arxX1v:2304.08717v2 [cs.CR] 19 Jul 2023

InversOS: Efficient Control-Flow Protection for
AArch64 Applications with Privilege Inversion

Zhuojia Shen
University of Rochester
Rochester, NY, USA
zshen10@cs.rochester.edu

Abstract

With the increasing popularity of AArché64 processors in
general-purpose computing, securing software running on
AArché64 systems against control-flow hijacking attacks has
become a critical part toward secure computation. Shadow
stacks keep shadow copies of function return addresses and,
when protected from illegal modifications and coupled with
forward-edge control-flow integrity, form an effective and
proven defense against such attacks. However, AArché64
lacks native support for write-protected shadow stacks, while
software alternatives either incur prohibitive performance
overhead or provide weak security guarantees.

We present InversOS, the first hardware-assisted write-
protected shadow stacks for AArch64 user-space applica-
tions, utilizing commonly available features of AArch64 to
achieve efficient intra-address space isolation (called Privi-
lege Inversion) required to protect shadow stacks. Privilege
Inversion adopts unconventional design choices that run
protected applications in the kernel mode and mark operat-
ing system (OS) kernel memory as user-accessible; InversOS
therefore uses a novel combination of OS kernel modifica-
tions, compiler transformations, and another AArché64 fea-
ture to ensure the safety of doing so and to support legacy
applications. We show that InversOS is secure by design,
effective against various control-flow hijacking attacks, and
performant on selected benchmarks and applications (incur-
ring overhead of 7.0% on LMBench, 7.1% on SPEC CPU 2017,
and 3.0% on Nginx web server).

CCS Concepts: « Security and privacy — Systems secu-
rity; Software and application security.

Keywords: hardware-assisted protected shadow stacks, intra-
address space isolation, AArch64, control-flow integrity

1 Introduction

AArché64 (64-bit ARM) processors are becoming increasingly
popular, not only in embedded and mobile platforms but also
in personal computers [7] and high-performance servers
and data centers [5, 52, 92, 102]. Given the popularity of
AArch64 processors used in production and in our daily lives,
securing software on such systems is critical. In particular,
a large portion of AArché4 application code is written in
memory-unsafe programming languages (e.g., C and C++)
and is vulnerable to control-flow hijacking attacks [111, 126]

John Criswell
University of Rochester
Rochester, NY, USA
criswell@cs.rochester.edu

that exploit memory safety errors. While basic code injection
attacks are prevented by the wide deployment of the WX
policy [105], which disallows memory to be writable and
executable at the same time, advanced code-reuse attacks like
return-oriented programming (ROP) [111, 116] and jump-
oriented programming (JOP) [13] are still possible. These
attacks hijack a program’s control flow by corrupting code
pointers (e.g., return addresses and function pointers) to
point to reusable code of the attacker’s choosing. Worse yet,
recent research [28] has demonstrated automation of ROP
attacks on AArché64, necessitating effective and practical
defenses to be deployed.

Control-flow integrity (CFI) [1, 2], a seminal mitigation
to control-flow hijacking attacks, restricts a program’s con-
trol flow to follow its intended control-flow graph. While
ineffective by itself [20, 29, 36, 50], CFI necessitates a mecha-
nism that protects the integrity of return addresses, such as
write-protected shadow stacks [18, 25], to form an effective
defense [19]. However, software approaches to protecting
return address integrity either suffer from high performance
overhead (e.g., software-based shadow stacks [25, 30, 46, 133,
153]) or only provide probabilistic guarantees (e.g., informa-
tion hiding [18, 107, 119, 155]). Hardware-assisted shadow
stack protection, such as Control-flow Enforcement Technol-
ogy (CET) [117] on x86, offers the best security and perfor-
mance but is not natively available on AArché4.

In this paper, we present InversOS, a system that provides
AArch64 user-space applications with hardware-assisted
write-protected shadow stacks. InversOS does so without
requiring the most recent hardware security features on
AArch64 or modifying hardware. Instead, InversOS uses
two widely available AArch64 features [9], namely unprivi-
leged load/store instructions and Privileged Access Never, in a
novel way to create an efficient domain-based instruction-
level intra-address space isolation technique which we call
Privilege Inversion. With Privilege Inversion, InversOS runs
protected applications in the same privilege mode as an op-
erating system (OS) kernel, sets up incorruptible shadow
stack memory accessible only by unprivileged load/store
instructions, and ensures the safety of running privileged
user-space code via a combination of OS kernel modifica-
tions and compiler transformations. To keep compatibility
with legacy untransformed application binaries, InversOS

repurposes another AArch64 feature to support coexistence
of legacy and protected applications securely and efficiently.

We built a prototype implementation of InversOS based
on the Linux kernel v4.19.219 [78] and the LLVM/Clang
compiler v13.0.1 [73]. We analyzed the security of Inver-
sOS and assessed the strength of its defense against differ-
ent types of control-flow hijacking attacks. Our evaluation
of InversOS on a real AArch64 system and a comprehen-
sive set of benchmarks and applications (LMBench [90],
SPEC CPU 2017 [121], and Nginx [124]) shows low per-
formance overhead (7.0% on LMBench, 7.1% on SPEC CPU
2017, and 3.0% on Nginx), indicating that InversOS is prac-
tical for deployment. We open-sourced InversOS at https:
//github.com/URSec/InversOS.

To summarize, we make the following contributions:

e We present Privilege Inversion, the first domain-based
intra-address space isolation technique for AArch64
user-space applications, using only widely available
features on commodity hardware.

e We designed and implemented InversOS, an OS-kernel-
compiler co-design that provides the first hardware-
assisted protected shadow stacks on AArché4 utilizing
Privilege Inversion and is compatible with existing
binaries.

e We evaluated the security and performance of Inver-
sOS and showed that InversOS is both efficacious and
efficient.

The rest of the paper is organized as follows. Section 2 pro-
vides background information. Section 3 defines our threat
model. Sections 4 and 5 describe the design and implementa-
tion of InversOS, respectively. Section 6 analyzes the security
of InversOS. Section 7 presents the performance evaluation
of InversOS, Section 8 discusses related work, and Section 9
concludes and discusses future work.

2 Background

In this section, we provide background information on pro-
tected shadow stacks. We also briefly introduce features of
AArch64 instruction set architecture (ISA) that are relevant
to the design and implementation of InversOS.

2.1 Protected Shadow Stacks

Control-flow hijacking attacks like ROP [111, 116] corrupt
saved return addresses on the stack. One way to mitigate
such attacks is to use shadow stacks [18], which keep copies
of return addresses in separate memory regions. When call-
ing a function, a return address is pushed onto both the
regular stack and the shadow stack; on return, the program
loads the return address from the shadow stack and either
compares it to the one on the regular stack to ensure its
validity [25, 33, 37] or jumps to the value loaded from the
shadow stack directly [2, 53, 119, 153, 155]. To enforce re-
turn address integrity, however, shadow stacks themselves

Max 52 Bits Set Max 52 Bits Cleared

— ~—

0] 0x00..0ff..f oxff..f00o..0 oxff..f
v v v v
User Kernel
Space Space

Figure 1. AArch64 Virtual Address Space

require protection that disallows illegal modifications. Prior
approaches to protecting shadow stack integrity rely on sys-
tem calls [25, 46, 133], software fault isolation (SFI) [30, 153],
information hiding [18, 107, 119, 155], or special hardware
such as segmentation [2], Memory Protection Extensions
(MPX) [18, 60, 65], Memory Protection Keys (MPK) [18, 53],
and CET [117]). To the best of our knowledge, no hardware-
assisted shadow stack protection exists on AArch64.

2.2 AArché64 Architecture

Exception Levels. AArch64 [9] provides four Exception
Levels from ELO to EL3, with increasing execution privileges.
Typically user-space software executes in EL0 and OS kernels
execute in EL1. EL2 and EL3 are for hypervisors and a secure
monitor, respectively. A processor core enters from a lower
Exception Level to a same or higher non-EL0 Exception Level
via taking synchronous exceptions (e.g., traps, system calls)
or asynchronous exceptions (e.g., interrupts) and returns
via executing an ERET instruction. Each Exception Level
ELx has a dedicated stack pointer register SP_ELx. Software
running in ELx (x > 1) can select SP_ELQ@ or SP_ELx as
the current stack pointer, referred to as running in ELxt
or ELxh (i.e., thread or handler mode). The two modes are
different only in the stack pointer register in use, which
also determines the set of exception vectors to use when an
exception occurs that targets the same Exception Level. The
Linux kernel, as of v4.19.219, executes in EL1h and leaves
EL1t (and thus the corresponding set of exception vectors)
unused [78]. Unless otherwise noted, hereafter we only focus
on ELO and EL1(t/h) and refer to them as unprivileged and
privileged (thread/handler) modes, respectively.

Address Space and Page Tables. AArch64 [9] uses hier-
archical page tables and a hardware memory management
unit (MMU) to provide virtual memory, with two Translation
Table Base Registers TTBRO_EL1 and TTBR1_EL1 holding the
root page table addresses. TTBRO_EL1 is for the lower half of
the virtual address space (which typically corresponds to the
user space), while TTBR1_EL1 is for the upper half (which
typically corresponds to the kernel space). Not all 64 bits of
an virtual address are used in address translation; AArch64
supports a virtual address space up to 52 bits, thus leaving a
gap between the two halves, as Figure 1 shows.

AArché64 [9] supports page-level access permissions, con-
trolled by the UXN (Unprivileged eXecution Never) bit, the
PXN (Privileged eXecution Never) bit, and two AP[2:1] (Ac-
cess Permission) bits in last-level page table entries (PTEs).
As the names imply, UXN and PXN, when set, disable unprivi-
leged and privileged instruction access of the corresponding
page, respectively. AP[1] disables unprivileged data access
when cleared, and AP[2] disables write access when set.

In addition to the above PTE bits, AArch64 [9] also sup-
ports hierarchical access permission control via the UXNTable
bit, the PXNTable bit, and two APTable[1: @] bits in top- and
mid-level PTEs (PTEs that point to a next-level page table
rather than a page). Unlike their last-level PTE counterparts,
these bits can apply access restrictions to the whole corre-
sponding address range on top of the permission of subse-
quent levels. When set, UXNTable and PXNTable disallow
unprivileged and privileged instruction access, respectively.
APTable[@] disallows unprivileged data access when set,
and APTable[1] disallows write access when set. The Linux
kernel, as of v4.19.219, always keeps these bits cleared and
instead only controls access permissions at page level [78].

Unprivileged Load/Store Instructions. A special fea-
ture of AArch64 [9] (and many other ARM ISAs such as
ARMv7-M [8]) is unprivileged load and store (LSU) instruc-
tions. These instructions, with mnemonics starting with
LDTR or STTR on AArch64, check unprivileged memory ac-
cess permissions even when executed in the privileged mode.
This makes LSU instructions useful in accessing user-space
memory inside the OS kernel (e.g., Linux’s get_user () and
put_user() functions [15]).

Architecture Extensions. AArch64 [9] has architecture
extensions; the initial ISA is called ARMv8.0-A, and subse-
quent releases (e.g., ARMv8.1-A) are based on the previous
ISA with new hardware features. Specifically, we focus on
the following hardware features: Privileged Access Never
(PAN), User Access Override (UAO), Hierarchical Permission
Disable (HPDS), and EOPD.

PAN [9] is an ARMv8.1-A feature which prevents privi-
leged code from accessing unprivileged-accessible data mem-
ory, similar to x86’s Supervisor Mode Access Prevention
(SMAP) [3, 61]. When PAN is enabled via setting the PAN bit
in the processor state PSTATE, all loads and stores (except
LSU instructions) executed in the privileged mode that try
to access memory accessible in the unprivileged mode will
generate a permission fault.

UAO [9] is an ARMv8.2-A feature which, when enabled via
setting the PSTATE . UAO bit, allows LSU instructions executed
in the privileged mode to act as regular loads/stores.

HPDS [9], introduced in ARMv8.1-A, allows disabling
hierarchical access permission bits (UXNTable, PXNTable,
and APTable[1:@]) during page table lookups. Software
running in the privileged mode can set the HPD{@, 1} bits

in Translation Control Register TCR_EL1 to disable hier-
archical access permission checks in address translation
from TTBR{0, 1}_EL1. However, as AArch64 allows caching
TCR_EL1.HPD{®@, 1} in translation lookaside buffers (TLBs),
flipping either bit may require a local TLB flush to take effect.

