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Abstract. Let γ be a generic closed curve in the plane. Samuel Blank,
in his 1967 Ph.D. thesis, determined if γ is self-overlapping by geomet-
rically constructing a combinatorial word from γ. More recently, Zipei
Nie, in an unpublished manuscript, computed the minimum homotopy
area of γ by constructing a combinatorial word algebraically. We pro-
vide a unified framework for working with both words and determine
the settings under which Blank’s word and Nie’s word are equivalent.
Using this equivalence, we give a new geometric proof for the correct-
ness of Nie’s algorithm. Unlike previous work, our proof is constructive
which allows us to naturally compute the actual homotopy that realizes
the minimum area. Furthermore, we contribute to the theory of self-
overlapping curves by providing the first polynomial-time algorithm to
compute a self-overlapping decomposition of any closed curve γ with
minimum area.
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1 Introduction

A closed curve in the plane is a continuous map γ from the circle S
1 to the

plane R
2. In the plane, any closed curve is homotopic to a point. A homotopy

that sweeps out the minimum possible area is a minimum homotopy. Chambers
and Wang [4] introduced the minimum homotopy area between two simple homo-
topic curves with common endpoints as a way to measure the similarity between
the two curves. They suggest that homotopy area is more robust against noise
than another popular similarity measure on curves called the Fréchet distance.
However, their algorithm requires that each curve be simple, which is restrictive.

Fasy, Karakoç, and Wenk [12] proved that the problem of finding the min-
imum homotopy area is easy on a closed curve that is the boundary of an im-
mersed disk. Such curves are called self-overlapping [10,15,18,23,24,26]. They
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also established a tight connection between minimum-area homotopy and self-
overlapping curves by showing that any generic closed curve can be decomposed
at some vertices into self-overlapping subcurves such that the combined homo-
topy from the subcurves is minimum. This structural result gives an exponential-
time algorithm for the minimum homotopy area problem by testing each decom-
position in a brute-force manner.

Nie, in an unpublished manuscript [19], described a polynomial-time algo-
rithm to determine the minimum homotopy area of any closed curve in the
plane. Nie’s algorithm borrows tools from geometric group theory by represent-
ing the curve as a word in the fundamental group π1(γ), and connects minimum
homotopy area to the cancellation norms [2,3,21] of the word, which can be
computed using a dynamic program. However, the algorithm does not naturally
compute an associated minimum-area homotopy.

Alternatively, one can interpret the words from the dynamic program geomet-
rically as crossing sequences by traversing any subcurve cyclicly and recording
the crossings along with their directions with a collection of nicely-drawn cables
from each face to a point at infinity. Such geometric representation is known as
the Blank words [1,22]. In fact, the first application of these combinatorial words
given by Blank is an algorithm that determines if a curve is self-overlapping.
Blank words are geometric in nature and thus the associated objects are poly-
nomial in size. When attempting to interpret Nie’s dynamic program from the
geometric view, one encounters the question of how to extend Blank’s definition
of cables to subcurves, where the cables inherited from the original curve are
no longer positioned well with respect to the subcurves. To our knowledge, no
geometric interpretation of the dynamic program is known.

1.1 Our Contributions

We first show that Blank and Nie’s word constructions are, in fact, equiva-
lent under the right assumptions (Section 3). Next, we extend the definition
of Blank’s word to subcurves and arbitrary cable drawings (Section 4.1), and
interpret the dynamic program by Nie geometrically (Section 4.2). Using the
self-overlapping decomposition theorem by Fasy, Karakoç, and Wenk [12] we
provide a correctness proof to the algorithm. Finally, we conclude with a new
result that a minimum-area self-overlapping decomposition can be found in poly-
nomial time. We emphasize that extending Blank words to allow arbitrary cables
is in no way straightforward. In fact, many assumptions on the cables have to
be made in order to connect self-overlapping curves and minimum-area homo-
topy; handling arbitrary cable systems, as seen in the dynamic program, requires
further tools from geometric topology like Dehn twists.

2 Background

In this section, we introduce concepts and definitions that are used through-
out the paper. We assume the readers are familiar with the basic terminology
for curves and surfaces.
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2.1 Curves and Graphs

A closed curve in the plane is a continuous map γ : S1 → R
2, and a path in the

plane is a continuous map ζ : [0, 1] → R
2. A path ζ is closed when ζ(0) = ζ(1).

In this work, we are presented with a generic curve; that is, one where there
are a finite number of self-intersections, each of which is transverse and no three
strands cross at the same point. See Figure 1 for an example.

Fig. 1: A generic plane
curve induces a four-
regular graph.

The image of a generic closed curve is naturally as-
sociated with a four-regular plane graph. The self-
intersection points of a curve are vertices, the paths
between vertices are edges, and the connected compo-
nents of the complement of the curve are faces. Given
a curve, choose an arbitrary starting point γ(0) = γ(1)
and orientation for γ.

