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Abstract

With the increasing popularity of AArch64 processors in
general-purpose computing, securing software running on
AArch64 systems against control-�ow hijacking attacks has
become a critical part toward secure computation. Shadow
stacks keep shadow copies of function return addresses and,
when protected from illegal modi�cations and coupled with
forward-edge control-�ow integrity, form an e�ective and
proven defense against such attacks. However, AArch64
lacks native support for write-protected shadow stacks, while
software alternatives either incur prohibitive performance
overhead or provide weak security guarantees.
We present InversOS, the �rst hardware-assisted write-

protected shadow stacks for AArch64 user-space applica-
tions, utilizing commonly available features of AArch64 to
achieve e�cient intra-address space isolation (called Privi-
lege Inversion) required to protect shadow stacks. Privilege
Inversion adopts unconventional design choices that run
protected applications in the kernel mode and mark operat-
ing system (OS) kernel memory as user-accessible; InversOS
therefore uses a novel combination of OS kernel modi�ca-
tions, compiler transformations, and another AArch64 fea-
ture to ensure the safety of doing so and to support legacy
applications. We show that InversOS is secure by design,
e�ective against various control-�ow hijacking attacks, and
performant on selected benchmarks and applications (incur-
ring overhead of 7.0% on LMBench, 7.1% on SPEC CPU 2017,
and 3.0% on Nginx web server).

CCS Concepts: • Security and privacy → Systems secu-

rity; Software and application security.

Keywords: hardware-assisted protected shadow stacks, intra-
address space isolation, AArch64, control-�ow integrity

1 Introduction

AArch64 (64-bit ARM) processors are becoming increasingly
popular, not only in embedded and mobile platforms but also
in personal computers [7] and high-performance servers
and data centers [5, 52, 92, 102]. Given the popularity of
AArch64 processors used in production and in our daily lives,
securing software on such systems is critical. In particular,
a large portion of AArch64 application code is written in
memory-unsafe programming languages (e.g., C and C++)
and is vulnerable to control-�ow hijacking attacks [111, 126]

that exploit memory safety errors. While basic code injection
attacks are prevented by the wide deployment of the W⊕X
policy [105], which disallows memory to be writable and
executable at the same time, advanced code-reuse attacks like
return-oriented programming (ROP) [111, 116] and jump-
oriented programming (JOP) [13] are still possible. These
attacks hijack a program’s control �ow by corrupting code
pointers (e.g., return addresses and function pointers) to
point to reusable code of the attacker’s choosing. Worse yet,
recent research [28] has demonstrated automation of ROP
attacks on AArch64, necessitating e�ective and practical
defenses to be deployed.
Control-�ow integrity (CFI) [1, 2], a seminal mitigation

to control-�ow hijacking attacks, restricts a program’s con-
trol �ow to follow its intended control-�ow graph. While
ine�ective by itself [20, 29, 36, 50], CFI necessitates a mecha-
nism that protects the integrity of return addresses, such as
write-protected shadow stacks [18, 25], to form an e�ective
defense [19]. However, software approaches to protecting
return address integrity either su�er from high performance
overhead (e.g., software-based shadow stacks [25, 30, 46, 133,
153]) or only provide probabilistic guarantees (e.g., informa-
tion hiding [18, 107, 119, 155]). Hardware-assisted shadow
stack protection, such as Control-�ow Enforcement Technol-
ogy (CET) [117] on x86, o�ers the best security and perfor-
mance but is not natively available on AArch64.

In this paper, we present InversOS, a system that provides
AArch64 user-space applications with hardware-assisted
write-protected shadow stacks. InversOS does so without
requiring the most recent hardware security features on
AArch64 or modifying hardware. Instead, InversOS uses
two widely available AArch64 features [9], namely unprivi-
leged load/store instructions and Privileged Access Never, in a
novel way to create an e�cient domain-based instruction-
level intra-address space isolation technique which we call
Privilege Inversion. With Privilege Inversion, InversOS runs
protected applications in the same privilege mode as an op-
erating system (OS) kernel, sets up incorruptible shadow
stack memory accessible only by unprivileged load/store
instructions, and ensures the safety of running privileged
user-space code via a combination of OS kernel modi�ca-
tions and compiler transformations. To keep compatibility
with legacy untransformed application binaries, InversOS
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AArch64 [9] supports page-level access permissions, con-
trolled by the UXN (Unprivileged eXecution Never) bit, the
PXN (Privileged eXecution Never) bit, and two AP[2:1] (Ac-
cess Permission) bits in last-level page table entries (PTEs).
As the names imply, UXN and PXN, when set, disable unprivi-
leged and privileged instruction access of the corresponding
page, respectively. AP[1] disables unprivileged data access
when cleared, and AP[2] disables write access when set.