EOPD [9], introduced in ARMv8.5-A as a hardware mitiga-
tion to side-channel attacks that leverage fault timing (e.g.,
Meltdown [79]), prevents code running in the unprivileged
mode from accessing (lower or upper or both) halves of the
virtual address space and generates faults in constant time.
Similar to HPDS, there are two bits TCR_EL1.EQPD{ 9@, 1} that
privileged software can use to control whether unprivileged
access to which half of the address space is disabled.

3 Threat Model

We assume a powerful attacker trying to achieve arbitrary
code execution on a benign but potentially buggy application
by exploiting arbitrary memory read/write vulnerabilities
to hijack the control flow. We assume that the underlying
OS kernel and hardware are trusted and unexploitable, pro-
viding the user space with the basic WX protection [105].
Non-control data attacks [22] (such as data-oriented pro-
gramming [59] and block-oriented programming [63]), side-
channel attacks, and physical attacks are out of scope. This
threat model is in line with recent work on user-space control-
flow hijacking attacks [28, 29] and defenses [18, 74, 75, 136].

4 Design

In this section, we present the design of InversOS. The goal
of InversOS is to provide low-cost return address integrity
to user-space applications running on commodity AArch64
systems, which may or may not come with the most recent
hardware security features such as Pointer Authentication
(PAuth), Branch Target Identification (BTI), and Memory
Tagging Extension (MTE) [9]. To do so, InversOS must only
rely on AArché4 features from the early ISA versions. We
therefore require InversOS’s target platform to support at
least PAN and HPDS (i.e., conforming to ARMv8.1-A [9]);
this allows InversOS to be deployed on most of AArch64
systems released since 2017 [139].

Overall, we devise InversOS as a co-design between an
OS kernel and a compiler. The InversOS-compliant OS ker-
nel utilizes Privilege Inversion, a novel intra-address space
isolation technique we invented, to provide user-space appli-
cations an extra protection domain accessible only by LSU
instructions. The InversOS-compliant compiler then instru-
ments user-space code to leverage the protection domain
for efficient protected shadow stacks as well as to enforce
forward-edge CFI [1, 2], allowing InversOS to protect user-
space applications without modifying their source code. The
nature of Privilege Inversion dictates running user-space
applications in the privileged mode; we therefore combine
CFIL, a compile-time bit-masking compiler pass, a load-time

Elevated Task
(Privileged, PAN=1, UAO=0) Unprotected Pages
[} | _-- (Privileged, AP[1]=0)

LDR/STR
/" ” ~x
}‘~ F—— e Protected Pages
(Unprivileged, AP[1]=1)

. J

[LDTR/STTR

Figure 2. Compartmentalization by Privilege Inversion

code scanner in the OS kernel, and a set of kernel modifi-
cations to together ensure the safety and security of doing
so. Lastly, InversOS supports running legacy untransformed
applications to keep compatibility with existing binaries via
a novel use of HPDS or EOPD (if available).

4.1 Privilege Inversion

LSU instructions in AArché64, as described in Section 2.2,
show a great potential in implementing efficient intra-address
space isolation; previous work [26] has explored their usage
in kernel-level data isolation. However, using these instruc-
tions to compartmentalize user-space applications poses chal-
lenges as they act like regular loads/stores when executed
in the unprivileged mode. Essentially the underlying hard-
ware only supports one protection domain for unprivileged
software.

We devise Privilege Inversion, a novel intra-address space
isolation technique that creates a separate protection do-
main for AArch64 user-space applications. With Privilege
Inversion, the OS kernel runs a user-space application need-
ing an extra protection domain in the privileged mode. We
dub such an application as an elevated task. When launch-
ing an elevated task, the OS kernel configures its memory
pages as unprivileged-inaccessible (i.e., with AP[1] cleared
in PTEs), marks its code pages as privileged-executable (i.e.,
with PXN cleared and UXN set in PTEs), and enables PAN dur-
ing its execution. Then, pages that the elevated task wants
to place in the separate protection domain are marked as
unprivileged-accessible (i.e., with AP[1] set in PTEs). Note
that the elevated task’s pages are still mapped to the user
space (translated by TTBRO_EL1); the above changes only
apply to their access permission bits in the PTEs. This con-
figuration allows LSU instructions in elevated task code to
access the protected pages but forbids accesses to them made
by all regular loads/stores due to PAN. In the meanwhile,
it leaves all other unprotected pages in the elevated task
accessible by regular loads/stores but inaccessible by LSU
instructions, effectively compartmentalizing the elevated
task into two separate protection domains (one for regular
loads/stores and the other for LSU instructions), as Figure 2
shows. Note that in systems with UAO support, UAO has to
be turned off during elevated task execution; otherwise LSU
instructions would act just like regular loads/stores.

However, in order to make Privilege Inversion safe and
useful, we need to address the following challenges:

Challenge 1. As elevated tasks run in the privileged mode,
kernel memory becomes accessible by their regular loads/stores.

Challenge 2. As elevated tasks run in the privileged mode,
their control-flow transfer instructions can jump to the kernel
space to execute arbitrary kernel code (i.e., kernel memory with
PXN cleared).

Challenge 3. As elevated tasks run in the privileged mode,
they may contain and execute special privileged instructions
that would only be allowed to execute in kernel code (e.g.,
instructions that flip PSTATE . PAN).

To address Challenge 1, we incorporate a set of kernel
modifications that mark all kernel memory as unprivileged-
accessible and disable PAN during kernel execution. Such
modifications, while radical in idea, effectively stop regular
loads/stores in elevated tasks from accessing kernel memory
and still keep the OS kernel functional. The ramifications
of modifying the OS kernel in this way are two folds. First,
LSU instructions in elevated tasks can now access kernel
memory. We therefore require that elevated tasks not con-
tain LSU instructions by themselves (which is the case in
C/C++ code compiled by GCC or LLVM/Clang) and use a
compiler pass to insert vetted LSU instructions for enforcing
the desired protection policies. Our shadow stack pass de-
scribed in Section 4.2 provides a good example. Second, if we
are to support running legacy untransformed applications in
the unprivileged mode still, they can access kernel memory
as well; Section 4.3 discusses how we tackle this problem.

To address Challenge 2, we use a bit-masking compiler
pass, which instruments all indirect control-flow transfer in-
structions (i.e., indirect calls, indirect jumps, and returns) in
elevated tasks by preceding them with a bit-masking instruc-
tion that clears the top bit of the target register.! This limits
the control-flow transfer target to be within the user space
or to become an invalid pointer pointing to the user-kernel
space gap. Such instrumentation alone, however, can be by-
passed by attacker-manipulated control flow that jumps over
the bit-masking instruction; we therefore combine it with
CFI to ensure its execution, which we discuss in Section 4.2.
Note that direct control-flow transfer instructions (i.e., direct
calls and jumps) do not need such instrumentation; their
target is PC-relative and always points to a known location
within the user space.

To address Challenge 3, we add to the OS kernel a load-
time code scanner which scans for privileged instructions
that unprivileged software should never execute. Whenever
a page in an elevated task is being marked as executable, the
OS kernel invokes our code scanner to scan the whole page;

L AArché64 returns via the RET instruction, which uses the link register LR
(by default) or another explicitly specified register as the return address [9].

if the page contains any forbidden privileged instruction,
the execution permission of the whole page is denied. As
AArch64 instructions are 4-byte sized and aligned [9], a
linear non-overlapping scan should suffice.

4.2 Protected Shadow Stacks and Forward-Edge CFI

With Privilege Inversion creating an extra protection domain,
we can now leverage the protection domain to enforce effi-
cient shadow stack protection for the user space. Specifically,
the OS kernel allocates unprivileged memory for a shadow
stack when a new elevated task is launched via exec() or
when a new thread in an elevated task is created via clone().
The compiler utilizes a shadow stack pass to instrument ele-
vated task code; a copy of the return address is saved onto a
shadow stack via an STTR instruction inserted into the pro-
logue of functions that save the return address to the regular
stack, and the return address is loaded from the shadow stack
via an LDTR instruction inserted into the epilogue(s) of these
functions. A special case for shadow stacks to handle is ir-
regular control flow such as setjmp()/longjmp() in C and
exception handling in C++. Since support for such irregular
control flow depends on the specific shadow stack scheme
used [18], we discuss how our InversOS prototype supports
such code constructs in Section 5.2.

To form a complete control-flow protection, we couple our
shadow stacks with forward-edge CFI [1, 2], which ensures
that the target of indirect calls and jumps is within a set of
allowed code locations. Specifically, we use a label-based CFI
pass in the compiler. For each indirect call or tail-call indirect
jump in elevated task code, the pass inserts a CFI label at
the beginning of every function that might be the call target
and inserts a CFI check before the call. Similarly, for each
non-tail-call indirect jump in elevated task code, the pass
inserts a CFI label at the beginning of every successor basic
block and inserts a CFI check before the jump. The CFI check
ensures that a proper CFI label is present at the control-flow
target; otherwise it generates a fault and traps the execution.

4.3 Compatibility

Not all AArch64 user-space applications need a separate pro-
tection domain, nor can all of them be recompiled. InversOS
must therefore allow existing application and library binaries
that are not compiled by the InversOS-compliant compiler
to run without compromising its security.

We propose two methods to allow safe execution of legacy
applications in the unprivileged mode (dubbed as legacy
tasks), depending on hardware feature availability. In systems
with EOPD support (ARMv8.5-A and onward), the OS kernel
can directly enable EOPD via setting TCR_EL1.E@PD1 during
legacy task execution. This way, even though kernel memory
is marked unprivileged-accessible, legacy tasks running in
the unprivileged mode still cannot access kernel memory
translated by TTBR1_ELT.

User Space | Kernel Space

(Per-Task) (Shared)
(A
Elevated Task
(Privileged, PAN=1, HPD1=1)
[LDR/STR }\
\ I~ Kernel Memory
- N (Unprivileged, AP[1]=1)

Legacy Task
(Unprivileged, HPD1=0)

(Privileged, APTable[0]=1)

[LDR/STR }"‘
. J

Figure 3. Different “Views” of Kernel Memory Due to HPDS

In pre-ARMv8.5-A systems without EOPD support, how-
ever, we rely on HPDS to provide a less-efficient solution.
Specifically, the OS kernel first sets APTable[@] in all top-
and mid-level PTEs of kernel memory when establishing
page tables for the kernel space. This effectively marks all
kernel pages as unprivileged-inaccessible even if AP[1] in
their last-level PTEs is set. Then, the OS kernel enables
HPDS via setting TCR_EL1.HPD1 before running an elevated
task, disables HPDS via clearing TCR_EL1.HPD1 before run-
ning a legacy task, and flushes the local TLBs every time
after flipping TCR_EL1.HPD1. This way, legacy and elevated
tasks will possess different “views” of kernel memory, as
Figure 3 depicts. Specifically, legacy tasks see kernel mem-
ory as unprivileged-inaccessible due to APTable[@] being
set, while elevated tasks see kernel memory as unprivileged-
accessible because HPDS disables APTable[0] in top- and
mid-level PTEs and AP[1] in last-level PTEs takes effect. As
a result, both types of tasks cannot access kernel memory.

Note that relying on HPDS prevents the OS kernel from
mapping kernel memory with the largest huge pages on
certain systems (e.g., 1 GB huge pages with a page size of 4 KB
and a 39-bit virtual address space), because such pages have
no top- or mid-level PTEs for setting APTable[@]. However,
we believe this has no practical impact on the OS kernel’s
address translation and memory usage; the use of the largest
huge pages is rare and infrequent.

5 Implementation

We implemented a prototype of InversOS on the Linux kernel
v4.19.219 [78] and the LLVM/Clang compiler v13.0.1 [73].
Using Tokei v12.1.2 [142], our kernel modifications include
1,815 lines of C code and 207 lines of assembly code, and
our changes to LLVM contain 1,003 lines of C++ code. To
provide complete and transparent InversOS support for user-
space applications, we also modified the musl libc v1.2.2 [45]
and LLVM’s LLD linker [87], compiler-rt builtin runtime
library [85], and libunwind [84], totalling 27 lines of C code,
131 lines of C++ code, and 299 lines of assembly code.