The dual graph γ∗ is another (multi-)graph, whose
vertices represent the faces of γ, and two vertices
in γ∗ are joined by an edge if there is an edge be-
tween the two corresponding faces in γ. The dual
graph is another plane graph with an inherited em-
bedding from γ.

Let T be a spanning tree of γ. Let E denote the set of edges in γ, the tree T

partitions E into two subsets, T and T ∗ := E \ T . The edges in T ∗ define a
spanning tree of γ∗ called the cotree. The partition of the edges (T, T ∗) is called
the tree-cotree pair.

We call a rooted spanning cotree T ∗ of γ∗ a breadth-first search tree (BFS-
tree) if it can be generated from a breadth-first search rooted at the vertex in γ∗

corresponding to the unbounded face in γ. Each bounded face f of γ is a vertex
in a breadth-first search tree T ∗, we associate f with the unique edge incident
to f∗ in the direction of the root. Thus, there is a correspondence between edges
of T ∗ and faces of γ.

2.2 Homotopy and Isotopy

A homotopy between two closed curves γ1 and γ2 that share a point p0 is a
continuous map H : [0, 1] × S

1 → R
2 such that H(0, ·) = γ1, H(1, ·) = γ2, and

H(s, 0) = p0 = H(s, 1). We define a homotopy between two paths similarly,
where the two endpoints are fixed throughout the continuous morph. Notice
that homotopy between two closed curves as closed curves and the homotopy
between them as closed paths with an identical starting points are different. A
homotopy between two injective paths ζ1 and ζ2 is an isotopy if every interme-
diate path H(s, ·) is injective for all s. The notion of isotopy naturally extends
to a collection of paths.

We can think of γ as a topological space and consider the fundamental
group π1(γ). Elements of the fundamental group are called words, whose letters
correspond to equivalence classes of homotopic closed paths in γ. The fundamen-
tal group of γ is a free group with basis consisting of the classes corresponding
to the cotree edges of any tree-cotree pair of γ.
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Let H be a homotopy between curves γ1 and γ2. Let #H−1(x) : R2 → Z be
the function that assigns to each x ∈ R

2 the number of times the intermediate
curves H sweep over x. The homotopy area of H is

Area(H) :=

∫
R2

#H−1(x) dx.

The minimum area homotopy between γ1 and γ2 is the infimum of the ho-
motopy area over all homotopies between between γ1 and γ2. We denote this
by AreaH(γ1, γ2) := infH Area(H). When γ2 is the constant curve at a specific
point p0 on γ1, define AreaH(γ) := AreaH(γ, p0). See Figure 2 for an example
of a homotopy.

(a) (b) (c) (d)

Fig. 2: (a) A generic closed curve in the plane. (b) We see a homotopy that sweeps
over the face f3. (c) The homotopy sweeps f3 again. (d) The homotopy avoids
sweeping over the face f2. This is a minimum area homotopy for the curve, the
area is Area(f1) + 2 ·Area(f3).

For each x ∈ R\γ, the winding number of γ at x, denoted as wind(x, γ), is the
number of times γ “wraps around” x, with a positive sign if it is counterclockwise,
and negative sign otherwise. The winding number is a constant on each face. The
winding area of γ is defined to be the integral

AreaW (γ) :=

∫
R2

|wind(x, γ)| dx =
∑

face f

|wind(f, γ)| ·Area(f).

The depth of a face f is the minimal number of edges crossed by a path from
f to the exterior face. The depth is a constant on each face. We say the depth of
a curve is equal the maximum depth over all faces. We define the depth area to be

AreaD(γ) :=

∫
R2

depth(x, γ) dx =
∑

face f

depth(f) ·Area(f).

Chambers and Wang [4] showed that the winding area gives a lower bound
for the minimum homotopy area. On the other hand, there is always a homotopy
with area AreaD(γ); one such homotopy can be constructed by smoothing the
curve at each vertex into simple depth cycles [5], then contracting each simple
cycle. Therefore we have

AreaW (γ) ≤ AreaH(γ) ≤ AreaD(γ). (1)
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2.3 Self-Overlapping Curves

A generic curve γ is self-overlapping if there is an immersion of the two disk
F : D2 → R

2 such that γ = F |∂D2 . We say a map F extends γ. The image
F (D2) is the interior of γ. There are several equivalent ways to define self-
overlapping curves [10,24,23,15,18]. Properties of self-overlapping curves are well-
studied [9]; in particular, any self-overlapping curve has rotation number 1, where
the rotation number of a curve γ is the winding number of the derivative γ′ about
the origin [26]. Also, the minimum homotopy area of any self-overlapping curve
is equal to its winding area: AreaW (γ) = AreaH(γ) [12].

