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ABSTRACT

We present REMASKER, a new method of imputing missing values in tabular
data by extending the masked autoencoding framework. Compared with prior
work, REMASKER is both simple – besides the missing values (i.e., naturally
masked), we randomly “re-mask” another set of values, optimize the autoencoder
by reconstructing this re-masked set, and apply the trained model to predict the
missing values; and effective – with extensive evaluation on benchmark datasets,
we show that REMASKER performs on par with or outperforms state-of-the-art
methods in terms of both imputation fidelity and utility under various missingness
settings, while its performance advantage often increases with the ratio of missing
data. We further explore theoretical justification for its effectiveness, showing that
REMASKER tends to learn missingness-invariant representations of tabular data.
Our findings indicate that masked modeling represents a promising direction for
further research on tabular data imputation. (code available: https://github
.com/alps-lab/remasker)

1 INTRODUCTION

Missing values are ubiquitous in real-world tabular data due to various reasons during data collection,
processing, storage, or transmission. It is often desirable to know the most likely values of missing
data before performing downstream tasks (e.g., classification or synthesis). To this end, intensive
research has been dedicated to developing imputation methods (“imputers”) that estimate missing
values based on observed data (Yoon et al., 2019; Jarrett et al., 2022; Kyono et al., 2021; Stekhoven
& Buhlmann, 2012; Mattei & Frellsen, 2018). Yet, imputing missing values in tabular data with high
fidelity and utility remains an open problem, due to challenges including the intricate correlation
across different features, the variety of missingness scenarios, and the scarce amount of available
data with respect to the number of missing values.

The state-of-the-art imputers can be categorized as either discriminative or generative. The dis-
criminative imputers, such as MissForest (Stekhoven & Buhlmann, 2012), MICE (van Buuren &
Groothuis-Oudshoorn, 2011), and MIRACLE (Kyono et al., 2021), impute missing values by model-
ing their conditional distributions on the basis of other values. In practice, these methods are often
hindered by the requirement of specifying the proper functional forms of conditional distributions and
adding the set of appropriate regularizers. The generative imputers, such as GAIN (Yoon et al., 2019),
MIWAE (Mattei & Frellsen, 2018), GAMIN (Yoon & Sull, 2020), and HI-VAE (Nazabal et al., 2020),
estimate the joint distributions of all the features by leveraging the capacity of deep generative models
and impute missing values by querying the trained models. Empirically, GAN-based methods often
require a large amount of training data and suffer the difficulties of adversarial training (Goodfellow
et al., 2014), while VAE-based methods often face the limitations of training through variational
bounds (Zhao et al., 2022). Further, some of these methods either require complete data during
training or operate on the assumptions of specific missingness patterns.

In this paper, we present REMASKER, a novel method that extends the masked autoencoding (MAE)
framework (Devlin et al., 2018; He et al., 2022) to imputing missing values of tabular data. The idea
of REMASKER is simple: Besides the missing values in the given dataset (i.e., naturally masked), we
randomly select and “re-mask” another set of values, optimize the autoencoder with the objective of

∗The work was done when the first author was a postdoc at Penn State.
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reconstructing this re-masked set, and then apply the trained autoencoder to predict the missing values.
Compared with the prior work, REMASKER enjoys the following desiderata: (i) it is instantiated with
Transformer (Vaswani et al., 2017) as its backbone, of which the self-attention mechanism is able to
capture the intricate inter-feature correlation (Huang et al., 2020); (ii) without specific assumptions
about the missingness mechanisms, it is applicable to various scenarios even if complete data is
unavailable; and (iii) as the re-masking approach naturally accounts for missing values and encourages
learning high-level representations beyond low-level statistics, REMASKER works effectively even
under a high ratio of missing data (e.g., up to 70%).

With extensive evaluation on 12 benchmark datasets under various missingness scenarios, we show
that REMASKER performs on par with or outperforms 13 popular methods in terms of both imputation
fidelity and utility, while its performance advantage often increases with the ratio of missing data. We
further explore the theoretical explanation for its effectiveness. We find that REMASKER encourages
learning missingness-invariant representations of tabular data, which are insensitive to missing values.
Our findings indicate that, besides its success in the language and vision domains, masked modeling
also represents a promising direction for future research on tabular data imputation.

2 RELATED WORK

Tabular data imputation. The existing imputation methods can be categorized as either discrim-
inative or generative. The discriminative methods (Stekhoven & Buhlmann, 2012; van Buuren &
Groothuis-Oudshoorn, 2011; Kyono et al., 2021) often specify a univariable model for each feature
conditional on all others and perform cyclic regression over each target variable until convergence.
Recent work has also explored adaptively selecting and configuring multiple discriminative imput-
ers (Jarrett et al., 2022). The generative methods either implicitly train imputers as generators within
the GAN framework (Yoon et al., 2019; Yoon & Sull, 2020) or explicitly train deep latent-variable
models to approximate the joint distributions of all features (Mattei & Frellsen, 2018; Nazabal et al.,
2020). There are also imputers based on representative-value (e.g., mean) substitution (Hawthorne
& Elliott, 2005), EM optimization (García-Laencina et al., 2010), matrix completion (Hastie et al.,
2015), or optimal transport (Muzellec et al., 2020). The work is also related to that models missing
data by adapting existing model architectures (Przewięźlikowski et al., 2021).

Transformer. Transformer has emerged as a dominating design (Vaswani et al., 2017) in the language
domain, in which multi-head self-attention and MLP layers are stacked to capture both short- and
long-term correlations between words. Recent work has explored the use of Transformer in the vision
domain by treating each image as a grid of visual words (Dosovitskiy et al., 2020). For instance, it
has been integrated into image generation models (Jiang et al., 2021; Zhang et al., 2021; Hudson &
Zitnick, 2021), achieving performance comparable to CNN-based models. Recent work (Somepalli
et al., 2021; Huang et al., 2020; Arik & Pfister, 2021) also explores applying Transformer to model
tabular data, showing its promising expressive power.

