Software Abstraction for Intel Memory Protection
Keys (Intel MPK). In Proceedings of the 2019 USENIX Annual Technical

Conference (ATC ’19). USENIX Association, Renton, WA, USA, 241–
254. https://www.usenix.org/conference/atc19/presentation/park-

soyeon

[105] PaX Team 2000. Non-Executable Pages Design & Implementation.
https://pax.grsecurity.net/docs/noexec.txt

[106] PaX Team 2001. Address Space Layout Randomization. https://pax.gr

security.net/docs/aslr.txt

[107] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-
Grained Control-Flow Integrity Through Binary Hardening. In Pro-

ceedings of the 12th International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (DIMVA ’15). Springer-
Verlag, Milan, Italy, 144–164. https://doi.org/10.1007/978-3-319-

20550-2_8

[108] Jannik Pewny and Thorsten Holz. 2013. Control-Flow Restrictor:
Compiler-Based CFI for iOS. In Proceedings of the 29th Annual Com-

puter Security Applications Conference (ACSAC ’13). ACM, New Or-
leans, LA, USA, 309–318. https://doi.org/10.1145/2523649.2523674

[109] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia,
Vasileios P. Kemerlis, and Michalis Polychronakis. 2020. xMP:

16

Selective Memory Protection for Kernel and User Space. In Pro-

ceedings of the 2020 IEEE Symposium on Security and Privacy (SP

’20). IEEE Computer Society, San Francisco, CA, USA, 563–577.
https://doi.org/10.1109/SP40000.2020.00041

[110] Qualcomm 2017. Pointer Authentication on ARMv8.3: Design and Anal-

ysis of the New Software Security Instructions. White Paper. Qualcomm
Technologies, Inc. https://www.qualcomm.com/content/dam/qco

mm-martech/dm-assets/documents/pointer-auth-v7.pdf

[111] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Transactions on Information and System Security 15,
1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/2133375.

2133377

[112] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. Cubi-
cleOS: A Library OS with Software Componentisation for Practical
Isolation. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS ’21). ACM, Virtual Event, 546–558. https:

//doi.org/10.1145/3445814.3446731

[113] David Schrammel, SamuelWeiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky:
Domain Keys – E�cient In-Process Isolation for RISC-V and x86.
In Proceedings of the 29th USENIX Security Symposium (Security ’20).
USENIX Association, Boston, MA, USA, 1677–1694. https://www.us

enix.org/conference/usenixsecurity20/presentation/schrammel

[114] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-
oriented Programming: On the Di�culty of Preventing Code Reuse
Attacks in C++ Applications. In Proceedings of the 2015 IEEE Sympo-

sium on Security and Privacy (SP ’15). IEEE Computer Society, San
Jose, CA, USA, 745–762. https://doi.org/10.1109/SP.2015.51

[115] David Sehr, Robert Muth, Cli� Bi�e, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. 2010. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In Proceedings

of the 19th USENIX Security Symposium (Security ’10). USENIX Asso-
ciation, Washington, DC, USA, 11 pages. https://www.usenix.org

/conference/usenixsecurity10/adapting-so�ware-fault-isolation-

contemporary-cpu-architectures

[116] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Proceedings

of the 14th ACMConference on Computer and Communications Security

(CCS ’07). ACM, Alexandria, VA, USA, 552–561. https://doi.org/10.1

145/1315245.1315313

[117] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Secu-
rity Analysis of Processor Instruction Set Architecture for Enforc-
ing Control-Flow Integrity. In Proceedings of the 8th International

Workshop on Hardware and Architectural Support for Security and

Privacy (HASP ’19). ACM, Phoenix, AZ, USA, Article 8, 11 pages.
https://doi.org/10.1145/3337167.3337175

[118] Zhuojia Shen, Komail Dharsee, and John Criswell. 2020. Fast Execute-
Only Memory for Embedded Systems. In Proceedings of the 2020 IEEE