The study of self-overlapping curves traces back to Whitney [26] and Ti-
tus [24]. Polynomial-time algorithms for determining if a curve is self-overlapping
have been given [1,23], as well as NP-hardness result for extensions to surfaces
and higher-dimensional spaces [7].

For any curve, the intersection sequence5 [γ]V is a cyclic sequence of ver-
tices [v0, v1, . . . , vn−1] with vn = v0, where each vi is an intersection point of γ.
Each vertex appears exactly twice in γV . Two vertices x and y are linked if the
two appearances of x and y in γV alternate in cyclic order: . . . x . . . y . . . x . . . y . . . .

A pair of symbols of the same vertex x induces two natural subcurves gen-
erated by smoothing the vertex x; see Figure 3 for an example. (In this work,
every smoothing is done in the way that respects the orientation and splits the
curve into two subcurves.) A vertex pairing is a collection of pairwise unlinked
vertex pairs in [γ]V .

A self-overlapping decomposition Γ of γ is a vertex pairing such that the
induced subcurves are self-overlapping; see Figure 3b and Figure 3d for exam-
ples. The subcurves that result from a vertex pairing are not necessary self-
overlapping; see Figure 3c. For a self-overlapping decomposition Γ of γ, denote
the set of induced subcurves by {γi}

ℓ
i=1. Since each γi is self-overlapping, the

minimum homotopy area is equal to its winding area. We define the area of
self-overlapping decomposition to be

AreaΓ (γ) :=
ℓ∑

i=1

AreaW (γi) =
ℓ∑

i=1

AreaH(γi).

Fasy, Karakoç, and Wenk [12,14] proved the following structural theorem.

Theorem 1 (Self-Overlapping Decomposition [12, Theorem 20]). Any
curve γ has a self-overlapping decomposition whose area is minimum over all
null-homotopies of γ.

3 From Curves to Words

In order to work with plane curves, one must choose a representation. An impor-
tant class of representations for plane curves are the various combinatorial words.

5 also known as the unsigned Gauss code [5,13]
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4 Foldings and Self-Overlapping Decompositions

In this section, we give a geometric proof of the correctness to Nie’s dynamic
program. To do so, we show that the minimum homotopy area of a curve can
be computed from its Blank word using an algebraic quantity of the word called
the cancellation norm, which is independent of the drawing of the cables. We
then show a minimum-area self-overlapping decomposition can be found in poly-
nomial time.

4.1 The Cancellation Norm and Blank Cuts

Given a (cyclic) word w, a pairing is a letter and its inverse (f, f) in w. Two
letter pairings, (f1, f1) and (f2, f2), are linked in a word if the letter pairs oc-
cur in alternating order in the word, [· · · f1 · · · f2 · · · f1 · · · f2 · · ·]. A folding of
a word is a set of letter pairings such that no two pairings in the set are
linked. For example, in the word [23154654623] the set {(5, 5), (3, 3)} is a folding
while {(5, 5), (6, 6)} is not.

The cancellation norm is defined in terms of pairings. The norm also applies in
the more general setting where every letter has an associated nonnegative weight.
A letter is unpaired in a folding if it does not participate in any pairing of the
folding. For a word of length m, computing the cancellation norm takes O(m3)
time and O(m2) space [2,21]. Recently, a more efficient algorithm for computing
the cancellation norm appears in Bringmann et al. [3]; this algorithm uses fast
matrix multiplications and runs in O(m2.8603) time.

The weighted cancellation norm of a word w is defined to be the minimum
sum of weights of all the unpaired letters in w across all foldings of w [2,21].
If w is a word where each letter fi corresponds to a face fi of a curve, we
define the weight of fi to be Area(fi). The area of a folding is the sum of
weights of all the unpaired symbols in a folding. The weighted cancellation norm
becomes ‖w‖ := minF

∑
i Area(fi) where F is the set of all foldings of w and i

ranges over all unpaired letter in w.
A dynamic program, similar to the one for matrix chain multiplication, is ap-

plied on the word. Let w = f1f2 · · · fℓ where ℓ ≥ 2. Assume we have computed the
cancellation norm of all subwords with length less than ℓ. Let w′ = f1f2 · · · fℓ−1.

If fℓ is not the inverse of fi for 1 ≤ i ≤ ℓ − 1, then fℓ is unpaired and
||w|| = ||w′|| + Area(fℓ). Otherwise, fℓ participates in a folding and there ex-
its at least one k where 1 ≤ k ≤ ℓ − 1 and fk = f−1

ℓ . Let w1 = f1 · · · fk−1

and w2 = fk+1 · · · fℓ−1. Then, we find the k that minimizes ||w1||+||w2||. We have

||w|| = min{||w′||+Area(fℓ),min
k

{||w1||+ ||w2||}}

Nie shows that the weighted cancellation norm whose weights correspond to face
areas is equal to the minimum homotopy area using the triangle inequality and
geometric group theory. Our proof that follows is more geometric and leads to
a natural homotopy that achieves the minimum area.
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(a) (b)

Fig. 6: (a) A curve with labeled path P . (b) The two induced subcurves from
cutting along P.