Masked autoencoding (MAE). Autoencoding is a classical sel-supervised approach for learning
representation (Vincent et al., 2008; Pathak et al., 2016): an encoder maps an input to its representation
and a decoder reconstructs the original input. Meanwhile, masked modeling is originally proposed as a
pre-training method in the language domain: by holding out a proportion of a word sequence, it trains
the model to predict the masked tokens (Devlin et al., 2018; Radford & Narasimhan, 2018). Recent
work has combined autoencoding and masked modeling in vision tasks (Dosovitskiy et al., 2020;
Bao et al., 2022). The seminal MAE (He et al., 2022) represents the state of the art in self-supervised
pre-training on the ImageNet-1K benchmark. In the tabular data domain, MET (Majmundar et al.,
2022) employs the MAE approach to model tabular data. However, given its primary focus on
representation learning, MET assumes data completeness and directly applies MAE.

To our best knowledge, this represents the first work to explore an extended MAE approach (with
Transformer as the backbone) in the task of tabular data imputation.

3 REMASKER

Next, we present REMASKER, an extremely simple yet effective method for imputing missing values
of tabular data. We begin by formalizing the imputation problem.
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Figure 1: Overall framework of REMASKER. During the fitting stage, for each input, in addition to its missing
values, another subset of values (re-masked values) is randomly selected and masked out. The encoder is applied
to the remaining values to generate its embedding, which is padded with mask tokens and processed by the
decoder to re-construct the re-masked values. During the imputation stage, the optimized model is applied to
predict the missing values.

3.1 PROBLEM FORMALIZATION

Incomplete data. To model tabular data with d features, we consider a d-dimensional random variable
x ≜ (x1, . . . , xd) ∈ X1 × . . .×Xd, where Xi is either continuous or categorical for i ∈ {1, . . . , d}.
The observational access to x is mediated by an mask variable m ≜ (m1, . . . ,md) ∈ {0, 1}d, which
indicates the missing values of x, such that xi is accessible only if mi = 1. In other words, we
observe x in its incomplete form x̃ ≜ (x̃1, . . . , x̃d) with

x̃i ≜

{
xi if mi = 1
∗ if mi = 0

(i ∈ {1, . . . , d}) (1)

where ∗ denotes the unobserved value.

Missingness mechanisms. Missing values occur due to various reasons. To simulate different
scenarios, following the prior work (Yoon et al., 2019; Jarrett et al., 2022), we consider three
missingness mechanisms: MCAR (“missing completely at random”) – the missingness does not
depend on the data, which indicates that ∀m,x,x′, p(m|x) = p(m|x′); MAR (“missing at random”)
– the missingness depends on the observed values, which indicates that ∀m,x,x′, if the observed
values of x and x′ are the same, then p(m|x) = p(m|x′); and MNAR (“missing not at random”) –
the missingness depends on the missing values as well, which is the case if the definitions of MCAR
and MAR do not hold. In general, it is impossible to identify the missingness distribution of MNAR
without domain-specific assumptions or constraints (Ma & Zhang, 2021).

Imputation task. In this task, we are given an incomplete dataset D ≜ {(x̃(i),m(i))}ni=1,1 which
consists of n i.i.d. realizations of x̃ and m. The goal is to recover the missing values of each input x̃
by generating an imputed version x̂ ≜ (x̂1, . . . , x̂d) such that

x̂i ≜

{
x̃i if mi = 1
x̄i if mi = 0

(i ∈ {1, . . . , d}) (2)

where x̄i is the imputed value. Note that the imputation task is not concerned about optimizing data
for concrete downstream tasks (e.g., training regression or generative models); such settings motivate
concerns fundamentally entangled with each downstream task and often require optimizing the end
objectives. Here, we focus solely on the imputation task itself.

3.2 DESIGN OF REMASKER

The REMASKER imputer extends the MAE framework (Dosovitskiy et al., 2020; Bao et al., 2022;
He et al., 2022) that reconstructs masked components based on observed components. As illustrated
in Figure 1, REMASKER comprises an encoder that maps the observed values to their representations
and a decoder that reconstructs the masked values from the latent representations. However, unlike
conventional MAE, as the data in the imputation task is inherently incomplete (i.e., naturally masked),

1Without ambiguity, we omit the superscript i in the following notations.
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we employ a “re-masking” approach that explicitly accounts for this incompleteness in applying
masking and reconstruction. At a high level, REMASKER works in two phases: fitting – it optimizes
the model with respect to the given dataset, and imputation – it applies the trained model to predict
the missing values of the dataset.

Re-masking. In the fitting phase, for each input x̃, in addition to its missing values, we also randomly
select and mask out another subset (e.g., 25%) of x̃’s values. Formally, letting m be x̃’s mask, we
define another mask vector m′ ∈ {0, 1}d, which is randomly sampled without replacement, following
a uniform distribution. Apparently, m and m′ entail three subsets:

Imask = {i|mi = 0}, Iremask = {i|mi = 1 ∧ m′i = 0}, Iunmask = {i|mi = 1 ∧ m′i = 1} (3)

Let x̃m, x̃m∧m′ , and x̃m∧m′ respectively be the masked, re-masked, and unmasked values. With a
sufficient number of re-masked values, in addition to the missing values, we create a challenging task
that encourages the model to learn missingness-invariant representations (more details in § 5). In the
imputation phase, we do not apply re-masking.

