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Abstract—Adversarial attacks and defenses in machine learn-
ing and deep neural network (DNN) have been gaining significant
attention due to the rapidly growing applications of deep learning
in communication networks. This survey provides a compre-
hensive overview of the recent advancements in the field of
adversarial attack and defense techniques, with a focus on
DNN-based classification models for communication applica-
tions. Specifically, we conduct a comprehensive classification of
recent adversarial attack methods and state-of-the-art adversar-
ial defense techniques based on attack principles, and present
them in visually appealing tables and tree diagrams. This is
based on a rigorous evaluation of the existing works, including
an analysis of their strengths and limitations. We also catego-
rize the methods into counter-attack detection and robustness
enhancement, with a specific focus on regularization-based meth-
ods for enhancing robustness. New avenues of attack are also
explored, including search-based, decision-based, drop-based,
and physical-world attacks, and a hierarchical classification of
the latest defense methods is provided, highlighting the challenges
of balancing training costs with performance, maintaining clean
accuracy, overcoming the effect of gradient masking, and ensur-
ing method transferability. At last, the lessons learned and open
challenges are summarized with future research opportunities
recommended.
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adversarial attack, adversarial defense, communication,
network.

Manuscript received 10 March 2023; revised 30 July 2023; accepted
20 September 2023. Date of publication 26 September 2023; date of cur-
rent version 22 November 2023. This work was supported in part by
the Foundation for Innovative Research Groups of the National Natural
Science Foundation of China under Grant 61921003; in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC) under
Discovery Grant RGPIN-2019-05870; and in part by the U.S. National
Science Foundation under Grant CNS-2128448 and Grant ECCS-2335876.
(Corresponding author: Yulong Wang.)

Yulong Wang and Tong Sun are with the State Key Laboratory
of Networking and Switching Technology, School of Computer Science
(National Pilot Software Engineering School), Beijing University of Posts
and Telecommunications, Beijing 100876, China (e-mail: wyl@bupt.edu.cn;
suntong@bupt.edu.cn).

Shenghong Li, Xin Yuan, and Wei Ni are with the Data61, Commonwealth
Science and Industrial Research Organisation, Sydney, NSW 2122,
Australia (e-mail: shenghong.li@data61.csiro.au; xin.yuan@data61.csiro.au;
wei.ni@data61.csiro.au).

Ekram Hossain is with the Department of Electrical and Computer
Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
(e-mail: ekram.hossain@umanitoba.ca).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail: poor@
princeton.edu).

Digital Object Identifier 10.1109/COMST.2023.3319492

Abbreviation Full form

AAAM Adversarial Attack Attention Module

adMRL adversarial MRL

AdvCam Adversarial Camouflage

AdvLB Adversarial Laser Beam

AdvRush Adversarially robust architecture Rush

AGKD-BML Attention Guided Knowledge Distillation

and Bi-directional Metric Learning

AI Artificial Intelligence

AL Adversarial Learning

AMGmal Adaptive Mask-Guided adversarial attack

against malware detection

AMM Adversarial Margin Maximization Network

AMC Automatic Modulation Classification

ANP Adversarial Noise Propagation

AoA Attack on Attention

APE-GAN Adversarial Perturbation Elimination GAN

APR Amplitude-Phase Recombination

ART Adaptive ReTraining

ASR Attack Success Rate

AT Adversarial Training

AtkSE Attacking by Shrinking Error

ATTA Adversarial Transformation-enhanced

Transfer Attack

AUC Area Under Curve

BER Bit Error Rate

BN Batch Normalization

BIM Basic Iterative Method

BLF Bounded Logit Function

BFGS Broyden Fletcher Goldfarb Shanno

CAFA Class Activation Feature Loss

CAP-GAN Cycle-consistent Attentional Purification

GAN

C-BCE Conditional Binary Cross-Entropy

CD Constellation Diagram

CE Cross-Entropy

CAFD Class Activation Feature-based Denoiser

C-LSTM Conv-Long Short-Term Memory

CMAG Cascade Model-Aware Generative

CNN Convolutional Neural Network

COLT COnvex Layer-wise Adversarial Training

CSA Cost-Sensitive Adversarial learning model

CSE Cost-Sensitive Adversarial Extension

CSM Cross-Spectral Mapping
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CSI Channel State Information

C&W Carlini and Wagne attacking algorithm

DAC Degree Assortativity Change

DGA Domain Generating Algorithm

DH-AT Dual Head Adversarial Training

DL Deep Learning

DM Data Manifold

DNN Deep Neural Network

DSNGD Dynamically Sampled Nonlocal Gradient

Descent

D2Defend Dual-Domain based Defense

DWT Discrete Wavelet Transform

ER-Classifier Embedding Regularized Classifier

ERF Effective Receptive Field

FeaCP Feature-wise Convex Polytope attack

FGMD Feature Grouping and Multi-model Fusion

Detector

FGSM Fast Gradient Sign Method

FMR Feature-Map Reconstructor

FNC Feature Norm Clipping

FP False Positive

FR Face Recognition

FS Feature Scattering

GAE Graph AutoEncoder

GAN Generative Adversarial Network

GAP Generation Adversarial Perturbation

GAT Generative Adversarial Training

GCN Graph Convolutional Network

GEM Graph Embedding Model

GF-Attack Generalized adversarial attack Framework

GNN Graphic Neural Network

GPMT Generating Practical Malicious Traffic

GR Global Reconstructor

GraphAT Graph Adversarial Training

H&G Hendrycks and Gimpel

HAG Hash Adversary Generation

HFT High Frequency Trading

HMC Hamiltonian Monte Carlo

HMCAM Hamiltonian Monte Carlo with

Accumulated Momentum

HPGD Hybrid Projection Gradient Descent

HSI Hyper-Spectral Image

IBA Iterative Black-box Attack

ICAT Induced Class Adversarial Training

IDS Intrusion Detection System

IGA Iterative Gradient Attack

IIoT Industrial Internet of Things

IoT Internet of Things

IoU Intersection over Union

IoV Internet of Vehicle

IPW Iterative Partially-White-box subspace

attack

JCR Journal Citation Reports

JSMA Jacobian-based Saliency Map Attack

KD Knowledge Distillation

KL Kullback Leibler divergence

KR Kantorovich-Rubinstein

LAFEAT LAtent FEAture Attack

L-BFGS Limited-memory BFGS

LF Low-Frequency component distortion

LID Local Intrinsic Dimensionality

LPIPS Learned Perceptual Image Patch Similarity

LR Logit Reconstructor

LS-GNA Label Smoothing and Gaussian Noise

Augmentation

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAP Multispectral Adversarial Patch

ME Material Emissivity

MI-FGSM Momentum Iterative Fast Gradient Sign

Method

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MLP MuLtilayer Perceptron

MPA Most Powerful Attack

MRL Meta Reinforcement Learning

MultiD-WGAN Muti-Discriminator Wasserstein GAN

N-BaIoT Network-Based detection of IoT

NAS Neural Architecture Search

NAttack NES adversarial Attack

NES Natural Evolution Strategy

NID Network Intrusion Detection

NIDS Network Intrusion Detection System

NLM Non-Local spatial smoothing

NLP Natural Language Processing

NR Neural Rejection

NSGA-PSO Non-dominated Sorting Genetic Algorithm

with Particle Swarm Optimization

NSS Normalized Scanpath Saliency (minus)

ODE Ordinary Differential Equation

OFDM Orthogonal Frequency Division

Multiplexing

OOD Out Of Domain inputs

PCA Principal Component Analysis

PCAE Principal Component Adversarial Example

PCL Prototype Conformity Loss

PDA Progressive Diversified Augmentation

PEC Polyhedral Envelope Certifier

PER Polyhedral Envelope Regularization

PGD Projected Gradient Descent

PLC Pearson’s Linear Coefficient (minus)

PR Precision-Recall

PS-GAN Perceptual-Sensitive GAN

PSO Particle Swarm Optimization

PUAA Primary User Adversarial Attack

QoS Quality of Service

RE Reconstruction Error

RF Radio Frequency

RFFI Radio Frequency FIngerprinting

RISs Reconfigurable Intelligent Surfaces

RMS Root Mean Square

ROC Receiver Operating characteristic Curve

ROSA RObust SAliency

RP2 Robust Physical Perturbation

RRF Rectified Reverse Function

RSLAD Robust Soft Label Adversarial Distillation

RMSE Root Mean Squared Error

SACNet Self-Attention Context Network
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SAD Saliency Adversarial Defense

SCA Side Channel Attack

SCE Softmax Cross-Entropy

SD-Alg Shortest Distance Algorithm

SGA Simplified Gradient-based Attack

SGADV Similarity-based Gray-box Adversarial

Attack

SML Single-directional Metric Learning

SNN Spiking Neural Network

SNS Sensitive Neuron Stabilizing

SOTA State Of The Art

SPSA Simultaneous Perturbation Stochastic

Approximation

SRLIM Surrogate Representation Learning with

Isometric Mapping

SSAH Semantic Similarity Attack on High-

frequency components

SSIM Structural Similarity

STDB Spike-Timing-Dependent Backpropagation

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TAD Transfer learning-based multi-Adversarial

Detection

TP True Positive

TriATNE Tripartite Adversarial Training for Network

Embeddings

TTA Traffic Type Analysis

UAP Universal Adversarial Perturbation

VAM Virtual Adversarial Method

VGG Visual Geometry Group

WaveCNet Wavelet-integrated Convolutional Network

WD Wasserstein Distance

ZOO Zero-Order Optimization

I. INTRODUCTION

D
EEP neural networks (DNNs) are a crucial component of

the artificial intelligence (AI) landscape due to their abil-

ity to perform complex tasks, modulation recognition [1], [2],

wireless signal classification [3], [4], network intrusion detec-

tion and defense [5], [6], [7], object detection [8], [9], object

tracking [10], [11], image classification [12], [13], [14], lan-

guage translation [15], [16], and many more [17], [18], [19].

The availability of advanced hardware, such as GPUs, TPUs,

and NPUs, has facilitated the training of DNNs and made them

a popular research direction in AI [20], [21]. However, despite

their strong learning ability, DNNs are susceptible to adversar-

ial attacks, such as classical attack method Projected Gradient

Descent (PGD) [22], Square attack [23] or C&W [24]. These

attacks exploit the model’s sensitivity to small and carefully

crafted perturbations in the input data, causing the DNN to

produce false predictions. Adversarial attacks represent a seri-

ous challenge to the robustness of DNNs and require proactive

attention and action to mitigate the risks they pose.

Adversarial attacks in DNN can have serious conse-

quences, as captured in many recent studies. For example,

Fig. 1 also illustrates various such attacks, including a delib-

erately devised alteration to an input image resulting in

Fig. 1. Examples of adversarial perturbation.

misclassification by a convolutional neural network (CNN)

with a 99% level of certainty [25], a traffic sign recognition

attack that uses a laser beam to fool self-driving cars [26],

and a channel state information (CSI) recognition attack in

an Internet of Things (IoT) scenario, where CSI examples are

adversarially perturbed to mislead DNN models [27]. Within

the area of signal recognition, the construction of adversarial

samples can be achieved by incorporating disturbance noise

into signal waveforms [28]. This manipulation can lead to erro-

neous predictions or recognition by machine learning (ML)

models. Such discrepancies can pose significant threats to con-

temporary wireless communication systems, cognitive wireless

networks, satellite navigation, and electromagnetic reconnais-

sance. To this end, adversarial attacks can pose significant

risks and impacts on many important areas with ML or DNN

involved, especially on communications and networking, as

articulated in the following.

A. Impacted Areas

Adversarial attacks, which add imperceptible disturbances

to input samples, emerged in computer vision and can deceive

systems such as face recognition [29], [30], [31], object detec-

tion [32], [33], and object tracking [34], [35]. They now pose

risks across various fields, including autonomous driving [26],

[36], [37], [38], [39], finance [40], [41], and human-machine

interaction [42], [43]. With the widespread adoption of DNN

models in the communication and network domain, the

impact of adversarial attacks cannot be overlooked. The areas

within communication and networking impacted by adversarial
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attacks include signal processing, network security, network

management, and resource allocation.

1) Signal Processing: To facilitate signal detection and fast

tracking, DNN-based wireless signal classifiers have been

utilized by wireless signal receivers to categorize over-the-

air received signals into different modulation schemes and

orders. It is demonstrated in [44] that these DNN models

are vulnerable to channel-aware adversarial attacks. In such

attacks, an adversary can transmit an adversarial perturba-

tion within a given power budget to mislead the receiver into

making incorrect predictions when classifying wireless signals

superimposed with the adversarial perturbation. Adversarial

attacks can also substantially degrade the performance of DNN

models used for modulation scheme recognition in commu-

nication systems [1], [2], [45]. The authors of [46] indicate

that adversarial attacks significantly increase the bit error

rate (BER) of a DNN-based multi-user orthogonal frequency-

division multiplexing (OFDM) detectors, which are trained to

recover the payload bits directly from received symbols. In a

spectrum monitoring scenario, adversarial attacks in the form

of adversarial waveforms can successfully disrupt attempts

to intercept and classify signals using convolutional neural

networks (CNNs), and the attacking success rate increases

as bandwidth increases [28], [47]. In addition, Generative

Adversarial Networks (GANs), previously used for generat-

ing synthetic image examples [48], have now been adapted to

produce adversarial examples that attack modulation classifiers

in wireless communications [3], [4], [49] or conduct wireless

signal spoofing [50], [51]. Signals can be used to train ML

models for identifying IoT devices, which may also be threat-

ened by adversarial attacks capable of constructing specially

spoofed signals [52].