(a) (b) (c) (d)

Fig. 7: (a) A curve with cables. (b) Isotopy the cables to not partially cut any
faces. (c) One subcurve resulting from cutting along the middle cable. The curve
is weakly simple and there are two cables in this face. (d) The other subcurve.

We now show how to interpret the cancellation norm geometrically. Let (f, f̄)
be a face pairing in a folding of the word [γ]B(Π) for some cable system Π.
Denote the cable in Π ending at face f as πf . Cable πf intersects γ at two points
corresponding to the pairing (f, f̄), which we denote as p and q respectively.
Let π′

f be the simple subpath of πf so that π′

f (0) = q and π′

f (1) = p. We call π′

f

a Blank cut [1,10,17] (see Figure 6). Any face pairing defines a Blank cut, and the
result of a Blank cut produces two curves each with fewer faces than the original
curve: namely, γ1 which is the restriction of γ from q to p following by the reverse
of path π′

f , and γ2 which is the restriction of γ from p to q followed by path π′

f .

In order to not partially cut any face, we require all Blank cuts to occur
along the boundary of the face being cut. When cutting face fi along path πj ,
we reroute all cables crossing the interior of fi, including πj but excluding πi,
along the boundary of fi through an isotopy, so that no cables intersect πi.
Lemma 1 ensures that the reduced Blank word remains unchanged. See Figure 7
for an example. Notice that different cables crossing fi might be routed around
different sides of fi in order to avoid intersecting cable πi and puncture pi. This
way, we ensure the face areas of the subcurves are in one-to-one correspondence
with the symbols in the subwords induced by a folding.

Using the concept of Blank cut we can determine if a curve is self-overlapping.
A subword σ of w is positive if σ = f1f2 . . . fk, where each letter fi is positive.
A pairing (f, f̄) is positive if one of the two subwords of the (cyclic) word w in
between the two symbols f, f̄ is positive; in other words, w = [fpf̄w′] for some
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positive word p and some word w′. A folding of w is called a positive folding7 if
all pairings in w are positive, and the word constructed by replacing each posi-
tive pairing (including the positive word in-between) fpf̄ in the folding with the
empty string is still positive. Words that have positive foldings are called posi-
tively foldable. Blank established the characterization of self-overlapping curves
through Blank cuts.

Theorem 2 (Self-Overlapping Detection [1]). Curve γ is self-overlapping
if and only if γ has rotation number 1 and [γ]B(Π) is positively foldable for any
shortest Π.

However, we face a difficulty when interpreting Nie’s dynamic program geo-
metrically. In our proof we have to work with subcurves (and their extensions)
of the original curve and the induced cable system. For example, after a Blank
cut or a vertex decomposition, there might be multiple cables connecting to the
same face creating multiple punctures per face, and cables might not be managed
or follow shortest paths to the unbounded face (see Figure 7c and Figure 9b).
In other words, the subword corresponding to a subcurve with respect to the
induced cable system might not be a regular Blank word (remember that Blank
word is only well-defined when the cable system is managed, all cables are short-
est paths, and the cable ordering is fixed; see Section 2). To remedy this, we
tame the cable system first by rerouting them into another cable system that is
managed and satisfies the shortest path assumption, then merging all the cables
ending at each face. We show that while such operations change the Blank word
of the curve, the cancellation norm of the curve and the positive foldability does
not change. We summarize the property needed below.

Lemma 3 (Cable Independence). Let γ be any curve with two cable sys-
tems Π and Π ′ such that the weights of the cables in Π ending at any fixed
face sum up to the ones of Π ′. Then any folding F of [γ](Π) can be turned into
another folding F ′ of [γ](Π ′), such that the area of the two foldings are iden-
tical. As a corollary, the minimum area of foldings (the cancellation norm) of
[γ](Π) and the existence of a positive folding of [γ](Π) are independent of the
choice of Π.

In the full paper, we prove that for each folding there is a homotopy with equal area.

Lemma 4 (Folding to Homotopy). Let γ be a curve and Π be a man-
aged cable system satisfying the shortest path assumption, and let F be a folding
of [γ](Π). There exists a null-homotopy of γ with area equal to the area of F .

7 Blank called these pairings groupings
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4.2 Compute Min-Area Homotopy from Self-Overlapping Decomp.

Fig. 8: A curve with
combined word
[c4c4231d5̄da2b3̄ba].

A self-overlapping decomposition is a vertex decomposi-
tion where each subcurve is self-overlapping [12]. By The-
orem 1, there exists a self-overlapping decomposition and
an associated homotopy whose area is equal to the mini-
mum homotopy area of the original curve.