Encoder. The encoder embeds each value using an encoding function and processes the resulting
embeddings through a sequence of Transformer blocks. In implementation, we apply linear encoding
function to each value x: enc(x) = wx+ b, where w and b are learnable parameters. We also add
positional encoding to x’s embedding to force the model to memorize x’s position in the input (e.g.,
the k-th feature): pe(k, 2i) = sin(k/100002i/d), where k and i respectively denote x’s position in
the input and the dimension of the embedding, and d is the embedding width. The encoder is only
applied to the observed values: in the fitting phase, it operates on the observed values after re-masking
(i.e., the unmasked set Iunmask); in the imputation phase, it operates on the non-missing values (i.e.,
the union of re-masked and unmasked sets Iunmask ∪ Iremask), as illustrated in Figure 1.

Decoder. The REMASKER decoder is instantiated as a sequence of Transformer blocks followed by
an MLP layer. Different from the encoder, the decoder operates on the embeddings of both observed
and masked values. Following (Devlin et al., 2018; He et al., 2022), we use a shared, learnable mask
token as the initial embedding of each masked value. The decoder first adds positional encoding
to the embeddings of all the values (observed and masked), processes the embeddings through a
sequence of Transformer blocks, and finally applies linear projection to map the embeddings to scalar
values as the predictions. Similar to (He et al., 2022), we use an asymmetric design with a deep
encoder and a shallow decoder (e.g., 8 versus 4 blocks), which often suffices to re-construct the
masked values. Conventional MAE focuses on representation learning and uses the decoder only in
the training phase. In REMASKER, the decoder is required to re-construct the missing values and is
thus used in both fitting and imputation phases.

Reconstruction loss. Recall that the REMASKER decoder predicts the value for each input feature.
We define the reconstruction loss functions as the mean square error (MSE) between the reconstructed
and original values on (i) the re-masked set Iremask and (ii) unmasked set Iunmask. We empirically
experiment with different reconstruction loss functions (e.g., only the re-masked set or both re-masked
and unmasked sets).

Putting everything together, Algorithm 1 sketches the implementation of REMASKER.
Algorithm 1 REMASKER

Input: D = {(x̃(i),m(i))}ni=1: incomplete dataset; remask: re-masking function; fθ , dϑ: encoder and decoder; max_epoch: training
epochs; ℓ: reconstruction loss
Output: D̂ = {(x̂(i)}ni=1: imputed dataset
1: while max_epoch is not reached do ▷ // fitting phase
2: for (x̃,m) ∈ D do
3: x̃

m∧m′ , x̃m∧m′ ← remask(x̃,m); ▷ // remasking
4: z← fθ(x̃m∧m′ ); ▷ // encoding unmasked values
5: pad z with mask tokens;
6: end for
7: update θ, ϑ by∇ℓ(dϑ({z}), {x̃m∧m′}); ▷ // minimizing reconstruction loss
8: end while
9: for (x̃,m) ∈ D do ▷ // imputation phase
10: z← fθ(x̃m); ▷ // encoding observed values
11: pad z with mask tokens
12: x̄m ← dϑ(z); ▷ // predicting missing values
13: x̂← x̃m ∪ x̄m;
14: end for
15: return D̂ = {x̂}.
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4 EVALUATION

We empirically evaluate REMASKER in various scenarios using benchmark datasets. Our experiments
are designed to answer the following key questions: (i) Does REMASKER work? – We compare
REMASKER with a variety of state-of-the-art imputers in terms of imputation quality. (ii) How
does it work? – We conduct an ablation study to assess the contribution of each component of
REMASKER to its performance. (iii) What is the best way of using REMASKER? – We explore the
use of REMASKER as a standalone imputer as well as one component of an ensemble imputer to
understand its best practice.

Datasets. For reproducibility and comparability, similar to the prior work (Yoon et al., 2019; Jarrett
et al., 2022), we use 12 real-world datasets from the UCI Machine Learning repository (Dua & Graff,
2017) with their characteristics deferred to § A.1.

Missing mechanisms. Following prior work (Yoon et al., 2019; Jarrett et al., 2022; Mattei & Frellsen,
2018; Hastie et al., 2015), we mainly focus on the MCAR and MAR settings. In MCAR, the mask
vector of each input is realized following a Bernoulli random variable with a fixed mean. In MAR,
with a random subset of features fixed to be observable, the remaining features are masked using a
logistic model. For completeness, we also simulate one particular MNAR setting in experiments: the
input features of MAR are further masked following a Bernoulli random variable with a fixed mean.
We use HyperImpute (Jarrett et al., 2022) to simulate the above missingness mechanisms.

Baselines. We compare REMASKER with 13 state-of-the-art imputation methods: HyperImpute (Jar-
rett et al., 2022), MIWAE (Mattei & Frellsen, 2018), EM (García-Laencina et al., 2010), GAIN (Yoon
et al., 2019), ICE, MICE, MIRACLE (Kyono et al., 2021), MissForest (Stekhoven & Buhlmann,
2012), Mean (Hawthorne & Elliott, 2005), Median, Frequent, Sinkhorn (Muzellec et al., 2020), and
SoftImpute (Hastie et al., 2015), with details deferred to § A.2

Metrics. For each imputation method, we evaluate the imputation fidelity and utility by comparing
its imputed data with the ground-truth data. In terms of fidelity, we mainly use two metrics: root
mean square error (RMSE) to measure how the individual imputed values match the ground-truth
data, and the Wasserstein distance (WD) to measure how the imputed distribution matches the
ground-truth distribution. In terms of utility, we use area under the receiver operating characteristic
curve (AUROC) as the metric on applicable datasets (i.e., ones associated with classification tasks).
In the case of multi-class classification, we use the one versus rest (OvR) setting. To be fair, we use
logistic regression as the predictive model across all the cases.
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Figure 2: Overall performance of REMASKER and baseline imputers on 12 benchmark datasets under MAR with
0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and AUROC
scores (AUROC is only applicable to datasets with classification tasks). Note that REMASKER outperforms all
the baseline imputers under at least one metric across all the datasets.
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Figure 3: Sensitivity analysis of REMASKER on the letter dataset under the MAR setting. The scores are
measured with respect to (a) the dataset size, (b) the number of features, and (c) the missingness ratio. The
default setting is as follows: dataset size = 20,000, number of features = 16, and missingness ratio = 0.3.