In addition to the above PTE bits, AArch64 [9] also sup-
ports hierarchical access permission control via the UXNTable
bit, the PXNTable bit, and two APTable[1:0] bits in top- and
mid-level PTEs (PTEs that point to a next-level page table
rather than a page). Unlike their last-level PTE counterparts,
these bits can apply access restrictions to the whole corre-
sponding address range on top of the permission of subse-
quent levels. When set, UXNTable and PXNTable disallow
unprivileged and privileged instruction access, respectively.
APTable[0] disallows unprivileged data access when set,
and APTable[1] disallows write access when set. The Linux
kernel, as of v4.19.219, always keeps these bits cleared and
instead only controls access permissions at page level [78].

Unprivileged Load/Store Instructions. A special fea-
ture of AArch64 [9] (and many other ARM ISAs such as
ARMv7-M [8]) is unprivileged load and store (LSU) instruc-
tions. These instructions, with mnemonics starting with
LDTR or STTR on AArch64, check unprivileged memory ac-
cess permissions even when executed in the privileged mode.
This makes LSU instructions useful in accessing user-space
memory inside the OS kernel (e.g., Linux’s get_user() and
put_user() functions [15]).

Architecture Extensions. AArch64 [9] has architecture
extensions; the initial ISA is called ARMv8.0-A, and subse-
quent releases (e.g., ARMv8.1-A) are based on the previous
ISA with new hardware features. Speci�cally, we focus on
the following hardware features: Privileged Access Never
(PAN), User Access Override (UAO), Hierarchical Permission
Disable (HPDS), and E0PD.
PAN [9] is an ARMv8.1-A feature which prevents privi-

leged code from accessing unprivileged-accessible data mem-
ory, similar to x86’s Supervisor Mode Access Prevention
(SMAP) [3, 61]. When PAN is enabled via setting the PAN bit
in the processor state PSTATE, all loads and stores (except
LSU instructions) executed in the privileged mode that try
to access memory accessible in the unprivileged mode will
generate a permission fault.

UAO [9] is an ARMv8.2-A feature which, when enabled via
setting the PSTATE.UAO bit, allows LSU instructions executed
in the privileged mode to act as regular loads/stores.
HPDS [9], introduced in ARMv8.1-A, allows disabling

hierarchical access permission bits (UXNTable, PXNTable,
and APTable[1:0]) during page table lookups. Software
running in the privileged mode can set the HPD{0,1} bits

in Translation Control Register TCR_EL1 to disable hier-
archical access permission checks in address translation
from TTBR{0,1}_EL1. However, as AArch64 allows caching
TCR_EL1.HPD{0,1} in translation lookaside bu�ers (TLBs),
�ipping either bit may require a local TLB �ush to take e�ect.

E0PD [9], introduced in ARMv8.5-A as a hardware mitiga-
tion to side-channel attacks that leverage fault timing (e.g.,
Meltdown [79]), prevents code running in the unprivileged
mode from accessing (lower or upper or both) halves of the
virtual address space and generates faults in constant time.
Similar to HPDS, there are two bits TCR_EL1.E0PD{0,1} that
privileged software can use to control whether unprivileged
access to which half of the address space is disabled.

3 Threat Model

We assume a powerful attacker trying to achieve arbitrary
code execution on a benign but potentially buggy application
by exploiting arbitrary memory read/write vulnerabilities
to hijack the control �ow. We assume that the underlying
OS kernel and hardware are trusted and unexploitable, pro-
viding the user space with the basic W⊕X protection [105].
Non-control data attacks [22] (such as data-oriented pro-
gramming [59] and block-oriented programming [63]), side-
channel attacks, and physical attacks are out of scope. This
threatmodel is in linewith recentwork on user-space control-
�ow hijacking attacks [28, 29] and defenses [18, 74, 75, 136].