Table 1. Forbidden Privileged Instructions by Code Scanner

Instruction | Description

MRS* /MSR* Read/Write System Register
IC*/DC* Invalidate Instruction/Data Cache
TLBI Invalidate Translation Lookaside Buffer
HVC Hypervisor Call

SMC Secure Monitor Call

AT Address Translation

ERET Exception Return

CFP/CPP/DVP Prediction Restriction
LDGM/STGM/STZGM | Load/Store Tag Multiple (MTE)
BRB Branch Record Buffer

SYS/SYSL Other System Instructions

* Instructions with Certain Operands Allowed

5.1 OS Kernel Modifications

Privilege Inversion requires running elevated tasks in the
privileged mode. As Linux does not use the privileged thread
mode (as Section 2.2 describes), our prototype therefore uti-
lizes it to run elevated tasks. This way, the Linux kernel
can keep using the privileged handler mode for its own op-
erations without interference from elevated tasks. It also
greatly simplifies our implementation. To enable the privi-
leged thread mode, our prototype enables an unused set of
exception vectors that are responsible for taking exceptions
from the privileged thread mode to the privileged handler
mode. Changes were also made to Linux’s existing AArch64
exception handler code so that our prototype can reuse most
of the code to handle exceptions from the privileged thread
mode and to resume elevated task execution properly. Note
that elevated tasks in our prototype still use the SVC instruc-
tion for system calls, which is unnecessary because elevated
tasks are already privileged; we leave system call optimiza-
tions as future work.

Apart from the architectural usage of AP[1], Linux also
uses AP[1] to distinguish whether a page is kernel or user
memory. As InversOS marks kernel memory unprivileged-
accessible, AP[1] can no longer serve for that purpose. Our
prototype therefore utilizes an unused bit (bit 63) in last-level
PTEs to differentiate between kernel and user memory; the
hardware MMU ignores this bit automatically [9].

When launching a new task, InversOS must decide whether
it should be run as a legacy or elevated task. For simplicity
and ease of implementation, our prototype checks the pres-
ence of an environment variable INVERS0S=1 to make such a
decision; if it is present, the task is started as an elevated task.
Production systems can use a more enhanced mechanism
(e.g., checking the presence of a code signature generated by
an InversOS-compliant compiler) to qualify an elevated task.

The load-time code scanner, as part of our kernel modifica-
tions, scans for illegal privileged instructions in elevated task
code. Instead of directly scanning a user-space code page,
our prototype maps the page to the kernel space for scanning

sub sp, sp, #32
sub x28, x28, #8

sub sp, sp, #32 sttr lr, [x28]
stp x29, 1r, [sp, #16] stp x29, 1lr, [sp, #16]
ldp x29, 1r, [sp, #16] » ldp x29, 1r, [sp, #16]
add sp, sp, #32 ldtr 1r, [x28]
ret add x28, x28, #8

add sp, sp, #32

ret

Figure 4. Shadow Stack Transformations

in order to avoid frequently calling get_user(). Table 1 lists
all types of privileged instructions that our prototype forbids,
which roughly correspond to instructions that would gener-
ate a fault when executed in the unprivileged mode but might
not when executed in the privileged mode [9]. In particular,
MRS/MSR/IC/DC instructions with certain operands (e.g., read-
ing the unprivileged thread ID register TPIDR_EL® via MRS)
are allowed in unprivileged software, so these instructions
are also permitted in elevated tasks.

Our kernel modifications take responsibility of setting
up and tearing down memory for protected shadow stacks
in elevated tasks, as Section 4.2 describes. Each shadow
stack region in an elevated task can grow as much as a
regular stack can grow, supporting both parallel and com-
pact shadow stack schemes [18]. To prevent shadow stack
overflow and underflow, each shadow stack region is sur-
rounded by two guard regions inaccessible by both regular
loads/stores and LSU instructions. Mappings of shadow stack
and guard regions are unmodifiable by munmap (), mremap (),
and mprotect () requests from the user space.

Lastly, our prototype implements the HPDS support for
running legacy tasks, as described in Section 4.3. We omit-
ted implementing the EOPD alternative due to the lack of
hardware that supports EOPD. As Linux has introduced sup-
port for EOPD since v5.6 [77] (which is enabled by default),
a simple backport of the relevant changes would suffice.

5.2 Compiler, Linker, and Library Modifications

We implemented the shadow stack, forward-edge CFI, and
bit-masking compiler passes in a single LLVM pass that
transforms LLVM machine intermediate representation (IR).

Our shadow stack transformations adopt the compact
shadow stack scheme [18] and reserve the X28 register (a
callee-saved register) as the shadow stack pointer register.
Figure 4 demonstrates our shadow stack transformations
performed on a function’s prologue and epilogue. Our proto-
type supports C’s setjmp()/longjmp() functions and C++
exception handling via modifications to the musl libc and
LLVM’s libunwind, respectively. Instead of directly guaran-
teeing the integrity of return address saved by setjmp()
or __unw_getcontext(), our prototype provides shadow
stack pointer integrity when restoring the saved context in
longjmp() or __libunwind_Registers_arm64_jumpto().

foo: | bti ¢

bar:

ldr wi, [x8]

mov w2, #0x245f

e B |movk w2, #0xd503, lsl #16
eor wl, wl, w2

cbnz wl, trap

blr x8

foo:
bar:

trap: |udf #0

Figure 5. Forward-Edge CFI Transformations

Specifically, rather than overriding X28 with the saved value,
we unwind X28 step by step until a matched return address
is found or it reaches a guard region to cause shadow stack
underflow.

Our forward-edge CFI transformations use the BTI in-
structions as CFI labels to keep forward compatibility with
ARMv8.5-A’s BTI [9], a hardware-assisted forward-edge CFI
mechanism rolling out to new AArché4 processors. Proces-
sors not supporting BTI execute a BTI instruction as a no-
operation. An appropriate CFI check is inserted before every
indirect call or jump to ensure that the target contains a
correct CFI label (BTI C for indirect calls and tail-call in-
direct jumps and BTI J for non-tail-call indirect jumps).
Figure 5 illustrates our forward-edge CFI transformations
performed on an indirect call and one of its target func-
tions. On AArché64, a non-tail-call indirect jump can only be
generated from a switch or computed goto statement; the
former is bounds-checked against a read-only jump table,
and our prototype restricts the latter by transforming it to
a switch statement using the IndirectBrExpandPass [86].
Consequently, a non-tail-call indirect jump is limited to jump
within its function and cannot branch to other functions.

Our bit-masking transformation inserts an AND instruction
before every indirect call, indirect jump, or return to clear
the top bit of control-flow transfer target. For indirect calls
and jumps, the instruction is placed after the CFI check.

While our all-in-one LLVM machine IR pass transforms
most of elevated task code, it fails to cover certain pieces
of code in the user space when compiling the application.
One piece of untransformed code is the procedure linkage
table (PLT) generated by the linker. We therefore also modi-
fied LLD to be able to generate CFI-checked and bit-masked
PLT code. Another piece of untransformed code is Linux’s
virtual dynamic shared object (vDSO); it is compiled with
the Linux kernel and stored within the kernel’s read-only
data. We therefore applied our compiler transformations to
the vDSO as well during kernel compilation. The last case is
assembly code (including assembly files and inline assembly
statements). We manually instrumented assembly code in
the musl libc and compiler-rt builtin runtime library.

5.3 Discussion

Virtualization Host Support. ARMv8.1-A adds Virtual-
ization Host Extensions (VHE) [9] to accelerate hosted (Type
2) hypervisors such as Linux’s KVM [32] and FreeBSD’s
bhyve [42]. In pre-VHE systems, a host OS kernel (running
in EL1) needs to partition its hypervisor into a “high-visor”
(running in EL1) and a “low-visor” (running in EL2) and thus
incurs heavy overhead when context-switching between the
two parts. VHE allows the host OS kernel to run entirely in
EL2 to reduce the cost. The Linux kernel, as of v4.19.219 [78],
stays in EL2h for execution when having detected VHE sup-
port during early boot. Our prototype therefore transparently
supports running elevated tasks in EL2t in such a case.

AArch32 Support. Quite a few AArch64 processors still
allow running AArch32 (32-bit ARM) applications for com-
patibility. While there are no technical difficulties to support
an elevated task running in the AArch32 state (i.e., LSU in-
structions and PAN are also available on AArch32), we opted
not to implement AArch32 support for the sake of time.

6 Security Analysis

In this section, we analyze the security of InversOS by pro-
viding answers to the following security questions:

SQ1 Why is InversOS secure (to run instrumented elevated
tasks in the privileged mode and arbitrary legacy tasks
in the unprivileged mode)?

SQ2 How well does InversOS mitigate control-flow hijack-
ing attacks on elevated tasks?

6.1 Security by Design

To answer SQ1, we examine all potential ways to compro-
mise InversOS from a legacy or elevated task:

1. A task may try to read from/write to memory of other
tasks to break their confidentiality/integrity.

2. A task may try to read from/write to kernel memory
to break the confidentiality/integrity of the OS kernel.

3. A task may try to allocate an excessive amount of
resources (e.g., time, memory) to break the availability
of InversOS.

4. A task may try to execute detrimental instructions that
could undermine the security of InversOS.

5. A task may try to jump to kernel code and use kernel
code as a “confused deputy” for the above goals.

As each task’s memory (sans shared memory) is mapped ex-
clusively to the task’s own address space, reading and writing
other tasks’ memory can only be carried out by accessing ker-
nel memory or jumping to kernel code. Since kernel memory
has AP[1] (and APTable[@], if using HPDS) set, accessing
kernel memory is disabled via PAN for elevated tasks and
via HPDS or EOPD for legacy tasks. Jumping to kernel code
is also impossible; having UXN set for kernel code prevents
legacy tasks from executing kernel code, while InversOS’s

CFI and bit-masking instrumentation ensures that control-
flow transfers in elevated tasks never reach the kernel space.
As for attacks on availability, we argue that InversOS does
not introduce new availability problems; running an elevated
task in the privileged mode does not prioritize it on resource
allocation over all other legacy or elevated tasks and the OS
kernel. The remaining case is privileged instructions, the
execution of which is restricted by hardware automatically
for legacy tasks and by InversOS’s load-time code scanner
for elevated tasks. Conclusively, InversOS does not introduce
new security flaws and is secure by design.

6.2 Efficacy against Control-Flow Hijacking

To answer SQ2, we first define and explain a list of invariants
that InversOS maintains for guaranteeing return address in-
tegrity of elevated tasks and then reason about why return
address integrity significantly reduces the control-flow hi-
jacking attack surface. Specifically, InversOS maintains the
following invariants for elevated tasks:

Invariant 1. A function in an elevated task either pushes
its return address in LR to a shadow stack, or never spills the
return address to memory.

Invariant 2. Ifa function in an elevated task pushed its return
address to a shadow stack, its epilogue will always load the
return address from the shadow stack location in which its
prologue saved the return address.

Invariant 3. An elevated task cannot corrupt shadow stacks
by itself or by using a system call as a “confused deputy” (e.g.,
calling read(fd, buf, size) where buf points to shadow
stack memory [138]).

Invariant 1 is easily upheld by our shadow stack pass,
which instruments LR-saving function prologues to push
LR to the shadow stack. With the counterpart instrumenta-
tion on epilogue(s) of these functions to pop LR from the
shadow stack, our shadow stack pass guarantees that only a
function’s prologue and epilogue(s) can update the shadow
stack pointer with a matched decrement/increment, con-
tributing to Invariant 2. Since our forward-edge CFI pass
ensures that all indirect calls and tail-call indirect jumps
target the beginning of a function and all non-tail-call indi-
rect jumps are restricted within their containing function,
shadow stack pointer decrements and increments are guar-
anteed to occur in a matched order, sustaining Invariant 2.
Finally, Invariant 3 is maintained because the shadow stacks
are unprivileged and no existing/new LSU instructions can
be exploited/introduced to corrupt the shadow stacks (due
to CFI/W&X), and because of the benign nature of elevated
tasks assumed by our threat model in Section 3.

With return address integrity, control-flow hijacking at-
tacks that require corrupting return addresses (such as return-
into-libc [126] and ROP [111, 116]) are effectively prevented.
Furthermore, as non-tail-call indirect jumps cannot break the

“jail” of their containing function, attacks that exploit indi-
rect jumps (such as JOP [13]) no longer work. The remaining
attack surface requires attackers to do purely call-oriented
programming (i.e., using only corrupted function pointers);
while such attacks are possible [44, 114], they are limited by
forward-edge CFI and can be further restrained if InversOS
refines CFI’s granularity. In short, InversOS greatly reduces
the control-flow hijacking attack surface for elevated tasks.