Moreover, Huang et al. [53] show that adversarially contam-

inated Wi-Fi signals could mislead DNN-based non-intrusive

human activity recognition systems. Xu et al. [27] con-

struct adversarial perturbation by customizing Fast Gradient

Sign Method (FGSM) [54] and PGD [22], and reduce the

performance of Wi-Fi sensing applications, such as user

identification [55], gesture recognition, and human activity

recognition [56]. With tiny perturbation-to-signal ratios of

around –18 dB in CSI-based Wi-Fi fingerprinting, adversar-

ial attacks can reach an extraordinary attack success rate of

over 90% [57].

At the same time, numerous defensive strategies have been

developed to counteract adversarial instances in radio signals

modulation [58], signal classification [59], [60], and modula-

tion classification [2], [61], [62], [63], [64]. Predominantly,

the primary research methodology strives to minimize the

attack surface and sustain automatic modulation classification

(AMC) [2], even in the face of meticulously crafted adversarial

attacks.

2) Resource Allocation: In addition to classification tasks,

adversarial attacks affect regression problems that can sig-

nificantly damage the power allocation process in massive

multiple-input multiple-output (MIMO) networks, often lead-

ing to unfeasible solutions [65], [66], [67]. For instance,

Boora et al. [66] use CNN and ordinary differential equation

(ODE) models to study the effects of adversarial attack and

defense on massive MIMO localization, and verify that adver-

sarial training-based neural ODE can effectively improve the

robustness of massive MIMO localization in indoor and out-

door environments. Manoj et al. [67] study adversarial attacks

against DNN-based optimal power allocation in a massive

MIMO system, demonstrating that adding only a small per-

turbation to the input of DNNs can lead to a strong attack

consequence.

3) Network Management: Adversarial attacks have also

been observed in network management, due to the increas-

ing application of DNN-based network traffic classifica-

tion [68], [69]. Universal Adversarial Perturbation (UAP) [70],

originally developed for adversarial attacks against DNN-

based image classifiers, has been evaluated for attacking DNN-

based network traffic classification [71]. Nowroozi et al. [72]

show that adversarial attacks, such as Jacobian-based

Saliency Map (JSMA) [73], Iterative Fast Gradient Method

(I-FGSM) [74], PGD [22], Limited-memory Broyden Fletcher

Goldfarb Shanno (L-BFGS) [75], and DeepFool attack [76],

can be used to attack CNN models trained on well-known

computer network datasets, including the Domain Generating

Algorithms (DGA) dataset, the Network-based Detection of

IoT (N-BaIoT) dataset, and the RIPE Atlas dataset, with attack

success rates ranging from 63% to 100%. DNN models trained

using collected TCP/IP traffic data can be fooled by per-

turbed network packets sent from the host controlled by an

attacker [77], [78].

There is a burgeoning interest in adversarial defense

schemes for network traffic classification, due to the signif-

icant threats instigated by DNN-based packet sniffers. For an

instance, Yang et al. [79] propose an effective traffic obfusca-

tion method based on neural networks, which generates traffic

distortions with minimal overhead and computational cost but

attains comparable obfuscation performance. Such obfuscation

can effectively defend eavesdropping or traffic analysis attacks.

4) Network Intrusion Detection: Network Intrusion

Detection Systems (NIDS) are extensively utilized for

the detection and filtration of malicious network traf-

fic [20], [80], [81]. ML-based detectors [82], in particular,

offer an effective means of recognizing intrusive network

packets. However, attackers have found ways to bypass

NIDS by generating adversarial samples. This is typically

accomplished by subtly altering a small subset of traffic

characteristics, such as the interval between successive

packets, or by introducing entirely new features until they

successfully bypass the NIDS [80], [83]. Sun et al. [68]

propose an adversarial attack framework to generate mali-

cious practical traffic with little prior knowledge to deceive

ML-based detection, which can be universally adapted to

multiple malicious traffic. Adversarial attacks, such as trans-

fer learning-based multi-adversarial detection (TAD) [83],

customized AT [59], and an adaptive mask-guided adversarial

attack against malware detection (AMGmal) [80], have been

proven capable of circumventing these detection systems.

Zhang et al. [5] reveal that adversarial attacks based on

perturbed network traffic, can evade an NIDS with a success

rate of up to 35.7%. To evaluate the risks posed by adversarial

attacks in the Industrial Internet of Things (IIoT), methods
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Fig. 2. Taxonomy of seminal work conducted in the field of adversarial attacks on communication networks since 2021.

like Evasion-Injection-Fabrication-Denial Adversarial Attack

(EIFDAA) [6] and AMGmal [80] have been proposed. These

methods aim to deceive an ML-based NIDS used within the

IIoT, and to measure the performance of these ML-based

NIDS systems within IIoT networks. More advanced research

in this field involves assessing the defensive performance of

NIDS against a variety of adversarial attack algorithms, and

the design of new defense strategies [6], [83], [84].

5G networks, which are envisioned to support billions of

heterogeneous devices with quality of service (QoS) provision-

ing, are expected to heavily rely on ML. As a result, these 5G

environments will be susceptible to adversarial attacks [85].

However, due to the scarcity of ML-driven 5G devices avail-

able for adversarial ML research, proactively assessing such

risks is a significant challenge. Concurrently, advancements

in mobile communication, particularly the emerging ultra-low

delay 6G technology, can substantially improve Internet of

Vehicle (IoV) technology and enhance autonomous driving.

Nevertheless, adversarial attacks present security concerns,

particularly in the area of autonomous scene recognition [86].

These attacks can be exploited in-vehicle networking systems,

potentially leading to traffic accidents and jeopardizing per-

sonal safety. Therefore, with the imminent advent of 6G

technology, it is crucial to consider the safety implications

of using deep learning (DL) algorithms in connected vehicle

systems.

Moreover, we have gathered additional relevant citations

and organized them based on their associations with various

aspects of communications and networking. The outcomes of

this effort are depicted in Fig. 2.
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B. Attack Scenario

Adversarial attacks can occur during a model inference

stage. Specifically, an attacker can aim to deceive a DNN-

based model, e.g., a sample classifier, by launching a two-

phase attack: Generating an adversarial example from the

DNN-based sample classifier and feeding it back into the sam-

ple classifier. In the field of communication and networking

empowered by ML models, attackers can gain knowledge

about the models through several methods:

1) Model Stealing [87]: The attacker can train a surrogate

model that imitates the behavior of the target model by

sending queries and observing responses. This technique

is also known as “model extraction”.

2) Model Inversion [88]: In this scenario, the attacker

attempts to reconstruct the original training data or

some data properties, given a trained model and some

auxiliary information.

3) Membership Inference [89]: This attack attempts to

ascertain whether a particular data instance was part of

the training dataset or not, thereby potentially revealing

sensitive information.

A practical example might involve an attacker attempting

to compromise an NIDS that employs an ML model [90].

The attacker could employ techniques like model extrac-

tion to comprehend how the NIDS categorizes normal and

malicious network traffic. Once the attacker gains a solid

understanding of the model’s behavior, it can craft adversarial

network packets that appear benign to the NIDS but are, in

fact, malicious.

During the first stage, the attacker perturbs the element val-

ues of a benign example to maximize the loss function value of

the sample classifier. This forces the sample classifier to mis-

classify the adversarially perturbed example or minimize the

loss function value with regards to an incorrect class designed

by the attacker. The attacker can employ different strategies

to guide the direction of perturbation based on their a-priori

knowledge of the DNN model under attack. If the neural

network architecture, learned parameter values (weights and

biases), and the loss function of the DNN model is available

(e.g., due to a compromised server or a rogue employee), the

attacker can exploit a gradient-based attacking algorithm to

calculate the perturbation and produce the adversarial example.

For instance, FGSM [54] generates an adversarial instance,

denoted by xadv , by applying the following rule:

xadv = x+ ǫ× sign(∇xL(x, y)),

where x is the input data, ǫ ∈ R
+ is the perturbation mag-

nitude, y indicates the ground-truth class, sign(·) returns the

sign of a real value, and ∇xL(x, y) indicates the gradient of

the loss function L(x, y) with regard to the input example x.

PGD [22] is another typical adversarial attack algorithm,

which improves FGSM by generating an adversarial example

iteratively:

xi+1 =
∏

x+Sǫ

(

xi + α sign(∇xL(x, y))
)

, (1)

where i is the index to an iteration, α ≤ ǫ is the perturbation

step size, Sǫ ⊆ R
d is the set of allowed perturbations under

the maximum perturbation magnitude ǫ, and the projector
∏

x+Sǫ

(·) maps its input to the closest element to the input

in the set x + Sǫ. PGD conducts a fine-grained perturba-

tion on images and can achieve a higher attack success

rate than FGSM under the maximum perturbation magnitude

(i.e., the perturbation budget), at the cost of a longer running

time.

The perturbation budget [22], [91] is a pivotal concept

in adversarial attacks. It signifies the maximum permissible

alterations that an adversary is allowed to implement on the

input data. This constrains the extent of the perturbations that

the adversary can apply, thus maintaining the attack within

realistic and manageable bounds. Specifically, we consider a

(potentially stochastic) mapping ρ : χ → χ′, where χ and χ′

are vector spaces. In an untargeted adversarial attack aiming

to induce a misclassification by the classifier C, the goal is to

have C (x+ρ(x)) �= C (x), while maintaining the perturbation

constraint ||ρ(x)||p ≤ ǫ, where ǫ denotes a perturbation bud-

get [22]. Given that the outcome of a perturbation is a vector,

the perturbation is typically converted to a scalar by applying

a p-norm operation || · ||p . The most frequently used values of

p include 0, 1, 2, and ∞.

To produce an effective adversarial example within a per-

turbation budget, the attacker can progressively perturb the

elements of an example (e.g., the pixels of an image),

by running more sophisticated adversarial attack algorithms,

e.g., PGD [22]. The attacker repeats this process until the

DNN-based classifier misclassifies the example x into an

attacker-specified target class that differs from the source

category of the benign example x.

The information necessary to undertake an adversarial attack

against a DNN is relatively easy to obtain. This is due to the

fact that the best-performing DNN-based classifiers generally

use well-known architectures, e.g., ResNet models [92], and

commonly employ the Cross-Entropy loss function [93] for

classification tasks. Even in the case where the parameters of

the DNN-based classifiers are not accessible for the attacker,

it is possible for the attacker to learn a good surrogate of the

DNN-based classifiers by sending queries to the classifiers and

collecting responses [94].

The attacker can also use other strategies, such as con-

strained optimization-based or heuristic approaches (see

Section III), to seek out effective adversarial instances. After

the attacker confirms the effectiveness of the generated adver-

sarial example in a controlled environment, they can launch

an actual adversarial attack by feeding perturbed examples to

the DNN model under attack.

C. Notable Attack Incidents

In the past several years, there have been several notable

adversarial example attacks:

• In 2023, researchers proposed a novel adversarial attack

framework [68], and designed to generate adversarial

malicious traffic capable of deceiving ML-based traf-

fic classification systems. Experiments demonstrated that

this approach exhibits a high evasion growth rate across

multiple models and datasets.
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• In 2021, researchers demonstrated that adversarial

attacks could disrupt DNN-based power distribution in

large-scale MIMO network downlinks, and experiments

indicated that white-box attacks could result in up to 86%

of unworkable solutions [67].

• In 2021 and 2022, researchers demonstrated that they

could cause an autonomous vehicle to mistake a stop

traffic sign for a speed limit sign by putting a small,

almost imperceptible sticker on the sign [95], [96]. While

this type of attack has not yet resulted in any real-

world accidents, it has raised concerns about the safety

of autonomous vehicles and the potential for malicious

actors to cause accidents or other harm using adversarial

attacks.

• In 2022, a team of researchers showed that adversarial

examples could trick image classification systems in self-

driving cars [97]. The researchers showed that a small

perturbation added to a traffic sign could cause the self-

driving car to misidentify the sign, potentially leading to

dangerous mistakes on the road.

• In 2019, researchers demonstrated that they could cause

an ML model to misclassify a fraudulent credit card trans-

action as legitimate by applying weak perturbations to

the transaction data [98], [99], [100]. This type of attack

could potentially result in significant financial losses for

financial institutions and consumers.

• In 2020, researchers demonstrated that they could cause

a chatbot to generate inappropriate or offensive responses

by adding small perturbations to the input text [101].

This type of attack could potentially cause damage to

a company’s reputation or lead to lost customers.

• In 2022, researchers demonstrated that adversarial exam-

ples could trick a voice assistant, e.g., Amazon Alexa and

Google Assistant [102]. They manipulated voice com-

mands to make them sound normal to humans but caused

voice assistants to perform actions that were not intended.

This can sabotage the security and privacy of users who

use voices to control smart home devices.

• In 2022, a group of researchers demonstrated that

adversarial examples could be utilized to evade spam

filters, allowing malicious emails to bypass detec-

tion [103], [104]. They created adversarial examples of

spam emails by adding perturbations to the email con-

tent, and caused the spam filter to incorrectly classify the

email as non-spam.

While these adversarial attacks on ML or DNN models have

not yet caused widespread financial or economic loss, they

have sparked worries about the safety and dependability of

these systems, and research into approaches for detecting and

defending against these attacks is ongoing.