4 Design

In this section, we present the design of InversOS. The goal
of InversOS is to provide low-cost return address integrity
to user-space applications running on commodity AArch64
systems, which may or may not come with the most recent
hardware security features such as Pointer Authentication
(PAuth), Branch Target Identi�cation (BTI), and Memory
Tagging Extension (MTE) [9]. To do so, InversOS must only
rely on AArch64 features from the early ISA versions. We
therefore require InversOS’s target platform to support at
least PAN and HPDS (i.e., conforming to ARMv8.1-A [9]);
this allows InversOS to be deployed on most of AArch64
systems released since 2017 [139].
Overall, we devise InversOS as a co-design between an

OS kernel and a compiler. The InversOS-compliant OS ker-
nel utilizes Privilege Inversion, a novel intra-address space
isolation technique we invented, to provide user-space appli-
cations an extra protection domain accessible only by LSU
instructions. The InversOS-compliant compiler then instru-
ments user-space code to leverage the protection domain
for e�cient protected shadow stacks as well as to enforce
forward-edge CFI [1, 2], allowing InversOS to protect user-
space applications without modifying their source code. The
nature of Privilege Inversion dictates running user-space
applications in the privileged mode; we therefore combine
CFI, a compile-time bit-masking compiler pass, a load-time
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CFI and bit-masking instrumentation ensures that control-
�ow transfers in elevated tasks never reach the kernel space.
As for attacks on availability, we argue that InversOS does
not introduce new availability problems; running an elevated
task in the privileged mode does not prioritize it on resource
allocation over all other legacy or elevated tasks and the OS
kernel. The remaining case is privileged instructions, the
execution of which is restricted by hardware automatically
for legacy tasks and by InversOS’s load-time code scanner
for elevated tasks. Conclusively, InversOS does not introduce
new security �aws and is secure by design.

6.2 E�cacy against Control-Flow Hijacking

To answer SQ2, we �rst de�ne and explain a list of invariants
that InversOS maintains for guaranteeing return address in-
tegrity of elevated tasks and then reason about why return
address integrity signi�cantly reduces the control-�ow hi-
jacking attack surface. Speci�cally, InversOS maintains the
following invariants for elevated tasks:

Invariant 1. A function in an elevated task either pushes
its return address in LR to a shadow stack, or never spills the
return address to memory.

Invariant 2. If a function in an elevated task pushed its return
address to a shadow stack, its epilogue will always load the
return address from the shadow stack location in which its
prologue saved the return address.

Invariant 3. An elevated task cannot corrupt shadow stacks
by itself or by using a system call as a “confused deputy” (e.g.,
calling read(fd, buf, size) where buf points to shadow
stack memory [138]).

Invariant 1 is easily upheld by our shadow stack pass,
which instruments LR-saving function prologues to push
LR to the shadow stack. With the counterpart instrumenta-
tion on epilogue(s) of these functions to pop LR from the
shadow stack, our shadow stack pass guarantees that only a
function’s prologue and epilogue(s) can update the shadow
stack pointer with a matched decrement/increment, con-
tributing to Invariant 2. Since our forward-edge CFI pass
ensures that all indirect calls and tail-call indirect jumps
target the beginning of a function and all non-tail-call indi-
rect jumps are restricted within their containing function,
shadow stack pointer decrements and increments are guar-
anteed to occur in a matched order, sustaining Invariant 2.
Finally, Invariant 3 is maintained because the shadow stacks
are unprivileged and no existing/new LSU instructions can
be exploited/introduced to corrupt the shadow stacks (due
to CFI/W⊕X), and because of the benign nature of elevated
tasks assumed by our threat model in Section 3.
With return address integrity, control-�ow hijacking at-

tacks that require corrupting return addresses (such as return-
into-libc [126] and ROP [111, 116]) are e�ectively prevented.
Furthermore, as non-tail-call indirect jumps cannot break the

“jail” of their containing function, attacks that exploit indi-
rect jumps (such as JOP [13]) no longer work. The remaining
attack surface requires attackers to do purely call-oriented
programming (i.e., using only corrupted function pointers);
while such attacks are possible [44, 114], they are limited by
forward-edge CFI and can be further restrained if InversOS
re�nes CFI’s granularity. In short, InversOS greatly reduces
the control-�ow hijacking attack surface for elevated tasks.