7 Performance Evaluation

We evaluated the performance of InversOS on a Station P2
mini-PC which has an RK3568 quad-core Cortex-A55 proces-
sor implementing the ARMv8.2-A architecture that can run
up to 2.0 GHz. The mini-PC comes with 8 GB of LPDDR4
DRAM up to 1,600 MHz, 64 GB of internal eMMC storage
(unused), and 1 TB of SATA SSD. It runs Ubuntu 20.04 LTS
modified by the manufacturer.

We ran all our experiments using two configurations: Base-
line and InversOS. In Baseline, we compiled program and
library code using LLVM/Clang v13.0.1 [73] without the
InversOS compiler transformations and ran the generated
binary executables on a Linux v4.19.219 kernel [78] with-
out our kernel modifications. In InversOS, all program and
library code was compiled with the InversOS compiler trans-
formations (i.e., shadow stack, forward-edge CFI, and bit-
masking transformations) and executed on the same version
of the Linux kernel modified with our kernel changes. When
running an InversOS executable, we set an environment
variable INVERS0S=1 to inform the OS kernel that the pro-
gram should be started as an elevated task, as Section 5.1
describes. As the processor lacks EOPD support, we rely on
HPDS to prevent legacy tasks from accessing kernel mem-
ory. Both configurations used -02 optimizations and per-
formed static linking against the musl libc v1.2.2 [45] and
LLVM’s compiler-rt builtin runtime library v13.0.1 [85]. C++
code in our experiments was compiled with and statically
linked against libc++ [82], libc++abi [83], and libunwind [84]
from LLVM v13.0.1. Libraries for Baseline and InversOS are
compiled without and with our modifications described in
Section 5.2, respectively.

7.1 Microbenchmarks

To understand the performance impact of the InversOS Linux
kernel modifications, we used LMBench v3.0-alpha9 [90], a
microbenchmark suite that measures the latency and band-
width of various OS services. For each microbenchmark that
supports parallelism, we ran four parallel workloads to re-
duce variance. We report an average and a standard deviation
of 10 rounds of execution for each microbenchmark.

Table 2. LMBench Latency (Lower is Better)

Microbenchmark ‘ Baseline (us) stdev (us) InversOS (X) stdev (X)
null syscall 0.148 0.000 1.047 0.007
read 0.482 0.001 1.054 0.004
write 0.351 0.002 0.991 0.003
stat 4928 0.023 1.066 0.003
fstat 0.422 0.003 1.052 0.005
open/close 9.744 0.017 0.989 0.003
select 500 fd 24.365 0.017 1.002 0.001
signal install 0.375 0.001 1.059 0.003
signal catch 3.801 0.009 1.493 0.002
protection fault 0.408 0.005 0.980 0.029
pipe 16.115 0.067 0.948 0.004
AF_UNIX stream 27.314 0.618 1.051 0.008
AF_UNIX connect 99.329 0.733 1.012 0.009
fork+exit 266.767 6.945 1.256 0.012
fork+exec 562.585 7.046 1.188 0.009
fork+shell 2,878.983 12.869 4.007 0.015
page fault 0.910 0.016 1.038 0.009
mmap 1 MB 42.700 3.318 1.019 0.007
udp 76.490 0.214 1.018 0.005
tcp 63.472 0.200 1.011 0.002
connect 102.196 0.503 1.004 0.006
context switch 59.318 0.880 0.993 0.014
fentl 8.772 1.643 0.992 0.219
semaphore 3.083 0.515 0.954 0.162
usleep 78.661 1.579 0.995 0.020
Geomean ‘ - — 1.103 -

Table 3. LMBench Bandwidth (Higher is Better)

Microbenchmark Baseline stdev InversOS stdev

(MB/s) (MB/s) (x) (x)
pipe 1,096.147 72.703 0.991 0.049
AF_UNIX stream 931.933 6.753 1.003 0.011
read 1 MB 3,706.665 65.823 0.978 0.013
read 1 MB open2close 3,474.633 45.699 0.990 0.015
mmap 1 MB 10,689.636 36.243 1.006 0.001
mmap 1 MB open2close | 6,365.563 43.215 0.972 0.008
tcp 720.056 48.645 0.987 0.013
Geomean — — 0.989 -

Baseline Delete &=
InversOS Delete

Baseline Create &XXXX
InversOS Create B2

20,000
18,000 -
16,000 -
14,000 -
12,000 -
10,000 -
8,000 -
6,000 -
4,000 -
2,000 - 5% NN NN
0 NN

T TeTeTeaTeTer

0% %% %% e %,
e
[

of Files per Second

File Size

Figure 6. LMBench File Operation Rate (Higher is Better)

Tables 2 and 3 and Figure 6 show LMBench performance of
both Baseline and InversOS. Overall, InversOS incurred a geo-
metric mean of 7.0% overhead: 10.3% on latency, 1.1% on band-
width, and 2.2% on file operation rate. In most microbench-
marks the overhead is miniscule. Most notably, fork+shell

9

exhibited a 4x slowdown because InversOS had to scan every
code page of a newly executed shell. The same goes with
fork+exec, in which the executed program is much smaller
than the shell and thus incurred much less overhead (18.8%).
In fork+exit, the 25.6% overhead comes from an optimiza-
tion of copying code page PTEs upfront; Linux by default
only sets up shared page table mappings of a child process
at page faults (i.e., when the child first accesses the page),
which, however, would cause redundant code scanning in
InversOS as InversOS invokes the code scanner whenever a
page in an elevated task is marked executable. We therefore
optimized InversOS to avoid redundant code scanning by
copying an elevated task’s code page PTEs during fork()
and enabled this optimization in all InversOS experiments.
InversOS incurred 49.3% overhead in signal catching because
of additional flipping of PSTATE . UAO (due to PAN being dis-
abled) when setting up and tearing down a signal frame; this
could be optimized away by simply disabling UAO support
in the Linux kernel, which we opted not to in order to avoid
introducing less relevant changes.

7.2 Macrobenchmarks and Applications

To see how InversOS performs on real workloads, we used
SPEC CPU 2017 v1.1.9 [121] and Nginx v1.23.3 [124]. SPEC
CPU 2017 is a comprehensive benchmark suite containing
CPU- and memory-intensive programs written in C, C++,
and/or Fortran that stress a computer system’s performance.
Nginx is a high performance web server written in C that
has been widely used in the real world.

For SPEC CPU 2017, we evaluated 28 (out of 43) bench-
mark programs in C/C++ as LLVM/Clang cannot compile
Fortran code. We used the train (instead of the larger ref)
input set because train yielded execution time of at least
20 seconds in each benchmark already. We report average
execution time with 10 rounds of execution for each bench-
mark; standard deviations are negligible (less than 1%).

For Nginx, we used Nginx to host randomly generated
static files ranging from 1 KB to 512 MB with one worker
process listening to port 8080 for HTTP requests. We then
ran ApacheBench (ab) [6] on the same machine to measure
Nginx’s bandwidth of transferring files within a period of
10 seconds. We report an average and a standard deviation
over 10 rounds of execution for each file size.

Table 4 and Figure 7 present the Baseline performance of
SPEC CPU 2017 and Nginx, respectively. Figures 8 and 9 show
the performance overhead InversOS incurred on SPEC CPU
2017 and Nginx, respectively. Overall, InversOS increased
the execution time of SPEC CPU 2017 by a geometric mean
of 7.1% and degraded the bandwidth of Nginx by a geometric
mean of 3.0%. We studied the overhead on SPEC CPU 2017
and discovered that our software-based forward-edge CFI
caused most of the overhead; with that disabled, the over-
head decreased to a geometric mean of 1.9% (in particular,
xalancbmk’s overhead dropped down from more than 40%

Table 4. SPEC CPU 2017 Execution Time (Lower is Better)

Benchmark (Rate) Basehr(lse; Benchmark (Speed) Basehr(lse;
500.perlbench_r 135.795 || 600.perlbench_s 135.289
502.gcc_r 268.035 || 602.gcc_s 268.294
505.mcf_r 431.810 [| 605.mcf_s 428.423
520.omnetpp_r 354.081 || 620.omnetpp_s 353.981
523.xalancbmk_r 242.465 || 623.xalancbmk_s 242.501
525.x264_r 96.540 625.x264_s 96.527
531.deepsjeng_r 203.713 || 631.deepsjeng_s 227.060
541.leela_r 216.941 || 641.leela_s 217.306
557.xz_r 128.610 657.xz_s 127.926
508.namd_r 157.894
510.parest_r 330.373
511.povray_r 25.722
519.Ibm_r 231.428 || 619.Ibm_s 1,718.814
526.blender_r 533.649
538.imagick_r 167.810 || 638.imagick_s 168.136
544.nab_r 396.789 644.nab_s 397.586
Baseline —*—
600
w
5 500
S 400 [- :
<
5 300 - b
.§ 200 - b
g L _
2 100
T N EPEECEREYTE
~AARN xaamm <L R-IY
wwwwﬁﬁﬂwwwwwmmzzz
=>liveRl] ARARa: W ww CZU E E

Figure 7. Nginx Bandwidth (Higher is Better)

to less than 3%). This indicates that InversOS’s shadow stack
and bit-masking transformations and kernel modifications
have minimal performance impact on SPEC CPU 2017, com-
pared with software-based forward-edge CFI. Incorporating
BTI [9], we expect InversOS’s performance overhead to be
greatly reduced; with BTI, no explicit CFI checks (as shown
in Figure 5) are needed. However, as BTI does not provide
protected shadow stacks by itself, (post-)ARMv8.5-A systems
can still leverage InversOS’s Privilege Inversion to protect
the integrity of shadow stacks. Nginx saw significant vari-
ance especially on file sizes < 128 KB. We suspect that the
cause of high variance is caching and file system behaviors.

8 Related Work
8.1 Control-Flow Integrity

Since the introduction of the original CFI work [1, 2], a long
line of research has been proposed to improve its precision,
performance, and/or applicability [4, 12, 14, 16-18, 21, 24,
27, 31, 33-35, 37, 39, 41, 43, 48, 49, 53, 56, 58, 60, 62, 64—
68, 74-76, 80, 88, 93, 97-100, 103, 107, 108, 117, 125, 128,
129, 133, 134, 136, 137, 143, 146-151, 153, 155]. As InversOS

10

leverages label-based CFI for forward edges and protected
shadow stacks for backward edges, we compare InversOS
with various types of CFI schemes.

Stateless CFIL. The original CFI [1, 2] restricts forward-
edge indirect control-flow targets via a coarse-grained context-
insensitive analysis, which statically assigns a distinct label
to allowed targets (an equivalence class or EC) of each indi-
rect call or jump and inserts checks for a matched label at
indirect call and jump sites. Subsequent research on stateless
forward-edge CFI makes trade-offs between granularity and
performance [12, 97-99, 107, 125, 129, 134, 148, 150, 151],
strengthens other security policies [21, 43, 93, 149], or ap-
plies to new platforms [4, 14, 17, 31, 34, 41, 49, 64-66, 100,
108, 133, 137, 153]. Hardware support for stateless forward-
edge CFI (such as HAFIX [35], HCFI [27], Intel CET [117],
and ARM BTI [9]) has been proposed, which further lowers
the performance overhead but only provides coarse-grained
protection similar to the original CFIL InversOS’s forward-
edge CFI, while currently prototyped with two labels, can
seamlessly adopt any of the above available finer-grained
schemes for better security. It can also utilize BTI on newer
processors for better performance.

Stateful CFI. Due to imprecision of context-insensitive
CFI, researchers have focused on context-sensitive CFI poli-
cies that take previous execution history into account. Us-
ing a runtime monitor (inlined or as a separate process),
these systems track executed branches [24, 56, 103, 143,
147], paths [39, 58, 128], call-sites [67, 68], code pointer ori-
gins [68], or complete control flows [48, 80] to reduce the size
of ECs. However, such dynamic CFI schemes require hard-
ware features only found on x86 processors, such as Branch
Trace Store (BTS) [143], Last Branch Record (LBR) [24, 103,
128, 147], Performance Monitoring Unit (PMU) [147], Pro-
cessor Trace (PT) [39, 48, 56, 58, 80], Transactional Synchro-
nization Extensions (TSX) [67, 68], and MPX [68], limiting
their applicability on AArch64. Compared with stateful CFI,
InversOS offers a weaker protection on forward edges but
provides the strongest security on backward edges with bet-
ter performance and less resource consumption.

