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Abstract—Adversarial attacks and defenses in machine learn-
ing and deep neural network (DNN) have been gaining significant
attention due to the rapidly growing applications of deep learning
in communication networks. This survey provides a compre-
hensive overview of the recent advancements in the field of
adversarial attack and defense techniques, with a focus on
DNN-based classification models for communication applica-
tions. Specifically, we conduct a comprehensive classification of
recent adversarial attack methods and state-of-the-art adversar-
ial defense techniques based on attack principles, and present
them in visually appealing tables and tree diagrams. This is
based on a rigorous evaluation of the existing works, including
an analysis of their strengths and limitations. We also catego-
rize the methods into counter-attack detection and robustness
enhancement, with a specific focus on regularization-based meth-
ods for enhancing robustness. New avenues of attack are also
explored, including search-based, decision-based, drop-based,
and physical-world attacks, and a hierarchical classification of
the latest defense methods is provided, highlighting the challenges
of balancing training costs with performance, maintaining clean
accuracy, overcoming the effect of gradient masking, and ensur-
ing method transferability. At last, the lessons learned and open
challenges are summarized with future research opportunities
recommended.
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network.
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I. INTRODUCTION

EEP neural networks (DNNG5) are a crucial component of
D the artificial intelligence (Al) landscape due to their abil-
ity to perform complex tasks, modulation recognition [1], [2],
wireless signal classification [3], [4], network intrusion detec-
tion and defense [5], [6], [7], object detection [8], [9], object
tracking [10], [11], image classification [12], [13], [14], lan-
guage translation [15], [16], and many more [17], [18], [19].
The availability of advanced hardware, such as GPUs, TPUs,
and NPUs, has facilitated the training of DNNs and made them
a popular research direction in Al [20], [21]. However, despite
their strong learning ability, DNNs are susceptible to adversar-
ial attacks, such as classical attack method Projected Gradient
Descent (PGD) [22], Square attack [23] or C&W [24]. These
attacks exploit the model’s sensitivity to small and carefully
crafted perturbations in the input data, causing the DNN to
produce false predictions. Adversarial attacks represent a seri-
ous challenge to the robustness of DNNs and require proactive
attention and action to mitigate the risks they pose.

Adversarial attacks in DNN can have serious conse-
quences, as captured in many recent studies. For example,
Fig. 1 also illustrates various such attacks, including a delib-
erately devised alteration to an input image resulting in
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Adv. Perturbation
(a) In digital world [25]

Laser Beam
(b) In physical world [26]

Clean Image

/ }W' yr
Clean CSI Example Adv. Perturbation  Adv. CSI Example
(c) In cyberspace [27]

Fig. 1. Examples of adversarial perturbation.

misclassification by a convolutional neural network (CNN)
with a 99% level of certainty [25], a traffic sign recognition
attack that uses a laser beam to fool self-driving cars [26],
and a channel state information (CSI) recognition attack in
an Internet of Things (IoT) scenario, where CSI examples are
adversarially perturbed to mislead DNN models [27]. Within
the area of signal recognition, the construction of adversarial
samples can be achieved by incorporating disturbance noise
into signal waveforms [28]. This manipulation can lead to erro-
neous predictions or recognition by machine learning (ML)
models. Such discrepancies can pose significant threats to con-
temporary wireless communication systems, cognitive wireless
networks, satellite navigation, and electromagnetic reconnais-
sance. To this end, adversarial attacks can pose significant
risks and impacts on many important areas with ML or DNN
involved, especially on communications and networking, as
articulated in the following.

A. Impacted Areas

Adpversarial attacks, which add imperceptible disturbances
to input samples, emerged in computer vision and can deceive
systems such as face recognition [29], [30], [31], object detec-
tion [32], [33], and object tracking [34], [35]. They now pose
risks across various fields, including autonomous driving [26],
[36], [37], [38], [39], finance [40], [41], and human-machine
interaction [42], [43]. With the widespread adoption of DNN
models in the communication and network domain, the
impact of adversarial attacks cannot be overlooked. The areas
within communication and networking impacted by adversarial
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attacks include signal processing, network security, network
management, and resource allocation.

1) Signal Processing: To facilitate signal detection and fast
tracking, DNN-based wireless signal classifiers have been
utilized by wireless signal receivers to categorize over-the-
air received signals into different modulation schemes and
orders. It is demonstrated in [44] that these DNN models
are vulnerable to channel-aware adversarial attacks. In such
attacks, an adversary can transmit an adversarial perturba-
tion within a given power budget to mislead the receiver into
making incorrect predictions when classifying wireless signals
superimposed with the adversarial perturbation. Adversarial
attacks can also substantially degrade the performance of DNN
models used for modulation scheme recognition in commu-
nication systems [1], [2], [45]. The authors of [46] indicate
that adversarial attacks significantly increase the bit error
rate (BER) of a DNN-based multi-user orthogonal frequency-
division multiplexing (OFDM) detectors, which are trained to
recover the payload bits directly from received symbols. In a
spectrum monitoring scenario, adversarial attacks in the form
of adversarial waveforms can successfully disrupt attempts
to intercept and classify signals using convolutional neural
networks (CNNs), and the attacking success rate increases
as bandwidth increases [28], [47]. In addition, Generative
Adversarial Networks (GANs), previously used for generat-
ing synthetic image examples [48], have now been adapted to
produce adversarial examples that attack modulation classifiers
in wireless communications [3], [4], [49] or conduct wireless
signal spoofing [50], [51]. Signals can be used to train ML
models for identifying IoT devices, which may also be threat-
ened by adversarial attacks capable of constructing specially
spoofed signals [52].

Moreover, Huang et al. [53] show that adversarially contam-
inated Wi-Fi signals could mislead DNN-based non-intrusive
human activity recognition systems. Xu et al. [27] con-
struct adversarial perturbation by customizing Fast Gradient
Sign Method (FGSM) [54] and PGD [22], and reduce the
performance of Wi-Fi sensing applications, such as user
identification [55], gesture recognition, and human activity
recognition [56]. With tiny perturbation-to-signal ratios of
around —18 dB in CSI-based Wi-Fi fingerprinting, adversar-
ial attacks can reach an extraordinary attack success rate of
over 90% [57].

At the same time, numerous defensive strategies have been
developed to counteract adversarial instances in radio signals
modulation [58], signal classification [59], [60], and modula-
tion classification [2], [61], [62], [63], [64]. Predominantly,
the primary research methodology strives to minimize the
attack surface and sustain automatic modulation classification
(AMC) [2], even in the face of meticulously crafted adversarial
attacks.

2) Resource Allocation: In addition to classification tasks,
adversarial attacks affect regression problems that can sig-
nificantly damage the power allocation process in massive
multiple-input multiple-output (MIMO) networks, often lead-
ing to unfeasible solutions [65], [66], [67]. For instance,
Boora et al. [66] use CNN and ordinary differential equation
(ODE) models to study the effects of adversarial attack and
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defense on massive MIMO localization, and verify that adver-
sarial training-based neural ODE can effectively improve the
robustness of massive MIMO localization in indoor and out-
door environments. Manoj et al. [67] study adversarial attacks
against DNN-based optimal power allocation in a massive
MIMO system, demonstrating that adding only a small per-
turbation to the input of DNNs can lead to a strong attack
consequence.

3) Network Management: Adversarial attacks have also
been observed in network management, due to the increas-
ing application of DNN-based network traffic classifica-
tion [68], [69]. Universal Adversarial Perturbation (UAP) [70],
originally developed for adversarial attacks against DNN-
based image classifiers, has been evaluated for attacking DNN-
based network traffic classification [71]. Nowroozi et al. [72]
show that adversarial attacks, such as Jacobian-based
Saliency Map (JSMA) [73], Iterative Fast Gradient Method
(I-FGSM) [74], PGD [22], Limited-memory Broyden Fletcher
Goldfarb Shanno (L-BFGS) [75], and DeepFool attack [76],
can be used to attack CNN models trained on well-known
computer network datasets, including the Domain Generating
Algorithms (DGA) dataset, the Network-based Detection of
IoT (N-BaloT) dataset, and the RIPE Atlas dataset, with attack
success rates ranging from 63% to 100%. DNN models trained
using collected TCP/IP traffic data can be fooled by per-
turbed network packets sent from the host controlled by an
attacker [77], [78].

There is a burgeoning interest in adversarial defense
schemes for network traffic classification, due to the signif-
icant threats instigated by DNN-based packet sniffers. For an
instance, Yang et al. [79] propose an effective traffic obfusca-
tion method based on neural networks, which generates traffic
distortions with minimal overhead and computational cost but
attains comparable obfuscation performance. Such obfuscation
can effectively defend eavesdropping or traffic analysis attacks.

4) Network Intrusion Detection: Network Intrusion
Detection Systems (NIDS) are extensively utilized for
the detection and filtration of malicious network traf-
fic [20], [80], [81]. ML-based detectors [82], in particular,
offer an effective means of recognizing intrusive network
packets. However, attackers have found ways to bypass
NIDS by generating adversarial samples. This is typically
accomplished by subtly altering a small subset of traffic
characteristics, such as the interval between successive
packets, or by introducing entirely new features until they
successfully bypass the NIDS [80], [83]. Sun et al. [68]
propose an adversarial attack framework to generate mali-
cious practical traffic with little prior knowledge to deceive
ML-based detection, which can be universally adapted to
multiple malicious traffic. Adversarial attacks, such as trans-
fer learning-based multi-adversarial detection (TAD) [83],
customized AT [59], and an adaptive mask-guided adversarial
attack against malware detection (AMGmal) [80], have been
proven capable of circumventing these detection systems.
Zhang et al. [5] reveal that adversarial attacks based on
perturbed network traffic, can evade an NIDS with a success
rate of up to 35.7%. To evaluate the risks posed by adversarial
attacks in the Industrial Internet of Things (IloT), methods
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{ WiFi Sensing [27], [53], [57] }
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{ Primary User Adversarial Attacks [47] }
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}
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{ Malicious Traffic [68] J

{ Intrusion Detection [83], [5] J

{ Network Intrusion Detection

{ Malware Detection [80] J

This Survey

}_{ Malware Classifcation [82] ]

{ Incremental learning techniques for unmanned in 6G scenes [86] ]

«[ Exposure of 5G Network Infrastructures [20] }

{ Radio Signal Modulation Classification [59] J

{ Signal Processing

{ Attention-Based Adversarial Robust Distillation [64] ]

}{ Multi-Objective GAN-Based [49] ]

{ Primary User Adversarial Attacks [47] ]

{ Resource Allocation

H Robust Massive MIMO Localization [66] ]

Adversarial Defense

«[ Network Management

Network Traffic Classification [69] ]

Hierarchical Learning [69] J

Evaluation of an IDS with Function-Discarding Adversarial Attacks [6] }

{ Network Intrusion Detection

Transfer Learning-based Multi-Adversarial Detection [83] J

Feature Grouping and Multi-model fusion Detector [84] J

Fig. 2. Taxonomy of seminal work conducted in the field of adversarial attacks on communication networks since 2021.

like Evasion-Injection-Fabrication-Denial Adversarial Attack
(EIFDAA) [6] and AMGmal [80] have been proposed. These
methods aim to deceive an ML-based NIDS used within the
IIoT, and to measure the performance of these ML-based
NIDS systems within IIoT networks. More advanced research
in this field involves assessing the defensive performance of
NIDS against a variety of adversarial attack algorithms, and
the design of new defense strategies [6], [83], [84].

5G networks, which are envisioned to support billions of
heterogeneous devices with quality of service (QoS) provision-
ing, are expected to heavily rely on ML. As a result, these 5G
environments will be susceptible to adversarial attacks [85].
However, due to the scarcity of ML-driven 5G devices avail-
able for adversarial ML research, proactively assessing such
risks is a significant challenge. Concurrently, advancements

in mobile communication, particularly the emerging ultra-low
delay 6G technology, can substantially improve Internet of
Vehicle (IoV) technology and enhance autonomous driving.
Nevertheless, adversarial attacks present security concerns,
particularly in the area of autonomous scene recognition [86].
These attacks can be exploited in-vehicle networking systems,
potentially leading to traffic accidents and jeopardizing per-
sonal safety. Therefore, with the imminent advent of 6G
technology, it is crucial to consider the safety implications
of using deep learning (DL) algorithms in connected vehicle
systems.

Moreover, we have gathered additional relevant citations
and organized them based on their associations with various
aspects of communications and networking. The outcomes of
this effort are depicted in Fig. 2.
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B. Attack Scenario

Adversarial attacks can occur during a model inference
stage. Specifically, an attacker can aim to deceive a DNN-
based model, e.g., a sample classifier, by launching a two-
phase attack: Generating an adversarial example from the
DNN-based sample classifier and feeding it back into the sam-
ple classifier. In the field of communication and networking
empowered by ML models, attackers can gain knowledge
about the models through several methods:

1) Model Stealing [87]: The attacker can train a surrogate
model that imitates the behavior of the target model by
sending queries and observing responses. This technique
is also known as “model extraction”.

2) Model Inversion [88]: In this scenario, the attacker
attempts to reconstruct the original training data or
some data properties, given a trained model and some
auxiliary information.

3) Membership Inference [89]: This attack attempts to
ascertain whether a particular data instance was part of
the training dataset or not, thereby potentially revealing
sensitive information.

A practical example might involve an attacker attempting
to compromise an NIDS that employs an ML model [90].
The attacker could employ techniques like model extrac-
tion to comprehend how the NIDS categorizes normal and
malicious network traffic. Once the attacker gains a solid
understanding of the model’s behavior, it can craft adversarial
network packets that appear benign to the NIDS but are, in
fact, malicious.

During the first stage, the attacker perturbs the element val-
ues of a benign example to maximize the loss function value of
the sample classifier. This forces the sample classifier to mis-
classify the adversarially perturbed example or minimize the
loss function value with regards to an incorrect class designed
by the attacker. The attacker can employ different strategies
to guide the direction of perturbation based on their a-priori
knowledge of the DNN model under attack. If the neural
network architecture, learned parameter values (weights and
biases), and the loss function of the DNN model is available
(e.g., due to a compromised server or a rogue employee), the
attacker can exploit a gradient-based attacking algorithm to
calculate the perturbation and produce the adversarial example.

For instance, FGSM [54] generates an adversarial instance,
denoted by x%4% by applying the following rule:

X% = x 4+ € x sign(VyL(x, y)),
where x is the input data, ¢ € RT is the perturbation mag-
nitude, y indicates the ground-truth class, sign(-) returns the
sign of a real value, and VL(x, y) indicates the gradient of
the loss function £(x, y) with regard to the input example x.

PGD [22] is another typical adversarial attack algorithm,
which improves FGSM by generating an adversarial example
iteratively:

xt = H <xi + a sign(VxL(x, y))), (1)
x+Se

where i is the index to an iteration, o < € is the perturbation
step size, Sc C R? is the set of allowed perturbations under
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the maximum perturbation magnitude e, and the projector
[Ix1s.(-) maps its input to the closest element to the input
in the set x + Sc. PGD conducts a fine-grained perturba-
tion on images and can achieve a higher attack success
rate than FGSM under the maximum perturbation magnitude
(i.e., the perturbation budget), at the cost of a longer running
time.

The perturbation budget [22], [91] is a pivotal concept
in adversarial attacks. It signifies the maximum permissible
alterations that an adversary is allowed to implement on the
input data. This constrains the extent of the perturbations that
the adversary can apply, thus maintaining the attack within
realistic and manageable bounds. Specifically, we consider a
(potentially stochastic) mapping p : x — X/, where x and Y’
are vector spaces. In an untargeted adversarial attack aiming
to induce a misclassification by the classifier C, the goal is to
have C(x+ p(x)) # C(x), while maintaining the perturbation
constraint ||p(x)||, < €, where € denotes a perturbation bud-
get [22]. Given that the outcome of a perturbation is a vector,
the perturbation is typically converted to a scalar by applying
a p-norm operation || - ||,. The most frequently used values of
p include 0, 1, 2, and oo.

To produce an effective adversarial example within a per-
turbation budget, the attacker can progressively perturb the
elements of an example (e.g., the pixels of an image),
by running more sophisticated adversarial attack algorithms,
e.g., PGD [22]. The attacker repeats this process until the
DNN-based classifier misclassifies the example x into an
attacker-specified target class that differs from the source
category of the benign example x.

The information necessary to undertake an adversarial attack
against a DNN is relatively easy to obtain. This is due to the
fact that the best-performing DNN-based classifiers generally
use well-known architectures, e.g., ResNet models [92], and
commonly employ the Cross-Entropy loss function [93] for
classification tasks. Even in the case where the parameters of
the DNN-based classifiers are not accessible for the attacker,
it is possible for the attacker to learn a good surrogate of the
DNN-based classifiers by sending queries to the classifiers and
collecting responses [94].

The attacker can also use other strategies, such as con-
strained optimization-based or heuristic approaches (see
Section III), to seek out effective adversarial instances. After
the attacker confirms the effectiveness of the generated adver-
sarial example in a controlled environment, they can launch
an actual adversarial attack by feeding perturbed examples to
the DNN model under attack.

C. Notable Attack Incidents

In the past several years, there have been several notable

adversarial example attacks:

o In 2023, researchers proposed a novel adversarial attack
framework [68], and designed to generate adversarial
malicious traffic capable of deceiving ML-based traf-
fic classification systems. Experiments demonstrated that
this approach exhibits a high evasion growth rate across
multiple models and datasets.
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e In 2021, researchers demonstrated that adversarial
attacks could disrupt DNN-based power distribution in
large-scale MIMO network downlinks, and experiments
indicated that white-box attacks could result in up to 86%
of unworkable solutions [67].

e In 2021 and 2022, researchers demonstrated that they
could cause an autonomous vehicle to mistake a stop
traffic sign for a speed limit sign by putting a small,
almost imperceptible sticker on the sign [95], [96]. While
this type of attack has not yet resulted in any real-
world accidents, it has raised concerns about the safety
of autonomous vehicles and the potential for malicious
actors to cause accidents or other harm using adversarial
attacks.

e In 2022, a team of researchers showed that adversarial
examples could trick image classification systems in self-
driving cars [97]. The researchers showed that a small
perturbation added to a traffic sign could cause the self-
driving car to misidentify the sign, potentially leading to
dangerous mistakes on the road.

o In 2019, researchers demonstrated that they could cause
an ML model to misclassify a fraudulent credit card trans-
action as legitimate by applying weak perturbations to
the transaction data [98], [99], [100]. This type of attack
could potentially result in significant financial losses for
financial institutions and consumers.

o In 2020, researchers demonstrated that they could cause
a chatbot to generate inappropriate or offensive responses
by adding small perturbations to the input text [101].
This type of attack could potentially cause damage to
a company’s reputation or lead to lost customers.

e In 2022, researchers demonstrated that adversarial exam-
ples could trick a voice assistant, e.g., Amazon Alexa and
Google Assistant [102]. They manipulated voice com-
mands to make them sound normal to humans but caused
voice assistants to perform actions that were not intended.
This can sabotage the security and privacy of users who
use voices to control smart home devices.

e In 2022, a group of researchers demonstrated that
adversarial examples could be utilized to evade spam
filters, allowing malicious emails to bypass detec-
tion [103], [104]. They created adversarial examples of
spam emails by adding perturbations to the email con-
tent, and caused the spam filter to incorrectly classify the
email as non-spam.

While these adversarial attacks on ML or DNN models have
not yet caused widespread financial or economic loss, they
have sparked worries about the safety and dependability of
these systems, and research into approaches for detecting and
defending against these attacks is ongoing.

D. Contributions of This Survey

As the applications of ML and artificial intelligence con-
tinue to expand into almost all aspects of human life and
society, the robustness and security of ML models become
increasingly crucial [105], [106], [107]. As a result, adversar-
ial attacks and defenses make up an active and rapidly growing
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research area. For example, in the Year 2022 alone, over 1,200
research articles were published on adversarial attacks and
defenses, documenting many new attack and defense tech-
niques and incidents. In the Year 2021, over 1,000 research
articles were published on these topics.! Most of these new
research outcomes have not been covered by any of the lat-
est literature reviews and surveys due to the fast pace of this
active research area of adversarial attacks and defenses. To this
end, a timely summary of emerging attacks and new defense
techniques is critical to keep the research community and secu-
rity practitioners well-informed and equipped with the latest
knowledge.

This comprehensive survey delves into the cutting-edge
advancements in adversarial attack and defense techniques
over the past 24 months. We review over 220 research
papers published in Q1 journals classified by the Journal
Citation Reports (JCR), indexed by IEEE, ACM, Springer, and
Elsevier’s ScienceDirect. We also consider papers presented
at top-tier conferences, such as AAAI, CCS, and ICCYV, since
2021. Our primary focus is on adversarial attacks and defenses
that target ML or DNN-based models used in the areas of
communication and networking. This survey is anticipated to
inspire a new wave of research and innovation in the rapidly
evolving field of adversarial attack and defense.

These are the key findings of this survey:

e A comprehensive classification of recent adversarial
attack methods as well as the SOTA adversarial defense
techniques based on a variety of attack principles,
presented in a visually appealing table and tree diagram
format.

o The categorization of the methods into counter-attack
detection and robustness enhancement, with a specific
focus on regularization-based methods for enhancing
robustness, represented through tables and tree diagrams.

e A rigorous evaluation of the existing works, includ-
ing an analysis of their strengths and limitations, and
recommendations for future research avenues.

Some of the noteworthy highlights from the survey include:

e An exploration of new avenues of attack in the last
two years, including search-based attacks, decision-based
attacks, drop-based attacks, and beyond the traditional
optimization-based and gradient-based attacks.

e The emergence of physical-world adversarial attacks,
particularly in the form of adversarial patches.

o A hierarchical classification of the latest defense meth-
ods, highlighting the challenges of balancing training
costs with performance, maintaining clean accuracy, over-
coming the effect of gradient masking® (or in other
words, a defense method appears to work but is actually
ineffective), and ensuring method transferability.

As illustrated in Fig. 3, this survey is organized as fol-

lows. Section II provides a brief overview of the existing

IThese search results are based on IEEE Xplore with the keyword
“adversarial” and “attack” as of 7 February 2023.

2Gradient masking here refers to the phenomenon that the gradient of the
model is hidden or obsolete, e.g., towards potential adversaries. On the other
hand, it also refers to a category of defense techniques that exploit or aim to
achieve the phenomenon of gradient masking [108].
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Fig. 3. The anatomy of this survey.

surveys of adversarial attacks and defenses, and clarifies the
key differentiating factors of the current survey. Section III
categorizes the most recent adversarial attacks, and provides
a comprehensive analysis of each of the categories, as well as
the transferability of adversarial attacks. Section IV classifies
and analyzes various adversarial defense and detection tech-
niques, and their effectiveness and limitations against the latest
adversarial attacks. Lessons learned and open challenges are
delineated in Section V. At last, Section VI summarizes the
current state and suggests avenues for future investigations.
Table I defines the notation used in this survey.

II. SURVEY OF SURVEYS

Adpversarial attacks and defenses in ML and DNN models
are crucial areas of research that have garnered signifi-
cant attention in recent years. There are several reviews on
the topic, each delving into specific aspects of the topic.
Addressing the profound concern posed by malware in the
context of network security, Yan et al. [82] delve into the
domain of adversarial attacks and defenses for malware
classification utilizing ML techniques. The authors provide
a cohesive overview of a unified framework for malware
classification, and present an exhaustive examination of ML-
based approaches for malware classification, encompassing
adversarial attacks against malware classifiers and robust
malware classification. The authors of [110] first present

Authorized licensed use limited to: Princeton University. Downloaded

\_Scalability and Generalizability

| Dependence on Data

preliminary knowledge concerning adversarial examples, and
then contrast theoretical models of adversarial example attacks
with actual instances of attacks. They also present existing
examples of actual adversarial attacks. The authors of [109]
review adversarial attacks and defenses in the computer vision
domain, as well as their real-world applications. They analyze
the various methods proposed for attacking and defend-
ing against adversarial attacks in this domain and explore
these methods’ effectiveness and limitations. Similarly, the
authors of [112] discuss the theoretical underpinnings, meth-
ods, and applications of adversarial attack techniques. In
addition, they present several research initiatives on defen-
sive strategies that span a broad variety of frontiers in the
area, followed by a discussion of a number of open issues
and challenges. The authors of [113] expand the scope of
their review to include adversarial attacks in the context of
images, malicious code, and text across various domains. They
discuss the various types of adversarial attacks proposed in
these contexts and analyze their effectiveness. The authors
of [111] focus on summarizing the recent studies on adver-
sarial attack and defense techniques in the deep learning
area. They study existing defense methods from three per-
spectives: Data altercation, model modification, and utilization
of auxiliary tools. They analyze the benefits and draw-
backs of each strategy and discuss the limitations of existing
methods.
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TABLE I
NOTATION AND DEFINITION

Notation Definition

X, Y A clean input example and its ground-truth label.