In order to relate vertex decompositions and face de-
compositions, we define a word that includes both the
faces and vertices. Given any curve γ and cable system Π,
traverse γ and record both self-crossings and (signed) ca-
ble intersections; we call the resulting sequence of vertices
and faces the combined word [[γ]](Π). See Figure 8 for
an example.

We now show that every self-overlapping decomposi-
tion (with respect to the vertex word of γ) determines a folding (of the face word
of γ) using the combined word.

Theorem 3 (S-O Decomp. to Folding). Given a self-overlapping decompo-
sition Γ and a cable system Π of γ, there exists a folding F of [γ](Π) whose
area is AreaΓ (γ).

Corollary 1 (Geometric Correctness). The dynamic programming algorithm
computes the minimum-area homotopy for any curve γ.

Proof. By Theorem 1, there exists a self-overlapping decomposition with min-
imum homotopy area. By Theorem 3, some folding achieves a minimum area.
Using Lemma 4, the minimum-area folding produces a minimum-area homotopy.

4.3 Min-Area Self-Overlapping Decomposition in Polynomial Time

Finally, we show that any maximal folding—where adding any extra pairs are
linked—can be used to construct a self-overlapping decomposition.

Theorem 4 (Folding to S.O.D.). Let γ be a curve and Π be a cable system.
Given a maximal folding F of [γ](Π), there is a self-overlapping decomposition
of γ whose area is equal the area induced by the folding F .

Proof. Begin with the combined word [[γ]](Π). Decompose [[γ]](Π) at the ver-
tices given by the self-overlapping decomposition. Let Γ = {γ1, γ2, . . . , γs} be the
self-overlapping subcurves and [[γ]](Π)i be the corresponding subwords of [[γ]](Π).
If we remove the vertex symbols and turn each [[γ]](Π)i into a face word [γi]

′,
such word may not correspond to Blank words of the subcurves; indeed, when
decomposing γ into subcurves by Γ , the subcurve along with the relevant ca-
bles may contain multiple cables per face and cables might not be managed or
follow shortest paths. See Figure 9 for an example. However, we can first tame
the cable system by choosing a new managed cable system Π∗ where the cables
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(a) (b)

Fig. 9: We decompose the curve in (a) at vertex v into self-overlapping subcurves,
the cable system on the induced subcurve in (b) has more than one marked point
in a face and cables do not follow shortest paths.

follow shortest paths and has one cable per face (as in Section 3.1). Lemma 3 en-
sures that the cancellation norm and positive foldability of the subcurve remain
unchanged. Denote the new face word of γi with respect to Π∗ as [γi] = [γi](Π

∗).
Since each γi is a self-overlapping subcurve in Γ , we can find a positive folding

Fi of [γi] by Theorem 2, and the minimum homotopy area of γi is equal to the
area of folding Fi. Now Lemma 3 implies that the subword [γi]

′ from the original
combined word also has a positive folding F ′

i whose area is equal to the minimum
homotopy area of γi. By combining all foldings F ′

i of each face subword [γi]
′, we

create a folding F for [γ](Π) (no pairings between different F ′
i s can be linked).

The area of folding F is equal to the sum of areas of foldings F ′
i , which in

turns is equal to
∑

i AreaH(γi), that is, the homotopy area of self-overlapping
decomposition AreaΓ (γ). This proves the theorem.

The above theorem implies a polynomial-time algorithm to compute a self-
overlapping decomposition with minimum area.

Corollary 2 (Polynomial Optimal Self-Overlapping Decomposition).
Let γ be a curve. A self-overlapping decomposition of γ with area equal to mini-
mum homotopy area of γ can be found in polynomial time.

Proof. Apply the dynamic programming algorithm to compute the minimum-
area folding F for [γ](Π) with respect to some cable system Π. By Theorem 3
the area of F is equal to the minimum homotopy area of γ, and so does the
corresponding self-overlapping decomposition given by Theorem 4.
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cotree T ∗ to construct another cyclic word, this time as an element in the free group
over the faces of γ. Starting from the leaves f of T ∗, rewrite each edge e bounding
the face f (that is, the dual of the unique edge connecting f to its parent in T ∗) as a
singleton word based on the index of f , with positive sign if edge e is oriented counter-
clockwise, or with negative sign otherwise. Next, for any internal node f of T ∗, the
boundary ∂f consists of a sequence of (1) tree edges, (2) cotree edges to children of f
in T ∗ denoted as e1, e2, . . . , er, and (3) (a unique) cotree edge to parent of f denoted
as ef :

∂f = [efe1e2 . . . er].