7 Performance Evaluation

We evaluated the performance of InversOS on a Station P2
mini-PC which has an RK3568 quad-core Cortex-A55 proces-
sor implementing the ARMv8.2-A architecture that can run
up to 2.0 GHz. The mini-PC comes with 8 GB of LPDDR4
DRAM up to 1,600 MHz, 64 GB of internal eMMC storage
(unused), and 1 TB of SATA SSD. It runs Ubuntu 20.04 LTS
modi�ed by the manufacturer.

We ran all our experiments using two con�gurations: Base-
line and InversOS. In Baseline, we compiled program and
library code using LLVM/Clang v13.0.1 [73] without the
InversOS compiler transformations and ran the generated
binary executables on a Linux v4.19.219 kernel [78] with-
out our kernel modi�cations. In InversOS, all program and
library code was compiled with the InversOS compiler trans-
formations (i.e., shadow stack, forward-edge CFI, and bit-
masking transformations) and executed on the same version
of the Linux kernel modi�ed with our kernel changes. When
running an InversOS executable, we set an environment
variable INVERSOS=1 to inform the OS kernel that the pro-
gram should be started as an elevated task, as Section 5.1
describes. As the processor lacks E0PD support, we rely on
HPDS to prevent legacy tasks from accessing kernel mem-
ory. Both con�gurations used -O2 optimizations and per-
formed static linking against the musl libc v1.2.2 [45] and
LLVM’s compiler-rt builtin runtime library v13.0.1 [85]. C++
code in our experiments was compiled with and statically
linked against libc++ [82], libc++abi [83], and libunwind [84]
from LLVM v13.0.1. Libraries for Baseline and InversOS are
compiled without and with our modi�cations described in
Section 5.2, respectively.

7.1 Microbenchmarks

To understand the performance impact of the InversOS Linux
kernel modi�cations, we used LMBench v3.0-alpha9 [90], a
microbenchmark suite that measures the latency and band-
width of various OS services. For each microbenchmark that
supports parallelism, we ran four parallel workloads to re-
duce variance.We report an average and a standard deviation
of 10 rounds of execution for each microbenchmark.
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Table 2. LMBench Latency (Lower is Better)

Microbenchmark Baseline (`s) stdev (`s) InversOS (×) stdev (×)

null syscall 0.148 0.000 1.047 0.007

read 0.482 0.001 1.054 0.004

write 0.351 0.002 0.991 0.003

stat 4.928 0.023 1.066 0.003

fstat 0.422 0.003 1.052 0.005

open/close 9.744 0.017 0.989 0.003

select 500 fd 24.365 0.017 1.002 0.001

signal install 0.375 0.001 1.059 0.003

signal catch 3.801 0.009 1.493 0.002

protection fault 0.408 0.005 0.980 0.029

pipe 16.115 0.067 0.948 0.004

AF_UNIX stream 27.314 0.618 1.051 0.008

AF_UNIX connect 99.329 0.733 1.012 0.009

fork+exit 266.767 6.945 1.256 0.012

fork+exec 562.585 7.046 1.188 0.009

fork+shell 2,878.983 12.869 4.007 0.015

page fault 0.910 0.016 1.038 0.009

mmap 1 MB 42.700 3.318 1.019 0.007

udp 76.490 0.214 1.018 0.005

tcp 63.472 0.200 1.011 0.002

connect 102.196 0.503 1.004 0.006

context switch 59.318 0.880 0.993 0.014

fcntl 8.772 1.643 0.992 0.219

semaphore 3.083 0.515 0.954 0.162

usleep 78.661 1.579 0.995 0.020

Geomean — — 1.103 —

Table 3. LMBench Bandwidth (Higher is Better)

Microbenchmark
Baseline stdev InversOS stdev

(MB/s) (MB/s) (×) (×)

pipe 1,096.147 72.703 0.991 0.049

AF_UNIX stream 931.933 6.753 1.003 0.011

read 1 MB 3,706.665 65.823 0.978 0.013

read 1 MB open2close 3,474.633 45.699 0.990 0.015

mmap 1 MB 10,689.636 36.243 1.006 0.001

mmap 1 MB open2close 6,365.563 43.215 0.972 0.008

tcp 720.056 48.645 0.987 0.013

Geomean — — 0.989 —
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Figure 6. LMBench File Operation Rate (Higher is Better)