Yt The label of the class designated by an attacker.

xadv ¢ An adversarially perturbed example and the attacker-
specified target class.

x(® An adversarial example generated in i-th round of process-
ing.

X The optimal state in the Markov decision process tackled
by reinforcement learning.

e e Rt The magnitude of perturbation applied to an example.

VxL(-,-)  The gradient of the loss function L£(,-) against x.

a, a(®) A constant step size used for iterative adversarial example
generation, and a variable step size used in the ¢-th iteration
of generation, respectively.

€ The maximum perturbation magnitude, i.e., the perturba-
tion budget.

Se C R4 The set of allowed perturbations under the maximum
perturbation magnitude e.

[Ix+s.()  The projector that maps its input to the closest element to
the input in the set X + Se.

[ lps 2p p-norm, where p can be 0, 1, 2 or co.

gi The gathered gradient in the ¢-th iteration.

Z The logit of example class ¢

fQ) The predict function built from an ML or DNN model.

Clipg(+) The operation that clamps the elements of the input to
within s.

&7 The random variables drawn i.i.d. from a distribution P“
parameterized by the standard deviation o € R,

n The neighboring hypothesis in IoU.

Lsee The softmax cross-entropy (SCE) discrepancy between the
one-hot ground truth and the output.

Lr,(+) The loss function of a reinforcement learning task 75.

1 The maximum number of gradient-update iterations.

z() The feature derived from the [;, layer.

\v4 The gradient calculation.

O] The Hadamard product.

S CR" A subset of n-dimensional real number space.

There are also many investigations focusing on real-world
attacks. In [118] and [117], the authors focus on physical
adversarial attacks. They classify and summarize current phys-
ical adversarial attacks from the perspective of physical world
attacks, discussing the benefits and limitations of various
approaches. In [40], the authors examine adversarial attacks
and defenses against transaction records from the viewpoint
of NLP.

Other existing surveys are concerned with techniques for
enhancing the robustness and resilience of DNN models in the
face of adversarial attacks. For example, in [115], the authors
analyze and compare adversarial training methods. They dis-
cuss the various approaches proposed for adversarial training
and analyze their effectiveness in enhancing the robustness of
deep learning models.

These above-mentioned earlier reviews, e.g., [109], [110],
focus more on classical attack and defense approaches.
Conversely, with the advancement of deep learning in the
last two years, more and more new risks have emerged. For
example, Gallagher et al. [119] adapt FGSM as a single
value and label flipping attack on financial stock data-based
prediction networks, and find that it can result in a sig-
nificant reduction in profitability and financial losses in a
financial trading simulation. It is highlighted that the poten-
tial consequences of manipulating stock prices through buying
and selling in the public trading market could be significant.
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Goldblum et al. [120] examine the impact of adversarial
attacks on trading robot-based stock price predictions. These
systems, known as high-frequency trading (HFT) systems,
operate in extremely short time frames, making it difficult to
prevent harmful behavior through human intervention. This
is particularly concerning as it is well accepted that irregular
behavior and security breaches in HFT systems have precip-
itated major market incidents like “Flash Crash” [121]. The
severity of the damage caused by adversarial attacks in such
systems cannot be underestimated.

As summarized in Table II, this survey aims to bridge the
gaps in the current literature by not only focusing on classi-
cal methodological analysis but also systematically examining
new methods that have emerged in the last two years. Further,
Table III illustrates the gap between the existing surveys on
adversarial attacks and this survey. Specifically, this survey
reviews the new methods in the context of adversarial attack
methods, classifying them in a new light, and documenting
effective but under-reported new attack methods, such as
decision-based and drop-based methods. It also sheds light
on the recent developments in adversarial patching, a pow-
erful physical world attack that has been under-explored in
previous surveys. From a defensive perspective, the survey
covers both adversarial detection methods and model robust-
ness enhancement methods, categorizing them from a novel
perspective starting from the hierarchy of operations, sum-
marizing them in the form of tables and tree diagrams, and
suggesting future research directions. The survey provides an
in-depth understanding of the SOTA in adversarial attacks and
defenses in deep learning.

III. STATE-OF-THE-ART OF ADVERSARIAL ATTACKS

An adversarial attack is a deliberate intent to mislead
an ML or DNN model by introducing subtle, impercep-
tible interference to an input sample. This might result
in the model drawing an incorrect conclusion confidently.
Szegedy et al. [75] were among the first to discover that
DNNSs are susceptible to slight adversarial perturbations. Ever
since, considerable efforts have been committed to producing
more potent adversarial attacks for evaluating the robustness
of DNNE.

Conventionally adversarial attacks consist of black-box
attacks [108], white-box attacks [122], and gray-box
attacks [123]. A black-box attack signifies that an attacker has
no knowledge of the underlying structure, learnable param-
eters, or defense strategies of the model under attack. The
attacker interacts only with the model via its inputs and out-
puts [108]. A white-box attack occurs when the attacker has
all prior knowledge of the model under attack, e.g., the loss
function and the optimized parameters of the model, and
exploits the knowledge to facilitate the attack [122]. A gray-
box attack accounts for the case, where the attacker only
possesses partial knowledge of the model under attack in
prior [123].

In this section, we classify the existing adversarial attacks
from their underlying mechanisms and implementation tech-
niques. Some of the attacks can be adapted to support some
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TABLE 11
COMPARISON OF THE EXISTING SURVEYS ON ADVERSARIAL ATTACKS AND DEFENSES
Reference Year e . Focus Area - — .
Digital-world Attacks | Physical-world Attacks | Defenses | Detection | Transferability | No. of references since 2021
[109] 2018 v v v v X n.a.
[110] 2018 v v X X X n.a.
[111] 2019 v X v v v n.a.
[112] 2020 v v v v X n.a.
[40] 2021 v v v X X n.a.
[113] 2021 v/ v/ v v X 4
[114] 2022 v X v v X 1
[115] 2022 v X v X X 5
[116] 2022 v v v v X 16
[117] 2022 X v v v v 38
[118] 2022 X v X X v 42
[82] 2023 v X v v X 17
This survey | 2023 v v v 4 v 221
TABLE III

THE GAP ANALYSIS OF THE EXISTING SURVEYS ON ADVERSARIAL ATTACKS AND DEFENSES. WHILE THIS SURVEY FOCUSES ON COMMUNICATIONS

AND NETWORKING, IT ALSO HAS SIGNIFICANT COVERAGE OF ADVERSARIAL ATTACKS AND DEFENSES DESIGNED FOR OTHER
APPLICATIONS (E.G., COMPUTER VISION OR NLP) BUT MAY APPLY TO COMMUNICATIONS AND NETWORKING

Surveys Communication & Network Computer Vision Natural Language Processing
2021 2022 2023 2021 2022 | 2023 | 2021 | 2022 2023
ours @ 6 o o O ®
[82] 6 o (0] o o 0)
[113] (0] (0] (0] (0] (0] (0]
[114] (0] (0] (0] (0] (0] (0]
[115] (0] (0] (0] (0] (0] (0]
[116] (0 o (0] o o (0]
[117] (0] o (0] (0] (0] (0
[118] o o o (1] o (0]
[109] (0] (0] (0] (0] (0] (0]
[110] (0] (0] (0] (0] (0] (0]
[111] (0] (0] (0] (0] (0] (0]
[112] (0] (0] (0] (0] (0] (0]
[40] (0] (0] (0] (0] (0] (0]

or all of the black-, white-, and gray-box attacks, as briefly
described in the following.

o Gradient-Based  Attacks:  Gradient-based  attacks
manipulate the input data to ML or DNN models
based on the gradient of the model’s loss function. This
leads to an increase in the loss function, thereby causing
the model to make erroneous predictions. Since attackers
need to access the gradient, these attacks are more
commonly associated with white-box attack scenarios.
For instance, an attacker may download the target model
after compromising the server on which the model is
running. See Section III-A.

o Constrained Optimization-Based Attacks: These attacks
model the generation of adversarial samples as an
optimization problem with a perturbation magnitude con-
straint. They are more likely to occur in a gray-box attack
setup, since the optimization process can only use partial
information about the target model. For instance, attack-
ers might obtain the architecture of the target model
through information gathering or best-practice analysis.
See Section III-B.

o Gradient-Free (Heuristic) Attacks: These attacks do not

utilize mathematical models. Instead, they use human
intuition and expert knowledge to obtain adversarial sam-
ples that can deceive the target ML or DNN models. They
are typically employed in a black-box setup and can be
further classified into search-based, decision-based, and
score-based methods. See Section ITI-C.

Adversarial Patch: Adversarial Patch abandons the con-
straint of imperceptible perturbation to benign samples. In
the meantime, it manages to make the adversarial change
appear normal, deceiving both humans and machines.
An Adversarial Patch can be constructed in white-box,
gray-box, or black-box settings. See Section III-D.

A. Gradient-Based Attacks

Gradient-based attacks are a common type of attack used
against neural network models. These attack methods work
by manipulating the input data according to the gradient of
the loss function regarding the input to cause the model’s loss
function to increase, effectively causing the model to make
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TABLE IV
BRIEF SUMMARY OF EXISTING SURVEYS ON ADVERSARIAL ATTACKS

Survey Year Focus Area
This survey | 2023 | e A comprehensive classification of recent adversarial attack methods and the SOTA adversarial defense techniques based on various
attack principles presented in a visually appealing table and tree diagram format.
« Categorization of the methods into adversarial attack detection and robustness enhancement, with a specific focus on regularization-
based methods for enhancing robustness, represented through tables and tree diagrams.
e A rigorous evaluation of the existing works, including an analysis of their strengths and limitations, and recommendations for
future research avenues.
[82] 2023 | e Presents a framework which summarizes the five general phases of malware classification.
o Systematic survey on malware classification, adversarial attacks, and robust malware classification, highlighting the evolution of
adversarial attack and defense in the Defense-Attack-Enhanced-Defense process.
[115] 2022 | e Introduces robust adversarial training to defend against adversarial samples.
o Connections to traditional machine learning theories are investigated.
« Different approaches with adversarial attacks and defense/training algorithms are summarised.
« Presents analysis, outlook and comments on adversarial training.
[118] 2022 | « Examines the evolution of physical adversarial attacks in computer vision applications using DNNS, e.g., image recognition, object
detection, and semantic segmentation.
e The survey classifies the present physical adversarial attacks, focusing on strategies employed to keep adversarial features in
physical contexts.
[117] 2022 | e Classifies physical attacks in terms of attack task, attack form, and attack method.
e Classifies adversarial defenses in terms of pre-processing, intra-processing and post-processing of DNN models.
o Challenges of this research area are discussed, and present some future research directions.
[114] 2022 | e Overviews the fundamentals and features of adversarial attacks and evaluates recent adversarial instance-producing mechanisms.
o In-depth discussion of adversarial instance defense mechanisms from three aspects: model, data, and network.
o Challenges and outlooks in the field are presented within the context of the present development of adversarial instance generation
and defense techniques.
[116] 2022 | e A comprehensive survey of the latest advancements in the adversarial robustness of models for object detection is provided.
« Prominent attack and defense approaches are reviewed, their advantages and disadvantages are discussed,
o A review of recent literature on adversarial robustness in the context of autonomous vehicles is conducted.
[113] 2021 | e Illustrates the importance of adversarial attacks, and outlines the key ideas, categories, and dangers of adversarial attacks.
« Typical attack and defense techniques for various application areas are reviewed.
« Focuses on images, text and malicious codes, presents open questions, and conducts a comparison study with other relevant surveys.
[40] 2021 | e Adversarial attacks and defenses against transaction record data are investigated.
« Analyses the distinct structure of transaction records compared to typical NLP or time series data and summarizes the characteristics
of transaction records and their impact on adversarial attacks.
e A scenario for black-box attacks is considered, focusing specifically on adding transaction tokens to the sequence’s end.
[112] 2020 | e Presents the theoretical basis, algorithms, and practical uses of adversarial attack algorithms.
« Considerable research efforts on defensive techniques are described, which cover a wide range of frontiers within the arena.
o Several challenges and open issues are discussed.
[111] 2019 | e Explains adversarial attack approaches in both the training and testing phases.
o Adversarial attack methods are sorted out by their applications in computer vision, NLP, cyber security, and the real world.
e Adversarial defense methods are organized into three categories: Data modification, model modification, and the use of auxiliary
tools.
[110] 2018 | e Provides some fundamental information about adversarial examples.
o The theoretical model for adversarial example attacks is contrasted with the real-world model.
« Existing practical examples of adversarial attacks are presented.
[109] 2018 | e Works on designing adversarial attacks are reviewed, and the occurrence of the attacks is analyzed.
« Defenses against these attacks are proposed.
o Separately reviews the contribution of evaluating adversarial attacks in real-world scenarios.
» Offers a more comprehensive perspective on this field of research.
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errors in its predictions. Classic gradient-based attack meth-
ods include FGSM [54], Basic Iterative Method (BIM) [124],
PGD [22], JSMA [73], DeepFool [76] and others. Numerous
recent endeavors have been made to design and create new
gradient-based attacks. Table V categorizes the latest gradient-
based attacks from the perspectives of input, attack type, and
invisibility metric (or “inv-metric” for brevity).

The evolution of gradient-based adversarial attacks has
significantly infiltrated various domains of communication
networks. A black-box gradient estimation method for network
intrusion detection models is natural evolution strategies
(NES) [5], where the estimated gradient can be used to
project gradient descent (as used in white-box attacks) to

build adversarial examples. This approach does not require
a proxy network, so queries are more efficient and reliable
when crafting adversarial examples. By extending FGSM,
momentum iterative FGSM, and projected gradient descent
adversarial attacks in FGSM systems, Manoj et al. [67] demon-
strate that adversarial attacks can disrupt ML-based power
distribution in massive MIMO network downlinks. A recent
study in [1] scrutinizes the vulnerability of DNN-based mod-
ulation recognition models within communication systems
subject to adversarial attacks. Their meticulous examination
involves the construction of high-precision DNN-based mod-
els, executing multiple adversarial attacks on well-trained
models, and unveiling the substantial threat that adversarial
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TABLE V
GRADIENT-BASED ADVERSARIAL ATTACK METHODS
Attack Short Description Input | Attack | Invisibility Advantage Disadvantage
type Metric
IGA [133] | A new attack method for link | Discrete | White- | cross- IGA achieves effective attack results | The algorithmic complexity dra-
prediction that utilizes gradi- box entropy regardless of whether the global graph | matically increases when the size
ent information from a trained information is complete or not. Strong | of graphs grows larger.
GAE model. transferability on different realistic dia-
grams.
SGA A framework that reduces the | Discrete | Black- | DAC Significantly enhances time and mem- | Not available for node injection
[134] scale of the graph to a smaller box ory efficiency and attaches considerable | attack due to the costly computa-
subgraph centered around the attack strength; Strong transferability | tion of DAC; Often used for node
target node, resolving the among different commonly used graph | classification or targeted attacks.
challenge of performing at- neural networks.
tacks on large graphs.
Contrastive| A generative scheme named | Conti- White- | loo Its ASR is superior to other black-box | In the ImageNet, the ResNet-50
AT [139] | Contrastive Adversarial | nuous box, models, equivalent to other white-box | model trained with the PGD algo-
Training is designed, inspired Black- models, strikes a compromise between | rithm takes one-third of its time,
by HMCAM, which aims box efficiency and accuracy in AT, and | but the best robust accuracy is in-
to produce a series of demonstrates enhanced transferability. | ferior.
adversarial examples in a
single run.
IPW&IBA | Creates a cost function that | Conti- White- | KL, PLC, | The best trade-off between attack ca- | While speeding up black-box at-
[126] penalizes a subset of feature | nuous box, NSS, 41 pabilities and redundancy compared to | tacks, it currently faces chal-
activations. To determine the Black- other white-box attacks, making a good | lenges in meeting the demands of
real gradient of the black-box box trade-off between black-box attack ca- | time-sensitive applications, such as
target model, computes the pabilities and query costs. AT, which requires a substantial
directional derivatives along amount of adversarial examples.
the non-redundant previous
directions using an itera-
tive zeroth-order optimization
procedure.
DSNGD | Computes the weighted mean | Conti- White- | foo The sampling operation’s computing | The performance of the method on
[127] of previous gradients from the | nuous box, overhead is reduced, resulting in greater | larger datasets, e.g., ImageNet, has
optimization history to deter- Black- efficiency. Less vulnerable to noise and | not been determined.
mine the gradient direction of box local optimization, and more accurately
an adversarial attack. approximate the global upward direc-
tion.
AoA Based on the semantic prop- | Conti- White- | RMSE Beats many DNNs with zero queries. | Even though the generated exam-
[129] erties shared by DNN. Unlike | nuous box, Increased transferability when using | ples are distinct from others, they
other methods that focus on Black- traditional cross-entropy loss instead of | can still be captured by adversarial
attack output, AoA changes box attention loss. Easy to combine with | detection.
the attention heat map and the other transferability enhancement tech-
loss function. nologies to achieve SOTA performance.
LAFEAT | LAFEAT algorithm takes ad- | Conti- White- | {0 Seeks to harness latent features in a | It remains unclear how latent fea-
[125] vantage of latent features in | nuous box generalized framework. Computation- | tures can be leveraged as viable
its gradient descent steps. ally efficient. attack vectors.
SCA- A gray box attack method | Conti- Gray- | {p The decision boundary of a trained | For complex architectures, the al-
based using SCA to predict model | nuous box gray-box alternative model is nearer to | gorithm can be time-consuming
[141] structures based on pre- the target model. More effective than | and resource-intensive.
trained classifiers. a black-box attack, and more practical
compared to a white-box attack.
SRLIM An approach that uses SRLIM | Discrete | Gray- | 4o SRLIM enables the proxy model to|As the complexity of the graph
[138] to preserve the topology in box learn topologies through isometric map- | model structure rises, the computa-
proxy embedding and thereby ping, thereby improving the reliability | tional complexity grows exponen-
improves the performance of of gradients utilized in the attack mod- | tially.
a gradient-based attacker in els and the transferability.
a non-target poison gray-box
scenario for adversarial at-
tacks.
AtkSE An attack model that in- | Discrete | Gray- | /4o The gradient fluctuation in semantic | The trade-off between computa-
[142] tegrates semantic invariance box graph enhancement and the instability | tional efficiency and error reduc-
modules and momentum gra- of proxy models are addressed. It im- | tion is also worth further study.
dient ensemble modules to re- proves the attack intensity of the at-
duce errors within the struc- tacker and ensures the transferability of
tural gradients the gray-box attack.

samples can pose to DNN-based

models.

modulation recognition

Yu et al. [125] discover that certain “robust” models have
hidden features that are unexpectedly susceptible to adversarial

attacks. They propose latent feature attack (LAFEAT), a
unified /oo-norm white-box attack algorithm that uses latent
features throughout gradient descent steps for computationally

efficient attacks, which can be cast as

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:54:12 UTC from IEEE Xplore. Restrictions apply.




WANG et al.: ADVERSARIAL ATTACKS AND DEFENSES IN ML-EMPOWERED COMMUNICATION SYSTEMS AND NETWORKS

h,,\I,rtle(sur £ (fe (PGDG’m’y (LlAf’ % I)) ’ y) ’

N
where £l/{(z) = L% <Z AD R0 (z(l))7 y) . (2)
=1

Here, £5¢¢ represents the softmax cross-entropy (CE) loss
between the one-hot truth value y and the output. The con-
stant / defines the maximum number of iterations of gradient
update iteration. For each layer [ € {1,..., N}, the value
A € [0,1] is assigned to the gradient of the layer, and the
sum of all values is equal to 1. z() = f() o ... 0 f(D)(g)
indicates the feature obtained from the l;;, layer. The mapping
h() maps the features from f () to the logits for the I-th layer.
For ease of exposition, Yu et al. [125] define

PGDe,x,y(£7 a,1) = X;, (3)

where X; is obtained by running the PGD algorithm [22]. PGD
identifies an adversarial instance by iteratively updating:

Xit1 = Pex(Xi + o sign(Vg, L5 (fo(%:),5))). 4

Here, Z € ROXHXW [imits the image data to a valid
range, the function Pey : REXHXW 5 T clips its input
into the e-ball neighbor that is denoted as Z. The term
V4, L£5(fp(X;),y) calculates the loss’ gradient regarding the
input X;. «; indicates the step size. At last, sign(-) is a sign
function and returns “—17, “0”, or “1” for each element of the
gradient.

The objective of LAFEAT is to determine the optimal
combination of logit mappings & = (A1) ... A(V))  their
respective weights A = (A(D) .., A(Y))  the size of the steps
in the schedule «, and the choice of the surrogate loss L%
to use. Nonetheless, the efficient utilization of latent fea-
tures as novel attack vectors has not yet been completely
comprehended.

In the context of modulation classification, Zhang et al. [2]
gauge the performance of Transformer-based neural networks
in terms of classification, as well as their susceptibility and
resilience to adversarial attacks. Utilizing real datasets, they
demonstrate the superior accuracy of Transformers over CNNs
when confronted with adversarial attacks. Considering DNN-
based modulation classification, Manoj et al. [63] introduce
random smoothing, hybrid projection gradient descent adver-
sarial training, and fast adversarial training to create DNN
models that are robust to attacks and evaluate them under
white-box and black-box attacks. Kotak and Elovici [52] apply
adversarial attacks to assess the vulnerability of ML-based IoT
device identification systems. The findings in [52] reveal that
a novel methodology employing heatmaps to generate adver-
sarial examples can deceive these systems with remarkable
effect.

Che et al. [126] propose an Iterative Partially White-box
subspace attack (IPW). This technique establishes the cost
function in the key hidden space, where the receptive field
is at its peak. The cost function penalizes the part of the fea-
ture activations that corresponds to both salient and guiding
regions, rather than penalizing each pixel across the compre-
hensive dense output space. Moreover, they present an Iterative
Black-box attack (IBA). This approach employs non-redundant
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variations from original models as initial hints to gauge the
gradient of a target black-box model. The estimation is done
through a zeroth-order iterative optimization process that com-
putes the directional derivatives along the initial directions that
are not redundant.

Fig. 4 offers the overview of the IPW&IPA framework
developed in [126]. The first step illustrates the concept of
a subspace assault by producing a non-repetitive initial per-
turbation from a partial white-box source model. To deceive a
target model that is unknown to them, they merge an a-priori
optimizer with a zero-order optimizer in Step 2. The method
balances the attack capability and perturbation redundancy,
overcoming the issues of costly attack cost and imperceptibil-
ity. Although the proposed non-repetitive initial cues enhance
the black-box attacks, it remains challenging to fulfill the
demands of certain time-sensitive applications, e.g., adver-
sarial training necessitating a large quantity of adversarial
instances.

Dynamically Sampled Nonlocal Gradient Descent
(DSNGD) [127] computes the gradient direction for an
adversarial attack by calculating the weighted mean of
previous gradients from an optimization record. The gradient
computation in DSNGD can be written as

t
Val(fo(we),y) = Y wi- VaLl(fp(di), v),
i=1

& = Clippg 1) (z; + &7)- S)

Here, £ indicates the loss function, such as CE, of a neural
network fy. Clip[OJ] () clamps the input to the range between
0 and 1; Z; denotes a noisy sample in the optimization pro-
cess; w; refers to the gradient weight associated to Z;; the
random variables {7 are taken from the i.i.d. distribution
P parametrized by the standard deviation o € RT. The
variable ¢ stands for the iteration number during the current
attack. This improves the efficiency of the algorithm by reduc-
ing the computational burden caused by sampling operations,
eliminating the need for manually tuning additional hyper-
parameters, and providing a more precise estimation of the
overall upward direction. However, its performance on larger
datasets, e.g., ImageNet, is yet to be determined.

In the endeavor of modulation and recognition of com-
munication signals using CNN, Yang et al. [128] put forth
a white-box attack algorithm known as the shortest distance
algorithm (SD-Alg). This innovative approach can gener-
ate minimal interference and considerably degrade the CNN
model’s classification performance. Chen et al. [129] propose
an Attack on Attention (AoA) method that depends on the
semantic characteristics common among multiple DNNs to
enhance the transferability of adversarial attacks. As opposed
to prior techniques that concentrate on attacking the output,
such as the One-Pixel attack developed in [130], AoA aims
to modify the attention heat map and achieves exceptional
results in black-box attacks. This method produces adversar-
ial instances that can deceive numerous DNNs using zero
queries and leads to a substantial improvement in transfer-
ability if the standard CE loss is substituted with an attention
loss. The AoA attack can be seamlessly integrated with other
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Fig. 4. Sketch of the IPW&IBA: The first step illustrates the concept of a subspace assault by creating a non-redundant prior perturbation from a partial

white-box source model. To deceive a target model that is unknown to them, they merge an a-priori optimizer with a zero-order optimizer in Step 2. [126].

transferability-enhancement methods to attain cutting-edge
performance.