D. Contributions of This Survey

As the applications of ML and artificial intelligence con-

tinue to expand into almost all aspects of human life and

society, the robustness and security of ML models become

increasingly crucial [105], [106], [107]. As a result, adversar-

ial attacks and defenses make up an active and rapidly growing

research area. For example, in the Year 2022 alone, over 1,200

research articles were published on adversarial attacks and

defenses, documenting many new attack and defense tech-

niques and incidents. In the Year 2021, over 1,000 research

articles were published on these topics.1 Most of these new

research outcomes have not been covered by any of the lat-

est literature reviews and surveys due to the fast pace of this

active research area of adversarial attacks and defenses. To this

end, a timely summary of emerging attacks and new defense

techniques is critical to keep the research community and secu-

rity practitioners well-informed and equipped with the latest

knowledge.

This comprehensive survey delves into the cutting-edge

advancements in adversarial attack and defense techniques

over the past 24 months. We review over 220 research

papers published in Q1 journals classified by the Journal

Citation Reports (JCR), indexed by IEEE, ACM, Springer, and

Elsevier’s ScienceDirect. We also consider papers presented

at top-tier conferences, such as AAAI, CCS, and ICCV, since

2021. Our primary focus is on adversarial attacks and defenses

that target ML or DNN-based models used in the areas of

communication and networking. This survey is anticipated to

inspire a new wave of research and innovation in the rapidly

evolving field of adversarial attack and defense.

These are the key findings of this survey:

• A comprehensive classification of recent adversarial

attack methods as well as the SOTA adversarial defense

techniques based on a variety of attack principles,

presented in a visually appealing table and tree diagram

format.

• The categorization of the methods into counter-attack

detection and robustness enhancement, with a specific

focus on regularization-based methods for enhancing

robustness, represented through tables and tree diagrams.

• A rigorous evaluation of the existing works, includ-

ing an analysis of their strengths and limitations, and

recommendations for future research avenues.

Some of the noteworthy highlights from the survey include:

• An exploration of new avenues of attack in the last

two years, including search-based attacks, decision-based

attacks, drop-based attacks, and beyond the traditional

optimization-based and gradient-based attacks.

• The emergence of physical-world adversarial attacks,

particularly in the form of adversarial patches.

• A hierarchical classification of the latest defense meth-

ods, highlighting the challenges of balancing training

costs with performance, maintaining clean accuracy, over-

coming the effect of gradient masking2 (or in other

words, a defense method appears to work but is actually

ineffective), and ensuring method transferability.

As illustrated in Fig. 3, this survey is organized as fol-

lows. Section II provides a brief overview of the existing

1These search results are based on IEEE Xplore with the keyword
“adversarial” and “attack” as of 7 February 2023.

2Gradient masking here refers to the phenomenon that the gradient of the
model is hidden or obsolete, e.g., towards potential adversaries. On the other
hand, it also refers to a category of defense techniques that exploit or aim to
achieve the phenomenon of gradient masking [108].
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Fig. 3. The anatomy of this survey.

surveys of adversarial attacks and defenses, and clarifies the

key differentiating factors of the current survey. Section III

categorizes the most recent adversarial attacks, and provides

a comprehensive analysis of each of the categories, as well as

the transferability of adversarial attacks. Section IV classifies

and analyzes various adversarial defense and detection tech-

niques, and their effectiveness and limitations against the latest

adversarial attacks. Lessons learned and open challenges are

delineated in Section V. At last, Section VI summarizes the

current state and suggests avenues for future investigations.

Table I defines the notation used in this survey.

II. SURVEY OF SURVEYS

Adversarial attacks and defenses in ML and DNN models

are crucial areas of research that have garnered signifi-

cant attention in recent years. There are several reviews on

the topic, each delving into specific aspects of the topic.

Addressing the profound concern posed by malware in the

context of network security, Yan et al. [82] delve into the

domain of adversarial attacks and defenses for malware

classification utilizing ML techniques. The authors provide

a cohesive overview of a unified framework for malware

classification, and present an exhaustive examination of ML-

based approaches for malware classification, encompassing

adversarial attacks against malware classifiers and robust

malware classification. The authors of [110] first present

preliminary knowledge concerning adversarial examples, and

then contrast theoretical models of adversarial example attacks

with actual instances of attacks. They also present existing

examples of actual adversarial attacks. The authors of [109]

review adversarial attacks and defenses in the computer vision

domain, as well as their real-world applications. They analyze

the various methods proposed for attacking and defend-

ing against adversarial attacks in this domain and explore

these methods’ effectiveness and limitations. Similarly, the

authors of [112] discuss the theoretical underpinnings, meth-

ods, and applications of adversarial attack techniques. In

addition, they present several research initiatives on defen-

sive strategies that span a broad variety of frontiers in the

area, followed by a discussion of a number of open issues

and challenges. The authors of [113] expand the scope of

their review to include adversarial attacks in the context of

images, malicious code, and text across various domains. They

discuss the various types of adversarial attacks proposed in

these contexts and analyze their effectiveness. The authors

of [111] focus on summarizing the recent studies on adver-

sarial attack and defense techniques in the deep learning

area. They study existing defense methods from three per-

spectives: Data altercation, model modification, and utilization

of auxiliary tools. They analyze the benefits and draw-

backs of each strategy and discuss the limitations of existing

methods.
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TABLE I
NOTATION AND DEFINITION

There are also many investigations focusing on real-world

attacks. In [118] and [117], the authors focus on physical

adversarial attacks. They classify and summarize current phys-

ical adversarial attacks from the perspective of physical world

attacks, discussing the benefits and limitations of various

approaches. In [40], the authors examine adversarial attacks

and defenses against transaction records from the viewpoint

of NLP.

Other existing surveys are concerned with techniques for

enhancing the robustness and resilience of DNN models in the

face of adversarial attacks. For example, in [115], the authors

analyze and compare adversarial training methods. They dis-

cuss the various approaches proposed for adversarial training

and analyze their effectiveness in enhancing the robustness of

deep learning models.

These above-mentioned earlier reviews, e.g., [109], [110],

focus more on classical attack and defense approaches.

Conversely, with the advancement of deep learning in the

last two years, more and more new risks have emerged. For

example, Gallagher et al. [119] adapt FGSM as a single

value and label flipping attack on financial stock data-based

prediction networks, and find that it can result in a sig-

nificant reduction in profitability and financial losses in a

financial trading simulation. It is highlighted that the poten-

tial consequences of manipulating stock prices through buying

and selling in the public trading market could be significant.

Goldblum et al. [120] examine the impact of adversarial

attacks on trading robot-based stock price predictions. These

systems, known as high-frequency trading (HFT) systems,

operate in extremely short time frames, making it difficult to

prevent harmful behavior through human intervention. This

is particularly concerning as it is well accepted that irregular

behavior and security breaches in HFT systems have precip-

itated major market incidents like “Flash Crash” [121]. The

severity of the damage caused by adversarial attacks in such

systems cannot be underestimated.

As summarized in Table II, this survey aims to bridge the

gaps in the current literature by not only focusing on classi-

cal methodological analysis but also systematically examining

new methods that have emerged in the last two years. Further,

Table III illustrates the gap between the existing surveys on

adversarial attacks and this survey. Specifically, this survey

reviews the new methods in the context of adversarial attack

methods, classifying them in a new light, and documenting

effective but under-reported new attack methods, such as

decision-based and drop-based methods. It also sheds light

on the recent developments in adversarial patching, a pow-

erful physical world attack that has been under-explored in

previous surveys. From a defensive perspective, the survey

covers both adversarial detection methods and model robust-

ness enhancement methods, categorizing them from a novel

perspective starting from the hierarchy of operations, sum-

marizing them in the form of tables and tree diagrams, and

suggesting future research directions. The survey provides an

in-depth understanding of the SOTA in adversarial attacks and

defenses in deep learning.

III. STATE-OF-THE-ART OF ADVERSARIAL ATTACKS

An adversarial attack is a deliberate intent to mislead

an ML or DNN model by introducing subtle, impercep-

tible interference to an input sample. This might result

in the model drawing an incorrect conclusion confidently.

Szegedy et al. [75] were among the first to discover that

DNNs are susceptible to slight adversarial perturbations. Ever

since, considerable efforts have been committed to producing

more potent adversarial attacks for evaluating the robustness

of DNNs.

Conventionally adversarial attacks consist of black-box

attacks [108], white-box attacks [122], and gray-box

attacks [123]. A black-box attack signifies that an attacker has

no knowledge of the underlying structure, learnable param-

eters, or defense strategies of the model under attack. The

attacker interacts only with the model via its inputs and out-

puts [108]. A white-box attack occurs when the attacker has

all prior knowledge of the model under attack, e.g., the loss

function and the optimized parameters of the model, and

exploits the knowledge to facilitate the attack [122]. A gray-

box attack accounts for the case, where the attacker only

possesses partial knowledge of the model under attack in

prior [123].

In this section, we classify the existing adversarial attacks

from their underlying mechanisms and implementation tech-

niques. Some of the attacks can be adapted to support some
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TABLE II
COMPARISON OF THE EXISTING SURVEYS ON ADVERSARIAL ATTACKS AND DEFENSES

TABLE III
THE GAP ANALYSIS OF THE EXISTING SURVEYS ON ADVERSARIAL ATTACKS AND DEFENSES. WHILE THIS SURVEY FOCUSES ON COMMUNICATIONS

AND NETWORKING, IT ALSO HAS SIGNIFICANT COVERAGE OF ADVERSARIAL ATTACKS AND DEFENSES DESIGNED FOR OTHER

APPLICATIONS (E.G., COMPUTER VISION OR NLP) BUT MAY APPLY TO COMMUNICATIONS AND NETWORKING

or all of the black-, white-, and gray-box attacks, as briefly

described in the following.

• Gradient-Based Attacks: Gradient-based attacks

manipulate the input data to ML or DNN models

based on the gradient of the model’s loss function. This

leads to an increase in the loss function, thereby causing

the model to make erroneous predictions. Since attackers

need to access the gradient, these attacks are more

commonly associated with white-box attack scenarios.

For instance, an attacker may download the target model

after compromising the server on which the model is

running. See Section III-A.

• Constrained Optimization-Based Attacks: These attacks

model the generation of adversarial samples as an

optimization problem with a perturbation magnitude con-

straint. They are more likely to occur in a gray-box attack

setup, since the optimization process can only use partial

information about the target model. For instance, attack-

ers might obtain the architecture of the target model

through information gathering or best-practice analysis.

See Section III-B.

• Gradient-Free (Heuristic) Attacks: These attacks do not

utilize mathematical models. Instead, they use human

intuition and expert knowledge to obtain adversarial sam-

ples that can deceive the target ML or DNN models. They

are typically employed in a black-box setup and can be

further classified into search-based, decision-based, and

score-based methods. See Section III-C.

• Adversarial Patch: Adversarial Patch abandons the con-

straint of imperceptible perturbation to benign samples. In

the meantime, it manages to make the adversarial change

appear normal, deceiving both humans and machines.

An Adversarial Patch can be constructed in white-box,

gray-box, or black-box settings. See Section III-D.

A. Gradient-Based Attacks

Gradient-based attacks are a common type of attack used

against neural network models. These attack methods work

by manipulating the input data according to the gradient of

the loss function regarding the input to cause the model’s loss

function to increase, effectively causing the model to make
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TABLE IV
BRIEF SUMMARY OF EXISTING SURVEYS ON ADVERSARIAL ATTACKS

errors in its predictions. Classic gradient-based attack meth-

ods include FGSM [54], Basic Iterative Method (BIM) [124],

PGD [22], JSMA [73], DeepFool [76] and others. Numerous

recent endeavors have been made to design and create new

gradient-based attacks. Table V categorizes the latest gradient-

based attacks from the perspectives of input, attack type, and

invisibility metric (or “inv-metric” for brevity).

The evolution of gradient-based adversarial attacks has

significantly infiltrated various domains of communication

networks. A black-box gradient estimation method for network

intrusion detection models is natural evolution strategies

(NES) [5], where the estimated gradient can be used to

project gradient descent (as used in white-box attacks) to

build adversarial examples. This approach does not require

a proxy network, so queries are more efficient and reliable

when crafting adversarial examples. By extending FGSM,

momentum iterative FGSM, and projected gradient descent

adversarial attacks in FGSM systems, Manoj et al. [67] demon-

strate that adversarial attacks can disrupt ML-based power

distribution in massive MIMO network downlinks. A recent

study in [1] scrutinizes the vulnerability of DNN-based mod-

ulation recognition models within communication systems

subject to adversarial attacks. Their meticulous examination

involves the construction of high-precision DNN-based mod-

els, executing multiple adversarial attacks on well-trained

models, and unveiling the substantial threat that adversarial
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TABLE V
GRADIENT-BASED ADVERSARIAL ATTACK METHODS

samples can pose to DNN-based modulation recognition

models.

Yu et al. [125] discover that certain “robust” models have

hidden features that are unexpectedly susceptible to adversarial

attacks. They propose latent feature attack (LAFEAT), a

unified ℓ∞-norm white-box attack algorithm that uses latent

features throughout gradient descent steps for computationally

efficient attacks, which can be cast as
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max
h,λ,α,Lsur
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λ
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(
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λ(l)h(l)
(

z(l)
)

, y

)
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Here, Lsce represents the softmax cross-entropy (CE) loss

between the one-hot truth value y and the output. The con-

stant I defines the maximum number of iterations of gradient

update iteration. For each layer l ∈ {1, . . . ,N }, the value

λ(l) ∈ [0, 1] is assigned to the gradient of the layer, and the

sum of all values is equal to 1. z(l) = f (l) ◦ · · · ◦ f (1)(z)
indicates the feature obtained from the lth layer. The mapping

h(l) maps the features from f (l) to the logits for the l-th layer.