Tables 2 and 3 and Figure 6 show LMBench performance of
both Baseline and InversOS. Overall, InversOS incurred a geo-
metricmean of 7.0% overhead: 10.3% on latency, 1.1% on band-
width, and 2.2% on �le operation rate. In most microbench-
marks the overhead is miniscule. Most notably, fork+shell

exhibited a 4× slowdown because InversOS had to scan every
code page of a newly executed shell. The same goes with
fork+exec, in which the executed program is much smaller
than the shell and thus incurred much less overhead (18.8%).
In fork+exit, the 25.6% overhead comes from an optimiza-
tion of copying code page PTEs upfront; Linux by default
only sets up shared page table mappings of a child process
at page faults (i.e., when the child �rst accesses the page),
which, however, would cause redundant code scanning in
InversOS as InversOS invokes the code scanner whenever a
page in an elevated task is marked executable. We therefore
optimized InversOS to avoid redundant code scanning by
copying an elevated task’s code page PTEs during fork()

and enabled this optimization in all InversOS experiments.
InversOS incurred 49.3% overhead in signal catching because
of additional �ipping of PSTATE.UAO (due to PAN being dis-
abled) when setting up and tearing down a signal frame; this
could be optimized away by simply disabling UAO support
in the Linux kernel, which we opted not to in order to avoid
introducing less relevant changes.

7.2 Macrobenchmarks and Applications

To see how InversOS performs on real workloads, we used
SPEC CPU 2017 v1.1.9 [121] and Nginx v1.23.3 [124]. SPEC
CPU 2017 is a comprehensive benchmark suite containing
CPU- and memory-intensive programs written in C, C++,
and/or Fortran that stress a computer system’s performance.
Nginx is a high performance web server written in C that
has been widely used in the real world.
For SPEC CPU 2017, we evaluated 28 (out of 43) bench-

mark programs in C/C++ as LLVM/Clang cannot compile
Fortran code. We used the train (instead of the larger ref)
input set because train yielded execution time of at least
20 seconds in each benchmark already. We report average
execution time with 10 rounds of execution for each bench-
mark; standard deviations are negligible (less than 1%).
For Nginx, we used Nginx to host randomly generated

static �les ranging from 1 KB to 512 MB with one worker
process listening to port 8080 for HTTP requests. We then
ran ApacheBench (ab) [6] on the same machine to measure
Nginx’s bandwidth of transferring �les within a period of
10 seconds. We report an average and a standard deviation
over 10 rounds of execution for each �le size.

Table 4 and Figure 7 present the Baseline performance of
SPECCPU 2017 andNginx, respectively. Figures 8 and 9 show
the performance overhead InversOS incurred on SPEC CPU
2017 and Nginx, respectively. Overall, InversOS increased
the execution time of SPEC CPU 2017 by a geometric mean
of 7.1% and degraded the bandwidth of Nginx by a geometric
mean of 3.0%. We studied the overhead on SPEC CPU 2017
and discovered that our software-based forward-edge CFI
caused most of the overhead; with that disabled, the over-
head decreased to a geometric mean of 1.9% (in particular,
xalancbmk’s overhead dropped down from more than 40%
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Table 4. SPEC CPU 2017 Execution Time (Lower is Better)

Benchmark (Rate)
Baseline

Benchmark (Speed)
Baseline

(s) (s)

500.perlbench_r 135.795 600.perlbench_s 135.289

502.gcc_r 268.035 602.gcc_s 268.294

505.mcf_r 431.810 605.mcf_s 428.423

520.omnetpp_r 354.081 620.omnetpp_s 353.981

523.xalancbmk_r 242.465 623.xalancbmk_s 242.501

525.x264_r 96.540 625.x264_s 96.527

531.deepsjeng_r 203.713 631.deepsjeng_s 227.060

541.leela_r 216.941 641.leela_s 217.306

557.xz_r 128.610 657.xz_s 127.926

508.namd_r 157.894

510.parest_r 330.373

511.povray_r 25.722

519.lbm_r 231.428 619.lbm_s 1,718.814

526.blender_r 533.649

538.imagick_r 167.810 638.imagick_s 168.136

544.nab_r 396.789 644.nab_s 397.586
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Figure 7. Nginx Bandwidth (Higher is Better)

to less than 3%). This indicates that InversOS’s shadow stack
and bit-masking transformations and kernel modi�cations
have minimal performance impact on SPEC CPU 2017, com-
pared with software-based forward-edge CFI. Incorporating
BTI [9], we expect InversOS’s performance overhead to be
greatly reduced; with BTI, no explicit CFI checks (as shown
in Figure 5) are needed. However, as BTI does not provide
protected shadow stacks by itself, (post-)ARMv8.5-A systems
can still leverage InversOS’s Privilege Inversion to protect
the integrity of shadow stacks. Nginx saw signi�cant vari-
ance especially on �le sizes ≤ 128 KB. We suspect that the
cause of high variance is caching and �le system behaviors.