We can now inductively rewrite each child cotree edge ei as a free word wi over the
faces (and ignore all tree edges). We emphasize that each word for the child cotree
edge constructed inductively is a free word, not a cyclic word. Choose a particular but
arbitrary way to break the cyclic sequence of faces and rewrite the equation:

ef = w̄r · · · · · w̄j+1 · (w̄j)
′ · ∂f · (w̄j)

′′ · w̄j−1 · · · · · w̄1,

where w̄j = (w̄j)
′(w̄j)

′′ is a particular way of breaking the face word w̄j into two.
This gives us a free word over the faces for edge ef , and thus by induction we have
rewritten γ as a free word over the faces. Finally, we can turn the free word back into
a cyclic word, by observing that the cyclic permutation of the constructed free word
over the faces does not affect the element we are getting in π1(X) (but as a side effect
of choosing the basepoint p0 of γ).

We call the resulting signed sequence of faces the Nie word and denoted as [γ]N (Σ),
where Σ is the choices we made when breaking up the cyclic word at each cotree edge,
referred to as a cycle flattening. Notice that the definition of [γ]N depends on how
we choose to break the cyclic edge sequences, and thus is not well-defined without
specifying the choices.

A.2 Word Equivalence

Now we are ready to prove that the two words, one defined geometrically and the other
algebraically, are in fact equivalent.

Theorem 5 (Word Equivalence). Let γ be any plane curve. For a Nie word [γ]N (Σ)
with a fixed cycle flattening Σ, there is a managed cable system Π such that the Blank
word [γ]B(Π) is equal to [γ]N (Σ). Conversely, any managed cable system Π induces a
cycle flattening Σ such that [γ]B(Π) and [γ]N (Σ) are equal.

Proof. First, fix a tree-cotree pair (T, T ∗) for γ such that T ∗ is a BFS-tree. Orient the
edges of the cotree T ∗ so that it is rooted at some fixed basepoint p0. We prove the
following statement by induction on the nodes of T ∗ from leaves to the root, which
implies the theorem:

The Blank subword corresponding to any cotree edge e is the same as the Nie
subword corresponding to e.

To prove the statement, we will construct the cables in Π gradually from each face
to p0, at each step stopping at the cotree edge e in T ∗. Let f be an arbitrary non-root
node in T ∗, and edge e be the unique edge from f to its parent in T ∗. If f is a leaf, e
is the only edge in ∂f that is not in tree T . This means, when we write ∂f using edges
not in T , we have ∂f = ±e, with positive sign if e is oriented counter-clockwise and
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For the base case when F is the empty pairing, if the cables are not managed,
construct a managed cable system satisfying the shortest path assumption Π∗ for γ
and apply Lemma 3; the sum of weights of all letters in the new Blank word remains
unchanged. To construct the null-homotopy, decompose the curve into depth cycles by
performing a smoothing at each vertex [5], to obtain a null-homotopy with area equal
to the depth area. Since each cable in Π∗ follows a shortest path to the unbounded
face, the number of times an unsigned letter appears in the word is equal to the depth
of the face, and thus the homotopy area is equal to the area of the folding. In fact, we
can choose any point on the curve to be the destination of the null-homotopy.

B.1 Proof Lemma 3: Cable Independence

What we are left with is to prove Lemma 3: Given a curve γ and a cable system Π,
if we have a folding on the face word [γ](Π), there is an equivalent folding of the new
word [γ](Π ′) that has the same area if we choose a different cable system. As a result,
the cancellation norm and the positive foldability of a word are independent to the
cable system chosen. Notice that it is sufficient to assume Π ′ to be a managed cable
system with shortest path assumptions and single cable to each face.

Any two cable systems can always be connected by a sequence of isotopy and order
switching between two adjacent cables, followed by a redrawing of the cables induced by
a homeomorphism of the plane fixing the punctures {pi}, which fixes the cable ordering
and the disjointness between cables but the isotopy classes of the cables change. We
emphasize that either operation will change the Blank word, but we can always find a
folding of the new word that preserves the area.

In Appendix B we show that switching two adjacent cables preserves the area and
positivity of the folding. We summarize the result in the following lemma.

Lemma 5 (Switch Invariance). Given curve γ, a cable system Π, and a folding F
on [γ](Π). Switching the order of two adjacent cables produces another folding on the
new word with equivalent area. Furthermore, the new folding is positive if and only if
F is.

Next, we show that the cancellation norm does not depend on the cables having
the shortest path property. While the face word is unique up to isotopy of the cables
based on Lemma 1, two cable systems with identical ordering around p0 may not be
isotopic to each other. The theory of mapping class groups [11,16] provides tools to
convert between all possible isotopy classes of cable systems with same cable ordering.

Let Sg,n denote a surface with genus g and n punctures. Let Diffeo+(Sg,n) denote
the group of all orientation-preserving diffeomorphisms from Sg,n → Sg,n. Define an
equivalence relation ∼ on Diffeo+(Sg,n), where φ ∼ ψ if there exists an isotopy between
φ and ψ. The mapping class group of Sg,n is the group MCG(Sg,n) = Diffeo+(Sg,n)/ ∼ .
A simple closed curve or a puncture-to-puncture arc λ on a surface is nonseparating if
the surface remains connected after cutting along λ. A simple closed curve (or arc) in
a surface is essential if it is not homotopic to a point and not homotopic to a puncture.