For ease of exposition, Yu et al. [125] define

PGDǫ,x,y(L, α, i) = x̂i , (3)

where x̂i is obtained by running the PGD algorithm [22]. PGD

identifies an adversarial instance by iteratively updating:

x̂i+1 = Pǫ,x

(

x̂i + αi sign
(

∇x̂iL
sce(fθ(x̂i ), y)

))

. (4)

Here, I ∈ R
C×H×W limits the image data to a valid

range, the function Pǫ,x : RC×H×W −→ I clips its input

into the ǫ-ball neighbor that is denoted as I. The term

∇x̂iL
sce(fθ(x̂i ), y) calculates the loss’ gradient regarding the

input x̂i . αi indicates the step size. At last, sign(·) is a sign

function and returns “–1”, “0”, or “1” for each element of the

gradient.

The objective of LAFEAT is to determine the optimal

combination of logit mappings h = (h(1), . . . , h(N )), their

respective weights λ = (λ(1), . . . , λ(N )), the size of the steps

in the schedule α, and the choice of the surrogate loss Lsur

to use. Nonetheless, the efficient utilization of latent fea-

tures as novel attack vectors has not yet been completely

comprehended.

In the context of modulation classification, Zhang et al. [2]

gauge the performance of Transformer-based neural networks

in terms of classification, as well as their susceptibility and

resilience to adversarial attacks. Utilizing real datasets, they

demonstrate the superior accuracy of Transformers over CNNs

when confronted with adversarial attacks. Considering DNN-

based modulation classification, Manoj et al. [63] introduce

random smoothing, hybrid projection gradient descent adver-

sarial training, and fast adversarial training to create DNN

models that are robust to attacks and evaluate them under

white-box and black-box attacks. Kotak and Elovici [52] apply

adversarial attacks to assess the vulnerability of ML-based IoT

device identification systems. The findings in [52] reveal that

a novel methodology employing heatmaps to generate adver-

sarial examples can deceive these systems with remarkable

effect.

Che et al. [126] propose an Iterative Partially White-box

subspace attack (IPW). This technique establishes the cost

function in the key hidden space, where the receptive field

is at its peak. The cost function penalizes the part of the fea-

ture activations that corresponds to both salient and guiding

regions, rather than penalizing each pixel across the compre-

hensive dense output space. Moreover, they present an Iterative

Black-box attack (IBA). This approach employs non-redundant

variations from original models as initial hints to gauge the

gradient of a target black-box model. The estimation is done

through a zeroth-order iterative optimization process that com-

putes the directional derivatives along the initial directions that

are not redundant.

Fig. 4 offers the overview of the IPW&IPA framework

developed in [126]. The first step illustrates the concept of

a subspace assault by producing a non-repetitive initial per-

turbation from a partial white-box source model. To deceive a

target model that is unknown to them, they merge an a-priori

optimizer with a zero-order optimizer in Step 2. The method

balances the attack capability and perturbation redundancy,

overcoming the issues of costly attack cost and imperceptibil-

ity. Although the proposed non-repetitive initial cues enhance

the black-box attacks, it remains challenging to fulfill the

demands of certain time-sensitive applications, e.g., adver-

sarial training necessitating a large quantity of adversarial

instances.

Dynamically Sampled Nonlocal Gradient Descent

(DSNGD) [127] computes the gradient direction for an

adversarial attack by calculating the weighted mean of

previous gradients from an optimization record. The gradient

computation in DSNGD can be written as

∇xL(fθ(xt ), y) :=

t
∑

i=1

wi · ∇xL(fθ(x̂i ), y),

x̂i = Clip[0,1](xi + ξσi ). (5)

Here, L indicates the loss function, such as CE, of a neural

network fθ. Clip[0,1](·) clamps the input to the range between

0 and 1; x̂i denotes a noisy sample in the optimization pro-

cess; wi refers to the gradient weight associated to x̂i ; the

random variables ξσi are taken from the i.i.d. distribution

Pσ parametrized by the standard deviation σ ∈ R
+. The

variable t stands for the iteration number during the current

attack. This improves the efficiency of the algorithm by reduc-

ing the computational burden caused by sampling operations,

eliminating the need for manually tuning additional hyper-

parameters, and providing a more precise estimation of the

overall upward direction. However, its performance on larger

datasets, e.g., ImageNet, is yet to be determined.

In the endeavor of modulation and recognition of com-

munication signals using CNN, Yang et al. [128] put forth

a white-box attack algorithm known as the shortest distance

algorithm (SD-Alg). This innovative approach can gener-

ate minimal interference and considerably degrade the CNN

model’s classification performance. Chen et al. [129] propose

an Attack on Attention (AoA) method that depends on the

semantic characteristics common among multiple DNNs to

enhance the transferability of adversarial attacks. As opposed

to prior techniques that concentrate on attacking the output,

such as the One-Pixel attack developed in [130], AoA aims

to modify the attention heat map and achieves exceptional

results in black-box attacks. This method produces adversar-

ial instances that can deceive numerous DNNs using zero

queries and leads to a substantial improvement in transfer-

ability if the standard CE loss is substituted with an attention

loss. The AoA attack can be seamlessly integrated with other
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Fig. 4. Sketch of the IPW&IBA: The first step illustrates the concept of a subspace assault by creating a non-redundant prior perturbation from a partial
white-box source model. To deceive a target model that is unknown to them, they merge an a-priori optimizer with a zero-order optimizer in Step 2. [126].

transferability-enhancement methods to attain cutting-edge

performance.

Graph structures are common in the physical world, and

DNNs are commonly employed to tackle graph network

problems, including node classification [131] and link

prediction [132]. Iterative Gradient Attack (IGA) [133] is

a new approach for link prediction that leverages gradi-

ent information from a trained Graph Autoencoder (GAE)

model. IGA offers effective results under both complete

and incomplete graph information, and it can be integrated

with various tasks. IGA also has good transferability across

various realistic diagrams. Unfortunately, its computational

complexity can grow significantly when the size of the graph

increases.

Considering node classification tasks, Li et al. [134] propose

a Simplified Gradient-based Attack (SGA), which addresses

the difficulty in attacking large-scale graphs by leveraging

a subgraph that comprises k-hop neighbors of attacked. An

input graph is perturbed by sequentially flipping edges whose

magnitude of gradients is the biggest in this subgraph. The

SGA method overcomes the issue of gradient fading in

gradient-based attack techniques by using a smaller subgraph

centered around the node under attack and by incorporating

a scaling factor. As depicted in Fig. 6, SGA has a signif-

icant advantage over other cutting-edge attack techniques,

e.g., the GradArgmax method developed in [135] and the

Nettack method developed in [136], in terms of time and

memory efficiency, meanwhile still achieving considerable

attack results.

On the other hand, a novel attack scenario is known as

a node injection attack, in which attackers can inject a set of

malicious nodes into a graph to circumvent the original graph’s

topology and misclassify victim nodes [137]. SGA is generally

inapplicable to the node injection attack because the injected

malicious node is a singleton node and is not initially linked

to any nodes, where a k-hop subgraph cannot be extracted,

and its high computational cost is also a drawback. Currently,

SGA is limited to node classification tasks and targeted attack

scenarios. Ongoing research is expected to expand the method

and make it more adaptable to various graph analysis tasks.

Gradient-based attackers collect gradients of node features

and graph structures and produce perturbations based on

them using pre-trained Graphic Neural Network (GNN) clas-

sifiers, referred to as proxy models. However, the majority

of existing work [133], [137]. Concentrate on using gradi-

ents to produce perturbations rather than looking at how to

get more dependable gradients from different models. The

gradient-based perturbations manufactured by the attacker

are affected by the proxy model’s embedding layer map-

ping. The perturbations generated are model-specific, and lose

their generalization to another model. To solve this problem,

Wang et al. [138] propose Surrogate Representation Learning

with Isometric Mapping (SRLIM) to enable the model to

learn topologies. Keeping the similarity of nodes from the

input layer to the embedding layer, SRLIM passes topological

knowledge to the embedding layer, thus improving the effec-

tiveness of the adversarial attacks produced by gradient-based

attackers in non-target poison gray-box attacks. However, as
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Fig. 5. Working flow chart of the SCA-based attack. (a) Obtain the network
structure of the target model. (b) Training an alternative model. (c) Creating
an example of hostility.

the complexity of the graph structure rises, the computational

complexity will also increase exponentially.

In contrast to the prevalent adversarial attack methods

that generate only one adversarial instance for an input,

Wang et al. [139] introduce an attack method that produces

a range of adversarial examples for a given input. This is

achieved through the use of Hamiltonian Monte Carlo with

Accumulated Momentum (HMCAM). They also present a

novel generative technique, namely Contrastive Adversarial

Training (Contrastive AT), which employs Hamiltonian Monte

Carlo (HMC) to simulate the creation of adversarial exam-

ples and achieves an equilibrium distribution of adver-

sarial instances within just a few rounds by performing

some moderate changes of the conventional Contrastive

Divergence [140]. As a result, Contrastive AT strikes a

balance between attack accuracy and efficiency in adver-

sarial training. The experimental outcomes demonstrate that

Contrastive AT attains a higher attack success rate (ASR)

than black-box models, and is on par with other white-box

models.

Xiang et al. [141] come up with a straightforward and

efficient gray-box attack strategy based on the side-channel

attack (SCA) policy. The SCA-based attack is illustrated in

Fig. 5. First, the target model’s fundamental network struc-

ture is derived using an SCA-based attack. The alternative

model is then trained using the derived network structure.

Adversarial samples are produced using the trained alterna-

tive parameters in order to mislead the target model. The

trained gray-box replacement model’s decision boundary is

nearer to the target model because gray-box attacks use abun-

dant internal information, as opposed to black-box attacks. It is

thus more realistic than a white-box attack and more efficient

than a black-box attack. However, there might be more pos-

sible architectures in real-world applications. The algorithm

must run every step of adversarial and side-channel attacks

against every candidate architecture, which can take significant

time and resources.

In the face of errors caused by the discreteness of graph

structures and subsequent rough gradients, for the vulnerability

of GNNs to the semantic space and parameter random ini-

tialization resulting in an unstable representation of GNNs,

Liu et al. [142] proposed two modules to solve the problem,

namely the semantic invariance module and the momentum

gradient integration module, and integrated the above modules

Fig. 6. Iterative gradient-based attack through subgraph expansion. Here,
k = 2. The dotted circle represents the neighborhood range (k) around the
target node, i.e., a subgraph containing the target node. Flipping edges within
a subgraph lead to misclassification of the target node.

to propose an attack model named Attacking by Shrinking

Errors (AtkSE). This method solves the gradient fluctuation

in semantic graph enhancement and the instability of the

proxy model to some extent, increases the attack intensity of

the attacker, and ensures the transferability of the gray-box

attack. But at the same time, the trade-off between compu-

tational efficiency and error reduction is also worth further

study.

All of these methods aim to find ways to generate adver-

sarial examples that can fool the DNNs by exploiting their

gradients. However, they have different approaches and tech-

niques to leverage the gradients. They also have different

strengths and limitations. For instance, some methods take

less computational time and memory, such as SGA [134],

Contrastive AT [139], and LAFEAT [125], while others are

better in terms of transferability and attack performance,

such as IGA [133], AoA [129], SRLIM [138], and

AtkSE [142].

B. Constrained Optimization-Based Attacks

Attacks based on constrained optimization involve creating

adversarial examples by tackling a constrained optimization

problem. This method seeks the minimum perturbation, sub-

ject to ℓ0, ℓ2, or ℓ∞-norm constraints that cause the neu-

ral network model to make an incorrect classification. As

such, adversaries can generate an adversarial example xadv

for an untargeted attack (i.e., misclassifying the adversar-

ial example to any different class from the correct one) by

following:

max
xadv

L
(

f
(

xadv
)

, y
)

,

s. t.
∥

∥

∥
xadv − x

∥

∥

∥

∞
≤ ǫ, (6)

where the objective is to find an adversarial counterpart xadv

and the constraint ǫ specifies the invisibility requirement of

adversarial perturbation. L(·, ·) is the loss function of the

target model f, and x is a clean example. In the case of a

targeted attack (i.e., misclassifying the adversarial example to

an incorrect class designated by the attacker), the objective

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:54:12 UTC from IEEE Xplore.  Restrictions apply. 



2260 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

Fig. 7. Overview of the SSAH method. The left subfigure illustrates semantic similarity attacks, while the right subfigure demonstrates the low-frequency
constraint. f (·) represents the function mapping from the image to the representation space, and φ(·) denotes the shallow neural network that divides the
image into different frequency components and then reconstructs it by using low-frequency components.

function of the optimization problem is:

min
xadv

L
(

f
(

xadv
)

, yt

)

, (7)

where yt is the label of the class designated by the attacker.

Szegedy et al. [75] first propose an L-BFGS algorithm

to transform a difficult optimization problem of finding a

perceptually-minimal input perturbation into a box-constrained

formulation. Many other popular methods, such as C&W [24],

AdvGAN [48], and UAP [70], are also achieved by carrying

out constrained optimizations. Table VI categorizes the latest

constrained optimization-based attacks from the perspectives

of input, attack type, and inv-metric.