8 Related Work

8.1 Control-Flow Integrity

Since the introduction of the original CFI work [1, 2], a long
line of research has been proposed to improve its precision,
performance, and/or applicability [4, 12, 14, 16–18, 21, 24,
27, 31, 33–35, 37, 39, 41, 43, 48, 49, 53, 56, 58, 60, 62, 64–
68, 74–76, 80, 88, 93, 97–100, 103, 107, 108, 117, 125, 128,
129, 133, 134, 136, 137, 143, 146–151, 153, 155]. As InversOS

leverages label-based CFI for forward edges and protected
shadow stacks for backward edges, we compare InversOS
with various types of CFI schemes.

Stateless CFI. The original CFI [1, 2] restricts forward-
edge indirect control-�ow targets via a coarse-grained context-
insensitive analysis, which statically assigns a distinct label
to allowed targets (an equivalence class or EC) of each indi-
rect call or jump and inserts checks for a matched label at
indirect call and jump sites. Subsequent research on stateless
forward-edge CFI makes trade-o�s between granularity and
performance [12, 97–99, 107, 125, 129, 134, 148, 150, 151],
strengthens other security policies [21, 43, 93, 149], or ap-
plies to new platforms [4, 14, 17, 31, 34, 41, 49, 64–66, 100,
108, 133, 137, 153]. Hardware support for stateless forward-
edge CFI (such as HAFIX [35], HCFI [27], Intel CET [117],
and ARM BTI [9]) has been proposed, which further lowers
the performance overhead but only provides coarse-grained
protection similar to the original CFI. InversOS’s forward-
edge CFI, while currently prototyped with two labels, can
seamlessly adopt any of the above available �ner-grained
schemes for better security. It can also utilize BTI on newer
processors for better performance.

Stateful CFI. Due to imprecision of context-insensitive
CFI, researchers have focused on context-sensitive CFI poli-
cies that take previous execution history into account. Us-
ing a runtime monitor (inlined or as a separate process),
these systems track executed branches [24, 56, 103, 143,
147], paths [39, 58, 128], call-sites [67, 68], code pointer ori-
gins [68], or complete control �ows [48, 80] to reduce the size
of ECs. However, such dynamic CFI schemes require hard-
ware features only found on x86 processors, such as Branch
Trace Store (BTS) [143], Last Branch Record (LBR) [24, 103,
128, 147], Performance Monitoring Unit (PMU) [147], Pro-
cessor Trace (PT) [39, 48, 56, 58, 80], Transactional Synchro-
nization Extensions (TSX) [67, 68], and MPX [68], limiting
their applicability on AArch64. Compared with stateful CFI,
InversOS o�ers a weaker protection on forward edges but
provides the strongest security on backward edges with bet-
ter performance and less resource consumption.

Shadow Stacks. The original CFI [1, 2] uses shadow stacks
for backward-edge protection; their debut dates back to
RAD [25] and StackGhost [46], which all used the compact
shadow stack design. Dang et al. [33] proposed the paral-
lel shadow stack design, improving the performance but
wasting more memory. As described in Section 2.1, in or-
der to guarantee return address integrity, shadow stacks
need a protection mechanism that forbids unauthorized tam-
pering. A few systems [33, 37] simply leave shadow stacks
unprotected, while some rely on system calls [25, 46, 133] or
SFI [30, 153] for protection but incur prohibitive overhead.
More commonly used is information hiding (i.e., ASLR [106]),