Let λ be a simple closed curve in a surface. We now describe a particular mapping
class in MCG(Sg,n), a Dehn twist — about λ. Let Aλ be an arbitrarily thin annulus
homeomorphic to the product of S

1 and the unit interval I; i.e. Aλ
∼= S

1 × I with
λ ∼= S

1 × {0}. The twist is the map Tλ : Aλ → Aλ where Tλ(θ, t) = (θ + 2πt, t) [11].
Intuitively, we can think of Tλ as acting on any path that crosses Aλ by fixing one
boundary component of the annulus and rotating the other boundary component one
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ample, let F ′ be the folding indicated by the overbrackets, with the underbrackets
denoting corresponding conjugate inverse letters,

[214133314114131413142141333141413141314].

The unique unpaired letter corresponding to 3 is 3 found by considering the second
corresponding inverse letter.

– If the sequence of letters ends with a letter fk in w, we pair f0 and f̄k in F . This
does not create any linked pairs in F since f0 and f̄k participate in pairings in F ′,
they are not linked by any other pairing in F ′. For example, let F ′ be the fold-
ing indicated by the overbrackets, with the underbrackets denoting corresponding
conjugate inverse letters,

[214133314114131413142141333141413141314].

The pairing (3, 3) is then added to F .

The sum of the areas of the unpaired letters of F is at most the sum of the areas of
the unpaired letters of F ′ and thus ||w|| ≤ ||w′||. This proves the lemma.

We show the invariance for positive foldability in Appendix B.

Lemma 7. Being positively foldable does not depend on Dehn twists.

Together, Lemma 5 and Lemma 6 imply the cancellation norm does not depend on
the isotopy class of the cables. Moreover, Lemma 5 and Lemma 7 imply the positive
foldability of the word does not depend on the isotopy class of the cables. One last
subtlety: we show that we can handle multiple cables per face in Appendix B. This
proves Lemma 3.

Next, we include the proof that the cancellation norm is invariant under switching
the order of the cables.

Lemma 5 (Switch Invariance). Given curve γ, a cable system Π, and a folding F
on [γ](Π). Switching the order of two adjacent cables produces another folding on the
new word with equivalent area. Furthermore, the new folding is positive if and only if
F is.

Proof. Consider two cables πf and πg in Π that are adjacent in the rotation system.
Assume πg is in the clockwise direction of πf in the rotation system and we are trying
to move πf across πg. Let w := [γ]B(Π) denote the Blank word before the order of the
cables are switched and w′ the word after the cables are switched; by Lemma 1 the
words are well-defined up to isotopy classes of πf and πg. First, we argue that, without
loss of generality, we can assume the drawing of πg follows πf in an ε-neighborhood
before continuing towards puncture pg, by drawing πg still counter-clockwise to and ε-
close to πf from p0 to pf and back to p0, followed by the original drawing of πg. The new
drawing is disjoint from the rest of the cables and is isotopic to the original drawing.
This way we can ensure any instance of symbol f in w is followed immediately by a g,
and any instance of f̄ has a ḡ proceeding in the word. (Notice we cannot necessarily
say the same about g because cable πg continues after reaching pf .)

Let F be a folding of w, we construct a folding F ′ of w′ with equal area. We separate
into two cases. If no instance of (f, f̄) is in F , then all pairings in F can be paired in
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W ′ and we can set F ′ := F . Now we assume there is an instance of (f, f̄) in F . We
further split into subcases. Look at the two g/ḡ symbols adjacent to the (f, f̄) pair in
F . If the two g symbols is a pairing in F , then we can again set F ′ := F . If exactly
one of the g/ḡ adjacent to the (f, f̄) pair is the paired with another ḡ or g that is not
adjacent to the (f, f̄) pair in w, then switching the cables naïvely results in a linked
pair,

w = [. . . fg . . . g . . . ḡ f̄ . . .] −→ w′ = [. . . gf . . . g . . . f̄ḡ . . .].

Instead, after the cables are switched, we pair the g and ḡ that appear next to the
(f, f̄) pair together in F ′:

w′ = [. . . g f . . . g . . . f̄ ḡ . . .].

The new F ′ is a folding without linked pairs and does not change the area because the
same number and types of symbols are paired. Finally, if both g and ḡ adjacent to the
(f, f̄) pair are paired with letters not adjacent to f̄ and f in F , we pair g next to the
f with the ḡ next to f̄ and the g not adjacent to the f with the ḡ not adjacent to f̄ in
F ′:

w = [. . . f g . . . ḡ . . . g . . . ḡ f̄ . . .] −→ w′ = [. . . g f . . . ḡ . . . g . . . f̄ ḡ . . .].