Secure Development Conference (SecDev ’20). IEEE Computer Society,
Atlanta, GA, USA, 7–14. https://doi.org/10.1109/SecDev45635.2020

.00017

[119] Zhuojia Shen, Komail Dharsee, and John Criswell. 2022. Randezvous:
Making Randomization E�ective on MCUs. In Proceedings of the 38th

Annual Computer Security Applications Conference (ACSAC ’22). ACM,
Austin, TX, USA, 28–41. https://doi.org/10.1145/3564625.3567970

[120] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time
Code Reuse: On the E�ectiveness of Fine-Grained Address Space
Layout Randomization. In Proceedings of the 2013 IEEE Symposium on

Security and Privacy (SP ’13). IEEE Computer Society, San Francisco,
CA, USA, 574–588. https://doi.org/10.1109/SP.2013.45

[121] Standard Performance Evaluation Corporation 2022. SPEC CPU®2017.
https://www.spec.org/cpu2017

[122] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven
Lachmund, and Thomas Walter. 2009. Breaking the Memory Secrecy
Assumption. In Proceedings of the 2nd European Workshop on System

Security (EuroSec ’09). ACM, Nuremburg, Germany, 1–8. https:

//doi.org/10.1145/1519144.1519145

[123] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
2020. Intra-Unikernel Isolation with Intel Memory Protection Keys.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-

ference on Virtual Execution Environments (VEE ’20). ACM, Lausanne,
Switzerland, 143–156. https://doi.org/10.1145/3381052.3381326

[124] Igor Sysoev et al. 2022. nginx. https://nginx.org/en

[125] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Check-
oway, Úlfar Erlingsson, Luis Lozano, and Geo� Pike. 2014. Enforcing
Forward-Edge Control-Flow Integrity in GCC & LLVM. In Proceed-

ings of the 23rd USENIX Security Symposium (Security ’14). USENIX
Association, San Diego, CA, USA, 941–955. https://www.usenix.org

/conference/usenixsecurity14/technical-sessions/presentation/tice

[126] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. 2011. On the Expressiveness of Return-into-
libc Attacks. In Proceedings of the 14th International Symposium on

Recent Advances in Intrusion Detection (RAID ’11). Springer-Verlag,
Menlo Park, CA, USA, 121–141. https://doi.org/10.1007/978-3-642-

23644-0_7

[127] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, E�-
cient In-process Isolation with Protection Keys (MPK). In Proceedings

of the 28th USENIX Security Symposium (Security ’19). USENIX Asso-
ciation, Santa Clara, CA, USA, 1221–1238. https://www.usenix.org/c

onference/usenixsecurity19/presentation/vahldiek-oberwagner

[128] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giu�rida.
2015. Practical Context-Sensitive CFI. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (CCS

’15). ACM, Denver, CO, USA, 927–940. https://doi.org/10.1145/2810

103.2813673

[129] Victor van der Veen, Enes Göktaş, Moritz Contag, Andre Pawoloski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giu�rida. 2016. A Tough call: Mitigating
Advanced Code-Reuse Attacks at the Binary Level. In Proceedings

of the 2016 IEEE Symposium on Security and Privacy (SP ’16). IEEE
Computer Society, San Jose, CA, USA, 934–953. https://doi.org/10.1

109/SP.2016.60

[130] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and
Mateo Valero. 2014. CODOMs: Protecting Software with Code-
Centric Memory Domains. In Proceeding of the 41st Annual Inter-

national Symposium on Computer Architecuture (ISCA ’14). IEEE Com-
puter Society, Minneapolis, MN, USA, 469–480. https://doi.org/10.1

109/ISCA.2014.6853202

[131] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Vol-
ckaert. 2022. You Shall Not (by)Pass! Practical, Secure, and Fast
PKU-Based Sandboxing. In Proceedings of the 17th European Con-

ference on Computer Systems (EuroSys ’22). ACM, Rennes, France,
266–282. https://doi.org/10.1145/3492321.3519560