10
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which places shadow stacks at a random location in the ad-
dress space to increase the di�culty for attackers to locate
the shadow stacks [18, 107, 119, 155]. Though achieving
the best performance among software-only solutions, infor-
mation hiding provides the weakest guarantee and is vul-
nerable to information disclosure attacks [11, 47, 51, 101,
120, 122]. Hardware-assisted shadow stack protection sig-
ni�cantly lowers the performance cost and can be ful�lled
di�erently on di�erent ISAs. On x86_32, segmentation [1, 2]
provides the most e�cient implementation. CET [117] o�ers
native support for protected shadow stacks on x86_64 but
is only available on most recent processors [3, 61]; a few
solutions repurposed MPX [18, 60, 65] or MPK [18, 53] for
non-CET-equipped Intel processors but reported vastly dif-
ferent overhead numbers. HCFI [27] implements an in-chip
non-memory-mapped shadow stack on SPARC via a custom
ISA extension. In the microcontroller world, Silhouette [153]
and Kage [41] transform regular store instructions into LSU
stores on ARMv7-M [8], while CaRE [100] and TZmCFI [66]
leverage TrustZone-M on ARMv8-M [10]. To the best of
our knowledge, InversOS is the �rst to provide hardware-
assisted protected shadow stacks on AArch64; our Privilege
Inversion technique is inspired by Silhouette-Invert [153].

Cryptographic CFI. Mashtizadeh et al. [88] created Cryp-
tographic CFI (CCFI), which uses message authentication

codes (MACs) to sign and verify code pointers and leverages
x86’s AES-NI instructions to accelerate MAC calculation.
ARMv8.3-A’s PAuth [9] adds hardware support for pointer
authentication codes (PACs) and places PACs in unused up-
per bits of pointers. Qualcomm has adopted PAuth to en-
force CFI [110]. However, CCFI and plain PAuth su�er from
pointer reuse attacks, in which attackers use bu�er overread
vulnerabilities [122] to harvest signed pointers for later reuse.
Utilizing PAuth, PARTS [76] signs code pointers with type
IDs; this limits reuse of signed return addresses within the
same functions and signed function pointers within the same
types. PACStack [75] and PACtight [62] are also based on
PAuth; both solutions sign a return address with the PAC of
the previous return address, creating an authenticated stack.
PACtight further signs a function pointer with its address
and a random tag. Studies on type-ID-based PACs [136] and
authenticated chain of return addresses [74] have also been
explored on RISC-V as custom ISA extensions. PAL [146]
uses PAuth to provide CFI for OS kernels.

As PACStack [75] and PACtight [62] share themost similar
threat model, assumptions, and security guarantees with In-
versOS, we compare InversOS with them in more detail. PAC-
Stack claims that its authenticated stack “achieves security
comparable to hardware-assisted shadow stacks without re-
quiring dedicated hardware”; we show that InversOS achieves
hardware-assisted shadow stacks with even less hardware
requirements (ARMv8.1-A’s PAN and HPDS vs. ARMv8.3-
A’s PAuth). Furthermore, PACStack requires forward-edge
CFI but reported performance numbers without accounting
its overhead. For an apples-to-apples comparison, InversOS
without forward-edge CFI outperforms PACStack (1.9% vs.
≈3.0% on SPEC CPU 2017 and ≤3.0% vs. 6–13% on Nginx).
PACtight enforces �ner-grained forward-edge CFI than In-
versOS and its performance (4.0% on Nginx) is roughly on par
with InversOS. However, PACtight maintains an in-memory
metadata storage for the random tags at runtime and relies
on ASLR [106] to hide its location. Essentially, PAC-based
systems only o�er probabilistic security even if the entropy
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they provide is large. In contrast, InversOS’s shadow stacks
are integrity-enforced, providing the strongest guarantees.

Other Approaches. Kuznetsov et al. [71] developed code-
pointer integrity (CPI), an approach to ensuring memory
safety of all code pointers and data related to code pointers.
CPI identi�es such data via static analysis and instrumenta-
tion and places the data in isolated safe regions. Again, seg-
mentation [3, 61] and ASLR [106] were used to protect the
safe regions on x86_32 and x86_64, respectively. PACtight-
CPI [62] implements CPI using PAuth, incurring 4.07% perfor-
mance overhead on average. InversOS’s Privilege Inversion
provides an alternative option to protect CPI’s safe regions
with potentially less overhead. `RAI [4] enforces return ad-
dress integrity on microcontrollers by encoding return ad-
dresses in a reserved register and ensuring that the register
value is never corrupted; it relies on system calls to spill the
register value to protected memory when needing to fold a
call chain longer than what a single register can hold. While
`RAI is in theory applicable to general-purpose systems like
x86 and AArch64, we believe such an approach provides
poor scalability and may incur high performance overhead
due to more nested function calls than on microcontrollers.