Many recent works utilize constrained optimization tech-

niques to generate adversaries. For instance, Chen et al. [143]

present adGAN, a method for producing adversarial attacks

that greatly degrade the performance of reinforcement learning

systems. The fundamental concept of adGAN is to manipu-

late the current state in reinforcement learning, misleading the

agent into thinking it is in a correct state, thereby causing it to

make subpar decisions in each step and leading to a decrease in

overall rewards. AdGAN has demonstrated its ability to trans-

fer and adapt well to different situations. The loss function of

the adversarial attack is written as:

x̃ = max
x

LTi

(

fϕ
)

,

s. t. ‖x̃− xadv‖2 ≤ ǫ. (8)

Here, LTi
(fϕ) represents the loss function of the reinforce-

ment learning task Ti , x̃ symbolizes the optimal state in

the Markov decision process tackled by the reinforcement

learning, xadv is the altered state, and ǫ indicates the per-

turbation magnitude. The aim of Ti is to learn a function f,

which is parameterized by ϕ to maximize the expected overall

discounted reward.

In the examination of the susceptibility of DL-based

Radio Frequency Fingerprinting (RFFI) systems to adversar-

ial attacks, Liu et al. [55] put forward a novel Generation

Adversarial Perturbation (GAP) problem that considers the

influence of actual fading channels. Furthermore, they propose

a spoofing attack algorithm utilizing the S-process, outper-

forming the benchmark scheme in simulation tests. Moreover,

Xu et al. [56] propose a graphical analysis of Radio Frequency

(RF) signature perturbations after adversarial attacks. They

explore the impact of fusion attacks (i.e., physical attacks cou-

pled with adversarial attacks) on RF fingerprint classifiers from

multiple perspectives.

Adversarial Transformation-enhanced Transfer

Attack (ATTA) [144] is a technique that uses adversar-

ial learning to train a CNN as an adversarial transformation

network. This network is capable of capturing the most

destructive deformations and transforming them into adver-

sarial noises. The adversarial samples designed to withstand

distortions induced by the adversarial transformation network

are more robust and transferable. ATTA’s performance may be

enhanced by combining it with other transfer-based attacks,

e.g., momentum iterative fast gradient sign Method (MI-

FGSM) developed in [145] and Query-Efficient Black-Box

Adversarial attack developed in [146]. However, overly

simplistic or complex structures can negatively impact

the attack’s performance, as the former lacks sufficient

representation power, and the latter causes the adversarial

transformation network to be excessively adaptive to the

backbone attack algorithm.

Luo et al. [147] propose an adversarial attack method

called semantic similarity attack on high-frequency compo-

nents (SSAH) based on frequency space constraints, which

restricts the adversarial noise to the high-frequency compo-

nents of the picture, so that the human eye perceives the

noise with relatively low similarity. The framework of SSAH

is displayed in Fig. 7. The attack strategy involves increasing

the semantic resemblance between the adversarial sample and

a randomly selected sample, while simultaneously decreas-

ing the feature similarity between the adversarial sample and

the original image. SSAH steps out of the original frame-

work based on ℓp -norm constraints, and provides a new idea

of adversarial noise generation and constraints in frequency
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TABLE VI
CONSTRAINED OPTIMIZATION-BASED ADVERSARIAL ATTACKS

space. However, although SSAH has a great decrease in

the recognition, the attack success rate has not significantly

improved. Therefore, for invisible attacks, the trade-off of their

invisibility and attack success rate is still a problem that needs

to be solved.

In the field of wireless signal classification, Kim et al. [3]

present a proposition wherein an attacker leverages a DNN

classifier to misidentify the occupied spectrum as idle. Their

research illustrates that disparities in training data and chan-

nel effects between the attacker and transmitter models could

considerably confine the efficacy and transferability of such

attacks. Further, in a distinct study, they delve deeper into the

deployment of adversarial attacks within the area of recon-

figurable intelligent surfaces (RISs) in wireless systems. They

demonstrate that adversarial attacks can be used in a posi-

tive manner. The introduction of adversarial perturbations to

the signal could fortify covert communication by enhancing

the signal detection accuracy of the intended receiver, while

concurrently diminishing the detection precision of an eaves-

dropper. Shi et al. [50] propose a DNN-based spoofing attack

to generate synthetic wireless signals that are not statistically

distinguishable from the intended transmission. The opponent

is modeled as a pair of transmitters and receivers, building

generators and discriminators that generate the adversarial

network by playing minimax games over the air. Durbha and

Amuru [4] evaluate an AutoML model to classify wireless

signals. Their exploration of the impacts of white-box and

black-box attacks on the model provides evidence that the

AutoML model’s performance closely parallels that of state-

of-the-art models in terms of classification, vulnerability, and

transferability.

Bonnet et al. [148] propose a method specifically for quan-

tizing adversarial perturbations. The quantization is imple-

mented as a customizable post-processing approach that may

be employed over any white-box attacks aimed at any model,

with less additional distortion and fewer cycles required for the

attack operation. This strategy, however, needs to access gra-

dients available in the white-box design and does not ensure

transferability to other DNNs.

Because the white-box attack needs access to predictions

and labels, it is impractical for a realistic learning system.

Hence, researchers have focused on black-box attacks.

Chang et al. [149] present a generalized adversarial attack

framework (GF-Attack). This black-box attack system can exe-

cute adversarial attacks on different kinds of graph embedding

models (GEMs) without access to labels or model predictions.

The objective is to improve the robustness of GEMs. Although

GF-Attack has a lower computational efficiency than the

Random method [150] and the Degree method [151], it can

execute an adversarial attack on a range of GEM types

with high transferability, flexibility, and extensibility without

altering the target embedding model.
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Fig. 8. Overview of the Language Model Agnostic Attack. The output of the
generator combined with the source image and the target image are both inputs
to the discriminator, and then the discriminator backpropagation updates the
generator. The resulting generator output overlaid onto the source image to
generate the title.

Non-Dominated Sorting Genetic Algorithm with Particle

Swarm Optimization (NSGA-PSO) [152] is an optimization-

based method for generating digital watermarking adversarial

perturbations. It has higher ASRs than existing black-

box attack approaches, good transferability among multiple

network models, and greater resistance to image modification

countermeasures. However, testing findings demonstrate that

its performance is worse on the CIFAR-10 dataset, compared

to the ImageNet dataset.

Despite the fact that attacks on visual models (such as

CNNs) have been well studied, the adversarial vulnerability

of neural image captioning has not been thoroughly investi-

gated, because of the unique difficulties of the “multi-model”

problem in subtitles. Aafaq et al. [153] suggest that images be

altered in line with internal representations of visual models

applied in captioning frames to deceive encoder-decoder-based

image captioning frameworks. A GAN-based method is sug-

gested, which can alter the representation of the internal

layers necessary for the image in order to produce adver-

sarial images. The diagram of the language model agnostic

adversarial attack on image caption is demonstrated in Fig. 8.

The attack begins by sampling a random vector from a uni-

form distribution via a generator. The generator output is

combined with the source image. The scaled outcome is fed

into the discriminator to obtain the desired depth representa-

tion. Similarly, the target image is fed into the discriminator.

The discriminator back propagates the gradient to update the

input image. In scale and again after deducting the original

image, the disturbance is separated, and the gradient of the

generator has been updated. In order to produce significant

image features for the target (incorrect) class and suppres-

sion features for the source (correct) class, generators are

trained to compute perturbations. The output of the genera-

tor is then attached to the source image to fabricate a title

close to the title of the target image. This enables an attacker

to successfully control the image’s title without needing to be

familiar with the caption model. But the method also has the

problem that the disturbance is imperceptible and difficult to

control.

Bahramali et al. [51] propose an adversarial attack against

the input unknowability of a wireless communication system

that is also undetectable and robust to removal. They model the

potential problem as an optimization problem and solve it to

obtain a perturbation generator model capable of generating a

large number of input-independent adversarial sample vectors

for the target wireless application. Experiments show that the

proposed attack is much better than existing attacks against

DNN-based wireless systems in the presence of defense

mechanisms deployed by the communicating party.

All of these methods, e.g., [143], [144], [145], [146], [147],

[148], [149], [150], [151], [152], [153], generate adversarial

examples to attack ML or DNN models by using constrained

optimization, such as bi-level optimization, quantization, or

particle swarm optimization (PSO). They have been shown

to have good transferability spanning many network architec-

tures, and solid resistance to example transformation defensive

strategies. Most of these methods, such as GF-Attack [149]

and NSGA-PSO [152], concentrate on improving the robust-

ness of GEMs and digital watermarking adversarial perturba-

tions and have good extension and flexibility. Moreover, they

do not depend on access to the predictions and labels, making

them more suitable for real-world scenarios. However, these

methods could perform poorly on different datasets.

C. Gradient-Free (Heuristic) Attacks

Heuristic attacks are a sort of attack that does not depend

on gradients and can include techniques such as search-based,

decision-based, and drop-based methods. These methods can

have their own advantages and disadvantages, and a summary

of the latest gradient-free attacks from several perspectives can

be found in Table VII.

Feature-Wise Convex Polytope attack (FeaCP) [154] places

emphasis on limiting the placement of generated samples. It

aims to find adversarial samples close to the decision boundary

and correct existing areas of vulnerability in neural networks.

Rather than solely focusing on the capacity for an attack,

FeaCP places a greater emphasis on controlling the genera-

tion process for the purpose of defending the model. FeaCP

considers the significance of adversarial instances in relation

to the target model during the creation process, and provides a

clear insight into the location of adversarial instances through

the adversarial direction. FeaCP can be applied to other fields,

such as sentiment analysis [155]. FeaCP creates potential

adversarial examples with confined variables, as given by

xadv = λs ⊙ x+
M
∑

i=1

λig ⊙ xig (9)

Here, x stands for the benign example; xig denotes the i-th

guidance example in a collection of randomly selected guid-

ance samples of M different classes; λs and λig represent the

tensors of coefficients that has the same shape as that of x;

λ = {λs , λ
1
g , . . . , λ

M
g } and satisfies the following condition:

λqs +

M
∑

i=1

λiqg = 1, (10)

where q indicates the q-th element of a tensor. Eqn. (10) ensures

each feature of the composite sample is a convex combination
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TABLE VII
GRADIENT-FREE ADVERSARIAL ATTACKS

of the bootstrap sample and the relevant features in the source

samples to provide sufficient flexibility for perturbation of each

feature in finding the blind spots of the DNNs.

Adversarial Laser Beam (AdvLB) is a novel attack method

introduced by Duan et al. [26], which uses a greedy search

and laser beams as a malicious perturbation. This method has

high flexibility, allowing it to attack any object, even from

long distances actively. AdvLB also has high temporal stability

because of its physical attack mechanism. On the other hand,

its deployment is simple, making it less secretive than other

methods, such as AdvCam [156].

Adversarial attacks have also appeared in the fields of

spectrum monitoring and power allocation in communications

and networking [28], [47], [68], [157], [158]. For instance,

Chew et al. [28] reveal that an adversarial attack, in the form of

an adversarial waveform, can successfully disrupt a spectrum-

monitoring system’s attempts to intercept and classify signals

using a CNN, demonstrating increased vulnerability as the

system bandwidth grows. Zheng et al. [47] propose Primary

User Adversarial Attack (PUAA) to verify the robustness of a

spectrum sensing model based on DNN. PUAA incorporates

carefully crafted disturbances into the benign primary user

signal, significantly reducing the detection probability of the

spectrum sensing model. Sun et al. [68] propose that adversar-

ial attacks can significantly compromise the power distribution

process in massive MIMO networks.

Hash adversary generation (HAG) [159] is a technique for

creating adversarial examples for a search in the Hamming

space that solves a widely perceived “gradient vanishing”

issue3 by introducing a smoother activation function. The

objective of HAG is to generate subtly altered samples that

bear no semantic connection to the original queries and whose

closest neighbors come from a chosen hashing model. Even

though the perceivability is still low, HAG can successfully

attack target hash models. The learned perturbation is highly

3“Gradient vanishing” refers to the phenomenon that during the backprop-
agation of a deep neural network, the gradients of the network can become
very small as they propagate through the layers of the network. When the gra-
dients become too small and effectively become zero, this essentially prevents
the lower layers of the network from learning any useful features [160].
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Fig. 9. An illustration of an adversarial attack against ML-based network intrusion detection models. An attacker sends several queries to the network intrusion
detection model. Based on implicit/explicit feedback from the model, the attacker applies subtle perturbations to network traffic to produce adversarial traffic
flow [5].

portable across settings and is more pronounced for the same

architecture at varying hash bit lengths.

The importance of Network Intrusion Detection (NID) is

escalating in the context of guaranteeing the availability of

systems/services and safeguarding the online security and pri-

vacy of individuals. However, NIDS predicated on DNNs are

not devoid of risks. A recent study [5] presents TIKI-TAKA, a

novel framework designed for adversarial attacks against NIDS

built on DNN. The authors trained three state-of-the-art DNN

models, i.e., Multilayer Perceptron (MLP), CNN, and Conv-

long short-term memory (C-LSTM), on publicly accessible

datasets, employing five classes of adversarial decision-based

attacks to disrupt the models. As shown in Fig. 9, an attacker

might send a traffic stream to the target network, which would

first be checked by the network intrusion detection models.

The attacker will then adjust and apply subtle perturbations

to the malicious traffic based on the feedback, resulting in

adversarial samples that can eventually compromise the effec-

tiveness of the NIDS. Experimental results underscore that

while DL-based NIDS exhibit a high detection rate, they

remain susceptible to adversarial samples.