Again, F ′ remains a folding without linked pairs and has the same area as F .

Handling multiple cables per face. When a face f in a subcurve contains multiple
cables and punctures, we treat the punctures as distinct when applying Lemma 5 and
Lemma 6. Now, once all the cables follow the cotree shortest paths, consider all cables
ending in an arbitrary face f . If they are separated by other cables in the cyclic ordering,
we use Lemma 5 and isotopy to move all the cables not ending in f out of the way until
they no longer intersect the face. This makes sure that all the cables ending in f are
gathered together in the cyclic ordering. Because they follow the same unique cotree
path to the exterior, we can merge them into a single cable, where the corresponding
symbols in the word are merged into a single symbol with the combined weight. Thus,
the subwords induced by a face pairing correspond to the subcurves generated by the
Blank cut.

Min-Area Self-Overlapping Decomposition in Polynomial Time Finally, we show
how to construct a self-overlapping decomposition from a maximal folding with equal
area. Before we begin the proof, we include definitions that will help describe the
types of curves we encounter. A curve γ is a k-stack if it has rotation number k,
all bounded faces have positive winding numbers, and AreaH(γ) = AreaW (γ) (see
Figure 16a for any example). Any k-stack has a vertex decomposition into k self-
overlapping curves [9, Theorem 2.15].8 A curve is a −k-stack if its reversal is a +k-
stack. We called a curve γ a stack if γ is a ±k-stack. A curve is good [9] if the depth
of each face is equal to the absolute value of the winding number; any good curve
must have AreaD(γ) = AreaH(γ) = AreaW (γ) by Equation 1. Good curves are almost
stacks, except that some faces might not have positive winding numbers. A vertex of
γ is sign-changing if the four incident faces have winding numbers [1, 0,−1, 0] in cyclic

8 k-stacks are called interior-boundaries by Titus [24] and the terminology was used
in various previous work [17,12,9]. The name k-stack is well-justified as such curve
is the boundary of a stack of k disks [9].
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order (see Figure 16b for an example). If we smooth a sign-changing vertex of a good
curve, the two induced subcurves remain good. We can always decompose a good curve
into a collection of stacks at all the sign-changing vertices [9, Theorem 5.7].

(a) A 2-stack. (b) Sign-changing vertex.

Fig. 16: (a) A k-stack where k = 2. Smoothing at any of the three vertices gives
a self-overlapping decomposition. (b) The vertex v is a sign-changing vertex.

With these definitions in hand, we now show how to construct a self-overlapping
decomposition from a maximal folding with equal area.

Theorem 4 (Folding to S.O.D.). Let γ be a curve and Π be a cable system. Given
a maximal folding F of [γ](Π), there is a self-overlapping decomposition of γ whose
area is equal the area induced by the folding F .

Proof. Let F be any maximal folding of [γ](Π). Without loss of generality we can
assume that the cable system does not cut through the interior of any face by rerouting
the cables similar to Section 4.1. By Lemma 1 the Blank word remains unchanged.

Let γg be an arbitrary subcurve generated after Blank cutting along the pairings in
F . The curve γg is must be good: otherwise, there is a face with winding number not
equal to its depth, and thus γg would cross the corresponding cable from left to right
and from right to left. Therefore, we can introduce an extra pair into the folding and F
remains unlinked; thus F would not be maximal. Decomposing at all the sign-changing
vertices [9, Theorem 5.7] turns γg into a collection of stacks, each of which can be
further decomposed into collection of self-overlapping curves [9, Theorem 2.15].

The area of the folding F is equal to the number of unpaired faces in [γ](Π), which
is also equal to the sum of depth area of each good subcurve. Since each subcurve γg
of folding is good, the depth area of γg is equal to its winding area. Any additional
decomposition of γg into self-overlapping curves respects the additivity of winding
areas. Thus, the area of folding F is equal to the area induced by our chosen self-
overlapping decomposition.

Lemma 7. Being positively foldable does not depend on Dehn twists.

Proof. Let w be a word and let w′ be the word after a Dehn twist about the simple
closed curve ci,j as in the proof of Lemma 6. Suppose w is positively foldable with
folding F . Then, the folding F ′ described in Lemma 6 is a positive folding of w′.

On the other hand, suppose w′ has a positive folding F ′. Then, each element f̄ of
w′ is paired with an element f. If both f̄ and f are in w then we pair them. If neither f̄
nor f are in w then we ignore them. If one of f̄ and f are in w and the other is added
to w′ by the twist, then, since letters are added to w′ in pairs, there is another element
of w paired with an element of w′\w. We can pair the two element in w and ignore
the two in w′\w because the pairings in F ′ are not linked. The resulting pairings give
a positive folding of w.