Graph structures are common in the physical world, and
DNNs are commonly employed to tackle graph network
problems, including node classification [131] and link
prediction [132]. Iterative Gradient Attack (IGA) [133] is
a new approach for link prediction that leverages gradi-
ent information from a trained Graph Autoencoder (GAE)
model. IGA offers effective results under both complete
and incomplete graph information, and it can be integrated
with various tasks. IGA also has good transferability across
various realistic diagrams. Unfortunately, its computational
complexity can grow significantly when the size of the graph
increases.

Considering node classification tasks, Li et al. [134] propose
a Simplified Gradient-based Attack (SGA), which addresses
the difficulty in attacking large-scale graphs by leveraging
a subgraph that comprises k-hop neighbors of attacked. An
input graph is perturbed by sequentially flipping edges whose
magnitude of gradients is the biggest in this subgraph. The
SGA method overcomes the issue of gradient fading in
gradient-based attack techniques by using a smaller subgraph
centered around the node under attack and by incorporating
a scaling factor. As depicted in Fig. 6, SGA has a signif-
icant advantage over other cutting-edge attack techniques,
e.g., the GradArgmax method developed in [135] and the
Nettack method developed in [136], in terms of time and
memory efficiency, meanwhile still achieving considerable
attack results.

On the other hand, a novel attack scenario is known as
a node injection attack, in which attackers can inject a set of
malicious nodes into a graph to circumvent the original graph’s
topology and misclassify victim nodes [137]. SGA is generally
inapplicable to the node injection attack because the injected
malicious node is a singleton node and is not initially linked
to any nodes, where a k-hop subgraph cannot be extracted,
and its high computational cost is also a drawback. Currently,
SGA is limited to node classification tasks and targeted attack
scenarios. Ongoing research is expected to expand the method
and make it more adaptable to various graph analysis tasks.

Gradient-based attackers collect gradients of node features
and graph structures and produce perturbations based on
them using pre-trained Graphic Neural Network (GNN) clas-
sifiers, referred to as proxy models. However, the majority
of existing work [133], [137]. Concentrate on using gradi-
ents to produce perturbations rather than looking at how to
get more dependable gradients from different models. The
gradient-based perturbations manufactured by the attacker
are affected by the proxy model’s embedding layer map-
ping. The perturbations generated are model-specific, and lose
their generalization to another model. To solve this problem,
Wang et al. [138] propose Surrogate Representation Learning
with Isometric Mapping (SRLIM) to enable the model to
learn topologies. Keeping the similarity of nodes from the
input layer to the embedding layer, SRLIM passes topological
knowledge to the embedding layer, thus improving the effec-
tiveness of the adversarial attacks produced by gradient-based
attackers in non-target poison gray-box attacks. However, as
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Fig. 5. Working flow chart of the SCA-based attack. (a) Obtain the network
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the complexity of the graph structure rises, the computational
complexity will also increase exponentially.

In contrast to the prevalent adversarial attack methods
that generate only one adversarial instance for an input,
Wang et al. [139] introduce an attack method that produces
a range of adversarial examples for a given input. This is
achieved through the use of Hamiltonian Monte Carlo with
Accumulated Momentum (HMCAM). They also present a
novel generative technique, namely Contrastive Adversarial
Training (Contrastive AT), which employs Hamiltonian Monte
Carlo (HMC) to simulate the creation of adversarial exam-
ples and achieves an equilibrium distribution of adver-
sarial instances within just a few rounds by performing
some moderate changes of the conventional Contrastive
Divergence [140]. As a result, Contrastive AT strikes a
balance between attack accuracy and efficiency in adver-
sarial training. The experimental outcomes demonstrate that
Contrastive AT attains a higher attack success rate (ASR)
than black-box models, and is on par with other white-box
models.

Xiang et al. [141] come up with a straightforward and
efficient gray-box attack strategy based on the side-channel
attack (SCA) policy. The SCA-based attack is illustrated in
Fig. 5. First, the target model’s fundamental network struc-
ture is derived using an SCA-based attack. The alternative
model is then trained using the derived network structure.
Adversarial samples are produced using the trained alterna-
tive parameters in order to mislead the target model. The
trained gray-box replacement model’s decision boundary is
nearer to the target model because gray-box attacks use abun-
dant internal information, as opposed to black-box attacks. It is
thus more realistic than a white-box attack and more efficient
than a black-box attack. However, there might be more pos-
sible architectures in real-world applications. The algorithm
must run every step of adversarial and side-channel attacks
against every candidate architecture, which can take significant
time and resources.

In the face of errors caused by the discreteness of graph
structures and subsequent rough gradients, for the vulnerability
of GNNs to the semantic space and parameter random ini-
tialization resulting in an unstable representation of GNNs,
Liu et al. [142] proposed two modules to solve the problem,
namely the semantic invariance module and the momentum
gradient integration module, and integrated the above modules
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to propose an attack model named Attacking by Shrinking
Errors (AtkSE). This method solves the gradient fluctuation
in semantic graph enhancement and the instability of the
proxy model to some extent, increases the attack intensity of
the attacker, and ensures the transferability of the gray-box
attack. But at the same time, the trade-off between compu-
tational efficiency and error reduction is also worth further
study.

All of these methods aim to find ways to generate adver-
sarial examples that can fool the DNNs by exploiting their
gradients. However, they have different approaches and tech-
niques to leverage the gradients. They also have different
strengths and limitations. For instance, some methods take
less computational time and memory, such as SGA [134],
Contrastive AT [139], and LAFEAT [125], while others are
better in terms of transferability and attack performance,
such as IGA [133], AoA [129], SRLIM [138], and
AtkSE [142].

B. Constrained Optimization-Based Attacks

Attacks based on constrained optimization involve creating
adversarial examples by tackling a constrained optimization
problem. This method seeks the minimum perturbation, sub-
ject to £y, 9, or {xo-norm constraints that cause the neu-
ral network model to make an incorrect classification. As
such, adversaries can generate an adversarial example x %%
for an untargeted attack (i.e., misclassifying the adversar-
ial example to any different class from the correct one) by

following:
max L (f (x“d“) , y) ,
xadv

St \ <e (6)

X — x|

where the objective is to find an adversarial counterpart x
and the constraint € specifies the invisibility requirement of
adversarial perturbation. L£(-,-) is the loss function of the
target model f, and x is a clean example. In the case of a
targeted attack (i.e., misclassifying the adversarial example to
an incorrect class designated by the attacker), the objective
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function of the optimization problem is:

min £(f (x*)., ), (7)
xadv
where y; is the label of the class designated by the attacker.

Szegedy et al. [75] first propose an L-BFGS algorithm
to transform a difficult optimization problem of finding a
perceptually-minimal input perturbation into a box-constrained
formulation. Many other popular methods, such as C&W [24],
AdvGAN [48], and UAP [70], are also achieved by carrying
out constrained optimizations. Table VI categorizes the latest
constrained optimization-based attacks from the perspectives
of input, attack type, and inv-metric.

Many recent works utilize constrained optimization tech-
niques to generate adversaries. For instance, Chen et al. [143]
present adGAN, a method for producing adversarial attacks
that greatly degrade the performance of reinforcement learning
systems. The fundamental concept of adGAN is to manipu-
late the current state in reinforcement learning, misleading the
agent into thinking it is in a correct state, thereby causing it to
make subpar decisions in each step and leading to a decrease in
overall rewards. AAGAN has demonstrated its ability to trans-
fer and adapt well to different situations. The loss function of
the adversarial attack is written as:

X = max L, (fw),
st ||x — x|y <e (8)

Here, L1,(f,) represents the loss function of the reinforce-
ment learning task 7;, X symbolizes the optimal state in
the Markov decision process tackled by the reinforcement
learning, x4V is the altered state, and e indicates the per-
turbation magnitude. The aim of 7} is to learn a function f,
which is parameterized by ¢ to maximize the expected overall
discounted reward.

In the examination of the susceptibility of DL-based
Radio Frequency Fingerprinting (RFFI) systems to adversar-
ial attacks, Liu et al. [55] put forward a novel Generation
Adversarial Perturbation (GAP) problem that considers the

influence of actual fading channels. Furthermore, they propose
a spoofing attack algorithm utilizing the S-process, outper-
forming the benchmark scheme in simulation tests. Moreover,
Xu et al. [56] propose a graphical analysis of Radio Frequency
(RF) signature perturbations after adversarial attacks. They
explore the impact of fusion attacks (i.e., physical attacks cou-
pled with adversarial attacks) on RF fingerprint classifiers from
multiple perspectives.

Adversarial Transformation-enhanced Transfer
Attack (ATTA) [144] is a technique that uses adversar-
ial learning to train a CNN as an adversarial transformation
network. This network is capable of capturing the most
destructive deformations and transforming them into adver-
sarial noises. The adversarial samples designed to withstand
distortions induced by the adversarial transformation network
are more robust and transferable. ATTA’s performance may be
enhanced by combining it with other transfer-based attacks,
e.g., momentum iterative fast gradient sign Method (MI-
FGSM) developed in [145] and Query-Efficient Black-Box
Adversarial attack developed in [146]. However, overly
simplistic or complex structures can negatively impact
the attack’s performance, as the former lacks sufficient
representation power, and the latter causes the adversarial
transformation network to be excessively adaptive to the
backbone attack algorithm.

Luo et al. [147] propose an adversarial attack method
called semantic similarity attack on high-frequency compo-
nents (SSAH) based on frequency space constraints, which
restricts the adversarial noise to the high-frequency compo-
nents of the picture, so that the human eye perceives the
noise with relatively low similarity. The framework of SSAH
is displayed in Fig. 7. The attack strategy involves increasing
the semantic resemblance between the adversarial sample and
a randomly selected sample, while simultaneously decreas-
ing the feature similarity between the adversarial sample and
the original image. SSAH steps out of the original frame-
work based on £;,-norm constraints, and provides a new idea
of adversarial noise generation and constraints in frequency
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Attack Short Description Input | Attack | Invisibility Strength Weakness
type Metric

GF-Attack | A framework for adversarial attacks that | Discrete | Black- | £2 Good transferability on various kinds | The calculation efficiency
[149] may be launched against various GEM box of GEMs, flexibility and extensibil- | is lower than the Random

types. ity, not changing the target embedding | method and the Degree

mode. method.

adGAN A framework that undermines the cur- | Discrete | White- | {2 Model agnostic, good generalization | The calculation cost may
[143] rent state in reinforcement learning by box capacity, could converge quickly in | be higher.

enticing the agent to make sub-optimal all environments, quite stable perfor-

choices in each step, leading to a reduc- mance.

tion in overall rewards.
SSAH By attacking the semantic similarity of | Conti- White- | LF More transferable across different ar- | No significant increase in
[147] the images, a wide range of settings are | nuous box chitectures and datasets, significantly | aggressiveness.

applied. imperceptible.
NSGA- A method for producing adversarial per- | Conti- Black- | 42 Satisfactory transferability across dif- | Lower ASRs on CIFAR-
PSO turbations for digital watermarking by | nuous box ferent networks, fewer queries but | 10 than on ImageNet.
[152] using an optimization algorithm. higher success rates.
ATTA A CNN is trained as the adversarial | Conti- White- | {0 The adversarial samples created are | Too simplistic or com-
[144] transformation network through adver- | nuous box, more robust and transferable. Com- | plex structures reduce at-

sarial learning, allowing it to capture Black- bines well with other transfer-based | tack performance.

the most damaging deformations in re- box attacks to boost effectiveness.

sponse to adversarial noise.
Adversarial| A method specifically designed to quan- | Conti- | White- | /2 Proposes post-processes that can be | Its transferability to other
Quanti- tify against perturbation, with the aim | nuous box utilized for any white-box attack. Re- | DNNs cannot be guar-
zation of minimizing quantization errors after quires fewer iterations than the con- | anteed. Only works on
[148] quantization while maintaining the sam- ventional attack process and adds little | white-box attacks.

ple’s adversarial nature. additional distortion.
Language | An algorithm for generating adversar- | Conti- Gray- | Meteor The perturbation is calculated through | The improvement in at-
Model ial instances on a multi-model image | nuous box Score a single forward pass of the deployed | tack performance comes
Agnostic | captioning frame. The algorithm does model, unlike the typical iterative ap- | at the cost of more percep-
Attack not require language module informa- proach, which incurs higher time con- | tibility of disturbances in
[153] tion and controls the predicted title by sumption. The output of the language | samples.

attacking the visual encoder of the title model can be controlled with no need

frame. for any information about the model.

space. However, although SSAH has a great decrease in
the recognition, the attack success rate has not significantly
improved. Therefore, for invisible attacks, the trade-off of their
invisibility and attack success rate is still a problem that needs
to be solved.

In the field of wireless signal classification, Kim et al. [3]
present a proposition wherein an attacker leverages a DNN
classifier to misidentify the occupied spectrum as idle. Their
research illustrates that disparities in training data and chan-
nel effects between the attacker and transmitter models could
considerably confine the efficacy and transferability of such
attacks. Further, in a distinct study, they delve deeper into the
deployment of adversarial attacks within the area of recon-
figurable intelligent surfaces (RISs) in wireless systems. They
demonstrate that adversarial attacks can be used in a posi-
tive manner. The introduction of adversarial perturbations to
the signal could fortify covert communication by enhancing
the signal detection accuracy of the intended receiver, while
concurrently diminishing the detection precision of an eaves-
dropper. Shi et al. [50] propose a DNN-based spoofing attack
to generate synthetic wireless signals that are not statistically
distinguishable from the intended transmission. The opponent
is modeled as a pair of transmitters and receivers, building
generators and discriminators that generate the adversarial
network by playing minimax games over the air. Durbha and
Amuru [4] evaluate an AutoML model to classify wireless

signals. Their exploration of the impacts of white-box and
black-box attacks on the model provides evidence that the
AutoML model’s performance closely parallels that of state-
of-the-art models in terms of classification, vulnerability, and
transferability.

Bonnet et al. [148] propose a method specifically for quan-
tizing adversarial perturbations. The quantization is imple-
mented as a customizable post-processing approach that may
be employed over any white-box attacks aimed at any model,
with less additional distortion and fewer cycles required for the
attack operation. This strategy, however, needs to access gra-
dients available in the white-box design and does not ensure
transferability to other DNN.

Because the white-box attack needs access to predictions
and labels, it is impractical for a realistic learning system.
Hence, researchers have focused on black-box attacks.
Chang et al. [149] present a generalized adversarial attack
framework (GF-Attack). This black-box attack system can exe-
cute adversarial attacks on different kinds of graph embedding
models (GEMs) without access to labels or model predictions.
The objective is to improve the robustness of GEMs. Although
GF-Attack has a lower computational efficiency than the
Random method [150] and the Degree method [151], it can
execute an adversarial attack on a range of GEM types
with high transferability, flexibility, and extensibility without
altering the target embedding model.
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Non-Dominated Sorting Genetic Algorithm with Particle
Swarm Optimization (NSGA-PSO) [152] is an optimization-
based method for generating digital watermarking adversarial
perturbations. It has higher ASRs than existing black-
box attack approaches, good transferability among multiple
network models, and greater resistance to image modification
countermeasures. However, testing findings demonstrate that
its performance is worse on the CIFAR-10 dataset, compared
to the ImageNet dataset.

Despite the fact that attacks on visual models (such as
CNNs) have been well studied, the adversarial vulnerability
of neural image captioning has not been thoroughly investi-
gated, because of the unique difficulties of the “multi-model”
problem in subtitles. Aafaq et al. [153] suggest that images be
altered in line with internal representations of visual models
applied in captioning frames to deceive encoder-decoder-based
image captioning frameworks. A GAN-based method is sug-
gested, which can alter the representation of the internal
layers necessary for the image in order to produce adver-
sarial images. The diagram of the language model agnostic
adversarial attack on image caption is demonstrated in Fig. 8.
The attack begins by sampling a random vector from a uni-
form distribution via a generator. The generator output is
combined with the source image. The scaled outcome is fed
into the discriminator to obtain the desired depth representa-
tion. Similarly, the target image is fed into the discriminator.
The discriminator back propagates the gradient to update the
input image. In scale and again after deducting the original
image, the disturbance is separated, and the gradient of the
generator has been updated. In order to produce significant
image features for the target (incorrect) class and suppres-
sion features for the source (correct) class, generators are
trained to compute perturbations. The output of the genera-
tor is then attached to the source image to fabricate a title
close to the title of the target image. This enables an attacker
to successfully control the image’s title without needing to be
familiar with the caption model. But the method also has the
problem that the disturbance is imperceptible and difficult to
control.

Bahramali et al. [51] propose an adversarial attack against
the input unknowability of a wireless communication system
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that is also undetectable and robust to removal. They model the
potential problem as an optimization problem and solve it to
obtain a perturbation generator model capable of generating a
large number of input-independent adversarial sample vectors
for the target wireless application. Experiments show that the
proposed attack is much better than existing attacks against
DNN-based wireless systems in the presence of defense
mechanisms deployed by the communicating party.

All of these methods, e.g., [143], [144], [145], [146], [147],
[148], [149], [150], [151], [152], [153], generate adversarial
examples to attack ML or DNN models by using constrained
optimization, such as bi-level optimization, quantization, or
particle swarm optimization (PSO). They have been shown
to have good transferability spanning many network architec-
tures, and solid resistance to example transformation defensive
strategies. Most of these methods, such as GF-Attack [149]
and NSGA-PSO [152], concentrate on improving the robust-
ness of GEMs and digital watermarking adversarial perturba-
tions and have good extension and flexibility. Moreover, they
do not depend on access to the predictions and labels, making
them more suitable for real-world scenarios. However, these
methods could perform poorly on different datasets.

C. Gradient-Free (Heuristic) Attacks

Heuristic attacks are a sort of attack that does not depend
on gradients and can include techniques such as search-based,
decision-based, and drop-based methods. These methods can
have their own advantages and disadvantages, and a summary
of the latest gradient-free attacks from several perspectives can
be found in Table VII.

Feature-Wise Convex Polytope attack (FeaCP) [154] places
emphasis on limiting the placement of generated samples. It
aims to find adversarial samples close to the decision boundary
and correct existing areas of vulnerability in neural networks.
Rather than solely focusing on the capacity for an attack,
FeaCP places a greater emphasis on controlling the genera-
tion process for the purpose of defending the model. FeaCP
considers the significance of adversarial instances in relation
to the target model during the creation process, and provides a
clear insight into the location of adversarial instances through
the adversarial direction. FeaCP can be applied to other fields,
such as sentiment analysis [155]. FeaCP creates potential
adversarial examples with confined variables, as given by

M
X' =X\ ox+ ) N ox) ©)
1=1

Here, x stands for the benign example; xg denotes the i-th
guidance example in a collection of randomly selected guid-
ance samples of M different classes; \g and /\g represent the
tensors of coefficients that has the same shape as that of x;
A={)s, )\é, ce )\9/[} and satisfies the following condition:

M
AT+ N =1, (10)
=1

where ¢ indicates the g-th element of a tensor. Eqn. (10) ensures
each feature of the composite sample is a convex combination
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TABLE

VII

GRADIENT-FREE ADVERSARIAL ATTACKS
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Attack Short Description Optimizer | Input | Attack | Invisibility| Strength Weakness
type Metric
FeaCP A method to seek adver- | Search- Conti- | White- | {0 Provides explainable hints on the | Computationally expensive
[154] sarial examples near the | based nuous | box locations of adversarial examples.
decision boundary. Be generalizable in both com-
puter vision and sentiment analysis
fields.
AdvLB | Manipulates laser | Greedy Conti- | Black- | ¢, Direct use of laser beams as a| It is less secretive than some sam-
[26] beam’s physical | Search nuous | box perturbation. High flexibility to ac- | ples generated by other methods,
parameters  for  an | based tively attack any object, even at|such as AdvCam.
adversarial attack. long distances, higher temporal sta-
bility. Easy to deploy.
HAG Crafts adversarial exam- | Search- Conti- | Black- | Hamming | Successfully attacks target hash | Merging the perturbations from
[159] ples for Hamming space | based nuous | box Distance | models with low perceivability. | distinct hash digits to attack a
search. High transferability at various set- | model with a similar design did not
tings, more transferable at different | result in a noticeable enhancement
hash bit lengths for the same archi- | of performance.
tecture.
AdvDrop | Crafts adversarial exam- | Drop- Conti- | White- | LPIPS AdvDrop is a completely differ- | By focusing on the frequency do-
[163] ples by dropping exist- | based nuous | box, ent paradigm from previous at- | main, a relatively simple strategy
ing information of im- Black- tacks and is more robust to cur- | for eliminating information is used,
ages. box rent defense methods. Computation | which tends to lose high-frequency
cost and perceptual quality are bal- | information.
anced.
PCAE Generates  adversarial | DM-based | Conti- | White- | £2 Not rely on any classifier. The im- | PCAE has poor performance due to
[162] examples via principal nuous | box pact of insufficient labeled data is | its high complexity in the adversar-
component analysis. limited. Competitive transferabil- | ial region. Compared with neural
ity. networks, kernel PCA is limited
in its ability to approximate such
complex manifolds.
IoU Generates perturbations | Decision- | Conti- | Black- | Cosine The IoU score is gradually reduced | Performs less effectively than a
[161] in sequence based on | based nuous | box Distance | by using the smallest amount of | white-box attack method, named
the predicted IoU scores noise, which in turn reduces the ac- | CSA, when applied to track, as it
from current and past curacy of the target task. Be gener- | lacks access to the trackers’ net-
frames. alizable among different structures. | work architecture.
SGADV | Uses different similarity | Similarity- | Conti- | Gray- | Cosine High ASR and acceptable time | The attack efficiency of SGADV is
[138] scores to generate opti- | based nuous | box, Distance, | cost. lower than that of FGSM, Deep-
mized adversarial exam- White- | SSIM, Fool and PGD, and no research has
ples, effectively breaks box LPIPS been carried out on its transferabil-
FR-based authentication ity.
in both white-box and
gray-box settings.

of the bootstrap sample and the relevant features in the source
samples to provide sufficient flexibility for perturbation of each
feature in finding the blind spots of the DNNs.

Adversarial Laser Beam (AdvLB) is a novel attack method
introduced by Duan et al. [26], which uses a greedy search
and laser beams as a malicious perturbation. This method has
high flexibility, allowing it to attack any object, even from
long distances actively. AdvLB also has high temporal stability
because of its physical attack mechanism. On the other hand,
its deployment is simple, making it less secretive than other
methods, such as AdvCam [156].

Adversarial attacks have also appeared in the fields of
spectrum monitoring and power allocation in communications
and networking [28], [47], [68], [157], [158]. For instance,
Chew et al. [28] reveal that an adversarial attack, in the form of
an adversarial waveform, can successfully disrupt a spectrum-
monitoring system’s attempts to intercept and classify signals
using a CNN, demonstrating increased vulnerability as the
system bandwidth grows. Zheng et al. [47] propose Primary
User Adversarial Attack (PUAA) to verify the robustness of a

spectrum sensing model based on DNN. PUAA incorporates
carefully crafted disturbances into the benign primary user
signal, significantly reducing the detection probability of the
spectrum sensing model. Sun et al. [68] propose that adversar-
ial attacks can significantly compromise the power distribution
process in massive MIMO networks.

Hash adversary generation (HAG) [159] is a technique for
creating adversarial examples for a search in the Hamming
space that solves a widely perceived “gradient vanishing”
issue> by introducing a smoother activation function. The
objective of HAG is to generate subtly altered samples that
bear no semantic connection to the original queries and whose
closest neighbors come from a chosen hashing model. Even
though the perceivability is still low, HAG can successfully
attack target hash models. The learned perturbation is highly

3«“Gradient vanishing” refers to the phenomenon that during the backprop-
agation of a deep neural network, the gradients of the network can become
very small as they propagate through the layers of the network. When the gra-
dients become too small and effectively become zero, this essentially prevents
the lower layers of the network from learning any useful features [160].
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Fig. 9. An illustration of an adversarial attack against ML-based network intrusion detection models. An attacker sends several queries to the network intrusion
detection model. Based on implicit/explicit feedback from the model, the attacker applies subtle perturbations to network traffic to produce adversarial traffic

flow [5].

portable across settings and is more pronounced for the same
architecture at varying hash bit lengths.