An Intersection over Union (IoU) attack [161] is a black-

box, decision-based technique for visual object tracking. It

creates disturbances using the calculated IoU scores from cur-

rent and prior video frames. The attack decreases the accuracy

of temporally consistent bounding boxes by lowering the IoU

scores. Denote the original example (i.e., the original image

in the video frame) as x, the heavy noise example as X, and

the intermediate example on the i-th iteration as x(i). The

IoU attack labels η as a nearby assumption based on x(i) and

advances x(i) + η towards the highly noisy example X by

following the update rule below:

x(i+1) =
(

x(i) + η
)

+ α · ψ
(

X, x(i) + η
)

, (11)

where α represents the stride towards X and α ·ψ(X, x(i)+η)
represents the disturbance in the direction of greater noise,

i.e., in the direction of the normal to the noise level contour.

AMGmal [80] constitutes a new technique for generating

adversarial examples. This method, aiming to deceive malware

detectors predicated on DNNs while minimizing the requi-

site amount of perturbation, maintains its efficacy even when

defensive mechanisms are operational.

To circumvent the constraints of model-dependent

approaches, such as the C&W constraint undergone by a

well-trained classifier in [24], Zhang et al. [162] present the

Principal Component Adversarial Example (PCAE) method.

PCAE produces adversarial samples without a specific target

in mind. It is based on the idea of the adversarial zone where

data points offer a possible danger to all classifiers. As an

untargeted adversarial sample generation approach, PCAE

utilizes a data manifold that does not depend on classification

models. As a consequence, it is immune to overfitting and

the restrictions of inadequate labeled data.

Ye et al. [46] assess the performance of various white- and

black-box adversarial attack algorithms on OFDM detectors.

This work reveals the remarkable efficiency of adversarial

attacks in impairing system performance, underscoring the

merits of the Virtual Adversarial Method (VAM) and Zero-

Order Optimization (ZOO) attacks in white-box and black-box

contexts, respectively.

Different from all previous attacks, AdvDrop is a novel

adversarial attack proposed by Duan et al. [163], which

creates adversarial examples by removing certain features

from benign images. This makes the resultant images unno-

ticeable to humans but essential for DNNs to misclassify

them. AdvDrop is more resistant to existing defensive mech-

anisms, e.g., AT [164] and feature squeezing [165], and

paves the way for a new approach to assessing the robust-

ness of DNNs. Focusing on the frequency domain, it deletes

high-frequency information more often than low-frequency

information.

Moreover, Sun et al. [68] present a new adversarial

attack framework, namely generating practical malicious traf-

fic (GPMT), which is designed to generate adversarial traffic

capable of deceiving ML-based traffic detection systems, as

shown in Fig. 10. This framework offers heightened efficiency

and generalizability, manifesting substantial evasion growth

rates across diverse models and datasets.

In response to the issue of malicious traffic, Yang et al. [79]

introduce a novel traffic obfuscation methodology, namely

traffic obfuscation adversarial network, namely TONet, pred-

icated on the employment of adversarial neural networks

to generate disturbance vectors. The obfuscation samples

generated via this approach exhibit an exceptionally low

disturbance cost and an exceedingly high defense success

rate (i.e., ≥ 99%) in scenarios involving known adversaries.

This methodology demonstrates robustness against unknown

models for adversary attacks and optimizes both computational

complexity and implementation speed.
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Fig. 10. The adversarial attack process for ML-based malicious traffic
detection: (1.1) The attacker attempts to attack the target; (1.2) The attacker
generates original malicious traffic; (2) The detection model detects mali-
cious behavior and issues an alarm to block network traffic; (3.1) The attacker
receives feedback and builds the adversarial attack model; (3.2) The attack
model modifies malicious traffic until it can successfully escape detection;
and (4) adversarial traffic escape detection successfully [68].

The majority of adversarial attack strategies rely on label

data, but face recognition (FR) authentication systems don’t

keep track of the label data for the target user. A similarity-

based gray-box adversarial attack (SGADV) is put forth

by Wang et al. [138] to address the shortcomings of cur-

rent adversarial attacks on FR authentication systems. To

implement adversarial attacks based on benchmark labels, a

conditional binary cross-entropy (C-BCE) objective function

is also designed as a baseline against FR-based authentica-

tion. Additionally, the experimental findings demonstrate that

the pre-trained model is not secure in practice even if the

database for face template storage is unharmed, demonstrating

the importance of this research for raising the privacy threat

to users. SGADV achieves effective attacks and a satisfactory

time cost, but it is less efficient than FGSM [54], PGD [22]

and DeepFool [76], and no studies have been conducted on

transferability.

The above-mentioned attack methods, i.e., FeaCP [154],

AdvLB [26], HAG [159], PCAE [162], IoU [161],

AdvDrop [163] and SGADV [138] represent the SOTA

gradient-free attacks for DNNs.

• FeaCP [154] defends neural networks by limiting gen-

erated samples, finding close adversarial samples, and

controlling the generation process while providing insight

into their location.

• AdvLB [26] is a new attack method that uses a search

method and laser beams to attack objects from a distance.

It is easy to use but not as secretive as other methods.

• HAG [159] generates adversarial examples in the

Hamming space with no semantic connection to the orig-

inal queries. Its perturbation is portable across settings.

• The IoU attack [161] is a method that uses past and cur-

rent frames to reduce the accuracy of object tracking by

generating perturbations.

• PCAE [162] is an approach for crafting adversarial exam-

ples that do not require a target and do not have the issues

of overfitting or lack of data.

• AdvDrop [163] generates adversarial examples by modi-

fying image frequencies, making it challenging to defend

against and a useful tool for testing DNNs’ robustness.

• SGADV [138] utilizes different similarity scores to

generate optimized adversarial samples, effectively

breaking FR-based authentication in both white-box and

gray-box attacks.

All of these methods have their own strengths and limi-

tations. For example, AdvLB is highly temporally stable but

less secretive. PCAE is target-free, but it does not rely on any

classifier, so it is hard to evaluate its performance. AdvDrop

is more robust to current defense methods, but it is relatively

simple and focuses on the frequency domain.

D. Adversarial Patch

Although adversarial sample attacks, such as PGD [22]

and Contrastive AT [139], can achieve a high ASR and

undetectable perturbation effect, its generalization ability is

generally poor to be used in the physical world, and a specific

perturbation must be generated for each attack. As a result,

adversarial patch attacks [26], [166] come into view as a vari-

ant of the adversarial sample attack, in contrast to adversarial

sample attacks where an attacker always aims to minimize the

level of perturbation to avoid detection. In adversarial patch

attacks, the attacker never again confines themselves to imper-

ceptible changes. The attack generates an image-independent

patch, which can be set anyplace in the image to attack a DNN-

based image classifier and cause it to output a specified target

class. Table VIII collates the latest adversarial patch methods.

The advantage of adversarial patching over adversarial sam-

ple attacks is that adversarial patching can be more targeted

and effective in deceiving a deep learning model by creating a

small, localized patch that can be placed at a specific location

of an image. By contrast, adversarial sample attacks typically

add noise or distortion to an entire image. Moreover, adver-

sarial patching can potentially attack deep learning models in

real-world scenarios where digital attacks are impossible, such

as in physical security systems. This makes it a powerful tool

for attackers to bypass ML-based security systems in many

practical application scenarios. However, adversarial patch-

ing requires more effort and knowledge to create and raises

important questions regarding the responsible development

and deployment of ML systems.

FaceAdv [167] is a physical adversarial attack technique,

which uses malicious stickers to fool face recognition applica-

tions. FaceAdv comprises a malicious sticker generator and a

converter. The generator makes a variety of differently-shaped

stickers (some examples of stickers are shown in Fig. 11).

At the same time, the latter applies the stickers digitally on

human faces and provides the generator with attack results

to enhance its efficacy. Despite changes in environmental

conditions, FaceAdv can dramatically increase the success

rate of avoidance and simulated attacks, showing robustness.

However, the “sticker” attacks require a high degree of hard-

ness to avoid early detection by humans. They also require the

adversaries to physically access the target object for pasting

the stickers, which may not always be possible.

Robust Physical Perturbation (RP2) [169] is a generic attack

algorithm that produces perturbations robust to varying angles

and distances under different physical conditions. The pertur-

bations are visible but inconspicuous and only perturb objects

(e.g., road signs) without disturbing the object’s environment.
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TABLE VIII
ADVERSARIAL PATCHING METHODS

Fig. 11. Examples of stickers for faces and traffic signs [168].

The algorithm utilizes a mask to transform the estimated

perturbations into a graffiti-like form after sampling from a

range of simulated physical dynamics. An attacker may then

print out the resultant perturbations and apply them to the road

sign under attack, resulting in a high rate of misclassification

of the target by the road sign classifier, which might lead to

catastrophic consequences.

Perceptual sensitivity is a crucial aspect of visual recogni-

tion systems. The more natural-looking the generated adver-

sarial blocks, the more likely the attacks are successful.

Perceptual-Sensitive Generative Adversarial Network (PS-

GAN) [170] uses perceptual sensitivity to improve the visual

plausibility and attack capability of adversarial patches. It

adopts a visual attention mechanism to capture the sensitiv-

ity of the spatial distribution and guide the localization of

the adversarial patches for a stable attack effect. PS-GAN

can also generate adversarial patches on-the-fly without the

need to access the target model at the time of inference.

This makes it a powerful tool for attackers looking to bypass

visual recognition systems in real-world scenarios. Similarly,

Fig. 12. The framework of the MultiD-WGAN method. It is composed of
a generator G, several discriminators, and a target classifier F.

Wang et al. [171] propose a data-driven, Muti-Discriminator

Wasserstein GAN (MultiD-WGAN) algorithm based on GANs

to craft adversarial patches that focus on the perceived sen-

sitivity of the attacked neural network model, as shown

in Fig. 12. The algorithm enhances both the aggressiveness

and authenticity of adversarial patches by utilizing multiple

discriminators. The research demonstrates, theoretically and

experimentally, a positive correlation between attack strength

and attack capability.

Wang et al. [172] devise a bias-based framework to pro-

duce generic adversarial patches that exploit attentional bias

and perceptual bias to improve attack capabilities and increase

the generality of adversarial patches. The framework uses style

similarity [173] to extract a patch that comes before texture
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from a hard example with high model uncertainty and accounts

for perceptual bias. An attentional bias is utilized by obscur-

ing the same attentional patterns shared by models, which are

identical for the same image across multiple models. This

allows the created adversarial patch to be more transferable

between models.

To tackle the hindrance of feeble disguise of adversar-

ial patches and lengthy computational time, Bai et al. [174]

advance a procedure to bring forth inconspicuous adversar-

ial patches exploiting singular images. The technique initially

ascertains patch areas depending on the perceptual sensitivity

of the target model, and then fabricates adversarial patches

in a coarse-to-fine system, which utilizes multiscale producers

and judges. The patches are urged to coordinate with the back-

ground image through adversarial training. At the same time,

it still maintain a powerful attack aptitude. Experimentally, the

proposed method has demonstrated formidable attack capabil-

ity in white-box settings and good transferability for black-box

situations, making it difficult to identify.

To increase adversarial stealthiness and camouflage flexi-

bility while maintaining adversarial strength, AdvCam [156]

uses a style migration approach to achieve stealthiness and an

adversarial attack technique to strengthen adversarial capabil-

ities. The attacker specifies the target image, the target attack

area, and the intended target style. AdvCam transforms signif-

icant adversarial perturbations into adjusted styles. The latter

is then disguised in the target object or the background out-

side the target. Experiments conducted in both the digital- and

physical-world scenarios show that AdvCam’s faked adversar-

ial samples are highly concealable and yet still effective in

spoofing the latest DNN-based image classifiers.

The existing studies on adversarial patches, such as those

developed in [175], [176], have only looked at the robust-

ness of single-spectrum (RGB or Thermal) models and have

not evaluated multispectral models. They have only analyzed

digital space perturbations and have not considered vulner-

abilities in the physical world. To address these limitations,

Kim et al. [177] introduce a new framework for generat-

ing multispectral adversarial patches (MAP) using material

emissivity (ME) loss optimization and cross-spectral map-

ping (CSM). The experiments show that the generated MAP

can successfully attack multispectral personnel detectors in

both physical and digital spaces, highlighting the need for

further research in this area. Tarchoun et al. [178] investi-

gate the influence of viewpoint on the efficacy of adversarial

patches. In order to replicate the effect of perspective alter-

ations in multi-perspective settings, they combine known

adversarial patches with perspective geometric transforma-

tions. Experiments demonstrate that perspective substantially

affects the efficacy of adversarial patches, which can some-

times drop substantially. This finding encourages academics

to investigate the influence of viewpoint on adversarial attacks

and reveals new options for adversarial defenses.

The above-mentioned methods represent the current SOTA

in adversarial patch generation, with a focus on image recog-

nition systems. These methods include FaceAdv, which crafts

adversarial stickers to deceive facial recognition systems [167];

RP2, which produces perturbations that are robust to varying

distances and angles under different physical conditions [169];

PS-GAN, which uses perceptual sensitivity to improve

the visual plausibility and attack capability of adversar-

ial patches [170]; MultiD-WGAN, which enhances both

the aggressiveness and authenticity of adversarial patches

by utilizing multiple discriminators [171]; AdvCam, which

increases adversarial stealthiness and camouflage flexibility

while maintaining adversarial strength by using a style migra-

tion approach and an adversarial attack technique [156]; and

MAP, which generates multi-spectral adversarial patches to

attack multi-spectral personnel detectors in both physical and

digital spaces [177].

Some of the methods, i.e., FaceAdv [167], RP2 [169], and

PS-GAN [170], have demonstrated considerable strengths. For

example, they are powerful tools for attackers looking to

bypass ML-based security systems in the real world. They

improve the visual plausibility and attack capability of adver-

sarial patches. They can increase adversarial stealthiness and

camouflage flexibility, while maintaining adversarial strength.