[132] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. 1993. E�cient Software-Based Fault Isolation. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles (SOSP

’93). ACM, Asheville, NC, USA, 203–216. https://doi.org/10.1145/16

8619.168635

[133] Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A.
Shue, Hamed Okhravi, and Bryan C. Ward. 2019. Control-Flow
Integrity for Real-Time Embedded Systems. In Proceedings of the

31st Euromicro Conference on Real-Time Systems (ECRTS ’19). Schloss

17

Dagstuhl–Leibniz-Zentrum füer Informatik, Stuttgart, Germany, 2:1–
2:24. https://doi.org/10.4230/LIPIcs.ECRTS.2019.2

[134] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and
Dengguo Feng. 2015. Binary Code Continent: Finer-Grained Control
Flow Integrity for Stripped Binaries. In Proceedings of the 31st Annual

Computer Security Applications Conference (ACSAC ’15). ACM, Los
Angeles, CA, USA, 331–340. https://doi.org/10.1145/2818000.2818017

[135] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravin-
dran. 2020. Secure and E�cient In-Process Monitor (and Library)
Protection with Intel MPK. In Proceedings of the 13th European Work-

shop on Systems Security (EuroSec ’20). ACM, Heraklion, Greece, 7–12.
https://doi.org/10.1145/3380786.3391398

[136] Yu Wang, Jinting Wu, Tai Yue, Zhenyu Ning, and Fengwei Zhang.
2022. RetTag: Hardware-Assisted Return Address Integrity on RISC-
V. In Proceedings of the 15th European Workshop on Systems Security

(EuroSec ’22). ACM, Rennes, France, 50–56. https://doi.org/10.1145/

3517208.3523758

[137] Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow Integrity. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP

’10). IEEE Computer Society, Oakland, CA, USA, 380–395. https:

//doi.org/10.1109/SP.2010.30

[138] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie
Lu, Xiaofeng Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020.
SEIMI: E�cient and Secure SMAP-Enabled Intra-process Memory
Isolation. In Proceedins of the 2020 IEEE Symposium on Security and

Privacy (SP ’20). IEEE Computer Society, San Francisco, CA, USA,
592–607. https://doi.org/10.1109/SP40000.2020.00087

[139] Wikipedia 2023. Comparison of ARM processors. https://en.wikiped

ia.org/wiki/Comparison_of_ARM_processors#ARMv8-A

[140] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian
Memory Protection. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’02). ACM, San Jose, CA, USA, 304–316. https:

//doi.org/10.1145/605397.605429

[141] EmmettWitchel, Junghwan Rhee, and Krste Asanović. 2005. Mondrix:
Memory Isolation for Linux Using Mondriaan Memory Protection.
In Proceedings of the 20th ACM Symposium on Operating Systems

Principles (SOSP ’05). ACM, Brighton, UK, 31–44. https://doi.org/10

.1145/1095810.1095814

[142] XAMPPRocky et al. 2021. Tokei: Count your code, quickly. https:

//github.com/XAMPPRocky/tokei

[143] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon:
Detecting Violation of Control Flow Integrity using Performance
Counters. In Proceedings of the 42nd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN ’12). IEEE
Computer Society, Boston, MA, USA, 12 pages. https://doi.org/10.1

109/DSN.2012.6263958

[144] Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming
Lai, Yan Kang, Wei Wang, and Zhe Wang. 2022. CETIS: Retro�tting
Intel CET for Generic and E�cient Intra-Process Memory Isolation.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’22). ACM, Los Angeles, CA, USA,
2989–3002. https://doi.org/10.1145/3548606.3559344

[145] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. 2009. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In Proceedings of the 2009 IEEE Symposium on Security

and Privacy (SP ’09). IEEE Computer Society, Oakland, CA, USA,
79–93. https://doi.org/10.1109/SP.2009.25