The importance of Network Intrusion Detection (NID) is
escalating in the context of guaranteeing the availability of
systems/services and safeguarding the online security and pri-
vacy of individuals. However, NIDS predicated on DNNs are
not devoid of risks. A recent study [5] presents TIKI-TAKA, a
novel framework designed for adversarial attacks against NIDS
built on DNN. The authors trained three state-of-the-art DNN
models, i.e., Multilayer Perceptron (MLP), CNN, and Conv-
long short-term memory (C-LSTM), on publicly accessible
datasets, employing five classes of adversarial decision-based
attacks to disrupt the models. As shown in Fig. 9, an attacker
might send a traffic stream to the target network, which would
first be checked by the network intrusion detection models.
The attacker will then adjust and apply subtle perturbations
to the malicious traffic based on the feedback, resulting in
adversarial samples that can eventually compromise the effec-
tiveness of the NIDS. Experimental results underscore that
while DL-based NIDS exhibit a high detection rate, they
remain susceptible to adversarial samples.

An Intersection over Union (IoU) attack [161] is a black-
box, decision-based technique for visual object tracking. It
creates disturbances using the calculated IoU scores from cur-
rent and prior video frames. The attack decreases the accuracy
of temporally consistent bounding boxes by lowering the IoU
scores. Denote the original example (i.e., the original image
in the video frame) as x, the heavy noise example as X, and
the intermediate example on the i-th iteration as x(?). The
IoU attack labels n as a nearby assumption based on x(4) and
advances x(*) + 1 towards the highly noisy example X by
following the update rule below:

x(i+1) = (x(“ + n) +a- ¢(X, x() 4 n), (11)
where « represents the stride towards X and ov- (X, x(%) 4-1)
represents the disturbance in the direction of greater noise,
i.e., in the direction of the normal to the noise level contour.

AMGmal [80] constitutes a new technique for generating
adversarial examples. This method, aiming to deceive malware
detectors predicated on DNNs while minimizing the requi-
site amount of perturbation, maintains its efficacy even when
defensive mechanisms are operational.

To circumvent the constraints of model-dependent
approaches, such as the C&W constraint undergone by a

well-trained classifier in [24], Zhang et al. [162] present the
Principal Component Adversarial Example (PCAE) method.
PCAE produces adversarial samples without a specific target
in mind. It is based on the idea of the adversarial zone where
data points offer a possible danger to all classifiers. As an
untargeted adversarial sample generation approach, PCAE
utilizes a data manifold that does not depend on classification
models. As a consequence, it is immune to overfitting and
the restrictions of inadequate labeled data.

Ye et al. [46] assess the performance of various white- and
black-box adversarial attack algorithms on OFDM detectors.
This work reveals the remarkable efficiency of adversarial
attacks in impairing system performance, underscoring the
merits of the Virtual Adversarial Method (VAM) and Zero-
Order Optimization (ZOO) attacks in white-box and black-box
contexts, respectively.

Different from all previous attacks, AdvDrop is a novel
adversarial attack proposed by Duan et al. [163], which
creates adversarial examples by removing certain features
from benign images. This makes the resultant images unno-
ticeable to humans but essential for DNNs to misclassify
them. AdvDrop is more resistant to existing defensive mech-
anisms, e.g., AT [164] and feature squeezing [165], and
paves the way for a new approach to assessing the robust-
ness of DNNs. Focusing on the frequency domain, it deletes
high-frequency information more often than low-frequency
information.

Moreover, Sun et al. [68] present a new adversarial
attack framework, namely generating practical malicious traf-
fic (GPMT), which is designed to generate adversarial traffic
capable of deceiving ML-based traffic detection systems, as
shown in Fig. 10. This framework offers heightened efficiency
and generalizability, manifesting substantial evasion growth
rates across diverse models and datasets.

In response to the issue of malicious traffic, Yang et al. [79]
introduce a novel traffic obfuscation methodology, namely
traffic obfuscation adversarial network, namely TONet, pred-
icated on the employment of adversarial neural networks
to generate disturbance vectors. The obfuscation samples
generated via this approach exhibit an exceptionally low
disturbance cost and an exceedingly high defense success
rate (i.e., > 99%) in scenarios involving known adversaries.
This methodology demonstrates robustness against unknown
models for adversary attacks and optimizes both computational
complexity and implementation speed.
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Fig. 10.  The adversarial attack process for ML-based malicious traffic
detection: (1.1) The attacker attempts to attack the target; (1.2) The attacker
generates original malicious traffic; (2) The detection model detects mali-
cious behavior and issues an alarm to block network traffic; (3.1) The attacker
receives feedback and builds the adversarial attack model; (3.2) The attack
model modifies malicious traffic until it can successfully escape detection;
and (4) adversarial traffic escape detection successfully [68].

The majority of adversarial attack strategies rely on label
data, but face recognition (FR) authentication systems don’t
keep track of the label data for the target user. A similarity-
based gray-box adversarial attack (SGADV) is put forth
by Wang et al. [138] to address the shortcomings of cur-
rent adversarial attacks on FR authentication systems. To
implement adversarial attacks based on benchmark labels, a
conditional binary cross-entropy (C-BCE) objective function
is also designed as a baseline against FR-based authentica-
tion. Additionally, the experimental findings demonstrate that
the pre-trained model is not secure in practice even if the
database for face template storage is unharmed, demonstrating
the importance of this research for raising the privacy threat
to users. SGADV achieves effective attacks and a satisfactory
time cost, but it is less efficient than FGSM [54], PGD [22]
and DeepFool [76], and no studies have been conducted on

transferability.
The above-mentioned attack methods, i.e., FeaCP [154],
AdvLB [26], HAG [159], PCAE [162], IoU [l161],

AdvDrop [163] and SGADV [138] represent the SOTA
gradient-free attacks for DNNs.

o FeaCP [154] defends neural networks by limiting gen-
erated samples, finding close adversarial samples, and
controlling the generation process while providing insight
into their location.

e AdvLB [26] is a new attack method that uses a search
method and laser beams to attack objects from a distance.
It is easy to use but not as secretive as other methods.

e HAG [159] generates adversarial examples in the
Hamming space with no semantic connection to the orig-
inal queries. Its perturbation is portable across settings.

o The IoU attack [161] is a method that uses past and cur-
rent frames to reduce the accuracy of object tracking by
generating perturbations.

o PCAE [162] is an approach for crafting adversarial exam-
ples that do not require a target and do not have the issues
of overfitting or lack of data.

e AdvDrop [163] generates adversarial examples by modi-
fying image frequencies, making it challenging to defend
against and a useful tool for testing DNNs’ robustness.

e SGADV [138] utilizes different similarity scores to
generate optimized adversarial samples, effectively
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breaking FR-based authentication in both white-box and
gray-box attacks.

All of these methods have their own strengths and limi-
tations. For example, AdvLB is highly temporally stable but
less secretive. PCAE is target-free, but it does not rely on any
classifier, so it is hard to evaluate its performance. AdvDrop
is more robust to current defense methods, but it is relatively
simple and focuses on the frequency domain.

D. Adversarial Patch

Although adversarial sample attacks, such as PGD [22]
and Contrastive AT [139], can achieve a high ASR and
undetectable perturbation effect, its generalization ability is
generally poor to be used in the physical world, and a specific
perturbation must be generated for each attack. As a result,
adversarial patch attacks [26], [166] come into view as a vari-
ant of the adversarial sample attack, in contrast to adversarial
sample attacks where an attacker always aims to minimize the
level of perturbation to avoid detection. In adversarial patch
attacks, the attacker never again confines themselves to imper-
ceptible changes. The attack generates an image-independent
patch, which can be set anyplace in the image to attack a DNN-
based image classifier and cause it to output a specified target
class. Table VIII collates the latest adversarial patch methods.

The advantage of adversarial patching over adversarial sam-
ple attacks is that adversarial patching can be more targeted
and effective in deceiving a deep learning model by creating a
small, localized patch that can be placed at a specific location
of an image. By contrast, adversarial sample attacks typically
add noise or distortion to an entire image. Moreover, adver-
sarial patching can potentially attack deep learning models in
real-world scenarios where digital attacks are impossible, such
as in physical security systems. This makes it a powerful tool
for attackers to bypass ML-based security systems in many
practical application scenarios. However, adversarial patch-
ing requires more effort and knowledge to create and raises
important questions regarding the responsible development
and deployment of ML systems.

FaceAdv [167] is a physical adversarial attack technique,
which uses malicious stickers to fool face recognition applica-
tions. FaceAdv comprises a malicious sticker generator and a
converter. The generator makes a variety of differently-shaped
stickers (some examples of stickers are shown in Fig. 11).
At the same time, the latter applies the stickers digitally on
human faces and provides the generator with attack results
to enhance its efficacy. Despite changes in environmental
conditions, FaceAdv can dramatically increase the success
rate of avoidance and simulated attacks, showing robustness.
However, the “sticker” attacks require a high degree of hard-
ness to avoid early detection by humans. They also require the
adversaries to physically access the target object for pasting
the stickers, which may not always be possible.

Robust Physical Perturbation (RP2) [169] is a generic attack
algorithm that produces perturbations robust to varying angles
and distances under different physical conditions. The pertur-
bations are visible but inconspicuous and only perturb objects
(e.g., road signs) without disturbing the object’s environment.
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TABLE VIII

ADVERSARIAL PATCHING METHODS

Strategy

Brief description

Performance

FaceAdv [167]

A physical attack that creates adversarial stickers to trick face
recognition systems, made up of a sticker generator and a con-
verter.

Keep robustness in dodging and impersonating attacks. It does not
affect the performance of the face detector. Good transferability
in both the digital and physical worlds.

RP2 [169]

Samples from a distribution that simulates physical dynamics to
project calculated perturbations into a graffiti-like shape.

Perturbations that are robust against widely varying distances and
angles can be generated under different physical conditions.

PS-GAN [170]

Perceptual sensitivity is used to improve the visual rationality and
aggression of adversarial patches. A visual attention mechanism
is employed to capture the sensitivity of spatial distribution.

Guides the attack positioning of the adversarial patch for stable
attack effects. Taking it a step further, PS-GAN can generate
adversarial patches instantly.

MultiD-
WGAN [171]

Based on the idea of generating adversarial patches by GANs,
the data-driven MultiD-WGAN is proposed, which can simultane-
ously enhances the offensive power and authenticity of adversarial
patches by multiple discriminators.

Simultaneous enhancement of the aggressiveness and authenticity
of adversarial patches through multiple discriminators.

Bias-based Frame-
work [172]

Takes advantage of perception bias and attention bias to improve
attack capabilities.

The resulting adversarial examples allow for greater transferability
between different models.

Singular
based [174]

image

Determines adversarial patch’s location according to the perceived
sensitivity of the victim model, encouraging patch alignment with
background images through AT.

It has strong attack ability in a white-box environment and good
transferability for black-box environments, which is more difficult
to detect and can also be applied to the physical world.

AdvCam [156]

The style shift approach is used to achieve concealment, and
adversarial strength is achieved using the technique of adversarial

AdvCam’s forged adversarial samples in the digital and physical
worlds are highly stealthy and still valid when it comes to spoofing

attack.

the latest DNN-based image classifiers

MAP [177] MAP is optimized using CSM and ME losses.

Successfully attack multispectral personnel detectors in both phys-
ical and digital spaces.

Multi-perspective
Environments [178]
perspective geometry transformations.

Considers the effects of viewing angle changes in multi-
perspective environments by integrating adversarial patches with

Viewing angles have a strong impact on the effectiveness of
adversarial patches. In some scenarios, adversarial patches lose
most of their effectiveness, opening up new opportunities for
adversarial defense.

EATING
ANIMALS

Fig. 11. Examples of stickers for faces and traffic signs [168].

The algorithm utilizes a mask to transform the estimated
perturbations into a graffiti-like form after sampling from a
range of simulated physical dynamics. An attacker may then
print out the resultant perturbations and apply them to the road
sign under attack, resulting in a high rate of misclassification
of the target by the road sign classifier, which might lead to
catastrophic consequences.

Perceptual sensitivity is a crucial aspect of visual recogni-
tion systems. The more natural-looking the generated adver-
sarial blocks, the more likely the attacks are successful.

Perceptual-Sensitive Generative Adversarial Network (PS-
GAN) [170] uses perceptual sensitivity to improve the visual
plausibility and attack capability of adversarial patches. It
adopts a visual attention mechanism to capture the sensitiv-
ity of the spatial distribution and guide the localization of
the adversarial patches for a stable attack effect. PS-GAN
can also generate adversarial patches on-the-fly without the
need to access the target model at the time of inference.
This makes it a powerful tool for attackers looking to bypass
visual recognition systems in real-world scenarios. Similarly,
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Fig. 12.  The framework of the MultiD-WGAN method. It is composed of
a generator G, several discriminators, and a target classifier F.

Wang et al. [171] propose a data-driven, Muti-Discriminator
Wasserstein GAN (MultiD-WGAN) algorithm based on GANs
to craft adversarial patches that focus on the perceived sen-
sitivity of the attacked neural network model, as shown
in Fig. 12. The algorithm enhances both the aggressiveness
and authenticity of adversarial patches by utilizing multiple
discriminators. The research demonstrates, theoretically and
experimentally, a positive correlation between attack strength
and attack capability.

Wang et al. [172] devise a bias-based framework to pro-
duce generic adversarial patches that exploit attentional bias
and perceptual bias to improve attack capabilities and increase
the generality of adversarial patches. The framework uses style
similarity [173] to extract a patch that comes before texture
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from a hard example with high model uncertainty and accounts
for perceptual bias. An attentional bias is utilized by obscur-
ing the same attentional patterns shared by models, which are
identical for the same image across multiple models. This
allows the created adversarial patch to be more transferable
between models.

To tackle the hindrance of feeble disguise of adversar-
ial patches and lengthy computational time, Bai et al. [174]
advance a procedure to bring forth inconspicuous adversar-
ial patches exploiting singular images. The technique initially
ascertains patch areas depending on the perceptual sensitivity
of the target model, and then fabricates adversarial patches
in a coarse-to-fine system, which utilizes multiscale producers
and judges. The patches are urged to coordinate with the back-
ground image through adversarial training. At the same time,
it still maintain a powerful attack aptitude. Experimentally, the
proposed method has demonstrated formidable attack capabil-
ity in white-box settings and good transferability for black-box
situations, making it difficult to identify.

To increase adversarial stealthiness and camouflage flexi-
bility while maintaining adversarial strength, AdvCam [156]
uses a style migration approach to achieve stealthiness and an
adversarial attack technique to strengthen adversarial capabil-
ities. The attacker specifies the target image, the target attack
area, and the intended target style. AdvCam transforms signif-
icant adversarial perturbations into adjusted styles. The latter
is then disguised in the target object or the background out-
side the target. Experiments conducted in both the digital- and
physical-world scenarios show that AdvCam’s faked adversar-
ial samples are highly concealable and yet still effective in
spoofing the latest DNN-based image classifiers.

The existing studies on adversarial patches, such as those
developed in [175], [176], have only looked at the robust-
ness of single-spectrum (RGB or Thermal) models and have
not evaluated multispectral models. They have only analyzed
digital space perturbations and have not considered vulner-
abilities in the physical world. To address these limitations,
Kim et al. [177] introduce a new framework for generat-
ing multispectral adversarial patches (MAP) using material
emissivity (ME) loss optimization and cross-spectral map-
ping (CSM). The experiments show that the generated MAP
can successfully attack multispectral personnel detectors in
both physical and digital spaces, highlighting the need for
further research in this area. Tarchoun et al. [178] investi-
gate the influence of viewpoint on the efficacy of adversarial
patches. In order to replicate the effect of perspective alter-
ations in multi-perspective settings, they combine known
adversarial patches with perspective geometric transforma-
tions. Experiments demonstrate that perspective substantially
affects the efficacy of adversarial patches, which can some-
times drop substantially. This finding encourages academics
to investigate the influence of viewpoint on adversarial attacks
and reveals new options for adversarial defenses.

The above-mentioned methods represent the current SOTA
in adversarial patch generation, with a focus on image recog-
nition systems. These methods include FaceAdv, which crafts
adversarial stickers to deceive facial recognition systems [167];
RP2, which produces perturbations that are robust to varying
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distances and angles under different physical conditions [169];
PS-GAN, which uses perceptual sensitivity to improve
the visual plausibility and attack capability of adversar-
ial patches [170]; MultiD-WGAN, which enhances both
the aggressiveness and authenticity of adversarial patches
by utilizing multiple discriminators [171]; AdvCam, which
increases adversarial stealthiness and camouflage flexibility
while maintaining adversarial strength by using a style migra-
tion approach and an adversarial attack technique [156]; and
MAP, which generates multi-spectral adversarial patches to
attack multi-spectral personnel detectors in both physical and
digital spaces [177].

Some of the methods, i.e., FaceAdv [167], RP2 [169], and
PS-GAN [170], have demonstrated considerable strengths. For
example, they are powerful tools for attackers looking to
bypass ML-based security systems in the real world. They
improve the visual plausibility and attack capability of adver-
sarial patches. They can increase adversarial stealthiness and
camouflage flexibility, while maintaining adversarial strength.
They consider the impact of perspective in adversarial attacks.

On the other hand, they also have some weaknesses. Some
methods require a high degree of hardness to avoid early
detection by humans. Some methods require the attacker to
physically access the target object to paste stickers, which
may not always be possible. Moreover, they have not been
thoroughly tested in multispectral models. There is still much
work to be done in terms of understanding the limitations
and weaknesses of these methods, and developing effective
countermeasures to protect against them.

E. Transferability of Adversarial Attacks

Transferability accounts for the ability of adversarial attacks
to be applied to different models and datasets. Ideally, from
the perspective of attackers, an adversarial sample generated
to deceive a specific model can also deceive other models.
This is significant because it means that an attacker does not
need to generate a new adversarial sample for each model
or dataset it wants to attack, which can be time-consuming
and computationally expensive. Suppose an adversarial sample
is highly transferable. In this case, it is more likely to be
successful in the real world, where the attackers might not
know the specific model or dataset they are trying to attack.
This makes the attack more powerful and can increase the
ASR.

Goodfellow et al. [54] believe that a linear model is suf-
ficient to produce adversarial instances in high-dimensional
space, rather than relying on highly nonlinear features of
DNNs. They explain that the reason for cross-model gener-
alization is that adversarial examples are highly consistent
with the weight vector of the model, and different models that
carry out the same task learn similar functions. Su et al. [179]
evaluate eighteen DNN-based image classification models and
concluded that untargeted attacks obtain higher transferability
than targeted attacks. The transferability of adversarial sam-
ples was sometimes symmetric. They also discover that most
adversarial samples from one model could only migrate among
similar models. In addition, the transferability of the Visual
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Geometry Group (VGG) model [180] performs far better than
that of other models, making it a solid starting point for
enhancing the black-box transfer-based attack.

According to [162], the transferability of adversarial cases
is mostly due to the junction of adversarial area divisions
and distinct classifier borders. The authors propose PCAE, a
data-generated approach that can generate more transferrable
adversarial instances than certain model-dependent methods.
They also demonstrate that the target-free strategy might
discover more transferrable adversarial scenarios and that
target-free adversarial instances have greater transferability
when model and/or dataset similarity is high.

Many other researchers have made efforts from various
directions to strengthen the transferability of adversarial cases.
AoA [129] focuses on attention heat maps, for which diverse
DNNs provide comparable results, making AoA highly trans-
ferable. Contrastive AT [139] provides adversarial instances
on ensemble models as opposed to a single model and has
shown its efficacy in the black-box situation for improving
transferability.

Wang et al. [138] study the impact of proxy representa-
tion learning on the transferability of adversarial attacks in
gray-box graphs. The authors put forth that the proxy mod-
els need to maintain the consistency of node topology in the
embedding layer and input layer, and use the SRLIM to main-
tain the topology of nodes mapped from a non-input space to
a Euclidean embedding space. The proposed method realizes
the improvement of the generalization and transferability of
adversarial attacks.

FaceAdv [167] use the collection of face recognition
systems to train the sticker generator and update the loss func-
tion. ATTA [144] enhances the transferability of generated
adversarial samples by adversarial transformations, which is
a network of adversarial transformations that automates the
distortion adjustment procedure. IGA [133] is a transferrable
attack for unknown link prediction approaches. In IGA, since
the perturbations caused by GAE are universal and the attack
is transferrable, the adversarial graph may still be successful in
a variety of link prediction models. This is due to the fact that
GAE can extract critical information from graphs in pursuit
of link prediction.

As discussed above, several studies have been undertaken
on the transferability of adversarial instances, or the abil-
ity of an adversarial attack to deceive different models or
datasets. Studies have shown that the transferability of adver-
sarial examples depends primarily on the closeness of the
models or datasets under attack, and that untargeted attacks
tend to have more transferability than targeted ones. Some
studies have suggested approaches to enhancing the transfer-
ability of adversarial instances, including the use of ensemble
models, attention heat maps, and adversarial transformations.

However, there is still room for improvement in the transfer-
ability of adversarial examples, particularly in creating more
effective and efficient transferable attacks and in better under-
standing the underlying causes of transferability. Moreover,
current methodologies tend to focus on image classification
models. There is a need for more studies on other types
of models, such as NLP. For example, Wallace et al. [181]
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build an imitation model like the victim model to study the
transferability of a black-box machine translation system by
using gradient-based attacks.

On the other hand, it is important to develop new approaches
to defending against transferable adversarial attacks. One strat-
egy is to use transferable adversarial examples to enhance the
robustness of DNN models through adversarial learning, as
suggested by [182]. The limitation of this strategy is that it
requires a large number of transferable adversarial examples
for training, which can be time-consuming and can adversely
affect the prediction accuracy of the DNN model on natural
examples due to an increased ratio of adversarial examples
in the training dataset. Another strategy is to assemble vari-
ous defenses into an ensemble solution to compensate for the
lack of diversity in a single defense mechanism. For example,
Deep Fusion Defense [183] employs three or five DNN mod-
els trained with different perturbation magnitudes to achieve
superior performance in defending against transferable adver-
sarial examples. However, the ensemble strategy can worsen
the time and computational cost of the defense. Therefore,
developing few-shot (i.e., using fewer training examples) solu-
tions for defending against transferable adversarial examples
is essential.

Recently, Zhou et al. [184] indicate that introducing ran-
domness into neural network models can hinder the trans-
ferability of adversarial attacks. They also reveal that the
transferability of adversarial attacks is closely related to the
spread of DNN models distributed in the version space and the
severity of adversarial attacks. As a result, the robustness of
a DNN model can be enhanced using any subset of the DNN
models, or by adding a mild Gaussian noise to the weight of
the pre-trained model. In addition, the robustness of adversar-
ial ensemble training also has great potential for improvement
combined with randomization techniques.

Nowroozi et al. [72] propose two current defense mech-
anisms to prevent the transferability of adversarial attacks.
The first approach is to fine-tune the classifier with the most
powerful attacks (MPAs) each time a shift occurs against a
given adversarial attack. Another strategy relies on using the
long short-term memory (LSTM) [185] architecture, instead
of CNN, as the target network, allowing the attacker to have
less attack information than a previous system that did not
know the target network architecture. Moreover, the Luring
Effect [186] is a new way to boost the robustness of DNN
models against black-box transfer attacks. The key concept
is situated in conventional network security methods based
on deception, which does not need a labeled dataset but
needs access to the target model’s predictions. Some other
defense methods, such as Robust Soft Label Adversarial
Distillation (RSLAD) [187] and Dual-Domain based Defense
(D2Defend) [188], demonstrate their effectiveness in defend-
ing against transfer-based black-box attacks.

F. Summary and Lessons Learned

Adversarial attacks can be launched in several differ-
ent ways, including gradient-based, optimization-based, and
search-based methods. Gradient-based attack schemes are
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TABLE IX

PERFORMANCE OF ADVERSARIAL ATTACK METHODS IN COMMUNICATIONS AND NETWORKS
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Attack

Effec-
tiveness

Imperce-
ptibility

Com-
plexity

Transfer-
ability

Impact on Communications and Networks

PGM [51]

44

2%

24

%

DNN-based wireless communication systems are vulnerable to adversarial
attacks even when employing well-considered defenses [201], and call into
question the employment of DNNs for a number of tasks in robust wireless
communication.

AMGmal [80]

44

4%

v

AMGmal finds an optimal balance between maximum escape rate and mini-
mum perturbation amplitude. It can be generalized to other attack methods as
a general post-processing method to minimize perturbation [202], [203].

Heatmap
attack [52]

v

v

44

Payload-based IoT identification solutions [204] have flaws that attackers can
exploit to evade IoT identification solutions [24]. The proposed attack will help
evaluate the robustness of defense models.

Adversarial
waveform [28]

v

44

Adversarial attacks, in the form of adversarial waveforms, can successfully
disrupt spectrum monitoring systems’ attempts to intercept and classify signals
using CNNs, showing a vulnerability that increases with bandwidth [205],
[206].

TONet [79]

v

14

In order to solve the privacy leakage problem in communication with commu-
nication pattern-based analysis [207], [24], TONet provides an efficient traffic
obfuscation method based on neural networks, which generates traffic distortion
with minimal overhead and computational cost.

