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1 Introduction

Reeb Graphs. Reeb graphs have become an important tool in computational
topology for the purpose of visualizing continuous functions on complex spaces
as a simplified discrete structure. Essentially, these graphs capture how level sets
of a function evolve and behave in a topological space; the components of each
level set become a vertex, and edges connect vertices on adjacent level sets that
are connected.1 To define the Reeb graph more precisely, let M be a compact,
connected, and orientable manifold of dimension n, and let f : M → R be a
smooth function. Define an equivalence relation on the points of M by setting
y ∼ y′ if y, y′ ∈ g−1(a), and y and y′ are in the same path component of g−1(a).
Then the Reeb graph is the resulting quotient space Gf = M/ ∼. Originally
introduced in [11], recent work on computing Reeb graph efficiently [7, 10] has
led to their increasing use in areas such as graphics and shape analysis; see [2,
13] for recent surveys on some of these applications, particularly in graphics and
visualization.

Despite how prevalent the use of Reeb graphs is, surprisingly little work has
been done on generating nice drawings of these structures. The only work in
this area we are aware of considers book embeddings of these graphs [9]; while
of combinatorial interest, the algorithms seem less practical for easy viewing of
larger Reeb graphs. So, this leads to a very natural question, both theoretical
and practical: how difficult is it to draw Reeb graphs?

1 We direct the reader to the poster for illustrations of Reeb graph and other concepts
throughout this abstract.
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Given the structural properties of Reeb graphs, there is an obvious connection
to level drawings of graphs, since Reeb functions are simply real-valued labels
on the vertices.

Connection to Layered Graph Drawing. Layered graph drawing, also known as
hierarchical or Sugiyama-style graph drawing is a type of graph drawing in which
the vertices of a directed graph are drawn in horizontal rows, or layers, and in
which edges are y-monotone curves [1, 3, 12]; depending on the application,
vertices may or may not be pre-assigned to levels. As with many drawing styles,
layered drawings tend to be more readable when the number of crossings is low;
hence a significant amount of effort has been directed towards crossing mini-
mization in layered drawings of graphs. When a drawing without any crossings
is possible, the graph is called upward planar or level planar. While it is possible
to test whether a given directed acyclic graph with a single source and a single
sink admits an upward planar drawing [5], the problem becomes NP-complete
when there can be multiple sources or sinks [6]. When the layers are preas-
signed, the problem is easier, and testing whether a graph admits a level planar
embedding is possible in linear time [8]. However, when a planar embedding is
not possible, the problem of minimizing crossings is still of interest, and this
problem is NP-complete, even when there are only two levels [4].

In Reeb graphs, vertices are preassigned to layers, since the y-coordinate
carries information that should not be lost.

Challenge. Reeb graphs may be seen as a special case of layered graph drawing
with preassigned layers; hence, existing algorithms can be used. Unfortunately,
because the problem is NP-hard, existing approaches are mostly heuristic in
nature. On the other hand, Reeb graphs have specific structural properties,
which may make drawing them easier than the more general layered graph
drawing problem. For example, the hardness proof by Garey and Johnson [4]
crucially uses high-degree vertices, while Reeb graphs of generic (i.e. tame and
constructible) manifolds only have vertices of degree 1 or 3. In addition, Reeb
graphs have a graph-theoretical genus that is directly related to the topological
genus of the underlying manifold, and thus it is of interest to design algorithms
that can exploit a small number of (undirected) cycles in the graph.

Contribution. We present the following results.

– The problem of deciding whether a given (generic) Reeb graph admits a
drawing with at most k crossings, is NP-complete. Our proof uses only vertices
of constant degree, but does require a large number of cycles.

– We conjecture that the problem of drawing Reeb graphs may be fixed-
parameter tractable (FPT) in the number of (undirected) cycles in the graph.

– As a first step towards establishing our conjecture, we show that when
the graph is a cycle, we can find a crossing-minimal embedding in polyno-
mial time.
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