They consider the impact of perspective in adversarial attacks.

On the other hand, they also have some weaknesses. Some

methods require a high degree of hardness to avoid early

detection by humans. Some methods require the attacker to

physically access the target object to paste stickers, which

may not always be possible. Moreover, they have not been

thoroughly tested in multispectral models. There is still much

work to be done in terms of understanding the limitations

and weaknesses of these methods, and developing effective

countermeasures to protect against them.

E. Transferability of Adversarial Attacks

Transferability accounts for the ability of adversarial attacks

to be applied to different models and datasets. Ideally, from

the perspective of attackers, an adversarial sample generated

to deceive a specific model can also deceive other models.

This is significant because it means that an attacker does not

need to generate a new adversarial sample for each model

or dataset it wants to attack, which can be time-consuming

and computationally expensive. Suppose an adversarial sample

is highly transferable. In this case, it is more likely to be

successful in the real world, where the attackers might not

know the specific model or dataset they are trying to attack.

This makes the attack more powerful and can increase the

ASR.

Goodfellow et al. [54] believe that a linear model is suf-

ficient to produce adversarial instances in high-dimensional

space, rather than relying on highly nonlinear features of

DNNs. They explain that the reason for cross-model gener-

alization is that adversarial examples are highly consistent

with the weight vector of the model, and different models that

carry out the same task learn similar functions. Su et al. [179]

evaluate eighteen DNN-based image classification models and

concluded that untargeted attacks obtain higher transferability

than targeted attacks. The transferability of adversarial sam-

ples was sometimes symmetric. They also discover that most

adversarial samples from one model could only migrate among

similar models. In addition, the transferability of the Visual

Authorized licensed use limited to: Princeton University. Downloaded on May 24,2024 at 17:54:12 UTC from IEEE Xplore.  Restrictions apply. 



2268 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

Geometry Group (VGG) model [180] performs far better than

that of other models, making it a solid starting point for

enhancing the black-box transfer-based attack.

According to [162], the transferability of adversarial cases

is mostly due to the junction of adversarial area divisions

and distinct classifier borders. The authors propose PCAE, a

data-generated approach that can generate more transferrable

adversarial instances than certain model-dependent methods.

They also demonstrate that the target-free strategy might

discover more transferrable adversarial scenarios and that

target-free adversarial instances have greater transferability

when model and/or dataset similarity is high.

Many other researchers have made efforts from various

directions to strengthen the transferability of adversarial cases.

AoA [129] focuses on attention heat maps, for which diverse

DNNs provide comparable results, making AoA highly trans-

ferable. Contrastive AT [139] provides adversarial instances

on ensemble models as opposed to a single model and has

shown its efficacy in the black-box situation for improving

transferability.

Wang et al. [138] study the impact of proxy representa-

tion learning on the transferability of adversarial attacks in

gray-box graphs. The authors put forth that the proxy mod-

els need to maintain the consistency of node topology in the

embedding layer and input layer, and use the SRLIM to main-

tain the topology of nodes mapped from a non-input space to

a Euclidean embedding space. The proposed method realizes

the improvement of the generalization and transferability of

adversarial attacks.

FaceAdv [167] use the collection of face recognition

systems to train the sticker generator and update the loss func-

tion. ATTA [144] enhances the transferability of generated

adversarial samples by adversarial transformations, which is

a network of adversarial transformations that automates the

distortion adjustment procedure. IGA [133] is a transferrable

attack for unknown link prediction approaches. In IGA, since

the perturbations caused by GAE are universal and the attack

is transferrable, the adversarial graph may still be successful in

a variety of link prediction models. This is due to the fact that

GAE can extract critical information from graphs in pursuit

of link prediction.

As discussed above, several studies have been undertaken

on the transferability of adversarial instances, or the abil-

ity of an adversarial attack to deceive different models or

datasets. Studies have shown that the transferability of adver-

sarial examples depends primarily on the closeness of the

models or datasets under attack, and that untargeted attacks

tend to have more transferability than targeted ones. Some

studies have suggested approaches to enhancing the transfer-

ability of adversarial instances, including the use of ensemble

models, attention heat maps, and adversarial transformations.

However, there is still room for improvement in the transfer-

ability of adversarial examples, particularly in creating more

effective and efficient transferable attacks and in better under-

standing the underlying causes of transferability. Moreover,

current methodologies tend to focus on image classification

models. There is a need for more studies on other types

of models, such as NLP. For example, Wallace et al. [181]

build an imitation model like the victim model to study the

transferability of a black-box machine translation system by

using gradient-based attacks.

On the other hand, it is important to develop new approaches

to defending against transferable adversarial attacks. One strat-

egy is to use transferable adversarial examples to enhance the

robustness of DNN models through adversarial learning, as

suggested by [182]. The limitation of this strategy is that it

requires a large number of transferable adversarial examples

for training, which can be time-consuming and can adversely

affect the prediction accuracy of the DNN model on natural

examples due to an increased ratio of adversarial examples

in the training dataset. Another strategy is to assemble vari-

ous defenses into an ensemble solution to compensate for the

lack of diversity in a single defense mechanism. For example,

Deep Fusion Defense [183] employs three or five DNN mod-

els trained with different perturbation magnitudes to achieve

superior performance in defending against transferable adver-

sarial examples. However, the ensemble strategy can worsen

the time and computational cost of the defense. Therefore,

developing few-shot (i.e., using fewer training examples) solu-

tions for defending against transferable adversarial examples

is essential.

Recently, Zhou et al. [184] indicate that introducing ran-

domness into neural network models can hinder the trans-

ferability of adversarial attacks. They also reveal that the

transferability of adversarial attacks is closely related to the

spread of DNN models distributed in the version space and the

severity of adversarial attacks. As a result, the robustness of

a DNN model can be enhanced using any subset of the DNN

models, or by adding a mild Gaussian noise to the weight of

the pre-trained model. In addition, the robustness of adversar-

ial ensemble training also has great potential for improvement

combined with randomization techniques.

Nowroozi et al. [72] propose two current defense mech-

anisms to prevent the transferability of adversarial attacks.

The first approach is to fine-tune the classifier with the most

powerful attacks (MPAs) each time a shift occurs against a

given adversarial attack. Another strategy relies on using the

long short-term memory (LSTM) [185] architecture, instead

of CNN, as the target network, allowing the attacker to have

less attack information than a previous system that did not

know the target network architecture. Moreover, the Luring

Effect [186] is a new way to boost the robustness of DNN

models against black-box transfer attacks. The key concept

is situated in conventional network security methods based

on deception, which does not need a labeled dataset but

needs access to the target model’s predictions. Some other

defense methods, such as Robust Soft Label Adversarial

Distillation (RSLAD) [187] and Dual-Domain based Defense

(D2Defend) [188], demonstrate their effectiveness in defend-

ing against transfer-based black-box attacks.

F. Summary and Lessons Learned

Adversarial attacks can be launched in several differ-

ent ways, including gradient-based, optimization-based, and

search-based methods. Gradient-based attack schemes are
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TABLE IX
PERFORMANCE OF ADVERSARIAL ATTACK METHODS IN COMMUNICATIONS AND NETWORKS

known for their high ASRs and good transferability. They still

have limitations, such as high computational and time costs, as

well as the issue of “gradient saturation”, which reduces their

effectiveness [189]. Moreover, gradient-based methods are rel-

atively easy to defend against [190]. Many existing defenses,

such as obfuscated gradients [191], can effectively block most

gradient-based attacks.

Constrained optimization-based attack methods have good

transferability but are also known for their high computational

and time costs, making them difficult to use in time-sensitive

applications [164]. Search-based attack methods are highly

transferable and can be extended to domains beyond image

classification [12]. However, for more complex data sets,

searching for the optimal adversarial sample needs more itera-

tions and high computational costs, and it is difficult to find the

appropriate search start point. Currently, search-based meth-

ods are mainly applied to the optimization of other adversarial

sample generation algorithms [192].

Adversarial attacks can be performed not only on

images but also on other types of media, such as

audio [193], [194], [195], text [196], [197], and wireless sig-

nals [44], [46], [60]. CNNs normalize all inputs to continuous

signals, regardless of their semantic meanings. The major dif-

ference between images and other types of media is in their

dimensions, which require adapted convolutional kernels for

feature extraction. In this sense, the same adversarial attacks

or their variations are largely applicable to inputs with media

other than images.

Adversarial examples affect classification tasks and threaten

other deep-learning tasks, such as regression. For instance,

a neural network that solves the power allocation problem

for a massive MIMO system can be misled by FGSM [54],

PGD [22], or UAP [70] attacks, which were originally

developed for image classification problems [198], [199].

Adversarial attacks, such as FGSM, I-FGSM [74], and PGD,

have also shown effectiveness in linear regression tasks [200].

To this end, research progress made on adversarial attacks

and defenses, e.g., regarding the image classification tasks,

can be highly beneficial to other types of deep learning

tasks.

Future investigation is expected to focus on reducing

attack costs, improving transferability across different datasets

and models, and extending to more deep learning domains.

Additionally, it is important to strike a balance between pertur-

bation visibility and attack success in order to develop effective

adversarial attack methods.

As presented in Table IX. The methods have now been

ranked based on four parameters: invisibility, efficiency, porta-

bility, and computational complexity, with check marks mean-

ing better performance.
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Fig. 13. Anatomy of breakthroughs in adversarial attacks since 2021.

IV. STATE-OF-THE-ART ADVERSARIAL

DEFENSE TECHNIQUES

To counteract adversarial attacks, various adversarial

defense techniques have been devised. These techniques are

designed to counteract specific attack techniques and range

from specific defenses to general defense strategies. Deep

learning models need to have the ability to counteract such

attacks to maintain their accuracy and effectiveness.

A. Overview

Typical adversarial defense techniques that have been

developed include:

• Adversarial Learning: Adversarial learning is a type of

deep learning technique that involves training a model

to improve its robustness against adversarial examples.

One of its key techniques is adversarial training, which

involves adding adversarial samples to the training pro-

cess to improve the robustness of a DNN model. By

continuously learning the features of adversarial samples,

the model can better defend against attacks that involve

adding subtle disturbances to input samples. This can

improve the accuracy and effectiveness of the model in

many real-world scenarios, where it may be exposed to

adversarial samples designed to “trick” it into making

incorrect predictions.

• Monitoring: This is a strategy for identifying adversar-

ial samples, which are input samples modified to cause

a deep-learning model to make incorrect predictions. To

monitor for adversarial samples, special models can be
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set up at key points in the system to identify these sam-

ples and provide early warning of potential adversarial

attacks. This allows the system to take proactive mea-

sures to defend against attacks and maintain the integrity

of the model’s predictions.

• Model Robustness Design: This involves using specific

filtering structures in the model to enhance its resilience

against adversarial noise. Adversarial noise refers to the

subtle disturbances that are attached to input samples to

incite the model to produce false predictions. By design-

ing the model to be more resistant to adversarial noise,

it can better defend against these types of attacks and

maintain the accuracy of its predictions.

• Adversarial Perturbation Structure Destruction: This

involves using various strategies to attenuate the effect of

adversarial noise and prevent attacks on the deep learning

models. The strategies may include the use of filtering

algorithms, noise structure destruction algorithms, and

noise coverage algorithms in data stream processing. The

goal is to achieve more resilience to adversarial noise,

which is the subtle disturbance added to input samples to

cause the model to make incorrect predictions.

These four aspects are important to build robust, secure, and

resilient deep learning systems, particularly in fields where the

integrity and accuracy of the model’s predictions are critical,

e.g., in network security and finance.

With the constant emergence of new and increasingly

destructive adversarial attack methods, many research efforts

have been devoted to exploring corresponding defenses.

Current adversarial defense strategies can be categorized into

two prevalent strategies: One strategy is based on detection and

data preprocessing, and the other strategy improves adversarial

robustness.

From a DNN model perspective, adversarial learning can

be interpreted as gradient masking, which can refer to a

class of techniques that hide model gradients from adver-

saries and prevent the adversaries from obtaining the cor-

rect gradients of the models, such as Graph Adversarial

Training (GraphAT) [214] and Robust CNN Training [215],

as will be delineated in Section IV-C4. More generally,

gradient masking can refer to the outcome or effect of tech-

niques designed to take other approaches (e.g., defensive

distillation [187]) to defend against adversarial attacks and

resulting in obscured gradients of the network models under

attack.

B. Adversarial Attack Detection and Data Preprocessing

This type of defense method primarily detects adversarial

attacks through technical means and pre-detected adversarial

samples, or preprocesses the input data and destroys some key

structures that constitute the adversarial samples.

1) Adversarial Attack Detection: As an adversarial defense

method, adversarial sample detection has also attracted much

attention from researchers. Given a sample, the goal is

to directly detect whether it presents a threat. In essence,

the detector is trained on both the raw and adversar-

ial sample datasets to identify adversarial samples by

Fig. 14. The CMAG workflow during the deployment phase. The CMAG
is made up of FMR, LR, and GR, which are three reconstructors. When the
reconstruction error exceeds the stated threshold, the sample is considered
hostile.

measuring the differences between them caused by the adver-

sarial perturbation [216]. A prominent detection method,

H&G [217], utilizes techniques, e.g., PCA, softmax, and the

reconstruction of adversarial images. These methods exploit

the differences between original and perturbed images, but can

be easily bypassed by attacks that target at them.