GAP [55]

44

v

To solve the problem that existing adversarial attack schemes ignore the
influence of the actual fading channel between the attacker and the sensor [208],
[209], GAP provides a new adversarial attack scheme based on convex
programming.

GPMT [68]

44

%

The adversarial attack framework GPMT can generate actual adversarial traffic
to mislead ML-based detection [210], [211]. With little prior knowledge but
more adversarial and practical examples, it is more effective and versatile than
other methods.

Channel-aware
adversarial
attacks [44]

v

By taking into account the channel effect of the opponent on each receiver, the
classifier of the counter disturbance is made to deceive different receivers [205],
[206]. An authentication defense method based on random smoothing is
introduced, which uses noise to enhance training data to make the modulation
classifier robust.

Surrogate model
based attack [3]

The performance of adversarial attacks against a wireless signal classifier
heavily relies on the reliability of a surrogate model that depends on the
difference of channels experienced by the adversary and the transmitter [212],
[213].

known for their high ASRs and good transferability. They still
have limitations, such as high computational and time costs, as
well as the issue of “gradient saturation”, which reduces their
effectiveness [189]. Moreover, gradient-based methods are rel-
atively easy to defend against [190]. Many existing defenses,
such as obfuscated gradients [191], can effectively block most
gradient-based attacks.

Constrained optimization-based attack methods have good
transferability but are also known for their high computational
and time costs, making them difficult to use in time-sensitive
applications [164]. Search-based attack methods are highly
transferable and can be extended to domains beyond image
classification [12]. However, for more complex data sets,
searching for the optimal adversarial sample needs more itera-
tions and high computational costs, and it is difficult to find the
appropriate search start point. Currently, search-based meth-
ods are mainly applied to the optimization of other adversarial
sample generation algorithms [192].

Adversarial attacks can be performed not only on
images but also on other types of media, such as
audio [193], [194], [195], text [196], [197], and wireless sig-
nals [44], [46], [60]. CNNs normalize all inputs to continuous
signals, regardless of their semantic meanings. The major dif-
ference between images and other types of media is in their
dimensions, which require adapted convolutional kernels for

feature extraction. In this sense, the same adversarial attacks
or their variations are largely applicable to inputs with media
other than images.

Adpversarial examples affect classification tasks and threaten
other deep-learning tasks, such as regression. For instance,
a neural network that solves the power allocation problem
for a massive MIMO system can be misled by FGSM [54],
PGD [22], or UAP [70] attacks, which were originally
developed for image classification problems [198], [199].
Adversarial attacks, such as FGSM, I-FGSM [74], and PGD,
have also shown effectiveness in linear regression tasks [200].
To this end, research progress made on adversarial attacks
and defenses, e.g., regarding the image classification tasks,
can be highly beneficial to other types of deep learning
tasks.

Future investigation is expected to focus on reducing
attack costs, improving transferability across different datasets
and models, and extending to more deep learning domains.
Additionally, it is important to strike a balance between pertur-
bation visibility and attack success in order to develop effective
adversarial attack methods.

As presented in Table IX. The methods have now been
ranked based on four parameters: invisibility, efficiency, porta-
bility, and computational complexity, with check marks mean-
ing better performance.
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Fig. 13. Anatomy of breakthroughs in adversarial attacks since 2021.
IV. STATE-OF-THE-ART ADVERSARIAL to improve its robustness against adversarial examples.
DEFENSE TECHNIQUES One of its key techniques is adversarial training, which
To counteract adversarial attacks, various adversarial involves adding adversarial samples to the training pro-

defense techniques have been devised. These techniques are
designed to counteract specific attack techniques and range
from specific defenses to general defense strategies. Deep
learning models need to have the ability to counteract such
attacks to maintain their accuracy and effectiveness.

A. Overview

Typical adversarial defense techniques that have been
developed include:

o Adversarial Learning: Adversarial learning is a type of

deep learning technique that involves training a model

cess to improve the robustness of a DNN model. By
continuously learning the features of adversarial samples,
the model can better defend against attacks that involve
adding subtle disturbances to input samples. This can
improve the accuracy and effectiveness of the model in
many real-world scenarios, where it may be exposed to
adversarial samples designed to “trick” it into making
incorrect predictions.

Monitoring: This is a strategy for identifying adversar-
ial samples, which are input samples modified to cause
a deep-learning model to make incorrect predictions. To
monitor for adversarial samples, special models can be
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set up at key points in the system to identify these sam-
ples and provide early warning of potential adversarial
attacks. This allows the system to take proactive mea-
sures to defend against attacks and maintain the integrity
of the model’s predictions.

e Model Robustness Design: This involves using specific
filtering structures in the model to enhance its resilience
against adversarial noise. Adversarial noise refers to the
subtle disturbances that are attached to input samples to
incite the model to produce false predictions. By design-
ing the model to be more resistant to adversarial noise,
it can better defend against these types of attacks and
maintain the accuracy of its predictions.

o Adversarial Perturbation Structure Destruction: This
involves using various strategies to attenuate the effect of
adversarial noise and prevent attacks on the deep learning
models. The strategies may include the use of filtering
algorithms, noise structure destruction algorithms, and
noise coverage algorithms in data stream processing. The
goal is to achieve more resilience to adversarial noise,
which is the subtle disturbance added to input samples to
cause the model to make incorrect predictions.

These four aspects are important to build robust, secure, and
resilient deep learning systems, particularly in fields where the
integrity and accuracy of the model’s predictions are critical,
e.g., in network security and finance.

With the constant emergence of new and increasingly
destructive adversarial attack methods, many research efforts
have been devoted to exploring corresponding defenses.
Current adversarial defense strategies can be categorized into
two prevalent strategies: One strategy is based on detection and
data preprocessing, and the other strategy improves adversarial
robustness.

From a DNN model perspective, adversarial learning can
be interpreted as gradient masking, which can refer to a
class of techniques that hide model gradients from adver-
saries and prevent the adversaries from obtaining the cor-
rect gradients of the models, such as Graph Adversarial
Training (GraphAT) [214] and Robust CNN Training [215],
as will be delineated in Section IV-C4. More generally,
gradient masking can refer to the outcome or effect of tech-
niques designed to take other approaches (e.g., defensive
distillation [187]) to defend against adversarial attacks and
resulting in obscured gradients of the network models under
attack.

B. Adversarial Attack Detection and Data Preprocessing

This type of defense method primarily detects adversarial
attacks through technical means and pre-detected adversarial
samples, or preprocesses the input data and destroys some key
structures that constitute the adversarial samples.

1) Adversarial Attack Detection: As an adversarial defense
method, adversarial sample detection has also attracted much
attention from researchers. Given a sample, the goal is
to directly detect whether it presents a threat. In essence,
the detector is trained on both the raw and adversar-
ial sample datasets to identify adversarial samples by
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Second-order
reconstructor

Fig. 14. The CMAG workflow during the deployment phase. The CMAG
is made up of FMR, LR, and GR, which are three reconstructors. When the
reconstruction error exceeds the stated threshold, the sample is considered
hostile.

measuring the differences between them caused by the adver-
sarial perturbation [216]. A prominent detection method,
H&G [217], utilizes techniques, e.g., PCA, softmax, and the
reconstruction of adversarial images. These methods exploit
the differences between original and perturbed images, but can
be easily bypassed by attacks that target at them.

An algorithm called RObust SAliency (ROSA), presented
by Li et al. [218], is an innovative technique for enhancing
the robustness of FCN-based salient object recognition models
against adversarial attacks. It works by adding universal noise
to the input image, then using a two-part system to predict
the saliency map of the image: A piecewise-masked compo-
nent that disrupts adversarial noise patterns while preserving
boundaries, and a context-aware refinement component that
adjusts the saliency mapping by using contrast modeling.
ROSA enhances network robustness to attacks and performs
comparably or better on natural images than current meth-
ods, which only focus on non-target attacks. The defensive
performance against target attacks has yet to be explored.

Aiming to enhance NIDS, Debicha et al. [83] develop an
effective adversarial detector predicated on transfer learning of
DNNs. They propose that in scenarios involving parallel intru-
sion detection system (IDS) designs, harnessing the synergy
of multiple detectors can markedly augment the detectabil-
ity of adversarial traffic, outperforming a singular detector.
Correspondingly, within the domain of IoT intrusion detec-
tion, Jiang et al. [84] introduce a novel framework titled
Feature Grouping and Multi-model Fusion Detector (FGMD).
This framework fortifies defenses against adversarial attacks
through the strategic grouping of features and fusion of
multiple models.

Cascade model-aware generative (CMAG) [219] is an adver-
sarial sample detection technique that consists of two first-
order reconstructors, including a Feature-Map Reconstructor
(FMR) and Logit Reconstructor (LR), and a second-order
Global Reconstructor (GR). Rebuilding the logit and feature
mapping produces an interpretable representation of the final
convolution layer. If the reconstruction error (RE) of a sam-
ple relative to GR exceeds the predetermined threshold, the
sample is classified as adversarial. The process of a CMAG
during deployment is shown in Fig. 14. CMAG provides a new
means to detect the presence of adversarial samples, which can
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accurately detect high-quality adversarial samples compared to
existing generative model-based detection methods, e.g., Fence
FGAN [220] and UADD-GAN [221]. The drawback of CMAG
is that it utilizes a simplistic autoencoder as the generative
model, and may not yield satisfactory results for complex
datasets.

Zhang and Wang [222] state that adversarial attacks pri-
marily attain their objectives by altering pixel values and
that such attacks often insert perturbations in regions with
high textures. In response, they presented a step-based deep
learning network known as ADNet. ADNet is a DNN model
for adversarial example detection by using steganalysis and
attention mechanisms. It features an attention module, an
adversarial attack attention module (AAAM), which pays addi-
tional attention to vulnerable parts throughout the process of
feature learning, hence increasing the model’s accuracy. To
reduce the misclassification of regular samples in the detection
phase, a special adversarial loss function has been designed to
fine-tune the model, resulting in impressive outcomes. As an
end-to-end model, ADNet does not rely on the extraction of
high-quality features, hence reducing the cost of human partic-
ipation. However, it encounters the problem that the detection
rate for adversarial samples is better than the classification
accuracy for clean samples.

Addressing the potential security risks adversarial attacks
posed to ML-based IDS, Li et al. [6] conduct a detailed
examination of adversarial attackers’ ability to deceive detec-
tors used in IloT, specifically EIFDAA. The robustness of
IDS is significantly improved through adversarial training.
The improved IDS effectively resist adversarial attackers while
preserving the original detection rate of attack samples.

Freitas et al. [223] indicate that adversarial vulnerability is
a consequence of the excessive sensitivity of a model to good
generalization features in the data. Since the model not only
learns robust features but also information about non-robust
features during training, models can be vulnerable despite
maximizing accuracy. In light of this, the concept of adver-
sarial vulnerability is extended to combine with prior human
knowledge, and a new approach named UnMask is proposed,
which is a framework for detection and protection against
adversaries that relies on strong feature alignment. UnMask
quantitatively evaluates the resemblance between the extracted
and expected features, selects an adversarial perturbation to
detect with a given similarity threshold, and protects the model
by predicting the correct class that best fits the extracted fea-
tures. The method highlights the advantage that even if an
attacker can manipulate the predicted class labels by slightly
changing the pixel values, simultaneously manipulating all the
individual features that make up the image together is a more
challenging task. Currently, UnMask only focuses on non-
target attacks, and the defensive performance against target
attacks has not been validated.

Although most adversarial defense detection methods have
offered satisfactory results, some problems are yet to be
addressed, including excessive reliance on target models,
difficulty in resisting transfer attacks, relatively weak general-
ization capabilities, and so on. Model-independent methods to
detect adversarial inputs are developed by Wang et al. [224].
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Fig. 15. An overview of the architecture of the logit-based adversarial sample
detection method. The model analyzes the original and adversarial examples
that differ not only in the feature space but also in the semantic space, and
then trains an LSTM network to learn the differences in the logit distribution
in the semantic space.

Classifier

The architecture is reviewed in Fig. 15. As the primary
architecture of the detector, an LSTM network is trained to
capture variations in the logit sequence distribution. They
examine the original and adversarial cases, which vary not
only in the feature space but also in the semantic space,
and then train an LSTM network to discover any discrepancy
in the logit distribution in the semantic space. They offer a
logit-based adversarial sample detection strategy that is very
flexible, simple to implement in all pre-trained models, and
has robust detection resistance against both black-box and
white-box attacks.

To detect arbitrary adversarial attacks without access
to reference spectrographs and adversarial perturbations,
Esmaeilpour et al. [225] propose a regularized logistic regres-
sion model to distinguish the eigenvalues of malicious spectral
graphs from legitimate spectral graphs. They reveal that the
manifolds of the adversarial samples are distant from the
natural and noisy instances that are slightly disturbed by
Gaussian noises. They use the eigenvalues of the legal exam-
ples and adversarial examples to train a logistic regression
to find the decision boundary between them. This detector’s
main obstacle is its sensitivity to intra-class sample similarity,
particularly in the multi-classification problem of black-box
attacks.

Existing methods, e.g., [226], [227], focus on the visual
field, and cannot detect adversarial examples in the radio sig-
nal field, which is an important domain due to the ubiquitous
networks. In response to the adversarial attacks in the realm
of radio signals, Xu et al. [58] describe a novel adversarial
sample identification method by means of the integration of
many features. They also provide a framework for creating
adversarial samples, collecting local intrinsic dimension (LID)
characteristics and constellation diagram (CD) characteristics,
and recognizing adversarial samples. The framework produces
the values of each layer for both normal and adversarial exam-
ples of the model. Then it computes the LID eigenvalues of the
instance by estimating the maximum probability of a defined
range of neighborhoods. The CD eigenvalues are computed
simultaneously using the range characteristics and density fea-
tures of the CD distribution. A logistic regression classifier is
trained using several feature fusion values to identify adver-
sarial samples. Experiments demonstrate that the suggested
approach can reliably identify hostile radio signals. However,
the performance degrades slightly when the perturbation is less
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Fig. 16. Overview of the Generator and Discriminator in CAP-GAN. To
accomplish adequate purification under cycle-consistent learning, the frame-
work trains the purification model to increase robustness. It employs the
standard GAN training approach to purify adversarial inputs by considering
pixel-level and feature-level consistency.

than 10%. The reason is that the perturbations are very small,
and the features are inconspicuous between the normal and
adversarial examples.

All these methods, such as [218] and [58], represent the
latest defense techniques that detect and defend against adver-
sarial attacks. Adversarial sample detection is a typical defense
method that aims to detect whether a sample is undergoing an
adversarial attack directly. Logistic regression and deep learn-
ing are often used to classify adversarial and non-adversarial
samples. On the one hand, adversarial sample detection meth-
ods can effectively detect and defend against adversarial
attacks, in particular, black-box and white-box attacks. They
are versatile and widely applicable to pre-trained models. On
the other hand, adversarial sample detection methods may
require large amounts of training data and high-capacity mod-
els with high computational overhead. They may have poor
generalization capabilities and may be vulnerable to transfer
attacks. Moreover, some of the methods are sensitive to intra-
class sample similarity, especially in the multi-classification
problem of black-box attacks.

2) Data Preprocessing: For defense methods for prepro-
cessing input samples, classical research methods include
PixelDefend [228], feature compression [229] and random
transformations [230], etc. Table XI classifies the recent data
preprocessing methods from the perspectives of attacked
objects, input types, and invisible metrics.

Kang et al. [231] propose a purification model named
Cycle-consistent attentional purification GAN (CAP-GAN),
aimed at decreasing the impact of adversarial perturbations
by transforming the input. The design of CAP-GAN is plot-
ted in Fig. 16. The framework trains the purification model to
enhance the pre-trained model’s robustness in image classifi-
cation. It uses the standard GAN training process to clean up
adversarial inputs by balancing pixel-level and feature-level
consistency via cycle-consistent learning for effective purifi-
cation. On the CIFAR-10 dataset, CAP-GAN surpasses other
preprocessing-based defenses, such as the JPG compression
method developed in [232], in both black-box and white-box
configurations.

To address the issue that preprocessing-based defenses
are typically sensitive to the error amplification effect,
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Zhou et al. [233] suggest a self-supervised adversarial training
mechanism in the class activation feature space to elimi-
nate adversarial noise. Given adversarial assaults in the realm
of radio signals, they first produce adversarial instances by
substantially disrupting natural examples’ class activation fea-
tures. Then they train a denoising model, also known as
the class activation feature-based denoiser (CAFD), by min-
imizing the disparities between the adversarial and normal
examples in the class activation feature space. Consequently,
antagonistic noise may be minimized. In comparison to prior
approaches, such as the adversarial perturbation elimination
GAN (APE-GAN) method developed in [234], the method
developed in [233] considerably improves adversarial robust-
ness, particularly against unexpected adversarial and adaptive
attacks. However, for white-box attacks, the protection capabil-
ity of the defense model is compromised as the defense model
is completely visible to the attacker. In this sense, the defense
against white-box adaptive attacks needs to be strengthened.

With the aim of addressing both adversarial examples delib-
erately created to cause harm and inputs that fall outside
of the expected distribution, Wei and Liu [235] develop
XEnsemble, a diversity ensemble verification technique. To
limit the harm caused by malicious or incorrect data inputs,
XEnsemble, an input-output model verification ensemble pro-
tection technique, may automatically examine every input
to the prediction model. To protect DNN prediction mod-
els from adversarial examples and out-of-distribution inputs,
XEnsemble uses a variety of data cleaning strategies, includ-
ing rotation, color-depth reduction, local spatial smoothing and
non-local spatial smoothing (NLM), to generate diverse input
denoising verifiers, implements an ensemble learning approach
to protect the DNN model from deception, and offers a set of
algorithms for combining the input and output verifications.
XEnsemble performs well in recognizing out-of-distribution
inputs and protecting against adversarial samples. In order to
make XEnsemble more resistant to internal attacks on the
defensive system, the team has planned to randomize the
input denoising integration layer and the output model vali-
dation layer, and also to generalize the XEnsemble technique
to additional media types, including text, video, and audio.

By taking inspiration from the robustness domain [236],
[237], [238], Zhu et al. [239] examine adversarial training
from the standpoint of data-to-decision boundary distance.
They introduce Saliency Adversarial Defense (SAD). This
batch normalization strategy can achieve adversarial robust-
ness without adversarial training by processing inputs through
their saliency map and changing the Batch Normalization
(BN) statistics. Compared to adversarial training, SDA is effi-
cient in protecting against various forms of white-box and
black-box attacks. It is generally anticipated that fine-tuning
the processed data and adjusting the saliency map intensity
based on the sample could lead to further improvement in
performance.

When reducing adversarial noise, many existing model-
agnostic defenses lose key image content, resulting in low
classification accuracy on benign images. In this regard,
Mustafa et al. [240] put forth an image restoration approach
by using super-resolution, which projects off-the-manifold
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TABLE X
ADVERSARIAL ATTACK DETECTION METHODS

Defense Brief description Similarity | Evaluation Strength Weakness Impacted
Measure Area
ROSA [218] | Shuffles pixels of an image and | Energy func- | Precision, Significantly improves | Only focuses on non- | computer
introduces some new universal | tion of low- | Recall, the backbone network | target attacks. vision
noise to disrupt the adversarial | level similar- | MAE, = PR | robustness to  adversarial
perturbation then learns to pre- | ity curves, attacks; shows comparable or
dict the saliency mapping of the Fg-measure | better performance on natural
input image. images.
CMAG Detects generative adversarial | SSIM Detection Detects high-quality adversar- | The generative model is | computer
[219] examples that are aware of the Accuracy ial examples effectively and is |a  simple autoencoder, | vision
cascade model and demonstrates more interpretable, providing a | whose  performance is
to humans what the model per- new perspective on the exis- | unsuitable for a complex
ceives by reconstructing the logit tence of the adversarial exam- | dataset.
and feature maps of the final ple.
convolution layer.
ADNet [222] | A steganalysis-based deep learn- | £2 distance | Detection End-to-end, without manually | Detection rates on nor- | computer
ing model in which an attention Accuracy extracting features. mal images are lower than | vision
module is incorporated to focus those on adversarial im-
more on susceptible areas during ages created by C&W.
feature learning.
Logit-based | Trains an LSTM network to | logit ROC, AUC | Detects the logit sequence dif- | Contrasting tests  with | computer
adversarial learn variations in logit distri- ferences between the original | other methods are | vision
detection bution in semantic space and and adversarial examples, and | missing.
[224] suggests a logit-based adversar- is model-agnostic with strong
ial example identification tech- generalizability.
nique.
UnMask Based on robust feature align- | Jaccard Sim- | ROC, TP, FP | It is significantly more difficult | Only considers untargeted | computer
[223] ment, detects adversarial pertur- | ilarity for an attacker to modify all | gray-box attacks. vision
bations by selecting a similar- of the different characteristics
ity threshold and safeguard the that make up the image at the
model by predicting an accurate same time.
class.
Regularized | A regularized logistic regres- | Chordal Dis- | AUC Be able to detect any adver- | Significantly sensitive to | environmental
logistic sion model for discriminating | tance sarial attack when no reference | intra-class sample similar- | sounds
regression eigenvalues of malicious spec- spectrogram or adversarial per- | ities, especially for black-
model [225] | trograms from benign ones. turbation is available. box multi-classification.
LID&CD A detector based on multi- | LID Detection Innovatively detects adversar- | When the perturbation is | radio signals
[58] feature fusion, including gener- Accuracy ial examples in the radio signal | less than 10%, the per-
ating, extracting LID&CD fea- domain instead of the vision | formance is slightly de-
tures and detecting adversary. domain. creased.

adversarial instances into the native image manifold. The
method is a model-independent defense mechanism that
enhances an image by selectively adding high-frequency ele-
ments meanwhile canceling out any unwanted noise intro-
duced by the attacker. Not only does the approach defend
against attacks, but it enhances image quality while keeping
model performance constant on clean images as well. Even
when the attack model and attack type are unknown, the
method performs better than white-box settings in terms of
robustness.

Despite its importance in CNN prediction, the accu-
rate recovery of input image structures has been gener-
ally overlooked in existing adversarial defensive systems.
Yan et al. [188] develop D2Defend, which recovers both
low and high-frequency picture structures in the spatial and
transform domains, while eliminating adversary distortions.
Unlike previous input-transformation approaches, such as a
feature distillation method developed in [229], D2Defend uses
bilateral and short-time Fourier transform (STFT) filtering to
divide the input image into edge and texture feature layers.
D2Defend is simple to develop and model-independent. It has
been demonstrated to outperform existing adversarial defense

approaches, particularly in high-attack scenarios. D2Defend’s
loss in clean accuracy is likewise judged acceptable and more
stable than other defense methods.