[146] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim.
2022. In-Kernel Control-Flow Integrity on Commodity OSes using
ARM Pointer Authentication. In Proceedings of the 31st USENIX Se-

curity Symposium (Security ’22). USENIX Association, Boston, MA,

USA, 89–106. https://www.usenix.org/conference/usenixsecurity22

/presentation/yoo

[147] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-
Assisted Fine-Grained Code-Reuse Attack Detection. In Proceedings

of the 18th International Symposium on Research in Attacks, Intrusions,

and Defenses (RAID ’15). Springer-Verlag, Kyoto, Japan, 66–85. https:

//doi.org/10.1007/978-3-319-26362-5_4

[148] Bin Zeng, Gang Tan, and Úlfar Erlingsson. 2013. Strato: A Re-
targetable Framework for Low-Level Inlined-Reference Monitors.
In Proceedings of the 22nd USENIX Security Symposium (Security

’13). USENIX Association, Washington, DC, USA, 369–382. https:

//www.usenix.org/conference/usenixsecurity13/technical-

sessions/presentation/zeng

[149] Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining Control-
Flow Integrity and Static Analysis for E�cient and Validated Data
Sandboxing. In Proceedings of the 18th ACM Conference on Computer

and Communications Security (CCS ’11). ACM, Chicago, IL, USA, 29–
40. https://doi.org/10.1145/2046707.2046713

[150] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical Con-
trol Flow Integrity and Randomization for Binary Executables. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy

(SP ’13). IEEE Computer Society, San Francisco, CA, USA, 559–573.
https://doi.org/10.1109/SP.2013.44

[151] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS
Binaries. In Proceedings of the 22nd USENIX Security Symposium (Se-

curity ’13). USENIX Association, Washington, DC, USA, 337–352.
https://www.usenix.org/conference/usenixsecurity13/technical-

sessions/presentation/Zhang

[152] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy
Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free.
In Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’19). ACM, Providence, RI, USA, 631–644. https://doi.org/10.1145/32

97858.3304017

[153] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J.
Walls. 2020. Silhouette: E�cient Protected Shadow Stacks for Embed-
ded Systems. In Proceedings of the 29th USENIX Security Symposium

(Security ’20). USENIX Association, Boston, MA, USA, 1219–1236.
https://www.usenix.org/conference/usenixsecurity20/presentation/

zhou-jie

[154] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARM-
lock: Hardware-Based Fault Isolation for ARM. In Proceedings of the

21st ACM Conference on Computer and Communications Security (CCS

’14). ACM, Scottsdale, AZ, USA, 558–569. https://doi.org/10.1145/26

60267.2660344

[155] Philipp Zieris and Julian Horsch. 2018. A Leak-Resilient Dual Stack
Scheme for Backward-Edge Control-Flow Integrity. In Proceedings

of the 2018 ACM Asia Conference on Computer and Communications

Security (ASIACCS ’18). ACM, Incheon, Republic of Korea, 369–380.
https://doi.org/10.1145/3196494.3196531

18

	Abstract
	1 Introduction
	2 Background
	2.1 Protected Shadow Stacks
	2.2 AArch64 Architecture

	3 Threat Model
	4 Design
	4.1 Privilege Inversion
	4.2 Protected Shadow Stacks and Forward-Edge CFI
	4.3 Compatibility

	5 Implementation
	5.1 OS Kernel Modifications
	5.2 Compiler, Linker, and Library Modifications
	5.3 Discussion

	6 Security Analysis
	6.1 Security by Design
	6.2 Efficacy against Control-Flow Hijacking

	7 Performance Evaluation
	7.1 Microbenchmarks
	7.2 Macrobenchmarks and Applications

	8 Related Work
	8.1 Control-Flow Integrity
	8.2 Intra-Address Space Isolation

	9 Conclusions and Future Work
	Acknowledgments
	References