4.1 OVERALL PERFORMANCE

We evaluate REMASKER and baseline imputers on the benchmark datasets under the MAR setting
with 0.3 missingness ratio, with results summarized in Figure 2. Observe that REMASKER consis-
tently outperforms all the baselines in terms of both fidelity (measured by RMSE and WD) and utility
(measured by AUROC) across all the datasets. Recall that the benchmark datasets are collected from
a variety of domains with highly varying characteristics (cf. Table 6): the dataset size varies from 308
to 20,060, while the number of features ranges from 7 to 57. Its superior performance across all the
datasets demonstrates that REMASKER effectively models the intricate correlation among different
features, even if the amount of available data is scarce. The only imputer with performance close
to REMASKER is HyperImpute (Jarrett et al., 2022), which is an ensemble method that integrates
multiple imputation models and automatically selects the most fitting model for each column of
the given dataset. This highlights that the modeling capacity of REMASKER’s masked autoencoder
is comparable with ensemble models. In § B.4, we conduct a more comprehensive evaluation by
simulating all three missingness scenarios (MCAR, MAR, and MNAR) with different missingness
ratios. The results show that REMASKER consistently performs better across a range of settings.

4.2 SENSITIVITY ANALYSIS

To assess the factors influencing REMASKER’s performance, we conduct sensitivity analysis by
varying the dataset size, the number of features in the dataset, and the missingness ratio under the
MAR setting. Figure 3 shows the performance of REMASKER within these experiments against
the six closest competitors (HyperImpute, ICE, MissForest, GAIN, MIWAE, and Sinkhorn) on
the letter dataset. We have the following observations. (a) The performance of REMASKER
improves with the size of available data, while its advantage over other imputers (with the exception
of HyperImpute) grows with the dataset size. (b) The number of features has a significant impact
on the performance of REMASKER, with its advantage over other imputers increasing steadily with
the number of features. This may be explained by that REMASKER relies on learning the holistic
representations of inputs, while including more features contributes to better representation learning.
(c) REMASKER is fairly insensitive to the missingness ratio. For instance, even with 0.7 missingness
ratio, it achieves RMSE below 0.1, suggesting that it effectively fits sparse datasets. In § B.5, we also
conduct an evaluation on other datasets with similar observations.

4.3 ABLATION STUDY

We conduct an ablation study of REMASKER to understand the contribution of different components
to its performance using the letter dataset. Results on other datasets are deferred to § B.6.
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depth RMSE WD AUROC

2 0.0729 0.0263 0.7898
4 0.0636 0.0228 0.7903
6 0.0616 0.0219 0.7909
8 0.0611 0.0217 0.7892
10 0.0673 0.0245 0.7879

(a) Decoder depth

width RMSE WD AUROC

16 0.0902 0.0379 0.7902
32 0.0714 0.0289 0.7885
64 0.0616 0.0219 0.7909

128 0.0795 0.0305 0.7845
256 0.1040 0.0403 0.7868

(b) Embedding width

depth RMSE WD AUROC

2 0.0637 0.0239 0.7887
4 0.0625 0.0236 0.7877
6 0.0644 0.0239 0.7889
8 0.0616 0.0219 0.7909

10 0.0637 0.0227 0.7878

(c) Encoder depth

Table 1. Ablation study of REMASKER on the letter dataset. The default setting is as follows: encoder depth
= 8, decoder depth = 6, embedding width = 64, masking ratio = 50%, and training epochs = 600.

backbone
letter california

RMSE WD AUROC RMSE WD

Transformer 0.0611 0.0217 0.7892 0.0663 0.0172
Linear 0.1732 0.1604 0.7821 0.1786 0.1329

Convolutional 0.1694 0.1582 0.7836 0.1715 0.1286

Table 2. Performance with different backbones. (note:
AUROC is inapplicable to the california dataset)

loss
letter california

RMSE WD AUROC RMSE WD

Imask+ ∪ Iunmask 0.0616 0.0219 0.7909 0.0663 0.0172
Imask+ 0.0629 0.0237 0.7890 0.0840 0.0311
Iunmask 0.2079 0.1129 0.7901 0.1932 0.1906

Table 3. Performance of REMASKER with reconstruc-
tion loss w/ or w/o unmasked values.

Model design. The encoder and decoder of REMASKER can be flexibly designed. Here, we study the
impact of three key parameters, the encoder depth (the number of Transformer blocks), the embedding
width (the dimensionality of latent representations), and the decoder depth, with results summarized
in Table 1a, Table 1b, and Table 1c. Observe that the performance of REMASKER reaches its peak
with a proper model configuration (encoder depth = 8, decoder depth = 8, and embedding width =
64). This observation suggests that the model complexity needs to fit the given dataset: it needs
to be sufficiently complex to effectively learn the holistic representations of inputs but not overly
complex to overfit the dataset. We also compare the performance of REMASKER with different
backbone models (i.e., Transformer, linear, and convolutional) with the number of layers and the
size of each layer fixed as the default setting. As shown in Table 2, Transformer-based REMASKER
largely outperforms the other variants, which may be explained by that the self-attention mechanism
can effectively capture the intricate inter-feature correlation under limited data Huang et al. (2020).