Shadow Stacks. The original CFI[1, 2] uses shadow stacks
for backward-edge protection; their debut dates back to
RAD [25] and StackGhost [46], which all used the compact
shadow stack design. Dang et al. [33] proposed the paral-
lel shadow stack design, improving the performance but
wasting more memory. As described in Section 2.1, in or-
der to guarantee return address integrity, shadow stacks
need a protection mechanism that forbids unauthorized tam-
pering. A few systems [33, 37] simply leave shadow stacks
unprotected, while some rely on system calls [25, 46, 133] or
SFI [30, 153] for protection but incur prohibitive overhead.
More commonly used is information hiding (i.e., ASLR [106]),

InversOS w/o Forward-Edge CFI B0
InversOS

—_— —

SR —BRO

Execution Time w.r.t. Baseline
cococo

Figure 8. SPEC CPU 2017 Execution Time (Normalized, Lower is Better)

Baseline —*— InversOS +—5—

g 11

2 1.05

T

£ 095

)

§0.9

z

Tl |

A RN I AR S Bl =N S
~AAARN AL ZTZZZ SR
TEEEAAR R L

RoR W W W W
LR ELAAAE LT T

Figure 9. Nginx Bandwidth (Normalized, Higher is Better)

which places shadow stacks at a random location in the ad-
dress space to increase the difficulty for attackers to locate
the shadow stacks [18, 107, 119, 155]. Though achieving
the best performance among software-only solutions, infor-
mation hiding provides the weakest guarantee and is vul-
nerable to information disclosure attacks [11, 47, 51, 101,
120, 122]. Hardware-assisted shadow stack protection sig-
nificantly lowers the performance cost and can be fulfilled
differently on different ISAs. On x86_32, segmentation [1, 2]
provides the most efficient implementation. CET [117] offers
native support for protected shadow stacks on x86_64 but
is only available on most recent processors [3, 61]; a few
solutions repurposed MPX [18, 60, 65] or MPK [18, 53] for
non-CET-equipped Intel processors but reported vastly dif-
ferent overhead numbers. HCFI [27] implements an in-chip
non-memory-mapped shadow stack on SPARC via a custom
ISA extension. In the microcontroller world, Silhouette [153]
and Kage [41] transform regular store instructions into LSU
stores on ARMv7-M [8], while CaRE [100] and TZmCFI [66]
leverage TrustZone-M on ARMv8-M [10]. To the best of
our knowledge, InversOS is the first to provide hardware-
assisted protected shadow stacks on AArch64; our Privilege
Inversion technique is inspired by Silhouette-Invert [153].

Cryptographic CFI. Mashtizadeh et al. [88] created Cryp-
tographic CFI (CCFI), which uses message authentication

11

codes (MACs) to sign and verify code pointers and leverages
x86’s AES-NI instructions to accelerate MAC calculation.
ARMvVS8.3-A’s PAuth [9] adds hardware support for pointer
authentication codes (PACs) and places PACs in unused up-
per bits of pointers. Qualcomm has adopted PAuth to en-
force CFI [110]. However, CCFI and plain PAuth suffer from
pointer reuse attacks, in which attackers use buffer overread
vulnerabilities [122] to harvest signed pointers for later reuse.
Utilizing PAuth, PARTS [76] signs code pointers with type
IDs; this limits reuse of signed return addresses within the
same functions and signed function pointers within the same
types. PACStack [75] and PACtight [62] are also based on
PAuth; both solutions sign a return address with the PAC of
the previous return address, creating an authenticated stack.
PACtight further signs a function pointer with its address
and a random tag. Studies on type-ID-based PACs [136] and
authenticated chain of return addresses [74] have also been
explored on RISC-V as custom ISA extensions. PAL [146]
uses PAuth to provide CFI for OS kernels.

As PACStack [75] and PACtight [62] share the most similar
threat model, assumptions, and security guarantees with In-
versOS, we compare InversOS with them in more detail. PAC-
Stack claims that its authenticated stack “achieves security
comparable to hardware-assisted shadow stacks without re-
quiring dedicated hardware”; we show that InversOS achieves
hardware-assisted shadow stacks with even less hardware
requirements (ARMv8.1-A’s PAN and HPDS vs. ARMv8.3-
A’s PAuth). Furthermore, PACStack requires forward-edge
CFI but reported performance numbers without accounting
its overhead. For an apples-to-apples comparison, InversOS
without forward-edge CFI outperforms PACStack (1.9% vs.
~3.0% on SPEC CPU 2017 and <3.0% vs. 6-13% on Nginx).
PACtight enforces finer-grained forward-edge CFI than In-
versOS and its performance (4.0% on Nginx) is roughly on par
with InversOS. However, PACtight maintains an in-memory
metadata storage for the random tags at runtime and relies
on ASLR [106] to hide its location. Essentially, PAC-based
systems only offer probabilistic security even if the entropy

they provide is large. In contrast, InversOS’s shadow stacks
are integrity-enforced, providing the strongest guarantees.

Other Approaches. Kuznetsov et al. [71] developed code-
pointer integrity (CPI), an approach to ensuring memory
safety of all code pointers and data related to code pointers.
CPI identifies such data via static analysis and instrumenta-
tion and places the data in isolated safe regions. Again, seg-
mentation [3, 61] and ASLR [106] were used to protect the
safe regions on x86_32 and x86_64, respectively. PACtight-
CPI [62] implements CPI using PAuth, incurring 4.07% perfor-
mance overhead on average. InversOS’s Privilege Inversion
provides an alternative option to protect CPI’s safe regions
with potentially less overhead. uRAI [4] enforces return ad-
dress integrity on microcontrollers by encoding return ad-
dresses in a reserved register and ensuring that the register
value is never corrupted; it relies on system calls to spill the
register value to protected memory when needing to fold a
call chain longer than what a single register can hold. While
1URAT is in theory applicable to general-purpose systems like
x86 and AArch64, we believe such an approach provides
poor scalability and may incur high performance overhead
due to more nested function calls than on microcontrollers.

8.2 Intra-Address Space Isolation

InversOS uses Privilege Inversion for efficient intra-address
space isolation. We omit discussing custom hardware modifi-
cations that compartmentalize software (e.g., CODOMs [130]
and Mondrian [140, 141]) and limit our discussion on related
work utilizing recent commodity hardware. Approaches used
to enforce CFI are also not repeated here.

SFI [89, 132] instruments program loads and stores to
prevent them from accessing certain memory regions and
has been used to sandbox untrusted code [70, 115, 145].
While some systems [40, 69] accelerate SFI checks using
MPX on x86, the overhead of SFI is still considered high
(on both performance [138] and memory usage [18]) and
grows as the number of isolated regions increases. Further-
more, SFI often requires CFI to ensure that SFI checks are
not bypassed by attacker-manipulated control flow. Another
address-based isolation technique is hardware-enforced ad-
dress range monitoring. PicoXOM [118] enforces execute-
only memory (XOM) by configuring ARM debug registers
to watch over a code segment against read accesses. Such
approaches are limited by hardware resources available and
cannot scale up.

Recent defenses enforce domain-based isolation; memory
regions are associated with a protection domain, and differ-
ent mechanisms are used to allow or disallow accesses to the
protection domain at runtime. On x86, researchers have ex-
plored domain-based memory access control using hardware
features such as Virtual Machine Extensions (VMX) [54, 57,
69, 81, 91, 96, 109, 138], MPK [54, 55, 57, 104, 112, 113, 123,
127, 131, 135], SMAP [138], and CET [144]. ARMlock [154]

12

and Shreds [23] use ARM domains, which are only available
on AArch32 [9]. Previous work has also used LSU instruc-
tions for isolation. ILDI [26] utilizes LSU instructions and
PAN to protect a safe region inside the OS kernel; it relies on
a more privileged hypervisor to moderate sensitive kernel
operations. uXOM [72] transforms regular loads/stores to
LSU instructions to enforce XOM on microcontrollers, where
application code typically executes in the privileged mode
already. InversOS, employing Privilege Inversion, is the first
to extend domain-based isolation to AArch64 user space.

We notice that Privbox [70] and SEIMI [138], like InversOS,
also proposed executing user-space code in the privileged
mode (x86’s ring 0). Privbox does so to accelerate system call
invocation and uses SFI to safely run elevated code. The over-
head of its heavy instrumentation, however, may outweigh
its speedup from faster system calls on certain programs. In-
versOS can benefit from the idea of system call acceleration
for elevated tasks, which we leave as future work. SEIMI
flips SMAP (x86 equivalence to PAN) to create a safe region
for trusted user-space code; its OS kernel is then elevated to
run in ring -1 via VMX. Compared with SEIMI, InversOS’s
Privilege Inversion provides instruction-level isolation and
requires no frequent domain switching.

9 Conclusions and Future Work

In conclusion, we presented InversOS, a hardware-assisted
protected shadow stack implementation for AArch64, which
utilizes common hardware features to create novel and effi-
cient intra-address space isolation and safely executes user-
space code in the privileged mode via OS kernel and compiler
restraints. InversOS is backward-compatible with existing ap-
plication binaries by a novel use of another AArché4 feature.
Our analysis shows that InversOS is secure and effective in
mitigating attacks, and our performance evaluation demon-
strates the low costs of InversOS on real-world benchmarks
and applications. Our prototype of InversOS is open-sourced
at https://github.com/URSec/InversOS.

We see several directions for future work. First, we can
explore system call optimizations (such as Privbox [70]) for
elevated tasks; these tasks already run in the privileged mode
and can accelerate system call invocation by avoiding the
costly SVC instructions. Second, we can leverage Privilege
Inversion to enforce other security policies such as CPI [71]
and full memory safety [38, 94, 95, 152], reducing their over-
heads significantly. Finally, we intend to investigate potential
performance improvements to InversOS by using more re-
cent ISA features (e.g., BTI and EOPD) [9] on real hardware.

Acknowledgments

This work was supported by ONR Award N00014-17-1-2996
and NSF Awards CNS-1955498 and CNS-2154322.

References

(1]

[2

—

(3]

[4

[l

(5]

G

—

[7

—

(8]

(9]

(10]

(11]

[12

—

(13

—_

(14]

(15]

(16]

(17]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.
Control-Flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS "05). ACM, Alexandria,
VA, USA, 340-353. https://doi.org/10.1145/1102120.1102165

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009.
Control-Flow Integrity Principles, Implementations, and Applications.
ACM Transactions on Information and System Security 13, 1, Article 4
(Nov. 2009), 40 pages. https://doi.org/10.1145/1609956.1609960
Advanced Micro Devices Inc. 2023. AMD64 Architecture Programmer’s
Manual. Advanced Micro Devices Inc. https://www.amd.com/en
/support/tech-docs/amdé64-architecture-programmers-manual-
volumes-1-5 40332 Rev 4.06.

Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and
Mathias Payer. 2020. yRAI: Securing Embedded Systems with Return
Address Integrity. In Proceedings of the 2020 Network and Distributed
System Security Symposium (NDSS °20). Internet Society, San Diego,
CA, USA, 18 pages. https://doi.org/10.14722/ndss.2020.24016
Amazon Web Services 2023. Amazon EC2 A1 Instances: Optimized
cost and performance for scale-out workloads. https://aws.amazon.c
om/ec2/instance-types/al

Apache 2023. ab - Apache HTTP server benchmarking tool. https:
//httpd.apache.org/docs/current/programs/ab.html

Apple 2020. Apple unleashes M1. https://www.apple.com/newsroom
/2020/11/apple-unleashes-m1

Arm Holdings 2021. Arm®v7-M Architecture Reference Manual. Arm
Holdings. https://developer.arm.com/documentation/ddi0403/ee
DDI 0403E.e.

Arm Holdings 2022. Arm® Architecture Reference Manual: for A-profile
architecture. Arm Holdings. https://developer.arm.com/documentat
ion/ddi0487/ia DDI 0487La.

Arm Holdings 2022. Arm®v8-M Architecture Reference Manual. Arm
Holdings. https://developer.arm.com/documentation/ddi0553/bv
DDI 0553B.v.