These data processing-based methods [188],
[191], [192], [193], [194], [195], [196], [197], [198], [199],
[200], [201], [202], [203], [204], [205], [206], [207], [208],
[209], [210], [211], [212], [213], [214], [215], [216], [217],
[
[

[189], [190],

—

218], [219], [220], [221], [222], [223], [224], [225], [226],
2271, [228], [229], [230], [231] can be broadly categorized
as model-specific or model-agnostic defenses [241], and input-
transformation or input-verification based defenses [242].
One commonality among these methods is that they aim to
strengthen DNN5s’ resistance to adversarial attacks without sig-
nificantly degrading their performance on non-attacked (clean)
inputs. Some of the strengths of the methods discussed include
their ability to defend against both white-box and black-box
attacks, their model-agnosticism, and their ability to recover
image structures of the input. Additionally, some of the meth-
ods are able to improve image quality and maintain model
performance on clean images, and some of the methods are
easy to deploy. On the other hand, some of the methods are
found to be weak in defending against white-box adaptive
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TABLE XI
DATA PREPROCESSING METHODS FOR ADVERSARIAL EXAMPLE DETECTION AND DEFENSES
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Defense Attack Brief description Input | Invisibility| Strength Weakness
type Metric
XEnsemble| White-box, | Improves DNN robustness against | Image | £, Automatically validates any input | Needs to include randomization
[235] OOD OOD inputs and adversarial exam- to the predictive model, be attack- | at the input denoising integration
ples by using diversity ensemble agnostic. Superior in robustness | layer and the output model valida-
verification. and defensiveness, with a high de- | tion layer to increase resistance to
fense rate of adversarial samples | internal attacks, as well as expand
and a high detection rate of OOD | to new media.
inputs.
SAD White-box, | Achieves adversarial robustness | Image | /2 Widens the average distance be- | Needs to fine-tune the processed
[239] Black-box |via analyzing inputs using tween the processed data and the | data and adjusts the significance
saliency maps and updating BN updated decision boundary, signif- | map intensity related to samples
statistics without AT. icantly smooth the landscape, and | to further improve this method’s
is more effective than AT. Reduces | performance.
the training time significantly, not
relying on gradient masking.
Image White-box, | A super-resolution-based image | Image |/¢1 No need for training or tuning | Its robustness against white-box at-
super- Black-box, | restoration technique that projects many hyper-parameters. Do not | tacks is weaker than that in the
resolution | Gray-box | off-the-manifold adversarial sam- cause gradient masking. Performs | gray-box settings.
[240] ples into the benign image mani- well for both black-box and white-
fold. box attacks. Supports unknown at-
tacks.
CAP- White-box, | Uses the pixel-level and feature- | Image | KL The introduction of feature-level | Adversarial interference is miti-
GAN Black-box |level consistency for GAN’s items fairly enhance model robust- | gated at the cost of removing im-
[231] cycle-consistent ~ learning  to ness. In both black-box and white- | portant information from clean im-
achieve adequate purification. box conditions, CAP-GAN beats | ages, making DNN models less ac-
alternative preprocessing-based de- | curate for clean samples.
fenses on the CIFAR-10 dataset.
CAFD White-box, | Devises a self-supervised AT tech- | Image | CAFA Compared to previous SOTA meth- | For white-box attacks, the defense
[233] Unseen nique in the class activation fea- ods, the confrontation robustness is | model is completely leaked to the
Attack ture space to eliminate adversarial significantly enhanced, especially | adversarial, and the protection ca-
noise. against unknown adversarial and | pability of the defense model is de-
adaptive attacks. stroyed. The defense against white-
box adaptive attacks needs to be
strengthened.
D2Defend | White-box | Maintains the essential high- | Image | SSIM It is independent of DNN models | The defense effect under C&W at-
[188] frequency image structure and deploy-friendly. Good transfer- | tack is not optimal.
and filters out  adversarial ability among different commonly
perturbations. used networks and adversarial at-
tack methods. The clean accuracy
degradation is acceptable. More
stable performance.

attacks, and others are found to cause gradient masking based
on characteristics. Also, some of the methods proposed require
fine-tuning the processed data and adjusting the significance
map intensity related to the sample to improve the performance
further.

3) Summary: Adversary detection approaches offer a strat-
egy to defend against adversarial attacks in recent years.
These methods attempt to detect adversarial samples in
the input data and reject them, rather than modifying the
original models and inputs. The advantages of adversar-
ial detection include the ability to be used in combina-
tion with other defense methods and the ability to ana-
lyze whether the inputs contain an adversarial sample when
the results of the baseline and robust classifiers do not
agree.

On the other hand, adversarial detection methods have lim-
itations. Some methods, such as LID&CD [58], ADNet [222],
and UnMask [223], extract feature dimensions to detect
adversarial samples. Other methods, such as CMAG [219],
detect adversarial examples based on sample reconstruction
comparisons. However, LID&CD [58] has insignificant

detection performance when the perturbation is

small.

ADNet [222] has a better detection success rate for adversarial
samples than for clean samples [225], and higher sensitivity
for intra-class samples. They may also be bypassed by attack-
ers who understand the detection mechanism. In the future,
a combination of detection and defense is expected to be a
promising direction to pursue.

C. Robustness Enhancement for Deep Learning Models

Current methods for defending against adversarial attacks
focus primarily on improving model robustness. This goal is
accomplished by incorporating regularizers into the model’s
loss function to make it more smooth. In other words, the
gradient is Lipschitz continuous [243]. The goal is to make
the model less sensitive to irrelevant variations in the input
and off-manifold perturbations through effective regulariza-
tion. The recent studies improving adversarial robustness can
be broadly categorized into four main layers that regulariza-
tion can be deployed: The input layer, middle layer, output
layer, as well as across the layers.
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TABLE XII
REGULARIZATION ON INPUT LAYER (I)

Defense | Strategy | Attack Description Input Inv- Strength Weakness
type Metric
AMM Add White-box, | A regularization —method | Image lp Significantly improves the test | Higher computational cost.
[247] Noise Black-box | based on learning that uses set accuracy of various DNN
an adversarial perturbation architectures, and the general-
as a proxy. ization capability has been en-
hanced
GAN- Add White-box, | An adversarial face gen-|Image |41 Makes it easy to recognize in- | DeepFake model training takes
based Noise Black-box, |erating approach that in- duced fake images and videos, | a significant amount of time.
Deep- Gray-box | corporates random differen- regardless of model or data, and
fake tiable image alterations dur- uses the same technique in all
[248] ing DeepFake model training scenarios.
to safeguard people’s faces.
PDA Add Black-box, | During training, gradually | Image 12 Spends less training time while | It is difficult to achieve robust-
[249] Noise Corruption | introduces various adversar- maintaining a high level of accu- | ness against white-box adver-
ial perturbations. racy on clean samples, regulat- | sarial attacks that are confined
ing the perturbation boundaries, | to multiple spaces.
ensuring greater robustness.
adMRL | Add White-box | A novel MRL algorithm | Robotic | ¢, Based on model-agnostic meta- | Only tested on FSGM and ran-
[143] Noise learning strategy for general- | trajecto- learning, the agent may learn | dom noise attacks.
izing a meta-policy by meta- | ries the initial parameters with im-
training an agent in a dis- proved generalization ability, as
torted environment with dis- well as fight against additional
turbed states. “bad” samples.
HIRE- | Add White-box, | Uses the time steps of SNN | Image lp The robustness is not primar- | Improves model robustness at
SNN Noise Black-box | training to efficiently input ily derived from gradient mask- | the expense of clean-image
[250] multiple noisy variations of ing, and the degradation in clean | classification accuracy.
the same image. image accuracy is negligible.
Improves inference latency and
computation energy.
ICAT AT White-box, | Adversarial training with one | Image KL, CE | Proposes a new idea that the | Worse defense against black-
[251] Black-box | additional induced class. main impact of counteracting at- | box attacks over white-box at-
tacks is the alternation of predic- | tacks.
tion distributions.
TriATNE | AT White-box, | A novel framework for learn- | Node 2% TriATNE outperforms the base- | Learning using, e.g., knowl-
[254] Black-box |ing stable and robust node line on all datasets in link pre- | edge graphs, continues to pose
embeddings with three par- diction, showing good perfor- | difficulties.
ticipants, where the producer mance on homogeneous net-
and the seller compete to win works.
customers.
Graph- | AT White-box | Dynamic regularization ac- | Node CE Dynamic regularization; When | The computational overhead
AT cording to the graph struc- learning to construct and resist | linearly rises as sampling more
[214] ture. perturbations, the influence of | neighbors. Focuses only on
the connection instance is con- | graph-based learning from one
sidered. graph.
CSA& | AL White-box | CSA is a cost-sensitive ad- | Image 4o Cost-sensitive training can suc- | May not be successful in im-
CSE versarial learning approach. cessfully defend specific cate- | proving the adversarial robust-
[258] CSE is an end-to-end learn- gories against adversarial attacks | ness of the model in a more
ing strategy that can improve and can be used in conjunc- | complex dataset.
the model’s adversarial ro- tion with AT to increase perfor-
bustness with no need for mance.
AT.
GAT AT Unseen At- | A strategy for improving the | Image lp Achieves SOTA  robustness | Maybe high computation cost.
[255] tack, OOD | model’s generalization to test without training; improves both
data and OOD samples while robustness and generalization.
also improving its robustness Extends to classification,
against unknown adversarial semantic ~ segmentation  and
attacks. object detection.

1) Regularization on Input Layer: The essence of input
layer regularization is to strengthen the generalization ability
of neural networks through data enhancement. This can pro-
cess input images, such as projection to non-adversarial mani-
fold [244] and image conversion [245]. It can also train models
by adding noise or using pseudo-labels in a semi-supervised

learning mechanism [246]. Tables XII and XIII summarize the
latest breakthroughs in the regularization of the input layer,
divided into several aspects, including strategy, input, attack
type, and inv-metric.

a) Noise perturbation: Noise Perturbation means processing
input samples by injecting some mask or noise. Adversarial
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TABLE XIII
REGULARIZATION ON INPUT LAYER (II)
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Defense | Strategy | Attack Introduction Input | Invisibility| Strength Weakness
type Metric
APR AL White-box, | Recombines the phase spec- | Image CE Good adaptability to common | Needs to investigate ways to
[259] Black-box, | trum of the current image corruption, surface changes, | represent part-whole hierar-
Corrup- with the distracter image am- and OOD detection, while | chies in neural networks based
tion, OOD | plitude spectrum to create a maintaining good ability on | on the phase spectrum as well

new training sample with the clean images. as more CNN models or con-
current image as the label. volution operations.

ART AL Gaussian | A neural network retraining | Image loo The negative impact on classi- | Experiments on small datasets

[252] Noise strategy that indirectly im- | and data fication accuracy is small. Re- | only, which lack defensive per-
proves a model’s ability to | points duces compute resources that | formance experiments under
maximize the least distance spent on strengthening robust | strong attacks.
from all data examples to the data samples and increment of
decision. model retraining time.

Style- AL White-box | A new data augmentation | Image Lo Performs better or similar to | The automatic selection of

Mix mix-up method that can gen- SOTA mix-up approaches and | the mixed ratio slightly de-

[256] erate different training sam- learns more robust classifiers | grades the defensive perfor-
ples by convex combinations against adversarial attacks. En- | mance of further separate fore-
of content and style character- hances the generalization of | ground from background.
istics. model training.

MaxUp | AL Gaussian Introduces gradient-norm reg- | Image, | ¢ MaxUp can easily take any | Although it merely necessi-

[253] Noise ularization for improving the | video, SOTA  data  enhancement | tates an additional forward
loss function’s smoothness to | 3D point scheme and  significantly | pass, MaxUp incurs a non-
increase generalization per- | cloud improves them by minimizing | negligible additional time cost,
formance and reduce over- the worst-case (rather than | which may be reduced using
fitting. average) risk on enhanced | low-resolution images.

data.

EdgeNet-| Feature | White-box, | Proposes two edge-enabled | Image CE Edge features can improve | Clean accuracy is slightly re-

Rob & | Extract | Black-box, | pipelines: EdgeNet-Rob and the CNN model’s robustness. | duced.

Edge- Corruption | EdgeGAN-Rob. Makes CNNs Clean accuracy can be in-

GAN- rely more on edge features. creased on datasets with clear

Rob edge information by repopulat-

[260] ing the texture information.

Margin Maximization Networks (AMM) are provided by
Yan et al. [247] as a learning-based regularization, which sub-
stitutes an adversarial perturbation for the geometric margin.
By carefully crafting aggregation and shrinkage algorithms,
AMM directly improves the classification margin. For many
DNN designs, AMM greatly enhances test set precision while
maintaining training set accuracy, demonstrating increased
generalization power. Nevertheless, the computational cost of
AMM increases due to the usage of repeated updates to esti-
mate the classification margin and the calculation of high-order
gradients during optimization.

By integrating random differentiable picture transformations
when training DeepFake models [29], Yang et al. [248] present
a transformation-aware adversarial face generation strategy to
increase the defense capability against GAN-based DeepFake
variants in the black-box situation. The technique can persis-
tently yield more distortions in simulated face images, making
it simpler to identify generated counterfeit images and videos,
which are independent of models and data. The process fol-
lows the same steps under all settings. One potential downside
is that the process of model training can be time-consuming.

Yu et al. [249] propose Progressive Diversified
Augmentation (PDA), which increases the resilience of
DNNs by gradually infusing different adversarial sounds
in the training phase. This improves the system’s overall
resilience against adversarial examples and common corrup-
tion. Not only does PDA employ gradient information to

make adversarial noises with negligible additional time cost,
but it also uses a progressive schedule to vary the magnitudes
of inputs during the training process. However, attaining
robustness concurrently with PDA for white-box adversarial
attacks restricted to numerous locations may be challenging
due to the incompatibility of different adversarial robustness.

To address concerns pertaining to network security and
network traffic analysis, McCarthy et al. [69] propose an
innovative defense strategy, leveraging hierarchical learning
to constrict the attack surface that adversarial examples may
exploit given the constraints of an anticipated attack’s param-
eter space. This robust defense learning model can withstand
meticulously crafted adversarial attacks, maintaining classifi-
cation accuracy on par with the original ML model when not
under attack.

To enhance the robustness of Meta Reinforcement Learning
(MRL), Chen et al. [143] propose adversarial Meta
Reinforcement Learning (adMRL) to generate adversarial
attack instances by using an adversarial GAN (adGAN)
and leverage the generated examples to enhance the MRL
algorithm’s robustness. AJGAN and MRL can obtain good
results by optimizing a minimax objective function during
training. Building on model-agnostic meta-learning, the agents
can learn the initial parameters with better generalization abil-
ity. Thus, when facing an unknown new task, the agents can
learn to counteract these “bad” samples. However, the exper-
imental attack methods only test on FSGM and random noise
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Fig. 17. An illustration of the alternation of the predicted distribution before
and after an adversarial attack. (a) Traditional DNNs; and (b) The proposed
induction method. Here, “GT” stands for “Ground Truth.”

attacks, which may not be sufficient to fully demonstrate the
robustness of the method.

Deep spiking neural networks (SNNs) modeled after the
brain have gained popularity owing to their ability to reduce
the power consumption of deep learning applications. In their
study, Kundu et al. [250] present a spike-timing-dependent
back-propagation (STDB)-based SNN training method to bet-
ter leverage the inherent robustness of SNNs. Instead of
continually displaying the same image, this approach makes
use of the temporal phases of SNN training to input sev-
eral noisy copies of the same image, hence decreasing the
requirement for intermediate gradient storage and eliminat-
ing superfluous training time. The enhanced robustness of
this method is not a result of gradient masking, and it
demonstrates outstanding performance under black-box and
white-box attacks, with a negligible loss in clean accuracy.

b) Adversarial learning: Adversarial learning aims to
improve network security by improving the robustness of
machine learning algorithms. As the main branch of adver-
sarial learning, adversarial training, which involves training
DNN models with adversarial examples, is another strategy
for strengthening DNN robustness. Adversarial examples are
produced with known adversarial attack algorithms, e.g., those
described in Section III. Adversarial training can also be
viewed as a special case of data augmentation that differs
from traditional methods. Rather than introducing randomly
transformed examples to improve model generality, adversarial
learning introduces adversarially perturbed data to strengthen
the model’s robustness.

According to [251], the principal consequence of adver-
sarial attacks is the modification of the prediction distri-
bution. On the basis of this, they suggest Induced Class
Adversarial Training (ICAT), a simple but successful strat-
egy that incorporates an extra-induced class to defend against
adversarial examples. Fig. 17 illustrates the alteration of pre-
dicted distributions before and after an adversarial attack. The
method demonstrated better defense against white-box attacks
compared to black-box attacks.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

Fig. 18. The min-max game’s and ART’s concepts: Different classifications
of data, denoted by color and circle style, compete for a larger influence area
in the middle of the circles. (a) The gray area where the influence regions
overlap should be the location of the optimum robust decision border. (b) The
current decision boundary is shown by the solid line.

Yao et al. [252] target at classification and proposed
Adaptive Retraining (ART) for neural networks, which implic-
itly improves a model’s capacity in maximizing the minimal
distance from data instances of all classes to the decision bor-
der. ART additionally builds a feedback loop and steers the
data-generating process with categorization results for data
augmentation. Fig. 18 shows the concept of the min-max game
and ART. ART has a negligible negative impact on classifica-
tion accuracy, reducing the computational resources for data
augmentation and time increment for model retraining, mak-
ing it suitable for the online optimization of neural networks.
However, experiments have only been conducted on small
datasets, lacking the verification of defensive performance on
large-scale datasets under strong attacks.

Gong et al. [253] present MaxUp, a simple yet effective
method for enhancing generalization and minimizing overfit-
ting. The objective of the technique is to construct a collection
of enhanced data with randomly generated perturbations or
modifications, and then to minimize the greatest loss across
the improved data. To improve generalization performance,
the method implicitly incorporates a smoothness or robust-
ness regularization against random disturbances. While an
additional forward pass is all that is required, MaxUp still
has non-negligible additional time costs that can be low-
ered by employing low-resolution picture acceleration during
selection.

Tripartite Adversarial Training for Network Embeddings
(TriATNE) is an adversarial learning system designed by
Liu et al. [254], which learns stable and durable node embed-
dings with three players. A basic producer collects features
for node pairings, a dynamic seller selects negative samples,
and a biased consumer perturbs the objective function, all at
the same time measuring the performance of node embed-
dings. Producing and selling are in competition for consumers.
TriATNE is founded on the idea that a resilient approach must
be able to endure interruptions and assaults. The TriATNE
framework outperforms baselines on link prediction across all
datasets and performs well on homogeneous networks, despite
limitations in heterogeneous network learning.

Poursaeed et al. [255] propose Generative Adversarial
Training (GAT) to boost the model’s generalization ability to
test sets and out-of-domain data, and its resilience against
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Fig. 19. The training process of GraphAT: step 1) Producing graph adversarial
instance and step 2) Optimizing model parameters through minimizing the loss
and graph adversarial regularizer.

unanticipated adversarial attacks. GAT utilizes generative
models with a disentangled latent space to produce a vari-
ety of low-, mid-, and high-level adjustments as opposed to
modifying a single image feature. In addition to improving the
model’s performance on clean images and out-of-domain data,
adversarial training with these cases makes it more robust to
unforeseen attacks. The method is applicable to several appli-
cations, including classification, semantic segmentation, and
object identification.

Hong et al. [256] claim that properly blending the content
and style of two input images can result in more numerous
and robust samples, which enhances model generalization dur-
ing training. Based on this concept, they present StyleMix,
a new data augmentation approach that provides a vari-
ety of training samples via convex combinations of content
and style attributes. They further expand this technology
to StyleCutMix, which enables sub-image level modification
through CutMix’s cut-and-paste methodology [257]. They also
devise a method for automatically determining the degree
of style mixing based on the class distance between two
images. Experiments show that their strategies increase clas-
sifier robustness against adversarial attacks more than other
recent mixup methods and improve model training general-
ization.

Feng et al. [214] propose a dynamic regularization scheme
called GraphAT, as shown in Fig. 19. The scheme breaks
the smoothness of linked nodes to the greatest degree possi-
ble and generates network adversarial examples by perturbing
the input of associated clean examples. Furthermore, it mini-
mizes the graph neural network’s objective function using an
extra regularizer across adversarial graph samples. This pro-
motes smoothness between adversarial and linked example
predictions, making the model more robust to perturbations
transmitted across the graph. However, the computing cost
grows linearly with the neighbors sampled. In addition, the
work focuses only on graph-based learning from a single
graph, but future research objectives seek to determine the
efficacy of graph-adversarial training on numerous graphs.

Shen et al. [258] suggest a novel method for safeguard-
ing a particular class from adversarial attacks, which is
different from previous defensive approaches that try to
increase the resilience of overall classes. They adopt CSA
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and cost-sensitive adversarial extension (CSE) to include cost
sensitivity in adversarial learning and enhance the model’s
adversarial robustness. Fig. 20 depicts an overview of the
adversarial learning system, as well as the CSA and CSE algo-
rithms. The techniques have been tested on the MNIST and
CIFAR datasets. However, the gain in robustness for more
complicated datasets may be limited.

In view of human outstanding generalization ability,
Chen et al. [259] argue that a resilient CNN should be
able to endure changes in amplitude while concentrating on
the phase spectrum. In order to do this, they provide a
unique data enhancement approach dubbed Amplitude-Phase
Recombination. APR integrates the phase spectrum of the cur-
rent picture with the amplitude spectrum of an adversarial
image to generate a new training sample with the same label
as the current sample. This strategy allows the CNN to get
more structured data from the phase components than from
the amplitude components. APR is at the forefront of sev-
eral generalization and calibration problems, such as adaption
for surface fluctuations and common corruptions, adversarial
assaults, and out-of-distribution detection.

c) Feature Extraction: To train a model, feature extraction
focuses on the texture features of images. Sun et al. [260] are
particularly interested in shape features and propose two edge-
enabled pipelines, namely, EdgeNetRob and EdgeGANROob,
to force CNNs to rely more on edge features, inspired
by the fact that the visual system of humans ends up
paying more attention on global features, such as shapes,
for recognition, whereas CNN models are biased towards
local features (e.g., textures) in images. Both EdgeNetRob
and EdgeGANRob use an edge detection technique to
extract structural attributes from a picture. EdgeNetRob
then trains downstream learning tasks using the recov-
ered edge features, while EdgeGANRob rebuilds a new
image by filling in texture features using a learned GAN.
These findings demonstrate adding edge features can increase
the model’s robustness while decreasing clean accuracy
significantly.

2) Regularization on Middle Layer: Intermediate layer
regularization can be achieved by operating on neu-
rons, hidden layers, and Lipschitz condition constraints.
Tables XIV and XV briefly introduce the latest regularization
methods on the middle layer and compare their advantages
and disadvantages.

Layer regularization: On the middle layer, the most com-
monly adopted regularization method is layer regularization,
where a regularization term is added to the hidden layer.

Adversarial Noise Propagation (ANP) [261] is a simple
yet strong training technique that, unlike classic adversarial
defensive methods, does not manipulate solely the input layer
(as discussed in Section IV-CI1). During training, it injects
noises into the hidden layers by propagating backward from
the adversarial loss. This enables the learned parameters in
each layer to produce accurate and consistent results for the
benign instance and its distributed noisy surrogates, resulting
in a high degree of resilience. Due to the fact that each layer
helps improve the resilience of the model to differing degrees
in this technique, it is necessary to build a more adaptable
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TABLE XIV
ROBUSTNESS REGULARIZATION ON MIDDLE LAYER (I)

25, NO. 4, FOURTH QUARTER 2023

Defense | Strategy | Attack Description Input | Invisibility Strength Weakness
type Metric
KR Lipschitz | White-box | A new optimal transport-based | Image hinge-KR | The expected guarantee in | The calculation time increases
[276] classification framework that in- terms of robustness is sup- | during learning.
corporates the Lipschitz constant plied without any major loss of
and the gradient norm preserva- accuracy. Uses adversarial at-
tion constraint as a theoretical tacks to interpret a prediction.
need.
Inf- Lipschitz | White-box | Two novel robust training ap- | Image l2, oo Improves the architecture’s ro- | The use of non-smooth terms
Norm& proaches for CNN architectures bustness by making network | restricts the application of tra-
Inf-Ind are proposed. Both techniques mapping more reliable and in- | ditional gradient-based learn-
[215] require modifying the network terpretable. Gradually increas- | ing techniques.
structure using an approximate ing complexity through warm-
non-smooth regularization term starting.
that influences the spectral con-
stants in the convolutional layers
and fully-connected layers.
ANP Layer White-box, | A powerful training algorithm | Image RMS Dis- | Easily integrated with adver- | Since each layer contributes to
[261] Reg. Black-box |that adds noises to the hidden tance sarial training methods, and | the robustness of the model to
neural network layers in a layer- efficiently performs using the | varying degrees, a more adap-
wise manner. basic backward-forward ap- | tive algorithm needs to be de-
proach, introducing no addi- | signed to take into account the
tional computations and mem- | heterogeneous behavior of the
ory consumption. different layers.
SNS Layer White-box, | Stabilizes neuron sensitivities | Image 2 SNS performs well against | Updating sensitive neurons dy-
[263] Reg. Black-box, |toward benign and adversarial black-box attacks on different | namically incurs higher com-
Gaussian | examples. datasets, such as SPSA and | putational costs.
Noise NATTack, but does not achieve
security through obfuscation.
HLDR | Layer White-box | A training technique and goal | Image 12 More effective than other ad- | The effect of distortion, differ-
[264] Reg. function for arbitrary neural net- vanced techniques to protect | ent training methods, and at-
work designs that are adversari- neural networks from adver- | tack strategies on HLDR per-
ally robust. sarial evasion attacks; only re- | formance is unclear.
quires as many parameters as
the original model; training
fairly quickly.
ER- Layer White-box, | A new end-to-end robust DNN | Image WD In addition to improving the | Further research on low-
Classifier| Reg. Black-box | defensive scheme that enhances classification accuracy of ad- | dimensional space  needs
[266] the classifier’s adversarial ro- versarial samples, the frame- |to be done to increase the
bustness by embedding regular- work can also be used to detect | robustness of DNNs.
ization. adversarial samples.
RP Reg. White-box | Proposes RP-Ensemble, a train- | Image 151 Totally independent of the at- | On CIFAR-10, the results are
[267] ing technique consisting of pro- tack’s selected norm, and com- | less significant than those for
jected versions of the original in- putationally efficient. MNIST.
puts and RP-Regularizer, a reg-
ularization term to the training
objective.
DH-AT |Reg. White-box | An upgraded variation of AT | Image CE, KL Be readily added with minor | Incurs more training time.
[265] that connects a second head to changes into existing adversar-
one of the network’s intermedi- ial training techniques, and can
ate layers. achieve clean precision and ro-
bustness at the same time.

algorithm that takes into consideration the changing behavior
of different levels. While perturbing the deep layers boosts the
model’s robustness, adding noises to the shallow layers has an
adverse effect. Nevertheless, the root source of this issue is
not studied in [261].