Reconstruction loss. We define the reconstruction loss as the error between the reconstructed and
original values on the re-masked values Imask+ and the unmasked values Iunmask. We measure the
performance of REMASKER under three different settings of the construction loss: (i) Imask+ ∪
Iunmask, (ii) Imask+ only, and (iii) Iunmask only on the letter and california datasets, with
results shown in Table 3. Observe that using the reconstruction of unmasked values only is insufficient
and yet including the reconstruction loss of unmasked values improves the performance, which is
especially the case on the california dataset. This finding is different from the vision domain
in which computing the loss on unmasked image patches reduces accuracy (He et al., 2022). We
hypothesize that this difference is explained as follows. Unlike conventional MAE, due to the
naturally missing values in tabular data, relying on re-masked values provides limited supervisory
signals. Moreover, while images are signals with heavy spatial redundancy (i.e., a missing patch can
be recovered from its neighboring patches), tabular data tends to be highly semantic and information-
dense. Thus, including the construction loss of unmasked values improves the model training.

4.4 PRACTICE OF REMASKER

Training regime. The ablation study above by default uses 600 training epochs. Figure 4(a) shows
the impact of training epochs, in which we vary the training epochs from 100 to 1,600 and measure
the performance of REMASKER on the letter dataset. Observe that the imputation performance

AUROCWDRMSE

5.0

6.0

7.0

8.0

2.0

2.2

2.4

2.6
x10-2x10-2

7.7

7.8

7.9

8.0
x10-1

100 200 400 800 1600
(a) Max Training Epochs

0 200
(b) Training Epochs

400 600

R
ec

on
st

ru
ct

io
n 

Lo
ss

1.0

1.5

2.0

2.5

3.0

3.5

x10-1

0 5 10 15 20 25
1.5
2.0
2.5
3.0
3.5

100 200 400 800 1600100 200 400 800 1600

Figure 4: (a) REMASKER performance with respect to the maximum number of training epochs; (b) Convergence
of REMASKER’s reconstruction loss. Performed on letter under MAR with 0.3 missingness ratio.
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masking ratio
letter california

RMSE WD AUROC RMSE WD
0.1 0.0668 0.0215 0.0789 0.0888 0.0230
0.3 0.0562 0.0207 0.7897 0.0654 0.0151
0.5 0.0554 0.0212 0.7935 0.0663 0.0172
0.7 0.0906 0.0366 0.7878 0.1320 0.0650

Table 4. Performance with varying masking ratio. The
results are evaluated on letter and california
under MAR with 0.3 missingness ratio.

base imputer
letter california

RMSE WD AUROC RMSE WD
default 0.0564 0.0215 0.7899 0.0722 0.0134

REMASKER 0.0554 0.0212 0.7935 0.0702 0.0115

Table 5. REMASKER as the base imputer within Hy-
perImpute. The results are evaluated on letter and
california under 0.3 MAR.

improves (as RMSE and WD decrease and AUROC increases) steadily with longer training and
does not fully saturate even at 1,600 epochs. However, for efficient training, it is often acceptable
to terminate earlier (e.g., 600 epochs) with sufficient imputation performance. To further validate
the trainability of REMASKER, with the maximum number of training epochs fixed at 600 (which
affects the learning rate scheduler), we measure the reconstruction loss as a function of the training
epochs. As shown in Figure 4(b), the loss quickly converges to a plateau within about 100 epochs
and steadily decreases after that, demonstrating the trainability of REMASKER.

Masking ratio. The masking ratio controls the number of re-masked values (after excluding missing
values). Table 4 shows its impact on REMASKER. Observe that the optimal ratio differs across
different datasets, which may be explained by the varying number of features of different datasets (16
versus 9 in letter and california). Intuitively, a larger number of features affords a higher
masking ratio to balance (i) encouraging the model to learn missingness-invariant representations and
(ii) having sufficient supervisory signals to facilitate the training.

Standalone vs. ensemble. Besides using REMASKER as a standalone imputer, we explore its use as
a base imputer within the ensemble imputation framework of HyperImpute, with results summarized
in Table 5. It is observed that compared with the default setting (with mean substitution as the base
imputer), using REMASKER as the base imputer improves the imputation performance, suggesting
another effective way of operating REMASKER.

5 DISCUSSION

Q1: What is REMASKER learning? The empirical evaluation above shows REMASKER’s superior
performance in imputing missing values of tabular data. Next, we provide theoretical justification
for its effectiveness. By extending the siamese form of MAE (Kong & Zhang, 2022), we show that
REMASKER encourages learning missingness-invariant representations of input data, which requires
a holistic understanding of the data even in the presence of missing values.