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Maziéres, and
Dan Boneh. 2014. Hacking Blind. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy (SP ’14). IEEE Computer Society,
San Jose, CA, USA, 227-242. https://doi.org/10.1109/SP.2014.22
Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating Code-
Reuse Attacks with Control-Flow Locking. In Proceedings of the 27th
Annual Computer Security Applications Conference (ACSAC ’11). ACM,
Orlando, FL, USA, 353-362. https://doi.org/10.1145/2076732.2076783
Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011.
Jump-Oriented Programming: A New Class of Code-Reuse Attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS ’11). ACM, Hong Kong, China,
30-40. https://doi.org/10.1145/1966913.1966919

Dimitar Bounov, Rami Goékhan Kici, and Sorin Lerner. 2016. Pro-
tecting C++ Dynamic Dispatch Through VTable Interleaving. In Pro-
ceedings of the 2016 Network and Distributed System Security Sym-
posium (NDSS ’16). Internet Society, San Diego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2016.23421

Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux
Kernel (3rd ed.). O’Reilly & Associates Inc, Sebastopol, CA, USA.
Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity:
Precision, Security, and Performance. Comput. Surveys 50, 1, Article
16 (April 2017), 33 pages. https://doi.org/10.1145/3054924

Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer.
2018. CFIXX: Object Type Integrity for C++. In Proceedings of the
2018 Network and Distributed System Security Symposium (NDSS ’18).
Internet Society, San Diego, CA, USA, 14 pages. https://doi.org/10.1
4722/ndss.2018.23279

13

(18]

[19

-

[20

=

[21

—

[22

—

[23

—_

(24

[l

[25

=

(26

[l

[27]

(28

=

[29]

Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining
Light on Shadow Stacks. In Proceedings of the 2019 IEEE Symposium on
Security and Privacy (SP ’19). IEEE Computer Society, San Francisco,
CA, USA, 985-999. https://doi.org/10.1109/SP.2019.00076

Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. 2015. Control-Flow Bending: On the Effectiveness
of Control-flow Integrity. In Proceedings of the 24th USENIX Security
Symposium (Security ’15). USENIX Association, Washington, DC,
USA, 161-176. https://www.usenix.org/conference/usenixsecurity
15/technical-sessions/presentation/carlini

Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous:
Breaking Modern Defenses. In Proceedings of the 23rd USENIX Security
Symposium (Security ’14). USENIX Association, San Diego, CA, USA,
385-399. https://www.usenix.org/conference/usenixsecurity14/tec
hnical-sessions/presentation/carlini

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast Byte-Granularity Software Fault Isolation. In Proceedings
of the 22nd ACM SIGOPS Symposium on Operating Systems Principles
(SOSP *09). ACM, Big Sky, MT, USA, 45-58. https://doi.org/10.1145/
1629575.1629581

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. 2005. Non-Control-Data Attacks Are Realistic Threats. In
Proceedings of the 14th USENIX Security Symposium (Security "05).
USENIX Association, Baltimore, MD, USA, 177-191. https://www.us
enix.org/conference/14th-usenix-security-symposium/non-control-
data-attacks-are-realistic-threats

Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and
Long Lu. 2016. Shreds: Fine-Grained Execution Units with Private
Memory. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP ’16). IEEE Computer Society, San Jose, CA, USA, 56-71.
https://doi.org/10.1109/SP.2016.12

Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H.
Deng. 2014. ROPecker: A Generic and Practical Approach for Defend-
ing Against ROP Attacks. In Proceedings of the 2014 Network and Dis-
tributed System Security Symposium (NDSS °14). Internet Society, San
Diego, CA, USA, 14 pages. https://doi.org/10.14722/ndss.2014.23156
Tzi-Cker Chiueh and Fu-Hau Hsu. 2001. RAD: A Compile-Time
Solution to Buffer Overflow Attacks. In Proceedings of the 21st In-
ternational Conference on Distributed Computing Systems (ICDCS
’01). IEEE Computer Society, Mesa, AZ, USA, 409-417. https:
//doi.org/10.1109/ICDSC.2001.918971

Yeongpil Cho, Donghyun Kwon, and Yunheung Paek. 2017.
Instruction-Level Data Isolation for the Kernel on ARM. In Pro-
ceedings of the 54th ACM/EDAC/IEEE Annual Design Automation
Conference (DAC ’17). ACM, Austin, TX, USA, Article 26, 6 pages.
https://doi.org/10.1145/3061639.3062267

Nick Christoulakis, George Christou, Elias Athanasopoulos, and
Sotiris Ioannidis. 2016. HCFI: Hardware-Enforced Control-Flow In-
tegrity. In Proceedings of the 6th ACM Conference on Data and Appli-
cation Security and Privacy (CODASPY °16). ACM, New Orleans, LA,
USA, 38-49. https://doi.org/10.1145/2857705.2857722

Tobias Cloosters, David Paaflen, Jianqiang Wang, Oussama Draissi,
Patrick Jauernig, Emmanuel Stapf, Lucas Davi, and Ahmad-Reza
Sadeghi. 2022. RiscyROP: Automated Return-Oriented Programming
Attacks on RISC-V and ARM64. In Proceedings of the 25th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 22).
ACM, Limassol, Cyprus, 30-42. https://doi.org/10.1145/3545948.35
45997

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. 2015. Losing Control: On the Effectiveness of Control-
Flow Integrity under Stack Attacks. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS

(30]

’15). ACM, Denver, CO, USA, 952-963. https://doi.org/10.1145/2810
103.2813671

Marc L. Corliss, E. Christopher Lewis, and Amir Roth. 2005. Using
DISE to Protect Return Addresses from Attack. SIGARCH Computer
Architecture News 33, 1 (March 2005), 65-72. https://doi.org/10.114
5/1055626.1055636

[31] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI:

(32]

(33]

(34]

(35]

(36]

(37]

(38

=

(39

—

(40]

Complete Control-Flow Integrity for Commodity Operating System
Kernels. In Proceedings of the 2014 IEEE Symposium on Security and
Privacy (SP ’14). IEEE Computer Society, San Jose, CA, USA, 292-307.
https://doi.org/10.1109/SP.2014.26

Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS °14). ACM, Salt Lake
City, UT, USA, 333-348. https://doi.org/10.1145/2541940.2541946
Thurston HY. Dang, Petros Maniatis, and David Wagner. 2015. The
Performance Cost of Shadow Stacks and Stack Canaries. In Proceed-
ings of the 10th ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS ’15). ACM, Singapore, Republic of
Singapore, 555-566. https://doi.org/10.1145/2714576.2714635
Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer,
Thorsten Holz, Ralf Hund, Stefan Niirnberger, and Ahmad-Reza
Sadeghi. 2012. MoCFI: A Framework to Mitigate Control-Flow At-
tacks on Smartphones. In Proceedings of the 2012 Network and Dis-
tributed System Security Symposium (NDSS °12). Internet Society, San
Diego, CA, USA, 17 pages. https://www.ndss-symposium.org/nd
$52012/ndss-2012-programme/mocfi-framework-mitigate-control-
flow-attacks-smartphonesoverlay-contextmocfi-framework-
mitigate-control-flow-attacks-smartphones

Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi,
Patrick Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015.
HAFIX: Hardware-Assisted Flow Integrity Extension. In Proceedings
of the 52nd ACM/EDAC/IEEE Annual Design Automation Conference
(DAC ’15). ACM, San Francisco, CA, USA, Article 74, 6 pages. https:
//doi.org/10.1145/2744769.2744847

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Mon-
rose. 2014. Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection. In Proceedings of the 23rd
USENIX Security Symposium (Security ’14). USENIX Association, San
Diego, CA, USA, 401-416. https://www.usenix.org/conference/usen
ixsecurity 14/technical-sessions/presentation/davi

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPde-
fender: A Detection Tool to Defend against Return-Oriented Program-
ming Attacks. In Proceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS ’11). ACM,
Hong Kong, China, 40-51. https://doi.org/10.1145/1966913.1966920
Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-
Code: Enforcing Alias Analysis for Weakly Typed Languages. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI *06). ACM, Ottawa, ON,
Canada, 144-157. https://doi.org/10.1145/1133981.1133999

Ren Ding, Chenxiong Qian, Chengyu Song, William Harris, Taesoo
Kim, and Wenke Lee. 2017. Efficient Protection of Path-Sensitive Con-
trol Security. In Proceedings of the 26th USENIX Security Symposium
(Security ’17). USENIX Association, Vancouver, BC, Canada, 131-148.
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/ding

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sand-
hya Dwarkadas. 2018. Shielding Software from Privileged Side-
Channel Attacks. In Proceedings of the 27th USENIX Security Sympo-
sium (Security °18). USENIX Association, Baltimore, MD, USA, 1441-
1458. https://www.usenix.org/conference/usenixsecurity 18/present
ation/dong

14

[41] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J. Walls,

[42

(43

(44

[47

[48

(49

(50

[51

[52

[53

(54

—

—_

flan?

—

=

[

[t

—

= =

flan)

and John Criswell. 2022. Holistic Control-Flow Protection on Real-
Time Embedded Systems with Kage. In Proceedings of the 31st USENIX
Security Symposium (Security °22). USENIX Association, Boston, MA,
USA, 2281-2298. https://www.usenix.org/conference/usenixsecurity
22/presentation/du

Alexandru Elisei. 2019. bhyvearm64: CPU and Memory Virtualization
on Armv8.0-A. In The BSDCan Conference. Ottawa, ON, Canada.
https://www.bsdcan.org/2019/schedule/events/1074.en.html

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. 2006. XFI: Software Guards for System Address
Spaces. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI *06). USENIX Association,
Seattle, WA, USA, 75-88. https://www.usenix.org/conference/osdi-
06/xfi-software-guards-system-address-spaces

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015.
Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow
Integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15). ACM, Denver, CO, USA,
901-913. https://doi.org/10.1145/2810103.2813646

Rich Felker et al. 2021. musl libc. https://musl.libc.org

Mike Frantzen and Mike Shuey. 2001. StackGhost: Hardware Facil-
itated Stack Protection. In Proceedings of the 10th USENIX Security
Symposium (Security *01). USENIX Association, Washington, DC, USA,
11 pages. https://www.usenix.org/conference/10th-usenix-security-
symposium/stackghost-hardware-facilitated-stack-protection
Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany,
and Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to
Overcome Diversification and Information Hiding. In Proceedings of
the 2016 Network and Distributed System Security Symposium (NDSS
’16). Internet Society, San Diego, CA, USA, 15 pages. https://doi.org/
10.14722/ndss.2016.23262

Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding
Control Flows Using Intel Processor Trace. In Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS °17). ACM, Xi’an, China,
585-598. https://doi.org/10.1145/3037697.3037716

Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016.
Fine-Grained Control-Flow Integrity for Kernel Software. In Proceed-
ings of the 2016 IEEE European Symposium on Security and Privacy
(EuroSP ’16). IEEE Computer Society, Saarbruecken, Germany, 179—
194. https://doi.org/10.1109/EuroSP.2016.24

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. 2014. Out of Control: Overcoming Control-Flow Integrity.
In Proceedings of the 2014 IEEE Symposium on Security and Pri-
vacy (SP ’14). IEEE Computer Society, San Jose, CA, USA, 575-589.
https://doi.org/10.1109/SP.2014.43

Enes Goktas, Robert Gawlik, Benjamin Kollenda, Elias Athanasopou-
los, Georgios Portokalidis, Cristiano Giuffrida, and Herbert Bos.
2016. Undermining Information Hiding (and What to Do about
It). In Proceedings of the 25th USENIX Security Symposium (Secu-
rity ’16). USENIX Association, Austin, TX, USA, 105-119. https:
//www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/goktas

Google Cloud 2023. Arm VMs on Compute. https://cloud.google.com
/compute/docs/instances/arm-on-compute

Spyridoula Gravani, Mohammad Hedayati, John Criswell, and
Michael L. Scott. 2021. Fast Intra-Kernel Isolation and Security with
IskiOS. In Proceedings of the 24th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID °21). ACM, San Sebastian,
Spain, 119-134. https://doi.org/10.1145/3471621.3471849

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK:
Scalable and Efficient Memory Protection Keys. In Proceedings of

(55

(56

(57

(58

[59

(60

(61

(62

(63

(64

(65

]

—

]

[t

]

]

—

—

=

[l

—

the 2022 USENIX Annual Technical Conference (ATC 22). USENIX
Association, Carlsbad, CA, USA, 609-624. https://www.usenix.org/c
onference/atc22/presentation/gu-jinyu

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia,
and Haibo Chen. 2020. Harmonizing Performance and Isolation in
Microkernels with Efficient Intra-Kernel Isolation and Communi-
cation. In Proceedings of the 2020 USENIX Annual Technical Confer-
ence (ATC °20). USENIX Association, Virtual Event, 401-417. https:
//www.usenix.org/conference/atc20/presentation/gu

Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqgiang Lin. 2017.
PT-CFI: Transparent Backward-Edge Control Flow Violation Detec-
tion Using Intel Processor Trace. In Proceedings of the 7th ACM Con-
ference on Data and Application Security and Privacy (CODASPY ’17).
ACM, Scottsdale, AZ, USA, 173-184. https://doi.org/10.1145/302980
6.3029830

Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC
’19). USENIX Association, Renton, WA, USA, 489-503. https:
//www.usenix.org/conference/atc19/presentation/hedayati-hodor
Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing
Unique Code Target Property for Control-Flow Integrity. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’18). ACM, Toronto, ON, Canada, 1470-1486.
https://doi.org/10.1145/3243734.3243797

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. 2016. Data-Oriented Program-
ming: On the Expressiveness of Non-Control Data Attacks. In Pro-
ceedings of the 2016 IEEE Symposium on Security and Privacy (SP
’16). IEEE Computer Society, San Jose, CA, USA, 969-986. https:
//doi.org/10.1109/SP.2016.62

Wei Huang, Zhen Huang, Dhaval Miyani, and David Lie. 2016. LMP:
Light-Weighted Memory Protection with Hardware Assistance. In
Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC ’16). ACM, Los Angeles, CA, USA, 460-470.
https://doi.org/10.1145/2991079.2991089

Intel Corporation 2022. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Intel Corporation. https://www.intel.com/cont
ent/www/us/en/developer/articles/technical/intel-sdm.html Order
Number: 325462-078US.

Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. 2022. Tightly Seal Your Sensitive Pointers
with PACTight. In Proceedings of the 31st USENIX Security Symposium
(Security "22). USENIX Association, Boston, MA, USA, 3717-3734.
https://www.usenix.org/conference/usenixsecurity22/presentation/
ismail

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. 2018. Block Oriented Programming: Automating Data-Only
Attacks. In Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18). ACM, Toronto, ON,
Canada, 1868-1882. https://doi.org/10.1145/3243734.3243739
Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SAFEDI1s-
PATCH: Securing C++ Virtual Calls from Memory Corruption Attacks.
In Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS °14). Internet Society, San Diego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2014.23287

Ethan Johnson, Colin Pronovost, and John Criswell. 2022. Hardening
Hypervisors with Ombro. In Proceedings of the 2022 USENIX Annual
Technical Conference (ATC °22). USENIX Association, Carlsbad, CA,
USA, 415-435. https://www.usenix.org/conference/atc22/presentati
on/johnson

15

[66] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara, and Hiroaki

[67

(68

(69

[70

(71

(72

(73

(74

(75

(76

(77
(78

(79

—

]

—

=

—

]

-

[l

=

=

[et

Takada. 2021. TZmCFI: RTOS-Aware Control-Flow Integrity Using
TrustZone for Armv8-M. International Journal of Parallel Program-
ming 49 (April 2021), 216-236. https://doi.org/10.1007/s10766-020-
00673-z

Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin
Zhou, and Yueqiang Cheng. 2019. Adaptive Call-Site Sensitive Control
Flow Integrity. In Proceedings of the 2019 IEEE European Symposium on
Security and Privacy (EuroSP '19). IEEE Computer Society, Stockholm,
Sweden, 95-110. https://doi.org/10.1109/EuroSP.2019.00017
Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang,
and Jie Yang. 2019. Origin-Sensitive Control Flow Integrity. In Proceed-
ings of the 28th USENIX Security Symposium (Security ’19). USENIX
Association, Santa Clara, CA, USA, 195-211. https://www.usenix.o
rg/conference/usenixsecurity 19/presentation/khandaker

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. 2017. No Need to Hide: Protecting Safe Regions on
Commodity Hardware. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys °17). ACM, Belgrade, Serbia, 437-452.
https://doi.org/10.1145/3064176.3064217

Dmitry Kuznetsov and Adam Morrison. 2022. Privbox: Faster System
Calls Through Sandboxed Privileged Execution. In Proceedings of
the 2022 USENIX Annual Technical Conference (ATC °22). USENIX
Association, Carlsbad, CA, USA, 233-247. https://www.usenix.org/c
onference/atc22/presentation/kuznetsov

Volodymyr Kuznetsov, Laszl6 Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In Pro-
ceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI °14). USENIX Association, Broomfield, CO,
USA, 147-163. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/kuznetsov

Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee,
Yeongpil Cho, and Yunheung Paek. 2019. uXOM: Efficient eXecute-
Only Memory on ARM Cortex-M. In Proceedings of the 28th USENIX
Security Symposium (Security ’19). USENIX Association, Santa Clara,
CA, USA, 231-247. https://www.usenix.org/conference/usenixsecu
rity19/presentation/kwon

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2nd International Symposium on Code Generation and Optimiza-
tion (CGO °04). IEEE Computer Society, Palo Alto, CA, USA, 12 pages.
https://doi.org/10.1109/CG0.2004.1281665

Jinfeng Li, Liwei Chen, Qizhen Xu, Linan Tian, Gang Shi, Kai Chen,
and Dan Meng. 2020. Zipper Stack: Shadow Stacks Without Shadow.
In Proceedings of the 25th European Symposium on Research in Com-
puter Security (ESORICS °20). Springer-Verlag, Guildford, UK, 338-358.
https://doi.org/10.1007/978-3-030-58951-6_17

Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg,
and N. Asokan. 2021. PACStack: an Authenticated Call Stack. In
Proceedings of the 30th USENIX Security Symposium (Security "21).
USENIX Association, Virtual Event, 357-374. https://www.usenix.o
rg/conference/usenixsecurity21/presentation/liljestrand

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer
Integrity using ARM Pointer Authentication. In Proceedings of the
28th USENIX Security Symposium (Security '19). USENIX Association,
Santa Clara, CA, USA, 177-194. https://www.usenix.org/conferenc
e/usenixsecurity19/presentation/liljestrand

Linux 2020. Linux Kernel Source Tree v5.6. https://git.kernel.org/pub
/scm/linux/kernel/git/torvalds/linux.git/tree/?h=v5.6

Linux 2021. Linux Kernel Stable Tree v4.19.219. https://git.kernel.org
/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v4.19.219

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

(80]

(81

[89

[90

[91

[92

[93

[95

]

=

]

]

]

—

[t

flam)

—

Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:
Reading Kernel Memory from User Space. In Proceedings of the 27th
USENIX Security Symposium (Security ’18). USENIX Association, Bal-
timore, MD, USA, 973-990. https://www.usenix.org/conference/us
enixsecurity18/presentation/lipp

Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. 2017. Transparent and Efficient CFI Enforcement with
Intel Processor Trace. In Proceedings of the 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA ’17).
IEEE Computer Society, Austin, TX, USA, 529-540. https://doi.org/
10.1109/HPCA.2017.18

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
2015. Thwarting Memory Disclosure with Efficient Hypervisor-
Enforced Intra-Domain Isolation. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS
’15). ACM, Denver, CO, USA, 1607-1619. https://doi.org/10.1145/28
10103.2813690

LLVM 2021. “libc++” C++ Standard Library. https://libcxx.llvm.org
LLVM 2021. “libc++abi” C++ Standard Library Support. https://libc
xxabi.llvm.org

LLVM 2021. libunwind LLVM Unwinder. https://bcain-llvm.readthe
docs.io/projects/libunwind

LLVM 2022. ‘compiler-rt” runtime libraries. https://compiler-
rt.llvm.org
LLVM 2023. lib/CodeGen/IndirectBrExpandPass.cpp File Reference.

https://llvm.org/doxygen/IndirectBrExpandPass_8cpp.html

LLVM 2023. LLD - The LLVM Linker. https://lld.llvm.org

Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maziéres.
2015. CCFI: Cryptographically Enforced Control Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). ACM, Denver, CO, USA, 941-951.
https://doi.org/10.1145/2810103.2813676

Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a
CISC Architecture. In Proceedings of the 15th USENIX Security Sym-
posium (Security "06). USENIX Association, Vancouver, BC. Canada,
209-224. https://www.usenix.org/conference/15th-usenix-security-
symposium/evaluating-sfi-cisc-architecture

Larry McVoy and Carl Staelin. 1996. Imbench: Portable Tools for
Performance Analysis. In Proceedings of the 1996 USENIX Annual
Technical Conference (ATC *96). USENIX Association, San Diego, CA,
USA, 16 pages. https://www.usenix.org/legacy/publications/library
/proceedings/sd96/mcvoy.html

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen.
2019. SkyBridge: Fast and Secure Inter-Process Communication
for Microkernels. In Proceedings of the 14th European Conference on
Computer Systems (EuroSys '19). ACM, Dresden, Germany, Article 9,
15 pages. https://doi.org/10.1145/3302424.3303946

Microsoft Azure 2022. Azure Virtual Machines with Ampere Altra
Arm-—based processors—generally available. https://azure.microsoft.
com/en-us/blog/azure-virtual-machines-with-ampere-altra-arm-
based-processors-generally-available

Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen,
and Michael Franz. 2015. Opaque Control-Flow Integrity. In Pro-
ceedings of the 2015 Network and Distributed System Security Sym-
posium (NDSS ’15). Internet Society, San Diego, CA, USA, 15 pages.
https://doi.org/10.14722/ndss.2015.23271

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spa-
tial Memory Safety for C. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI °09). ACM, Dublin, Ireland, 245-258. https://doi.org/10.1145/
1542476.1542504

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for

16

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[l

—

=

-

=

—

= S

[l

]
]

—

=

—

C. In Proceedings of the 2010 International Symposium on Memory
Management (ISMM °10). ACM, Toronto, ON, Canada, 31-40. https:
//doi.org/10.1145/1806651.1806657

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. 2020. Lightweight Kernel Isolation with Virtualization
and VM Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE °20).
ACM, Lausanne, Switzerland, 157-171. https://doi.org/10.1145/3381
052.3381328

Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’13). ACM, Berlin, Germany, 199-210. https://doi.org/10.1145/2508
859.2516649

Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI '14). ACM, Edinburgh,
UK, 577-587. https://doi.org/10.1145/2594291.2594295

Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). ACM, Denver, CO, USA, 914-926.
https://doi.org/10.1145/2810103.2813644

Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. 2017.
CFI CaRE: Hardware-Supported Call and Return Enforcement for
Commercial Microcontrollers. In Proceedings of the 20th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID
’17). Springer-Verlag, Atlanta, GA, USA, 259-284. https://doi.org/10
.1007/978-3-319-66332-6_12

Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. 2016. Poking Holes in Information Hiding. In
Proceedings of the 25th USENIX Security Symposium (Security ’'16).
USENIX Association, Austin, TX, USA, 121-138. https://www.usen
ix.org/conference/usenixsecurity16/technical-sessions/presentatio
n/oikonomopoulos

Oracle Cloud Infrastructure 2023. Ampere A1 Compute.
//www.oracle.com/cloud/compute/arm

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis.
2013. Transparent ROP Exploit Mitigation Using Indirect Branch
Tracing. In Proceedings of the 22nd USENILX Security Symposium (Se-
curity ’13). USENIX Association, Washington, DC, USA, 447-462.
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/paper/pappas

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo
Kim. 2019. libmpk: Software Abstraction for Intel Memory Protection
Keys (Intel MPK). In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC ’19). USENIX Association, Renton, WA, USA, 241-
254. https://www.usenix.org/conference/atc19/presentation/park-
soyeon

PaX Team 2000. Non-Executable Pages Design & Implementation.
https://pax.grsecurity.net/docs/noexec.txt

PaX Team 2001. Address Space Layout Randomization. https://pax.gr
security.net/docs/aslr.txt

Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-
Grained Control-Flow Integrity Through Binary Hardening. In Pro-
ceedings of the 12th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA °15). Springer-
Verlag, Milan, Italy, 144-164. https://doi.org/10.1007/978-3-319-
20550-2_8

Jannik Pewny and Thorsten Holz. 2013. Control-Flow Restrictor:
Compiler-Based CFI for iOS. In Proceedings of the 29th Annual Com-
puter Security Applications Conference (ACSAC °13). ACM, New Or-
leans, LA, USA, 309-318. https://doi.org/10.1145/2523649.2523674
Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia,
Vasileios P. Kemerlis, and Michalis Polychronakis. 2020. xMP:

https:

-

—

flam)

—

—

=

—

—

Selective Memory Protection for Kernel and User Space. In Pro-
ceedings of the 2020 IEEE Symposium on Security and Privacy (SP
"20). IEEE Computer Society, San Francisco, CA, USA, 563-577.
https://doi.org/10.1109/SP40000.2020.00041

Qualcomm 2017. Pointer Authentication on ARMv8.3: Design and Anal-
ysis of the New Software Security Instructions. White Paper. Qualcomm
Technologies, Inc. https://www.qualcomm.com/content/dam/qco
mm-martech/dm-assets/documents/pointer-auth-v7.pdf

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Transactions on Information and System Security 15,
1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/2133375.
2133377