8.2 Intra-Address Space Isolation

InversOS uses Privilege Inversion for e�cient intra-address
space isolation. We omit discussing custom hardware modi�-
cations that compartmentalize software (e.g., CODOMs [130]
and Mondrian [140, 141]) and limit our discussion on related
work utilizing recent commodity hardware. Approaches used
to enforce CFI are also not repeated here.
SFI [89, 132] instruments program loads and stores to

prevent them from accessing certain memory regions and
has been used to sandbox untrusted code [70, 115, 145].
While some systems [40, 69] accelerate SFI checks using
MPX on x86, the overhead of SFI is still considered high
(on both performance [138] and memory usage [18]) and
grows as the number of isolated regions increases. Further-
more, SFI often requires CFI to ensure that SFI checks are
not bypassed by attacker-manipulated control �ow. Another
address-based isolation technique is hardware-enforced ad-
dress range monitoring. PicoXOM [118] enforces execute-
only memory (XOM) by con�guring ARM debug registers
to watch over a code segment against read accesses. Such
approaches are limited by hardware resources available and
cannot scale up.

Recent defenses enforce domain-based isolation; memory
regions are associated with a protection domain, and di�er-
ent mechanisms are used to allow or disallow accesses to the
protection domain at runtime. On x86, researchers have ex-
plored domain-based memory access control using hardware
features such as Virtual Machine Extensions (VMX) [54, 57,
69, 81, 91, 96, 109, 138], MPK [54, 55, 57, 104, 112, 113, 123,
127, 131, 135], SMAP [138], and CET [144]. ARMlock [154]

and Shreds [23] use ARM domains, which are only available
on AArch32 [9]. Previous work has also used LSU instruc-
tions for isolation. ILDI [26] utilizes LSU instructions and
PAN to protect a safe region inside the OS kernel; it relies on
a more privileged hypervisor to moderate sensitive kernel
operations. uXOM [72] transforms regular loads/stores to
LSU instructions to enforce XOM onmicrocontrollers, where
application code typically executes in the privileged mode
already. InversOS, employing Privilege Inversion, is the �rst
to extend domain-based isolation to AArch64 user space.

We notice that Privbox [70] and SEIMI [138], like InversOS,
also proposed executing user-space code in the privileged
mode (x86’s ring 0). Privbox does so to accelerate system call
invocation and uses SFI to safely run elevated code. The over-
head of its heavy instrumentation, however, may outweigh
its speedup from faster system calls on certain programs. In-
versOS can bene�t from the idea of system call acceleration
for elevated tasks, which we leave as future work. SEIMI
�ips SMAP (x86 equivalence to PAN) to create a safe region
for trusted user-space code; its OS kernel is then elevated to
run in ring -1 via VMX. Compared with SEIMI, InversOS’s
Privilege Inversion provides instruction-level isolation and
requires no frequent domain switching.

9 Conclusions and Future Work

In conclusion, we presented InversOS, a hardware-assisted
protected shadow stack implementation for AArch64, which
utilizes common hardware features to create novel and e�-
cient intra-address space isolation and safely executes user-
space code in the privileged mode via OS kernel and compiler
restraints. InversOS is backward-compatible with existing ap-
plication binaries by a novel use of another AArch64 feature.
Our analysis shows that InversOS is secure and e�ective in
mitigating attacks, and our performance evaluation demon-
strates the low costs of InversOS on real-world benchmarks
and applications. Our prototype of InversOS is open-sourced
at https://github.com/URSec/InversOS.
We see several directions for future work. First, we can

explore system call optimizations (such as Privbox [70]) for
elevated tasks; these tasks already run in the privileged mode
and can accelerate system call invocation by avoiding the
costly SVC instructions. Second, we can leverage Privilege
Inversion to enforce other security policies such as CPI [71]
and full memory safety [38, 94, 95, 152], reducing their over-
heads signi�cantly. Finally, we intend to investigate potential
performance improvements to InversOS by using more re-
cent ISA features (e.g., BTI and E0PD) [9] on real hardware.
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