Let fθ(·) and dϑ(·) respectively be the encoder and decoder. For given input x, mask m, and re-mask
m′, the reconstruction loss of REMASKER training is given by (here we focus on the reconstruction
of re-masked values):

ℓ(x,m,m′) = ∥dϑ(fθ(x⊙m⊙m′))⊙ (1−m′)⊙m− x⊙ (1−m′)⊙m∥2 (4)

where ⊙ denotes element-wise multiplication. Let m+ ≜ m⊙m′ and m− ≜ m⊙ (1−m′). Eq (4)
can be simplified as: ℓ(x,m+,m−) = ∥dϑ(fθ(x ⊙m+)) ⊙m− − x ⊙m−∥2. As the embedding
dimensionality is typically much larger than the number of features, it is possible to make the
autoencoder lossless. In other words, for a given encoder fθ(·), there exists a decoder dϑ′(·), such
that dϑ′(fθ(x⊙m−))⊙m− ≈ x⊙m−. We can further re-write Eq (4) as:

ℓ(x,m+,m−) =∥dϑ(fθ(x⊙m+))⊙m− − dϑ∗(fθ(x⊙m−))⊙m−∥2

s.t. ϑ∗ =argmin
ϑ′

Ex′∥dϑ′(fθ(x
′ ⊙m−))⊙m− − x′ ⊙m−∥2 (5)

We define a new distance metric ∆ϑ,ϑ′(z, z′) ≜ ∥(dϑ(z) − dϑ′(z′)) ⊙ m−∥2. Then, Eq (4) is
reformulated as:

ℓ(x,m+,m−) =∆ϑ,ϑ∗(fθ(x⊙m+), fθ(x⊙m−))

s.t. ϑ∗ =argmin
ϑ′

Ex′∥dϑ′(fθ(x
′ ⊙m−))⊙m− − x′ ⊙m−∥2 (6)

Note that optimizing Eq (6) essentially minimizes the difference between x’s representations under
m+ and m− (with respect to the decoder). As m+ and m− mask out different values, this formulation
promotes learning representations insensitive to missing values.
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Figure 5: CKA similarity between the representa-
tions of complete and incomplete inputs (with the
number of missing values controlled by the missing-
ness ratio). The tested model is trained on letter
under the MAR setting with 0.5 masking ratio.

To validate the analysis above, we empirically mea-
sure the CKA similarity (Kornblith et al., 2019)
between the latent representations (i.e., the output
of REMASKER’s encoder) of complete inputs and
inputs with missing values, with results shown in
Figure 5. Observe that the CKA under different
missingness ratios all steadily increase with the
training length, indicating that REMASKER tends to
learn missingness-invariant representations, which
may explain its imputation effectiveness.

Note that while the idea of masking observable val-
ues is also explored in prior work (Gondara & Wang,
2018), its adaptation in the context of MAE admits
a more elegant imputation solution: it does not re-
quire initializing missing or re-masked values in the input while representing them with the same
trainable tokens in the latent space encourages learning the distribution of re-masked values close to
the distribution of missing values.

Q2: How is REMASKER’s performance influenced by the missingness mechanism? As revealed
above, REMASKER encourages learning representations invariant to re-masked values and then
leverages such representations to impute missing values. Thus, while REMASKER takes effect as long
as the distributions of re-masked and missing values are correlated, its performance may vary with
the disparity between the two distributions. In MCAR, both re-masked and missing values follow
similar distributions (i.e., evenly distributed across different features). In MAR, as the observable
features are fixed, the re-masked values are more likely to be selected from the observable features,
which biases the representation learning toward the observable features. This bias is reflected in our
experimental results, in which REMASKER tends to perform better under MCAR. In MNAR, as the
missingness depends on the missing values themselves, it causes even more disparity between the
distributions of re-masked and missing values, which also explains REMASKER’s better performance
under MAR and MCAR compared with MNAR.

Q3: Why is Transformer effective for tabular data imputation? While the theoretical understand-
ing of the Transformer architecture is still limited, we borrow insights from recent work to explain
the effectiveness of Transformer for tabular data imputation. Specifically, it is shown in (Park &
Kim, 2022) that the multi-head self-attention (MSA) mechanism in Transformer essentially performs
(optimizable) smoothing over the latent representations of different tokens, which makes Transformer
robust against severe occlusions or perturbations (Naseer et al., 2021). In the same vein, in the context
of tabular data imputation, MSA benefits learning representations that are invariant to missing values.

Q4: What are REMASKER’s limitations? One kind of bias we observe is that in some cases (e.g.,
the climate dataset in Figure 2), REMASKER outperforms alternative methods in terms of RMSE
but underperforms in terms of WD. One explanation is that REMASKER is trained to optimize the
reconstruction loss measured by MSE. Thus, it is biased towards re-constructing individual missing
values rather than the distributions of missing values. Also, as REMASKER solely focuses on the
imputation task itself, if the downstream tasks are known, its performance may not be optimal. In such
contexts, it is essential to optimize REMASKER with respect to concrete tasks such as uncertainty
estimation (van Buuren & Groothuis-Oudshoorn, 2011; Gondara & Wang, 2018).

6 CONCLUSION

In this paper, we conduct a pilot study exploring the masked autoencoding approach for tabular data
imputation. We present REMASKER, a novel imputation method that learns missingness-invariant
representations of tabular data and effectively imputes missing values under various scenarios. With
extensive evaluation on benchmark datasets, we show that REMASKER outperforms state-of-the-art
methods in terms of both imputation utility and fidelity. Our findings indicate that masked tabular
modeling represents a promising direction for future research on tabular data imputation.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

Table 6 summarizes the characteristics of the datasets used in our experiments.
Experiment Dataset Dataset Size # Features

(California) Housing 20,640 9
(Climate) Model Simulation Crashes 540 18

Concrete (Compressive) Strength 1,030 9
(Diabetes) 442 10

Estimation of (Obesity) Levels 2,111 17
(Credit) Approval 690 15

(Wine) Quality 1,599 12
(Raisin) 900 8

(Spam) Base 4,601 57
(Bike) Sharing Demand 8,760 14

(Letter) Recognition 20,000 16
(Yacht) Hydrodynamics 308 7

Table 6. Characteristics of the datasets used in the experiments.