Vasily A. Sartakov, Lluis Vilanova, and Peter Pietzuch. 2021. Cubi-
cleOS: A Library OS with Software Componentisation for Practical
Isolation. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS °21). ACM, Virtual Event, 546-558. https:
//doi.org/10.1145/3445814.3446731

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky:
Domain Keys - Efficient In-Process Isolation for RISC-V and x86.
In Proceedings of the 29th USENIX Security Symposium (Security °20).
USENIX Association, Boston, MA, USA, 1677-1694. https://www.us
enix.org/conference/usenixsecurity20/presentation/schrammel
Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications. In Proceedings of the 2015 IEEE Sympo-
sium on Security and Privacy (SP ’15). IEEE Computer Society, San
Jose, CA, USA, 745-762. https://doi.org/10.1109/SP.2015.51

David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. 2010. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In Proceedings
of the 19th USENIX Security Symposium (Security ’10). USENIX Asso-
ciation, Washington, DC, USA, 11 pages. https://www.usenix.org
/conference/usenixsecurity10/adapting-software-fault-isolation-
contemporary-cpu-architectures

Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Proceedings
of the 14th ACM Conference on Computer and Communications Security
(CCS °07). ACM, Alexandria, VA, USA, 552-561. https://doi.org/10.1
145/1315245.1315313

Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Secu-
rity Analysis of Processor Instruction Set Architecture for Enforc-
ing Control-Flow Integrity. In Proceedings of the 8th International
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’19). ACM, Phoenix, AZ, USA, Article 8, 11 pages.
https://doi.org/10.1145/3337167.3337175

Zhuojia Shen, Komail Dharsee, and John Criswell. 2020. Fast Execute-
Only Memory for Embedded Systems. In Proceedings of the 2020 IEEE
Secure Development Conference (SecDev "20). IEEE Computer Society,
Atlanta, GA, USA, 7-14. https://doi.org/10.1109/SecDev45635.2020
.00017

Zhuojia Shen, Komail Dharsee, and John Criswell. 2022. Randezvous:
Making Randomization Effective on MCUs. In Proceedings of the 38th
Annual Computer Security Applications Conference (ACSAC 22). ACM,
Austin, TX, USA, 28-41. https://doi.org/10.1145/3564625.3567970
Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time
Code Reuse: On the Effectiveness of Fine-Grained Address Space
Layout Randomization. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP ’13). IEEE Computer Society, San Francisco,
CA, USA, 574-588. https://doi.org/10.1109/SP.2013.45

—

—_

=

—

=

—

=

—

—

—_

[121] Standard Performance Evaluation Corporation 2022. SPEC CPU®2017.

https://www.spec.org/cpu2017

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven
Lachmund, and Thomas Walter. 2009. Breaking the Memory Secrecy
Assumption. In Proceedings of the 2nd European Workshop on System
Security (EuroSec '09). ACM, Nuremburg, Germany, 1-8. https:
//doi.org/10.1145/1519144.1519145

Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
2020. Intra-Unikernel Isolation with Intel Memory Protection Keys.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE °20). ACM, Lausanne,
Switzerland, 143-156. https://doi.org/10.1145/3381052.3381326
Igor Sysoev et al. 2022. nginx. https://nginx.org/en

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Check-
oway, Ulfar Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing
Forward-Edge Control-Flow Integrity in GCC & LLVM. In Proceed-
ings of the 23rd USENIX Security Symposium (Security ’14). USENIX
Association, San Diego, CA, USA, 941-955. https://www.usenix.org
/conference/usenixsecurity 14/technical-sessions/presentation/tice
Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. 2011. On the Expressiveness of Return-into-
libc Attacks. In Proceedings of the 14th International Symposium on
Recent Advances in Intrusion Detection (RAID °11). Springer-Verlag,
Menlo Park, CA, USA, 121-141. https://doi.org/10.1007/978-3-642-
23644-0_7

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Effi-
cient In-process Isolation with Protection Keys (MPK). In Proceedings
of the 28th USENIX Security Symposium (Security ’19). USENIX Asso-
ciation, Santa Clara, CA, USA, 1221-1238. https://www.usenix.org/c
onference/usenixsecurity 19/presentation/vahldiek-oberwagner
Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
2015. Practical Context-Sensitive CFL In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS
’15). ACM, Denver, CO, USA, 927-940. https://doi.org/10.1145/2810
103.2813673

Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawoloski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giuffrida. 2016. A Tough call: Mitigating
Advanced Code-Reuse Attacks at the Binary Level. In Proceedings
of the 2016 IEEE Symposium on Security and Privacy (SP ’16). IEEE
Computer Society, San Jose, CA, USA, 934-953. https://doi.org/10.1
109/SP.2016.60

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and
Mateo Valero. 2014. CODOMs: Protecting Software with Code-
Centric Memory Domains. In Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture (ISCA ’14). IEEE Com-
puter Society, Minneapolis, MN, USA, 469-480. https://doi.org/10.1
109/ISCA.2014.6853202

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Vol-
ckaert. 2022. You Shall Not (by)Pass! Practical, Secure, and Fast
PKU-Based Sandboxing. In Proceedings of the 17th European Con-
ference on Computer Systems (EuroSys "22). ACM, Rennes, France,
266-282. https://doi.org/10.1145/3492321.3519560

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. 1993. Efficient Software-Based Fault Isolation. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles (SOSP
’93). ACM, Asheville, NC, USA, 203-216. https://doi.org/10.1145/16
8619.168635

Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A.
Shue, Hamed Okhravi, and Bryan C. Ward. 2019. Control-Flow
Integrity for Real-Time Embedded Systems. In Proceedings of the
31st Euromicro Conference on Real-Time Systems (ECRTS ’19). Schloss

[134

[135

[136

(137

[138

[139

[140

[141

(142

[143

(144

(145

(146

]

]

—

]

]

= =

—

]

=

[l

—

—

Dagstuhl-Leibniz-Zentrum fiier Informatik, Stuttgart, Germany, 2:1-
2:24. https://doi.org/10.4230/LIPlcs.ECRTS.2019.2

Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and
Dengguo Feng. 2015. Binary Code Continent: Finer-Grained Control
Flow Integrity for Stripped Binaries. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC ’15). ACM, Los
Angeles, CA, USA, 331-340. https://doi.org/10.1145/2818000.2818017
Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravin-
dran. 2020. Secure and Efficient In-Process Monitor (and Library)
Protection with Intel MPK. In Proceedings of the 13th European Work-
shop on Systems Security (EuroSec °20). ACM, Heraklion, Greece, 7-12.
https://doi.org/10.1145/3380786.3391398

Yu Wang, Jinting Wu, Tai Yue, Zhenyu Ning, and Fengwei Zhang.
2022. RetTag: Hardware-Assisted Return Address Integrity on RISC-
V. In Proceedings of the 15th European Workshop on Systems Security
(EuroSec "22). ACM, Rennes, France, 50-56. https://doi.org/10.1145/
3517208.3523758

Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow Integrity. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP
’10). IEEE Computer Society, Oakland, CA, USA, 380-395. https:
//doi.org/10.1109/SP.2010.30

Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqgian Zhang, Kangjie
Lu, Xiaofeng Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020.
SEIMLI: Efficient and Secure SMAP-Enabled Intra-process Memory
Isolation. In Proceedins of the 2020 IEEE Symposium on Security and
Privacy (SP "20). IEEE Computer Society, San Francisco, CA, USA,
592-607. https://doi.org/10.1109/SP40000.2020.00087

Wikipedia 2023. Comparison of ARM processors. https://en.wikiped
ia.org/wiki/Comparison_of ARM_processors#ARMv8-A

Emmett Witchel, Josh Cates, and Krste Asanovi¢. 2002. Mondrian
Memory Protection. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °02). ACM, San Jose, CA, USA, 304-316. https:
//doi.org/10.1145/605397.605429

Emmett Witchel, Junghwan Rhee, and Krste Asanovi¢. 2005. Mondrix:
Memory Isolation for Linux Using Mondriaan Memory Protection.
In Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05). ACM, Brighton, UK, 31-44. https://doi.org/10
.1145/1095810.10958 14

XAMPPRocky et al. 2021. Tokei: Count your code, quickly. https:
//github.com/XAMPPRocky/tokei

Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon:
Detecting Violation of Control Flow Integrity using Performance
Counters. In Proceedings of the 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN ’12). IEEE
Computer Society, Boston, MA, USA, 12 pages. https://doi.org/10.1
109/DSN.2012.6263958

Mengyao Xie, Chenggang Wu, Yingian Zhang, Jiali Xu, Yuanming
Lai, Yan Kang, Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting
Intel CET for Generic and Efficient Intra-Process Memory Isolation.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’22). ACM, Los Angeles, CA, USA,
2989-3002. https://doi.org/10.1145/3548606.3559344

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. 2009. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In Proceedings of the 2009 IEEE Symposium on Security
and Privacy (SP ’09). IEEE Computer Society, Oakland, CA, USA,
79-93. https://doi.org/10.1109/SP.2009.25

Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim.
2022. In-Kernel Control-Flow Integrity on Commodity OSes using
ARM Pointer Authentication. In Proceedings of the 31st USENIX Se-
curity Symposium (Security "22). USENIX Association, Boston, MA,

18

[147

[148

[149

[150

[151

[152

[153

[154

[155

—

=

—

=

—

—

=

=

[

USA, 89-106. https://www.usenix.org/conference/usenixsecurity22
/presentation/yoo

Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-
Assisted Fine-Grained Code-Reuse Attack Detection. In Proceedings
of the 18th International Symposium on Research in Attacks, Intrusions,
and Defenses (RAID ’15). Springer-Verlag, Kyoto, Japan, 66-85. https:
//doi.org/10.1007/978-3-319-26362-5_4

Bin Zeng, Gang Tan, and Ulfar Erlingsson. 2013. Strato: A Re-
targetable Framework for Low-Level Inlined-Reference Monitors.
In Proceedings of the 22nd USENIX Security Symposium (Security
’13). USENIX Association, Washington, DC, USA, 369-382. https:
//www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/zeng

Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining Control-
Flow Integrity and Static Analysis for Efficient and Validated Data
Sandboxing. In Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS °11). ACM, Chicago, IL, USA, 29-
40. https://doi.org/10.1145/2046707.2046713

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical Con-
trol Flow Integrity and Randomization for Binary Executables. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy
(SP ’13). IEEE Computer Society, San Francisco, CA, USA, 559-573.
https://doi.org/10.1109/SP.2013.44

Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS
Binaries. In Proceedings of the 22nd USENIX Security Symposium (Se-
curity ’13). USENIX Association, Washington, DC, USA, 337-352.
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/Zhang

Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy
Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free.
In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’19). ACM, Providence, RI, USA, 631-644. https://doi.org/10.1145/32
97858.3304017

Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J.
Walls. 2020. Silhouette: Efficient Protected Shadow Stacks for Embed-
ded Systems. In Proceedings of the 29th USENIX Security Symposium
(Security "20). USENIX Association, Boston, MA, USA, 1219-1236.
https://www.usenix.org/conference/usenixsecurity20/presentation/
zhou-jie

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARM-
lock: Hardware-Based Fault Isolation for ARM. In Proceedings of the
21st ACM Conference on Computer and Communications Security (CCS
’14). ACM, Scottsdale, AZ, USA, 558-569. https://doi.org/10.1145/26
60267.2660344

Philipp Zieris and Julian Horsch. 2018. A Leak-Resilient Dual Stack
Scheme for Backward-Edge Control-Flow Integrity. In Proceedings
of the 2018 ACM Asia Conference on Computer and Communications
Security (ASIACCS ’18). ACM, Incheon, Republic of Korea, 369-380.
https://doi.org/10.1145/3196494.3196531

	Abstract
	1 Introduction
	2 Background
	2.1 Protected Shadow Stacks
	2.2 AArch64 Architecture

	3 Threat Model
	4 Design
	4.1 Privilege Inversion
	4.2 Protected Shadow Stacks and Forward-Edge CFI
	4.3 Compatibility

	5 Implementation
	5.1 OS Kernel Modifications
	5.2 Compiler, Linker, and Library Modifications
	5.3 Discussion

	6 Security Analysis
	6.1 Security by Design
	6.2 Efficacy against Control-Flow Hijacking

	7 Performance Evaluation
	7.1 Microbenchmarks
	7.2 Macrobenchmarks and Applications

	8 Related Work
	8.1 Control-Flow Integrity
	8.2 Intra-Address Space Isolation

	9 Conclusions and Future Work
	Acknowledgments
	References