Regarding countermeasures to adversarial attacks in the
context of communication networks, researchers have made
significant strides in adversarial defense. Dong et al. [262]
put forth an innovative defense mechanism, underpinned by a
GAN framework. The proposed model sheds light on the role
of adversarial attacks and defense within an end-to-end learn-
ing process of communication systems, utilizing an approach

comprising triple training. Specifically, it involves the joint
adversarial training of encoder and decoder communication
neural networks against adversarial attacks. Zhang et al. [2]
propose a defense system against adversarial samples in
transformer-based modulation classification, aiming to trans-
fer the trained adversarial attention mapping from a large
transformer to a more compact transformer. This contributes
to robustness in the face of adversarial attacks. They used
a special adversarial attack, i.e., the white-box PGD algo-
rithm, to generate adversarial examples. It is proved that
the transformer-based neural network is more robust to PGD
attacks than CNN.
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TABLE XV
ROBUSTNESS REGULARIZATION ON MIDDLE LAYER (II)

ADVERSARIAL ATTACKS AND DEFENSES IN ML-EMPOWERED COMMUNICATION SYSTEMS AND NETWORKS

Defense| Strategy | Attack Description Input | Invisibility Strength Weakness
type Metric
TENET | Layer White-box | A regularization strategy based | Image CE Enables the network to explore | Maybe high computation cost.
[270] | Reg. on group-wise inhibition for in- varied and richer features, re-
creasing feature diversity and net- sulting in a more accurate pic-
work robustness. ture representation, even when
malicious alterations are intro-
duced.
SACNet| Layer White-box | A new self-attention context net- | Hyper- | Context The HSI’s global contextual | SACNet has a higher time
[271] | Reg. work in which all of the loss at | spectral | enhanced |information may considerably | cost since self-attention learn-
one pixel is shared by all of the | Image features enhance the resilience of | ing and context encoding raise
pixels that are connected to it. At- DNNs against adversarial | the computing overhead of the
tacking such a network requires a attacks. whole framework.
higher level of perturbation.
FNC Layer White-box | Feature norm-clipping layers, | Image Ly Does not introduce trainable | The identification accuracy
[176] | Reg. which are differentiable modules parameters and has only very | of the clean samples affects
that may be arbitrarily placed low computational overhead, | slightly. The reason why
in different CNNs, are used effectively  improving the | remaining valid for the
to prevent the creation of robustness  of  white-box | location-independent patch for
excessively large norm deep generic patch attacks by | a single image is unknown.
feature vectors. different CNNs.
Wave- | Layer White-box, | For noise-resistant image classifi- | Image Corruption | Separation of aliasing effects, | It is less resistant to attackers
CNets | Reg. Black-box | cation, DWT is applied to the fea- Error or the differentiation between | than specially trained
[272] ture maps during downsampling low- and high-frequency in- | defense methods, and the
to minimize aliasing. formation, may be stymied | wavelet transform introduces
without resorting to adversar- | additional computations.
ial training.
Super- | Layer Black-box, | A defensive model in which a | Image Ly The quality of the features re- | In the case of white-box de-
vision | Reg. Gray-box, | supervisory layer is introduced as covered by the hidden layer is | fense, it will only reduce the
Layer White-box | an auxiliary classifier to the basic enhanced by the black-box and | confidence of the attacker and
[25] neural network model. gray-box threat models. make them unable to protect
against assaults effectively.
Adv- Layer White-box, | A unique NAS adversarial | Image Lo AdvRush successfully discov- | For  large regularization
Rush | Reg. Black-box | robustness-aware neural ers a neural process for ad- | strength, the searched
[273] architecture search technique that versarial robustness, which is | architecture  experiences a
employs a regularization term highly transferable on different | significant drop in clean
generated from the neural datasets. accuracy.
network’s loss landscape
curvature data.
Cross- | Layer White-box, | A general framework for making | Image 01 No manual modification or re- | Depends on reasonable uncer-
Domain| Reg. Corruption | robust predictions based on creat- design is required when mak- | tainty estimation in the pres-
En- ing a diverse ensemble of various ing a change between middle | ence of distribution transfer;
sem- middle domains. domains. No additional super- | Selection of intermediate do-
bles vision or labeling is required | main; Using only unimodal
[274] than what the dataset already | distribution. Integration-based
comes with; Can be extended | methods can increase compu-
to a whole new non-adversary | tational complexity.
and anti-corruption.

Zhang et al. [263] provide a unique perspective of neuron
sensitivity to explain adversarial resilience for deep models,
as assessed by the magnitude of variance in neuronal activ-
ity in response to benign and adversarial situations. They
suggest a Sensitive Neuron Stabilizing (SNS) approach after
analyzing the behaviors of the model’s intermediate layers
and demonstrating dependence between adversarial resilience
and neuron sensitivities. By stabilizing sensitive neurons
(instead of obfuscation), the technique tries to increase the
model’s robustness to adversarial samples. However, dynami-
cally updating sensitive neurons incurs a greater computational
expense.

Yao and Gao [25] offer a defensive model that makes use
of a supervision method to enhance the model’s robustness.
The assumption is that supervision can increase the quality

of feature maps for the hidden layer, hence increasing the
resilience of the model. As a secondary classifier, a super-
visory layer is appended to the main neural network model
to perform this strategy. By utilizing the classification results
of intermediate layers to assess perturbation properties and
by continuously changing the loss function of the supervisory
layer, the quality of the hidden layer’s recovered features may
be enhanced. This decreases the impact of adversarial pertur-
bation and boosts the model’s overall resilience. Under both
black-box and gray-box threat models, the suggested technique
can survive assaults from FGSM as well as C&W, BIM, and
DeepFool attack algorithms to a large degree. However, under
a white-box threat model, it will only reduce the confidence
of the attacker and cannot effectively defend against attacks,
being considered a weakly supervised defense model.
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Fig. 20. Comparison of conventional adversarial learning and CSA/CSE algorithms. (a) In adversarial learning, clean and adversarial examples are alternately
supplied into the neural network. (b) To accomplish the min-max property, the framework for CSA and CSE algorithms applies the convolution parameter to

the loss function by adding a normalization.

Taking steps to shield ML-based radio signal (or modula-
tion) classification from adversarial attacks, Zhang et al. [59]
investigate a defense mechanism based on train-time and
run-time defense techniques. The train-time defense consists
of adversarial training and label smoothing, while the run-
time defense employs neural rejection (NR) based on support
vector machines (SVMs). Specifically, the system uses label
smoothing and Gaussian noise augmentation (LS-GNA) while
adopting a stronger form of attack generated by customized
Adversarial Training (AT) to generate adversarial perturbations
for each sample according to the parameters and architecture
of the CNN. The disturbance level and corresponding label
are customized in the process of adversarial training.

Schwartz and Ditzler [264] propose a method called HLDR
to improve adversarial robustness by using latent disparity
regularization. The regularizer is defined to depend linearly
on the disparity in representations created in the hidden lay-
ers based on benign and adversarial data. The regularizer
penalizes the discrepancy and provides significant improve-
ments in adversarial robustness while also reducing training
time. However, the method only considers training programs
with fine-tuned subsets constructed using one method. It is
not yet understood how HLDR performance may be affected
by adversarial, Gaussian or other forms of distortion, dif-
ferent training methods for fine-tuning subsets, and different
objective functions.

Dual Head Adversarial Training (DH-AT) [265] is a novel
defensive method that employs a dual-headed architecture
to increase both clean accuracy and adversarial resilience
as an enhanced form of Adversarial Training (AT) in both
network structure and training strategy. The architecture of the
lightweight CNN used by DH-AT is outlined in Fig. 21. As
seen in the diagram, DH-AT connects a second network head
(or branch) to a network’s intermediate layer before combining
the outputs of both heads using a lightweight CNN. In order
to attain both clean precision and resilience in the meantime,
the training technique is modified to account for the relative
significance of the two heads. A potential drawback is that
DH-AT may require longer training time.

Zheng et al. [47] introduce PUAA with the aim of assess-
ing the robustness of DNN-based spectrum sensing models.
The PUAA method introduces a meticulously engineered
disturbance to the benign primary user signal, resulting
in a substantial reduction in the detection probability of

Main Head
Output

BN
Head-wise [l Class-wise
R"'U frares

Second Head
Output

Fig. 21.  The workflow of DH-AT. DH-AT connects another head to an
intermediate layer of the neural network, and utilizes a shallow CNN to
integrate the outputs of the two heads.

the spectrum sensing model. In response, they propose an
autoencoder-based defense method named DeepFilter to coun-
teract PUAA, as shown in Fig. 22. The integration of LSTM
neural networks and CNNs within DeepFilter enables simulta-
neous extraction of temporal features and local features of the
input signal, contributing to its effective defense capabilities.
Experimental evidence validates that DeepFilter can efficiently
guard against PUAA, without compromising DNN-based spec-
trum sensing mode’s detection performance.

Li et al. [266] propose an Embedding Regularized Classifier
(ER-Classifier) to improve the adversarial resilience of classi-
fiers. The intrinsic dimension of image data is substantially
less than its pixel space dimension, and hostile examples
often dwell outside the manifold of natural image data.
The approach projects high-dimensional input images into
a low-dimensional space and returns adversarial samples to
the manifold of natural image data via regularization. This
enhances classification accuracy when faced with adversar-
ial scenarios. In addition, the framework may be utilized in
conjunction with detection approaches to discover adversarial
instances. Exploration of low-dimensional areas to improve
the resiliency of DNNS is a potential innovation.

Similarly, Carbone et al. [267] propose RP-
Ensemble, a training approach based on the Manifold
Hypothesis [268], [269]. Using projected representations of
the original inputs, this method enhances the robustness of a
pre-trained classifier against adversarial examples. Moreover,
they develop the RP-Regularizer, a regularization term based
on the norms of the loss gradients, which measures vulner-
ability, with the expectation over random projections of the
inputs. This is done during training to capitalize on pertinent
adversarial characteristics. The strategy is computationally
efficient and independent of the attack norm type. However,
the CIFAR-10 dataset produces less impressive results than
the MNIST dataset.

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:54:12 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: ADVERSARIAL ATTACKS AND DEFENSES IN ML-EMPOWERED COMMUNICATION SYSTEMS AND NETWORKS

2283

L | i " siroa, -
oy U ey e, focel (= (i i
W \ \ | TN "»\‘VT\ ] ‘mfeatures l ‘ Y @ Wy
oy ONN © & =) ‘” Clean signal
f 1. f E ata]
_%‘ I temporal e bl I
& ’ fgalles CNN Decoder » it
L
LSTM Encoder D Filit
Adversarial signal EEpRIlen Clean signal

Fig. 22. The defense framework based on DeepFilter, which is composed of encoder and decoder. The encoder extracts the local and primary features, and
the decoder reconstructs the signal according to the extracted features. DeepFilter does not affect the benign signals and can process the adversarial signals

as benign signals.

Boora et al. [66] conduct an in-depth investigation into
the implications of adversarial attack and defense mecha-
nisms, specifically adversarial training, on massive MIMO
localization utilizing CNN and ODE model. The authors
propose a novel Neural ODE method, combining convolution
blocks, ODE blocks, and dense layers to achieve a localized
regression solution. The adversarial training of this Neural
ODE helps to resist adversarial samples, thereby improving
the robustness of massive MIMO localization.

CNNs usually ignore key auxiliary properties, whilst current
adversarial training and regularization approaches overlook
the independence of local features. Liu et al. [270] introduce
TENET Training, a group-wise inhibition-based regulariza-
tion approach for enhancing feature diversity and network
resilience. The suggested approach dynamically regularizes
CNNs during learning by suppressing regions with the high-
est activation values that are the most discriminative. This
allows the network to study more diverse aspects, which can
more accurately depict pictures, even when they have been
altered maliciously. TENET Training improves both robust-
ness and generalization significantly in comparison to other
SOTA methods.

While classifying hyperspectral pictures, a novel self-
attention context network (SACNet) [271] is presented to
strengthen the network’s inherent resilience to adversarial sam-
ples. Existing adversarial learning algorithms are designed to
recognize RGB pictures, but this strategy targets hyperspectral
images (HSIs). In contrast to local feature extraction, global
context information extraction necessitates the construction of
associations between a specific pixel and all relevant pixels in
the whole picture. This pixel’s network prediction would be
impacted by its neighboring pixels, and the overall loss would
be dispersed across all neighboring pixels. Therefore, tack-
ling these networks may need a greater degree of disturbance.
The suggested SACNet has a very high temporal cost since
self-attention learning and contextual encoding raise the com-
puting burden of the overall framework. Future research should
also examine if SACNet can defend against adaptive RGB
images.

According to [272], the downsampling method is primarily
responsible for CNNs’ poor noise resilience. They combine
frequently employed CNN designs with a discrete wavelet

transform (DWT) to produce wavelet-integrated convolutional
networks (WaveCNets), which address the issue of aliasing
in CNNs and enhance noise resistance in image classifica-
tion. During downsampling, DWT separates the WaveCNets
feature maps into low-frequency and high-frequency compo-
nents. Low-frequency components are passed to succeeding
layers to retain robust high-level characteristics, while high-
frequency components are deleted to avoid noise transmission.
Although WaveCNets regularly resists different forms of noise,
its performance is inferior to that of well-trained defen-
sive systems. The wavelet transform also adds computational
complexity.

Yu et al. [176] show that universal adversarial patches in
prevalent CNNs often generate deep feature vectors with large
norms. They suggest a simple but effective defensive technique
based on a unique feature norm clipping (FNC) layer. This
differentiable module can be dynamically introduced to vari-
ous CNNss to prevent the adaptive creation of huge norm-deep
feature vectors. An FNC investigation of the effective recep-
tive field (ERF) reveals that the adversarial patch’s impacts
may be minimized naturally, resulting in enhanced classifica-
tion accuracy against adversarial patch attacks. Experiments
conducted on multiple datasets demonstrate that this proposed
technique enhances the robustness of various CNNs against
white-box universal patch assaults while retaining acceptable
identification accuracy for clean samples and incurring a lit-
tle computational cost. However, it remains unclear why this
method is still valid for position-independent image patches.

Mok et al. [273] investigate the topic of constructing an
adversarially resilient neural network with strong inherent
resilience and robust training strategies. Adversarially robust
architecture rush (AdvRush) is an adversarial robustness-aware
neural architecture search (NAS) approach based on the obser-
vation that the inherent robustness of a neural network depends
on the smoothness of its input landscape regardless of the
training procedure. Using a regularizer that prefers candidate
architectures with a smoother input loss landscape, AdvRush
selects a neural network that is resistant to adversarial inputs.
The approach is very adaptable to many datasets. Future
studies will examine the robustness of neural network archi-
tecture on multimodal datasets and broaden the search area to
include activation functions.
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Yeo et al. [274] present a general framework for developing
robust predictions based on the creation of a varied ensemble
of different middle domains. The suggested method makes
predictions by combining a variety of cues (called “middle
domains”) into a single strong prediction. The concept is that
predictions based on distinct cues react differently to a distri-
bution adjustment. As a result, they can be combined into a
robust final prediction. The method can change without man-
ual modification or redesign, or any additional supervision
or labeling already attached to the dataset. It can generalize
to new non-adversarial and anti-corruption scenarios. On the
other hand, the limitations of the method include its reliance on
reasonable uncertainty estimates in the presence of distribution
shifts and its use of only unimodal distributions for the study.
Additionally, the selection of middle domains and the use
of ensemble-based methods inevitably increase computational
complexity.

b) Lipschiz condition: To mitigate the sensitivity of the out-
put to changes in the input, Amini and Ghaemmaghami [215]
offer a new non-smooth regularization term in the optimization
formulation and two non-smooth regularizers that construct
direct linkages for the weight matrices in each neural network
layer. These regularizers adjust the Lipschitz constant of
the underlying architecture to make the mapping between
inputs and outputs more stable, hence reducing the network’s
sensitivity to small perturbations. However, regular gradient-
based learning methods become less useful when non-smooth
variables are included.

It has been demonstrated in [275] that limiting a neu-
ral network’s Lipschitz constant gives certifiable robustness
guarantees against local adversarial attacks and increases the
model’s generalization ability and interpretability. Therefore,
Serrurier et al. [276] provide a novel optimal transport-based
classification framework that takes into account the Lipschitz
constant and the gradient norm preservation requirement.
They use a regularized Kantorovich-Rubinstein formulation
that includes a hinge loss term, which provides the desired
robustness guarantees with little accuracy loss. One possi-
ble drawback is that the computation time increases during
learning.

Some defensive approaches augment the standard train-
ing aim for intermediate layers with graduated penalties. For
example, by using a layer-by-layer contrast penalty term, Gu
and Rigazio [277] are able to retain the output of a DNN
unaffected by input disturbances. FNC [176] is also a novel
feature norm shear layer that can be placed flexibly into vari-
ous networks to adaptively suppress the creation of big norm
depth eigenvectors and enhance its overall performance.

3) Regularization on Output Layer: The output layer can
be regularized through defense distillation, label smoothing,
or by modifying loss functions. An overview of the possi-
ble regularization methods in the output layer is provided
and compared in Table XVI. As delineated in Section III,
adversarial attacks can be primarily categorized into three
types depending on the nature of the attacks: black-box
attacks, white-box attacks, and gray-box attacks. White-box
attacks, despite being the most potent variant of adver-
sarial attacks, are arguably the least prevalent in practical
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applications. They are frequently employed to assess the
robustness of defense and/or classification models under strin-
gent conditions. In the case of black-box attacks, the attacker
is devoid of any knowledge concerning the internal structure,
training parameters, and defensive mechanisms of the targeted
model, and can only engage with the model through its output.
Consequently, defense methods predicated on gradient mask-
ing face challenges in resisting black-box attacks. During a
gray-box attack, the attacker has access to the classification
model but lacks any information about its defense strategy.
Gray-box attacks represent a middle ground and can be very
useful for evaluating the robustness of defenses and classifiers.

a) Distillation: Many recent works enhance the resilience of
a student network with a teacher network by using Knowledge
distillation (KD) [278] in combination with adversarial train-
ing. They build on adversarial training by using a teacher
network that has already been pre-trained in the form of adver-
saries. According to [187], adversarial training approaches are
more successful on large models and less effective on small
models. To solve this issue, Zi et al. [187] propose RSLAD,
a unique method for training small, robust student models by
distilling from adversarially trained large models. This strategy
replaces hard labels with robust soft labels inside supervi-
sion loss terms. It employs the huge, robust instructor model’s
robust soft labels to assist student learning in both natural and
adversarial situations. However, one downside of the strategy
is that when the teacher network grows too complicated for the
student network to learn from, the student’s robustness tends
to decline.

Attention Guided Knowledge Distillation and Bi-directional
Metric Learning (AGKD-BML) is a new adversarial training-
based model proposed by Wang et al. [279]. By lever-
aging knowledge distillation, the approach is made up of
two parts: Bidirectional attack metric learning (BML) and
attention-guided knowledge distillation (AGKD). To enhance
the attention map for adversarial instances and repair dam-
aged intermediate features, the AGKD module extracts clean
image attention information to the student model. The BML
component employs bidirectional metric learning to standard-
ize the feature space representation. The combination of these
two modules consistently surpasses cutting-edge techniques,
including single-directional metric learning (SML) [280],
Bilateral [281], and feature scattering (FS) [282]. The authors
further demonstrate that the model’s robustness is not gener-
ated from gradient obfuscation, but rather from a slight drop
in clean accuracy.

Beamforming prediction is integral to the advance-
ment of next-generation wireless networks. In this regard,
Kuzlu et al. [283] highlight the security vulnerabilities asso-
ciated with employing DNN for beamforming prediction in
6G wireless networks. They portray the prediction as a multi-
output regression problem and offer two mitigation meth-
ods - iterative adversarial training and defensive distillation
methods. These strategies successfully enhance the predictive
performance of RF beamforming, generating more accurate
predictions. Additionally, the proposed scheme demonstrates
efficacy even when adversarial samples contaminate the train-
ing data. Experimental results substantiate that the method can
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TABLE XVI
ROBUSTNESS REGULARIZATION ON OUTPUT LAYER

Defense | Strategy | Attack Description Input | Invisibility Strength ‘Weakness
type Metric
AGKD- | Distil- White-box, | Attention Guided Knowledge | Image | 2 By integrating AGKD and | AGKD-BML trained on a 7-step
BML lation Black-box | Distillation and Bi-directional BML, achieves SOTA robust- | attack achieves much lower perfor-
[279] Metric Learning are used to ness under different attacks. | mance against the regular attacks.
create an adversarial training- Robustness does not come | The clean accuracy has decreased
based model. from gradient obfuscation. a little.
Distilled | Distil- White-box, | Activation-based network | Image | ¢, Effectively defends against tar- | Ensemble-based methods
Differ- | lation Black-box | pruning is used to maximize geted and non-targeted attacks, | inevitably increase computational
entiator the transferability of attacks maintaining scalability, effec- | complexity.
[284] and retrain their precision. tiveness, and comparable clean
accuracy through a small-scale
ensemble model.
RSLAD | Distil- White-box, | A unique adversarial robust- | Image |KL Improves the robustness of | When the teacher’s network grows
[187] lation Black-box | ness distillation approach for small models against SOTA | too complex for the student to un-
training robust small student attacks, especially automated | derstand, the student’s resilience
models, whereby robust soft attacks; more effectively than | declines.
labels are substituted for hard previous adversarial training
labels in all supervision loss and distillation techniques.
terms.
PCL Loss White-box, | A proactive defense against | Image | PCL Greatly enhances the | Robustness against white-Box set-
[287] Black-box | adversarial assaults, a novel robustness of the learning | tings is higher than black-box set-
distance-based training tech- model, even against the | tings.
nique that aims to maxi- strongest white-box  attacks,
mally segregate the learned without clean accuracy
feature representations at dif- decline, not due to obfuscated
ferent depth layers of the deep gradients, and requires a
model. shorter training time.
Luring | Loss Black-box | A novel strategy to thwart | Image |CE Luring effect can be imple- | The advances in robustness
effect transferability of black-box mented at a low cost for|are more evident on SVHN
[186] attack between two models. any pre-trained model, and [ and MNIST, but the findings
can successfully limit the ef- [on CIFAR-10 are especially
ficiency of even the most ad- | encouraging in the context of a
vanced transfer-based black- | defensive system that needs a
box attacks with large adver- | pre-trained model.
sarial perturbations, and be ef-
fectively combined with exist-
ing defense schemes.
BLF Loss White-box, | The insertion of a new lim- | Image | £oo BLF is easily combined with | Logit regularization methods with-
[289] Black-box | ited function shortly prior to AT, proving that BLF is supe- | out AT are insufficiently resistant
softmax improves adversarial rior to logits squeezing without | to targeted assaults. It is unclear
robustness. AT, and is superior to or com- | why small logit can improve ro-
parable to logit compression, | bustness.
label smoothing, and TRADES
when AT is used.
PER Bound | White-box | Promotes bigger adversarial- | Image | ¢, Suitable for different archi- | Regardless of the linearization ap-
[290] free zones in the vicinity of tectures and networks with | proach, the boundary of the out-
the input data, hence enhanc- generic activation functions; | put logarithm for large models un-
ing the proven robustness of the computational overhead of | avoidably grows looser over deeper
the models. PER is negligible; achieves | networks. Furthermore, the linear
better robustness guarantees | approximation implicitly prefers
and accuracy for clean data. the £ norm over the £, norm.

effectively shield DNN models from adversarial attacks in the
context of next-generation wireless networks.

Wu et al. [284] build a distilled differentiator using
activation-based network pruning to decrease attack transfer-
ability, meanwhile retaining accuracy. As a two-phase defense,
they use an ensemble structure of diverse differentiators. In
the first step, the student model is utilized to narrow down the
possible differentiators to be developed. In the second stage, a
small, predetermined number of differentiators are employed
to properly evaluate clean or reject hostile inputs. This solu-
tion fits the criteria for defense rate, model accuracy, and
scalability. Through small-scale integration models, the archi-
tecture retains scalability, efficacy, and comparable clean input
accuracy while being more efficient and simpler to implement.

However, ensemble-based methods, such as boosting [285]
and bagging [286], would inevitably increase the computa-
tional complexity compared to non-ensemble models, due to
their need for extensive model training and a combination of
multiple prediction results into a final result.

b) Loss function: Many training techniques have been
developed to enhance performance by modifying or adding
new regularization terms to the models’ loss functions.