A.2 BASELINES

We compare REMASKER with 13 state-of-the-art imputation methods: HyperImpute (Jarrett et al.,
2022), a hybrid imputer that performs iterative imputation with automatic model selection; MI-
WAE (Mattei & Frellsen, 2018), an autoencoder model that fits missing data by optimizing a
variational bound; EM (García-Laencina et al., 2010), an iterative imputer based on expectation-
maximization optimization; GAIN (Yoon et al., 2019), a generative adversarial imputation network
that trains the discriminator to classify the generator’s output in an element-wise manner; ICE, an
iterative imputer based on regularized linear regression; MICE, an ICE-like, iterative imputer based
on Bayesian ridge regression; MIRACLE (Kyono et al., 2021), an iterative imputer that refines the
imputation of a baseline by simultaneously modeling the missingness generating mechanism; MissFor-
est (Stekhoven & Buhlmann, 2012), an iterative imputer based on random forests; Mean (Hawthorne
& Elliott, 2005), Median, and Frequent, which impute missing values using column-wise uncondi-
tional mean, median, and the most frequent values, respectively; Sinkhorn (Muzellec et al., 2020), an
imputer trained through the optimal transport metrics of Sinkhorn divergences; and SoftImpute (Hastie
et al., 2015), which performs imputation through soft-thresholded singular value decomposition.

A.3 PARAMETER SETTING

The default parameter setting of REMASKER is listed in Table 7.
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model parameter setting

global

optimizer Adam
initial learning rate 1e-3

LR scheduler cosine annealing
gradient clipping threshold 5.0

training epochs 600
batch size 64

masking ratio 0.5

encoder
Transformer block 8
embedding width 64
number of heads 4

decoder
Transformer block 4
embedding width 64
number of heads 4

Table 7. Default parameter setting of REMASKER.

B ADDITIONAL RESULTS

B.1 EXECUTION EFFICIENCY

One design objective of MAE (e.g., masking out over 75% of an image) is to scale up the training on
large-scale image datasets without sacrificing its performance. This benefit is naturally inherited by
REMASKER. We measure the running time (including both training and imputation) of REMASKER
(under the default setting of Table 7) on datasets with over 1,000 records. For a comparison, we also
measure the running time of HyperImpute under the same setting, with results summarized in Table 8.

compression wine spam credit bike obesity california

HyperImpute 154.9s 297.7s 185.8s 39.9s 259.9s 196.1s 195.8s
REMASKER 72.9s 73.8s 74.1s 74.0s 66.9s 66.8s 66.9s

Table 8. Total running time of HyperImpute and REMASKER under the default setting.

Observe that compared with HyperImpute, REMASKER is not only more scalable but also less
sensitive to data size.

B.2 GENERALIZATION TO NEW DATA

To evaluate REMASKER’s ability to generate new data, we run the following evaluation. We halve
each dataset into two subsets D and D′ (both with 30% missing value missing under MAR). We train
REMASKER on D and then apply REMASKER to impute the missing values in D′. The results are
shown in Table 9. Note that compared with the setting where REMASKER is trained and applied on
the same dataset (Figure 2), REMASKER performs comparably well under the setting that it is applied
on a new dataset, indicating its generalizability.

compression wine spam credit bike obesity california

RMSE ↓ 0.117 0.120 0.052 0.251 0.108 0.197 0.068
WD ↓ 0.047 0.033 0.009 0.131 0.035 0.059 0.020

AUROC ↑ N/A 0.784 0.098 0.921 0.968 0.937 N/A
Table 9. Performance of REMASKER in imputing new datasets.

B.3 CKA MEASURES OF INPUTS UNDER MASKS m+ AND m−

To further validate the analysis in § 5, we empirically measure the CKA similarity (Kornblith et al.,
2019) between the latent representations (i.e., the output of REMASKER’s encoder) of inputs under
the masks of m+ and m−, with results shown in Figure 6. Observe that while m+ and m− represent
different missing mechanisms, the CKA measures between the inputs under m+ and m− still steadily
increase with the training epochs, which empirically corroborates the analysis § 5 that REMASKER
tends to learn masking-invariant representations.
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Figure 6: CKA similarity between the representations of inputs under masks m+ and m− (with the number of
missing values controlled by the missing ratio). The tested model is trained on letter under the MAR setting
with 0.5 masking ratio.

depth RMSE WD

2 0.0783 0.0230
4 0.0663 0.0172
6 0.0821 0.0225
8 0.0834 0.0244

10 0.0726 0.0196

(a) Decoder depth

width RMSE WD

16 0.0678 0.0213
32 0.0663 0.0172
64 0.0974 0.0322

128 0.1125 0.0388
256 0.0877 0.0324

(b) Embedding width

depth RMSE WD

2 0.0886 0.0334
4 0.0738 0.0203
6 0.0663 0.0172
8 0.0878 0.0322

10 0.0776 0.0239

(c) Encoder depth
Table 10. Ablation study of REMASKER on the california dataset. The default setting is as follows: encoder
depth = 6, decoder depth = 4, embedding width = 32, masking ratio = 50%, and training epochs = 600.

B.4 OVERALL PERFORMANCE

Figure 7, 8, 9, 10, and 11, 12 respectively show the imputation performance of REMASKER
and 8 baselines on 12 benchmark datasets under the MAR, MCAR, and MNAR scenarios with
the missingness ratio varying from 0.1 to 0.7. Observed that REMASKER performs on par with
or outperforms almost all the baselines across a wide range of settings. Note that the MIRACLE
imputer does not work on the Compression dataset and the Raisin dataset under some settings,
of which the results are not reported. Given that both Compression and Raisin are relatively
small datasets, one possible explanation is that MIRACLE requires a sufficient amount of data to
train the model.

B.5 SENSITIVITY ANALYSIS

Figure 13 and 14 show the sensitivity analysis of REMASKER and other 6 baselines on the
california dataset under the MAR, MCAR, and MNAR settings. The observed trends are
generally similar to that in Figure 3, which further demonstrates the observations we made in § 4
about how different factors may impact REMASKER’s imputation performance.

B.6 ABLATION STUDY

The ablation study of REMASKER on the california dataset is shown in Table 10. Observed that
the performance of REMASKER reaches its peak with encoder depth = 6, decoder depth = 4, and
embedding width = 32.

B.7 TRAINING REGIME

Figure 15 shows the imputation performance of REMASKER on the california dataset when the
training length varies from 100 to 1,600 epochs. Figure 16 plots the convergence of reconstruction
loss in REMASKER, showing a trend similar to Figure 4(b).
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(a)

(b) MAR-0.1

(c)

(d) MAR-0.3
Figure 7: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MAR scenario
with 0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).

B.8 OPTIMAL MASKING RATIO VS PAIRWISE MUTUAL INFORMATION

We report below the average pairwise mutual information (PMI) between different features and the
performance of ReMasker under varying masking ratios over each dataset. It is observed that in
general the PMI value is positively correlated with the optimal masking ratio. This may be explained
by that with higher feature correlation (or more information redundancy), a larger masking ratio often
leads to more effective representation learning, which corroborates the existing studies on MAE He
et al. (2022).
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(a) MAR-0.5

(b) MAR-0.7
Figure 8: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MAR scenario
with 0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).
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(a) MCAR-0.1

(b) MCAR-0.3
Figure 9: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MCAR scenario
with 0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).
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(a) MCAR-0.5

(b) MCAR-0.7
Figure 10: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MCAR scenario
with 0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD,
and AUROC scores (AUROC is only applicable to datasets with classification tasks).
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(a) MNAR-0.1

(b) MNAR-0.3
Figure 11: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MNAR with
0.1 and 0.3 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and
AUROC scores (AUROC is only applicable to datasets with classification tasks).
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(a) MNAR-0.5

(b) MNAR-0.7
Figure 12: Overall performance of REMASKER and 8 baselines on 12 benchmark datasets under MNAR with
0.5 and 0.7 missingness ratio. The results are shown as the mean and standard deviation of RMSE, WD, and
AUROC scores (AUROC is only applicable to datasets with classification tasks).
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(a) MAR

(b) MNAR
Figure 13: Sensitivity analysis of REMASKER on the california dataset under MAR and MNAR scenarios.
The results are shown in terms of RMSE and WD, with the scores measured with respect to (a) the dataset size,
(b) the number of features, and (c) the missingness ratio. The default setting is as follows: dataset size = 20,000,
number of features = 9, and missingness ratio = 0.3.
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(a) MCAR
Figure 14: Sensitivity analysis of REMASKER on the california dataset under the MCAR setting. The
results are shown in terms of RMSE and WD, with the scores measured with respect to (a) the dataset size, (b)
the number of features, and (c) the missingness ratio. The default setting is as follows: dataset size = 20,000,
number of features = 9, and missingness ratio = 0.3.

(a) RMSE (b) WD
Figure 15: REMASKER performance with respect to the number of training epochs on the california dataset
under MAR with 0.3 missingness ratio.

Figure 16: Convergence of REMASKER’s fitting on california under MAR with 0.3 missingness ratio.
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masking ratio
climate compressive diabetes obesity

RMSE WD AUROC RMSE WD RMSE WD RMSE WD AUROC
0.1 0.2825 0.2315 0.9544 0.1739 0.0544 0.1827 0.0691 0.2078 0.0588 0.9411
0.3 0.2832 0.2336 0.953 0.1129 0.0439 0.1432 0.0614 0.1943 0.0617 0.9422
0.5 0.2823 0.2481 0.9543 0.1046 0.0306 0.1496 0.0694 0.193 0.0743 0.9417
0.7 0.2837 0.2544 0.9533 0.1635 0.0825 0.1542 0.0784 0.2129 0.1093 0.9408

PMI 0.023 0.7829 0.1106 0.147

masking ratio
credit wine raisin spam

RMSE WD AUROC RMSE WD AUROC RMSE WD AUROC RMSE WD AUROC
0.1 0.2298 0.1075 0.9255 0.1171 0.0255 0.7954 0.1497 0.0727 0.9931 0.0451 0.0097 0.9998
0.3 0.2277 0.0993 0.9279 0.1122 0.0303 0.7949 0.0917 0.0431 0.9929 0.0434 0.0084 0.9998
0.5 0.245 0.1243 0.9247 0.1151 0.0395 0.7955 0.0904 0.0347 0.9943 0.0435 0.0099 0.9998
0.7 0.3175 0.2176 0.914 0.1401 0.0757 0.7934 0.1172 0.0727 0.9946 0.0507 0.0197 0.9998

PMI 0.069 0.1612 0.5246 0.0771

masking ratio
bike yacht letter california

RMSE WD AUROC RMSE WD RMSE WD AUROC RMSE WD
0.1 0.1068 0.0244 0.97 0.2882 0.1339 0.0668 0.0215 0.0789 0.0888 0.023
0.3 0.096 0.0226 0.9736 0.2185 0.0812 0.0562 0.0207 0.7897 0.0654 0.0151
0.5 0.1015 0.0277 0.9707 0.2174 0.0996 0.0554 0.0212 0.7935 0.0663 0.0172
0.7 0.1306 0.0561 0.9687 0.3188 0.1948 0.0906 0.0366 0.7878 0.132 0.065

PMI 0.1614 0.8229 0.1421 0.1576
Table 11. REMASKER performance with respect to masking ratio. The results are evaluated under MAR with
0.3 missingness ratio.
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