In addressing the modulation classification problem based
on DNN, with the objective of crafting a DNN model
resilient to attacks, Manoj et al. [63] introduce three defense
techniques: random smoothing, Hybrid Projection Gradient
Descent (HPGD) adversarial training, and rapid adversar-
ial training. These methods have been assessed under the
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Fig. 23.  On the left, =/ dupes M o P by flipping the non-robust feature
f o P (to the green class). On the right, however, f can be a robust feature,
in which case M will not be deceived (still in the pink class).

conditions of both white-box and black-box attacks. The find-
ings reveal that rapid adversarial training exhibits superior
robustness and computational efficiency compared to other
techniques, and it is capable of generating models demon-
strating robust defenses against realistic attacks.

Mustafa et al. [287] explain the proximity of distinct classes
of samples in the learned feature space of deep learning mod-
els is the primary reason for the vulnerabilities in DNNs. As a
proactive protection against adversarial attacks, they suggest a
distance-based training technique, Prototype Conformity Loss
(PCL), to solve this issue. This strategy aims to maximally seg-
regate the learned feature representations at many layers of a
DNN so that there is little intersection between any two classes
in the decision layer, as well as the intermediate feature space.
Such a strategy assures that an adversarial instance with a lim-
ited perturbation budget can no longer deceive the network.
The strategy significantly increases the model’s robustness
with a shorter training period, without diminishing the classi-
fication accuracy of clean pictures. However, the model is less
resistant to white-box attacks than it is to black-box attacks
since gradient masking is not utilized in its defense.

Bernhard et al. [186] create an innovative technique known
as the “luring effect” to prevent transferability between two
models to pave a new path for robustness in a realistic black-
box situation. They provide a deception-based method that
is applicable to any pre-trained model and needs no labeled
dataset. The target model is reinforced with a neural network
designed to have an appealing effect and trained with a loss
function that employs logit sequence order.

Fig. 23 illustrates the two cases of the Luring effect. On
the left, =/ dupes M o P by flipping the non-robust feature
f o P. However, on the right of the figure, f can be a robust
feature, in which case M will not be deceived (still in the pink
class), or a non-robust feature, in which case f o P toggle will
not be tracked. Even with massive adversarial perturbations,
the approach can successfully limit the efficiency of cutting-
edge transfer black-box attacks. It may be effectively coupled
with existing defense strategies. The benefits of the method
for robustness are more pronounced on the SVHN and MNIST
datasets, but the CIFAR-10 results only perform well within
the range of defense schemes that need a pre-trained model.

Like conventional method for improving adversarial
resilience by limiting logit norms to tiny values [288],
Kanai et al. [289] introduce a function named bounded logit
function (BLF), which employs a bounded activation function
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shortly before the softmax to confine the logit norms. BLF
is constrained by finite values. Moreover, its pre-logit at
the maximum or minimum points is constrained by finite
values. Consequently, introducing BLF right prior to soft-
max gives finite values to the optimal logit and pre-logit.
Despite its simplicity, the approach successfully enhances
robustness in adversarial training compared to alternative logit
regularization methods. However, although BLF is effective
against powerful non-target attacks, it is useless against tar-
get attacks. Furthermore, the approach reveals the softmax
cross-entropy’s fragility, as well as the efficiency of logit reg-
ularization. However, it is unclear why a small logit enhances
robustness.

c) Boundary Estimation: Liu et al. [290] concentrate on
constructing certifiers to identify certified areas of the input
neighborhood where the model produces the right prediction
and employing such certifiers to train a model to be verifiably
resilient to adversarial attacks. They developed a stronger cer-
tifier, the polyhedral envelope certifier (PEC), as well as a
regularization scheme named polyhedral envelope regulariza-
tion (PER), which can be applied to networks of different
architectures with general activation functions. Different from
some earlier methods, such as COnvex Layer-wise adversar-
ial Training (COLT) developed in [291], PER has minimum
computing cost and offers improved robustness guarantees and
precision on clean data in a variety of circumstances. However,
the method can be restrictive for large models, particularly
for deeper networks. The boundary of the output logarithm
inevitably becomes less tight, irrespective of the linearization
method being used. In addition, the linear approximation is in
favor of the /o, norm over other £, norms, performing better
in the case of ¢ than it performs in the case of /5.

4) Regularization Across Layers — Gradient Masking:
Gradient masking here refers to a typical approach for protect-
ing against white-box attacks that depend on model gradients.
This method includes adding an extra training layer to the
model, which decreases its sensitivity to tiny changes in
the input data. This is often accomplished by using random
noise or perturbations to obfuscate gradient information, or
by employing a gradient near or at zero to neutralize or mit-
igate gradient-based attacks. However, gradient masking does
not alter the decision boundaries. Instead, it just makes it more
challenging for an attacker to influence the model using gradi-
ent information. This means that gradient masking is generally
not effective against black-box attacks. The attacker can sim-
ply self-train an agent model to mimic the defense model,
e.g., by observing the real discriminant labels of the input
samples.

Many defense approaches have been developed based on
gradient masking [292]. Some are directly designed to per-
form gradient masking, such as replacing the smooth sigmoid
function with a hard threshold [293]. Some strategies add regu-
larization terms with a gradient penalty component, making the
model less susceptible to tiny input perturbations [214], [264].
However, this strategy has the potential to significantly dimin-
ish the model’s precision and learning capability. Defensive
distillation substitutes the last layer with a soft maximum
function and a temperature junction to regulate the degree of
distillation after the training process [284].

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:54:12 UTC from IEEE Xplore. Restrictions apply.



MaxUP

DA
CAFD

RP-Regula-

PCL RP-Regula-

rization

Regularized
logistic

RSLAD

WANG et al.: ADVERSARIAL ATTACKS AND DEFENSES IN ML-EMPOWERED COMMUNICATION SYSTEMS AND NETWORKS 2287
Adversarial
Defense l
Data Model
Oriented Oriented
’ Detection ’ Preprocessing ‘ Robuaness Detection
Regularization l
Logit-based D2Defend ‘ Middle Layer Across CMAG
Layers
UnMask SAD Loss Bounda
Add Adversarial Feature Layer Lipschiz ’ Distillation ’ 0% on iy HLDR LID+CD
Image super- Noise Learning Extract Regulari-zation Condition Function \Eatlmat]on
luti Distilled - GraphAT
! : Edge- ; Luring
AMM ICAT Neﬂg{ob ANP Inf-Norm& D‘ffere"' effect PER ROSA
CAP-GAN e &Edge- Inf-Ind tiator Inf-Norm&
[iep_ ART GANRob ~GKD- BLF Inf-Ind ADNet
XEnsemble Fake HLDR KR j BML

THATNE rization

adMRL SIAT

GAT

T
Fl

HIRE-
SNN

TENET
Training

EiHE

Style-Mix&|

regression

TENET model

Training

ER-Classifier

HE

Style-
CutMix

Cross Domain
Ensembles

GAT

GraphAT
Layer
CSA/CSE

HE
BRI

APR

SACNet

Supervision

ER-Classifier

WaveCNets

AdvRush

MaxUP

e

AdvRush

FNC

Distilled
Differentiator

RSLAD

:

Fig. 24. Anatomy of breakthroughs in adversarial defenses since 2021. We classify adversarial defense methods as data-oriented and model-oriented methods.
From the model-oriented angle, we further divide defense methods into robustness regularization in different layers and detection.

Gradient masking has used regularizers or smoothing labels
to make the model less susceptible to input perturbations.
Some of these strategies include blurring or masking gradi-
ent data, akin to gradient masking. HLDR [264], for instance,
adds a regularization term to penalize the difference between
benign and adversarial data representations in the hidden
layer. GraphAT [214] aims to minimize an adversarial graph
regularizer and reduce prediction divergence between a dis-
turbed target instance and its related instances. Robust CNN
Training with Inf-Norm and Inf-Ind regularization [215] is
used to improve the total Lipschitz constant and consistency
of input-output maps. However, these methods do not use
a gradient step to update the penalty parameter, which can
lead to ambiguity in the adversary. In other words, they also
blur the gradient. The RP-Regularizer [267] integrates the
specification of the loss gradient, intended as a metric of vul-
nerability, with the expectations of stochastic predictions of the
inputs. To prevent steep gradients caused by binary masks, in
TENET Training [270], researchers propose Rectified Reverse
Function (RRF) to smooth the group inversion mapping.
MaxUp [253] adds a gradient-norm smooth regularization for
Gaussian perturbations. The regularization procedure in ER-
Classifier [266] may assist in eliminating adversarial distortion
effects and returning adversarial instances to normal data
manifolds. GAT [255] provides variety and realism to adver-
sarial training examples to close the distributional gap between
adversarial and actual samples. AdvRush [273] introduces

regularizers for candidate architectures that smooth input loss
landscapes.

Defensive distillation is an additional kind of gradient mask-
ing [294], which substitutes the last layer with a protective soft
maximum function and a temperature junction to modify the
level of distillation after the training process. RSLAD [187]
is a strategy that uses resilient, soft labels created by an
adversarially-trained teacher model to guide the training of
students on both clean and adversarial samples. Distilled
Differentiator [284] utilizes an ensemble structure built on
specialized classifiers called differentiators and activation-
based network pruning to limit attack transferability while
maintaining precision.

5) Summary: In the past few years, researchers have made
many contributions to the field of regularization methods for
adversarial defense from four perspectives: Input layer, middle
layer, output layer, and across layers. Regularization methods
at the input layer can be divided into noise addition, adversarial
learning, and feature extraction. Amongst these, adversar-
ial learning, which is the most effective and widely used
defense method, has developed many variants in recent years.
Regularization methods at the middle layer focus on chang-
ing the model structure to improve its inherent robustness.
The output layer regularization can be classified as distillation,
decision boundary estimation, and loss functions design, and it
effectively improves the robustness of the models from differ-
ent perspectives. Last but not least, certain defense techniques
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attempt to combat adversarial attacks across neural network
layers by implementing gradient masking, which is ineffective
in the face of black-box attacks.

D. Summary and Lessons Learned

The latest adversarial defense techniques, especially those
published in the past few years, have been primarily focused
on adversarial detection and robustness enhancement tech-
niques. Adversarial detection methods are simpler and more
effective than modifying the original model and input images,
but they can be easily bypassed by attackers. On the other
hand, robustness enhancement techniques aim to improve
the accuracy of the model and reduce the success rate of
attacks. However, there are still challenges, such as reducing
data dependency, avoiding gradient masking effects, improv-
ing model generalization, reducing the cost of model training,
and improving resistance to unknown high-intensity attacks.

Combining detection and robustness-enhancing defense
methods is a promising direction for future research. Existing
methods, such as GAT [255], XEnsemble [235], APR [259],
and ER-Classifier [266], have already contributed to this
perspective. Future research is anticipated to focus on devel-
oping methods that combine the advantages of both detection
and robustness enhancement, while addressing the challenges
mentioned above. This will help to improve the overall
effectiveness of adversarial defenses.

V. LESSONS LEARNED AND OPEN ISSUES

In this section, we summarize the important lessons learned
from the comprehensive analysis of the recent research out-
comes in adversarial attacks and defenses, devise the remain-
ing open challenges and point to research opportunities in this
rapidly growing, important area.

A. Lessons and Challenges of Adversarial Attacks

It is important to strike a balance between effectiveness,
imperceptibility, complexity, and transferability in adversar-
ial attacks, among which there are obvious trade-offs. As
illustrated in Fig. 25,

o Gradient-based attack methods, such as LAFEAT [125],
DSNGD [127], SGA. [134], are known for their high
ASRs and good transferability. However, the methods
have limitations of high computational and time costs, as
well as the issue of “gradient saturation,” which reduces
their effectiveness. Gradient-based attacks limit the per-
turbation to a certain size during the generation of the
perturbation, guaranteeing invisibility.

o Constrained optimization-based attack methods, such
as GF-Attack [149], AMRL [143], and SSAH [147],
have good transferability. However, they are known for
high computational and time costs, making it difficult
to use them in time-sensitive applications. Constraint
optimization-based attack methods can guarantee small
visibility of the attack by constraining the strength of the
perturbation, providing greater stealth.

e Search-based attack methods, such as FeaCP [154],
are highly transferable and can be extended to other
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domains beyond image classification. Nevertheless, for
more complex datasets, such as ImageNet [252], search-
ing for the optimal adversarial sample needs significantly
more iterations and more computational cost. It can be
difficult to find an appropriate search start point for
search [295]. Current search-based methods are primar-
ily applied to the initialization or optimization of other
adversarial sample generation algorithms, such as Square
attack [23]. The search-based perturbation does not make
use of gradient information, and the perturbation magni-
tude of each search step is controlled to fall under a fixed
range to ensure a certain invisibility.

Future efforts are expected to reduce attack costs, improve
the transferability of attacks across different datasets and
models, and extend the attacks to more deep-learning tasks.

The exploration of adversarial attacks within the field of
communication networks holds significant value. Adversarial
attacks have the capacity to dismantle meticulously trained
network traffic classification models and deceive ML-based
IDS employed within the IIoT [6]. This underscores the need
for defensive solutions to mitigate these adversarial attacks
within IoT networks.

Countermeasures against adversarial attacks can aid in
addressing issues related to covert communication and privacy
disclosure in communications [91], [296], [297]. For instance,
in the context of RISs in wireless communication systems,
adversarial disturbance and RIS interaction vectors can be co-
designed to effectively enhance signal detection accuracy at the
receiver end [298], [299]. Concurrently, this reduces the detec-
tion accuracy at the eavesdropping terminal, enabling covert
communication [3]. Furthermore, by developing obfuscation
methodologies for traffic types, malicious traffic type analysis
(TTA) tactics can be misdirected, resulting in incorrect classi-
fication of traffic type or user activity, thus facilitating privacy
protection [79].

B. Lessons and Challenges of Defenses

It is crucial to provide effective and reliable countermea-
sures to adversarial attacks for an apparent reason. Existing
adversarial defenses can benefit from continuing development
to address the following challenges.

1) Trade-Off Between Defense Effectiveness and Overhead:
Designing a model that is robust against adversarial attacks
is an important aspect of ML. Adversarial attacks attempt to
mislead a model into making a mistake by slightly modifying
the input data. They exploit the vulnerabilities of the model
to achieve their purpose. Although mitigating these attacks is
necessary for the reliability and security of ML models, it
comes with its own overhead and challenges:

1) Computational Overhead: Enhancing the robustness
of models often demands additional computational
resources. Techniques, such as adversarial training, in
which the model is trained on adversarial examples,
are computationally expensive [54]. The requirement
of adversarial training to repeatedly run adversarial
attack algorithms for obtaining new adversarial exam-
ples against the optimized ML or DNN model within
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Field Lessons Learned Open Issues
Attack | e Gradient-based attack methods: High ASRs and good transferability, | ¢ Reducing attack costs.
but high computational and time costs, as well as the issue of “gradient | ¢ Improving transferability across different datasets and models.
saturation”. e Extending to more deep learning tasks.
» Constrained optimization-based attack: Good transferability but high
computational and time costs.
o Search-based attack methods: Highly transferable but difficult to find
an appropriate search start point.
Defense | e Trade-off between defense effectiveness and cost: Training the model | ¢ Developing methods that combine both detection and robustness
in a complex environment or structural improvements greatly boosts | enhancement.
robustness with a cost of additional computational complexity. o Addressing challenges such as reducing data dependency, avoiding
¢ Unanswered Root Cause of Robustness Loss: For bounding the | gradient masking effects, improving model generalization, reducing
Lipschitz Continuity of the gradient of DNNSs, including Gradient Clip, | the cost of model training, and improving resistance to unknown high-
Weight Decay, and gradient masking, which is controversial in the case | intensity attacks.
of adversarial defenses. e Overall improving the effectiveness of adversarial defense tech-
¢ Scalability and Generalizability: It is generally hard to apply a | niques.
defense method that is effective on one DNN model or dataset, to | ¢ A combination of detection and defense approaches is the research
other complex DNN models or datasets. trend.
¢ Data-driven: Detection methods for adversarial samples are more
data-driven, but current research on detection techniques is limited by
the lack of consensus on adversarial samples at the mathematical level.
effecu\:eness accumulating knowledge in difficult environments, such
that agents can learn the ability to fight these “bad” sam-
ples when faced with an unseen new task. PDA [249]
uses different magnitudes of adversarial samples to
increase the diversity of data, progressively injecting
diverse adversarial perturbations during training, which,
however, also increases the training cost. AMM [247]
2 2 focuses on the minimum (instance-specific) margin,
B ;:: which is often considered a key factor in determining
§ g a model’s generalization capability. A principled regu-
g “g larizer is derived to improve the model’s performance
g s on unseen samples with certain types of distortions.
B
= However, the requirements of training time and memory
space are greatly increased as a result of iterative updat-
ing processes and the use of higher-order gradients in
the optimization process.

2) Increased Model Complexity: Many methods of increas-
ing model robustness involve adding complexity to the
model architecture. This can involve augmenting the

complexity model with additional layers or nodes [25], increasing
dient-based attack the risk of overfitting and requiring more data for effec-
— radaient-vbascd attacks . .. .
& ) o tive training. For instance, Zhang et al. [300] use Graph
constrained optimized-based attacks Convolutional Network (GCN) and neural random for-
—— gradient-free attacks est to build an end-to-end learning system, in which
the GCN module uses user information and evaluation
Fig. 25. The balance of four factors in adversarial attacks. information to capture user hobby information. The ran-

each training epoch further exacerbates this issue. This
“optimal” adversary is typically procured via multi-step
gradient descent, leading to a substantially extended time
frame for model learning when using standard adversar-
ial training methods, compared to conventional training
techniques. Moreover, for large datasets and complex
models, these methods can dramatically increase training
times.

For example, adMRL [143] enables agents to learn the
initial parameters with better generalization ability by

dom forest module is used to detect malicious users.
However, the model becomes complex by containing
unusually many fully connected layers. The increased
complexity can also lead to higher memory require-
ments and longer inference times, which can impact
the overall performance of the model. Moreover, the
upgraded model in DH-AT [265] contains two heads
for robustness and clean accuracy independently, at the
expense of higher training time. The framework for clas-
sification based on optimum transport in [276] contains
a Kantorovich-Rubinstein (KR) regularization approach
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and more accurate constant evaluation of convolution
and pooling layers, but almost triples the training time.
Because self-attentional learning and context coding
raise the computing overhead of the overall framework,
SACNet [271] also has a somewhat lengthy execution
time. Due to the employment of numerous models,
several ensemble-based methods [267], [284] generally
increase inference complexity.

There have been many noteworthy efforts to reduce train-
ing costs, including transfer learning, partial training/updating,
optimizing training epochs, and parallel training. For exam-
ple, an adaptive retraining process is used in ART [252].
The Luring effect [186] can be used to improve a trained
model at a low cost, since it does not require labeled
datasets. It is also possible to introduce additional regu-
larization items, such as HLDR [264], or layers, such as
FNC [176], to neural networks for performance improvements
without increasing model parameters. In harnessing the inher-
ent robustness of energy-efficient deep spiking neural networks
(HIRE-SNN) [250], the weight updating only takes place after
T steps, thereby reducing the training cost while allowing
different adversarial image variants to train the model. The
iterative approach is only used for the unfrozen layer for the
Distilled Differentiator [284]. PDA [249] selects the iterative
steps that best balance robustness, precision, and comput-
ing cost. To parallelize training, random projections ensemble
(RP-Ensemble) [267] creates classifiers in separately projected
subspaces. In addition, models may be trained concurrently in
Distilled Differentiator [284]. These efforts alleviate the trade-
off between defense efficacy and expense to some degree, but
they do not eliminate the trade-off.

It is worth noting that research has shown that there is often
a trade-off between model accuracy on clean (non-adversarial)
data and robustness to adversarial attacks. More robust mod-
els often have reduced performance on clean data [301].
Moreover, new types of adversarial attacks are also developed
as new defense mechanisms are created. It is a continuous
arms race, which adds to the overhead as models must be
constantly updated and retrained to counter new attacks.

2) Unanswered Root Cause of Robustness Loss: Lipschitz
continuity is a mathematical concept used to measure the
degree of continuity between two functions [302]. More
specifically, a function f from S C R"™ into R™ is Lipschitz
continuous at z € S if there exists such a constant C that, for
all y € S close to x,

1f (y) = f(@)]l < Clly — x|

In the context of deep learning, Lipschitz continuity is used
to measure the robustness of DNNs by assessing how small
changes in the inputs affect the outputs of the DNNSs. In other
words, a Lipschitz-continuous function has a fixed-ratio bound
on the distances between the corresponding outputs of two
points close to each other in the input space [302]. A DNN is
said to be Lipschitz-continuous if small changes in its inputs
can only cause small changes in its outputs, implicating the
stability of a DNN in the face of noisy data or unexpected
inputs.
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There are several methods for bounding the Lipschitz
Continuity of the gradient of DNNs. A few common methods
are Gradient Clip [303], which involves clipping the gradi-
ents to ensure they do not exceed a threshold, and Weight
Decay [304], which involves adding a regularization term to
the loss function of a DNN to limit the magnitude of the
gradients.

Another popular method for bounding the Lipschitz
Continuity of the gradient of DNNs is gradient masking [292],
which involves adding a penalty term to the loss function to
prevent abrupt changes in gradients. However, gradient mask-
ing is controversial in the case of adversarial defenses [292].
Some researchers have argued that although gradient masking-
based defense techniques, e.g., ER-Classifier [266] and Inf-
Norm&Inf-Ind [215], deliver effective defense against adver-
sarial attacks in some cases, they do not address the root cause
of adversarial attacks [292], which is the lack of Lipschitz
Continuity. As a consequence, gradient masking approaches
are vulnerable to attacks that are independent of the gradients
of the models under attack, such as high-intensity black-box
attacks [292].

3) Scalability and Generalizability: To defend against
(new) adversarial attacks, one approach is to design more
effective and robust neural network models [22], and the
other is to block malicious inputs before it is fed into the
model [305]. Since most heuristic defense strategies are unable
to defend against adaptive white-box attacks, many researchers
have begun to focus on provable defense mechanisms that
guarantee a certain level of defense performance, irrespective
of the attacker’s method of attack [254].

Scalability has been a key issue to the majority of exist-
ing provable defense approaches, e.g., the PGD method
developed in [22]. Proof-based defense strategies are effec-
tive in defending against less sophisticated “shadow” neural
networks, but are ineffective in the case of more advanced
“deep” neural networks [306]. Moreover, while provable
defense methods work satisfactorily on small-scale datasets,
e.g., the CIFAR-10 dataset with only ten classes, they dete-
riorate on more difficult tasks, such as classification on
the ImageNet dataset that consists of a thousand major
classes [252].

Generalizability, also known as transferability, is another
major concern of provable defense approaches. Specifically,
it is generally hard to apply a defense method that is effec-
tive on one DNN model or dataset, to other DNN models or
datasets [267]. One approach may yield satisfactory results on
homogeneous networks, but performs poorly on heterogeneous
networks [254].

4) Dependence on Data: Adversarial sample detection has
traditionally relied on data-driven methods. However, there is a
lack of agreement on the mathematical definition of adversarial
samples, limiting current research in this field [307]. Attackers
can easily bypass detections by exploiting the knowledge of
the detection mechanisms, rendering the detection mecha-
nisms ineffective [308]. To overcome this challenge, a mixed
approach that integrates both detection and defense strategies
can offer a promising solution. The defense component aims
to enhance accuracy and decrease attack success rate, while
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reducing data dependence and increasing resilience to high-
intensity attacks. These are important research areas in pursuit
of robust defense mechanisms.

VI. CONCLUSION

We have provided a comprehensive overview of the recent
advancements in adversarial attacks and defenses in ML and
DNNs with an emphasis on applications to communications
and networking. We have analyzed both the attack tech-
niques, including those based on constrained optimization
and gradient-based optimization, and their adaptations to
different threat models, such as white-box, gray-box, and
black-box attacks. We have reviewed the latest defense strate-
gies against adversarial examples, including detection and
robustness improvement, which mainly focus on enhanc-
ing robustness through regularization, data augmentation, and
structure optimization. Moreover, the transferability of adver-
sarial attacks has been thoroughly investigated, providing
deeper insights into the workings of DL models.

Our research highlights the significant impact of adversarial
attacks on communication and networking. We have discov-
ered that adversarial attacks can exploit vulnerabilities in ML
or DNN-based functions, including wireless signal classifica-
tion, modulation scheme recognition, and resource allocation
in MIMO networks. We have also identified adversarial attacks
in network management and NIDS, particularly in DNN-based
traffic classification. While some initial defensive strategies
have been proposed to combat the adversarial attacks, contin-
uing efforts are required to address surges of new adversarial
attacks that can potentially compromise communication and
networking systems.
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