An algorithm called RObust SAliency (ROSA), presented

by Li et al. [218], is an innovative technique for enhancing

the robustness of FCN-based salient object recognition models

against adversarial attacks. It works by adding universal noise

to the input image, then using a two-part system to predict

the saliency map of the image: A piecewise-masked compo-

nent that disrupts adversarial noise patterns while preserving

boundaries, and a context-aware refinement component that

adjusts the saliency mapping by using contrast modeling.

ROSA enhances network robustness to attacks and performs

comparably or better on natural images than current meth-

ods, which only focus on non-target attacks. The defensive

performance against target attacks has yet to be explored.

Aiming to enhance NIDS, Debicha et al. [83] develop an

effective adversarial detector predicated on transfer learning of

DNNs. They propose that in scenarios involving parallel intru-

sion detection system (IDS) designs, harnessing the synergy

of multiple detectors can markedly augment the detectabil-

ity of adversarial traffic, outperforming a singular detector.

Correspondingly, within the domain of IoT intrusion detec-

tion, Jiang et al. [84] introduce a novel framework titled

Feature Grouping and Multi-model Fusion Detector (FGMD).

This framework fortifies defenses against adversarial attacks

through the strategic grouping of features and fusion of

multiple models.

Cascade model-aware generative (CMAG) [219] is an adver-

sarial sample detection technique that consists of two first-

order reconstructors, including a Feature-Map Reconstructor

(FMR) and Logit Reconstructor (LR), and a second-order

Global Reconstructor (GR). Rebuilding the logit and feature

mapping produces an interpretable representation of the final

convolution layer. If the reconstruction error (RE) of a sam-

ple relative to GR exceeds the predetermined threshold, the

sample is classified as adversarial. The process of a CMAG

during deployment is shown in Fig. 14. CMAG provides a new

means to detect the presence of adversarial samples, which can
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accurately detect high-quality adversarial samples compared to

existing generative model-based detection methods, e.g., Fence

FGAN [220] and UADD-GAN [221]. The drawback of CMAG

is that it utilizes a simplistic autoencoder as the generative

model, and may not yield satisfactory results for complex

datasets.

Zhang and Wang [222] state that adversarial attacks pri-

marily attain their objectives by altering pixel values and

that such attacks often insert perturbations in regions with

high textures. In response, they presented a step-based deep

learning network known as ADNet. ADNet is a DNN model

for adversarial example detection by using steganalysis and

attention mechanisms. It features an attention module, an

adversarial attack attention module (AAAM), which pays addi-

tional attention to vulnerable parts throughout the process of

feature learning, hence increasing the model’s accuracy. To

reduce the misclassification of regular samples in the detection

phase, a special adversarial loss function has been designed to

fine-tune the model, resulting in impressive outcomes. As an

end-to-end model, ADNet does not rely on the extraction of

high-quality features, hence reducing the cost of human partic-

ipation. However, it encounters the problem that the detection

rate for adversarial samples is better than the classification

accuracy for clean samples.

Addressing the potential security risks adversarial attacks

posed to ML-based IDS, Li et al. [6] conduct a detailed

examination of adversarial attackers’ ability to deceive detec-

tors used in IIoT, specifically EIFDAA. The robustness of

IDS is significantly improved through adversarial training.

The improved IDS effectively resist adversarial attackers while

preserving the original detection rate of attack samples.

Freitas et al. [223] indicate that adversarial vulnerability is

a consequence of the excessive sensitivity of a model to good

generalization features in the data. Since the model not only

learns robust features but also information about non-robust

features during training, models can be vulnerable despite

maximizing accuracy. In light of this, the concept of adver-

sarial vulnerability is extended to combine with prior human

knowledge, and a new approach named UnMask is proposed,

which is a framework for detection and protection against

adversaries that relies on strong feature alignment. UnMask

quantitatively evaluates the resemblance between the extracted

and expected features, selects an adversarial perturbation to

detect with a given similarity threshold, and protects the model

by predicting the correct class that best fits the extracted fea-

tures. The method highlights the advantage that even if an

attacker can manipulate the predicted class labels by slightly

changing the pixel values, simultaneously manipulating all the

individual features that make up the image together is a more

challenging task. Currently, UnMask only focuses on non-

target attacks, and the defensive performance against target

attacks has not been validated.

Although most adversarial defense detection methods have

offered satisfactory results, some problems are yet to be

addressed, including excessive reliance on target models,

difficulty in resisting transfer attacks, relatively weak general-

ization capabilities, and so on. Model-independent methods to

detect adversarial inputs are developed by Wang et al. [224].

Fig. 15. An overview of the architecture of the logit-based adversarial sample
detection method. The model analyzes the original and adversarial examples
that differ not only in the feature space but also in the semantic space, and
then trains an LSTM network to learn the differences in the logit distribution
in the semantic space.

The architecture is reviewed in Fig. 15. As the primary

architecture of the detector, an LSTM network is trained to

capture variations in the logit sequence distribution. They

examine the original and adversarial cases, which vary not

only in the feature space but also in the semantic space,

and then train an LSTM network to discover any discrepancy

in the logit distribution in the semantic space. They offer a

logit-based adversarial sample detection strategy that is very

flexible, simple to implement in all pre-trained models, and

has robust detection resistance against both black-box and

white-box attacks.

To detect arbitrary adversarial attacks without access

to reference spectrographs and adversarial perturbations,

Esmaeilpour et al. [225] propose a regularized logistic regres-

sion model to distinguish the eigenvalues of malicious spectral

graphs from legitimate spectral graphs. They reveal that the

manifolds of the adversarial samples are distant from the

natural and noisy instances that are slightly disturbed by

Gaussian noises. They use the eigenvalues of the legal exam-

ples and adversarial examples to train a logistic regression

to find the decision boundary between them. This detector’s

main obstacle is its sensitivity to intra-class sample similarity,

particularly in the multi-classification problem of black-box

attacks.

Existing methods, e.g., [226], [227], focus on the visual

field, and cannot detect adversarial examples in the radio sig-

nal field, which is an important domain due to the ubiquitous

networks. In response to the adversarial attacks in the realm

of radio signals, Xu et al. [58] describe a novel adversarial

sample identification method by means of the integration of

many features. They also provide a framework for creating

adversarial samples, collecting local intrinsic dimension (LID)

characteristics and constellation diagram (CD) characteristics,

and recognizing adversarial samples. The framework produces

the values of each layer for both normal and adversarial exam-

ples of the model. Then it computes the LID eigenvalues of the

instance by estimating the maximum probability of a defined

range of neighborhoods. The CD eigenvalues are computed

simultaneously using the range characteristics and density fea-

tures of the CD distribution. A logistic regression classifier is

trained using several feature fusion values to identify adver-

sarial samples. Experiments demonstrate that the suggested

approach can reliably identify hostile radio signals. However,

the performance degrades slightly when the perturbation is less
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Fig. 16. Overview of the Generator and Discriminator in CAP-GAN. To
accomplish adequate purification under cycle-consistent learning, the frame-
work trains the purification model to increase robustness. It employs the
standard GAN training approach to purify adversarial inputs by considering
pixel-level and feature-level consistency.

than 10%. The reason is that the perturbations are very small,

and the features are inconspicuous between the normal and

adversarial examples.

All these methods, such as [218] and [58], represent the

latest defense techniques that detect and defend against adver-

sarial attacks. Adversarial sample detection is a typical defense

method that aims to detect whether a sample is undergoing an

adversarial attack directly. Logistic regression and deep learn-

ing are often used to classify adversarial and non-adversarial

samples. On the one hand, adversarial sample detection meth-

ods can effectively detect and defend against adversarial

attacks, in particular, black-box and white-box attacks. They

are versatile and widely applicable to pre-trained models. On

the other hand, adversarial sample detection methods may

require large amounts of training data and high-capacity mod-

els with high computational overhead. They may have poor

generalization capabilities and may be vulnerable to transfer

attacks. Moreover, some of the methods are sensitive to intra-

class sample similarity, especially in the multi-classification

problem of black-box attacks.

2) Data Preprocessing: For defense methods for prepro-

cessing input samples, classical research methods include

PixelDefend [228], feature compression [229] and random

transformations [230], etc. Table XI classifies the recent data

preprocessing methods from the perspectives of attacked

objects, input types, and invisible metrics.

Kang et al. [231] propose a purification model named

Cycle-consistent attentional purification GAN (CAP-GAN),

aimed at decreasing the impact of adversarial perturbations

by transforming the input. The design of CAP-GAN is plot-

ted in Fig. 16. The framework trains the purification model to

enhance the pre-trained model’s robustness in image classifi-

cation. It uses the standard GAN training process to clean up

adversarial inputs by balancing pixel-level and feature-level

consistency via cycle-consistent learning for effective purifi-

cation. On the CIFAR-10 dataset, CAP-GAN surpasses other

preprocessing-based defenses, such as the JPG compression

method developed in [232], in both black-box and white-box

configurations.

To address the issue that preprocessing-based defenses

are typically sensitive to the error amplification effect,

Zhou et al. [233] suggest a self-supervised adversarial training

mechanism in the class activation feature space to elimi-

nate adversarial noise. Given adversarial assaults in the realm

of radio signals, they first produce adversarial instances by

substantially disrupting natural examples’ class activation fea-

tures. Then they train a denoising model, also known as

the class activation feature-based denoiser (CAFD), by min-

imizing the disparities between the adversarial and normal

examples in the class activation feature space. Consequently,

antagonistic noise may be minimized. In comparison to prior

approaches, such as the adversarial perturbation elimination

GAN (APE-GAN) method developed in [234], the method

developed in [233] considerably improves adversarial robust-

ness, particularly against unexpected adversarial and adaptive

attacks. However, for white-box attacks, the protection capabil-

ity of the defense model is compromised as the defense model

is completely visible to the attacker. In this sense, the defense

against white-box adaptive attacks needs to be strengthened.

With the aim of addressing both adversarial examples delib-

erately created to cause harm and inputs that fall outside

of the expected distribution, Wei and Liu [235] develop

XEnsemble, a diversity ensemble verification technique. To

limit the harm caused by malicious or incorrect data inputs,

XEnsemble, an input-output model verification ensemble pro-

tection technique, may automatically examine every input

to the prediction model. To protect DNN prediction mod-

els from adversarial examples and out-of-distribution inputs,

XEnsemble uses a variety of data cleaning strategies, includ-

ing rotation, color-depth reduction, local spatial smoothing and

non-local spatial smoothing (NLM), to generate diverse input

denoising verifiers, implements an ensemble learning approach

to protect the DNN model from deception, and offers a set of

algorithms for combining the input and output verifications.

XEnsemble performs well in recognizing out-of-distribution

inputs and protecting against adversarial samples. In order to

make XEnsemble more resistant to internal attacks on the

defensive system, the team has planned to randomize the

input denoising integration layer and the output model vali-

dation layer, and also to generalize the XEnsemble technique

to additional media types, including text, video, and audio.

By taking inspiration from the robustness domain [236],

[237], [238], Zhu et al. [239] examine adversarial training

from the standpoint of data-to-decision boundary distance.

They introduce Saliency Adversarial Defense (SAD). This

batch normalization strategy can achieve adversarial robust-

ness without adversarial training by processing inputs through

their saliency map and changing the Batch Normalization

(BN) statistics. Compared to adversarial training, SDA is effi-

cient in protecting against various forms of white-box and

black-box attacks. It is generally anticipated that fine-tuning

the processed data and adjusting the saliency map intensity

based on the sample could lead to further improvement in

performance.

When reducing adversarial noise, many existing model-

agnostic defenses lose key image content, resulting in low

classification accuracy on benign images. In this regard,

Mustafa et al. [240] put forth an image restoration approach

by using super-resolution, which projects off-the-manifold
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TABLE X
ADVERSARIAL ATTACK DETECTION METHODS

adversarial instances into the native image manifold. The

method is a model-independent defense mechanism that

enhances an image by selectively adding high-frequency ele-

ments meanwhile canceling out any unwanted noise intro-

duced by the attacker. Not only does the approach defend

against attacks, but it enhances image quality while keeping

model performance constant on clean images as well. Even

when the attack model and attack type are unknown, the

method performs better than white-box settings in terms of

robustness.

Despite its importance in CNN prediction, the accu-

rate recovery of input image structures has been gener-

ally overlooked in existing adversarial defensive systems.

Yan et al. [188] develop D2Defend, which recovers both

low and high-frequency picture structures in the spatial and

transform domains, while eliminating adversary distortions.

Unlike previous input-transformation approaches, such as a

feature distillation method developed in [229], D2Defend uses

bilateral and short-time Fourier transform (STFT) filtering to

divide the input image into edge and texture feature layers.

D2Defend is simple to develop and model-independent. It has

been demonstrated to outperform existing adversarial defense

approaches, particularly in high-attack scenarios. D2Defend’s

loss in clean accuracy is likewise judged acceptable and more

stable than other defense methods.

These data processing-based methods [188], [189], [190],

[191], [192], [193], [194], [195], [196], [197], [198], [199],

[200], [201], [202], [203], [204], [205], [206], [207], [208],

[209], [210], [211], [212], [213], [214], [215], [216], [217],

[218], [219], [220], [221], [222], [223], [224], [225], [226],

[227], [228], [229], [230], [231] can be broadly categorized

as model-specific or model-agnostic defenses [241], and input-

transformation or input-verification based defenses [242].

One commonality among these methods is that they aim to

strengthen DNNs’ resistance to adversarial attacks without sig-

nificantly degrading their performance on non-attacked (clean)

inputs. Some of the strengths of the methods discussed include

their ability to defend against both white-box and black-box

attacks, their model-agnosticism, and their ability to recover

image structures of the input. Additionally, some of the meth-

ods are able to improve image quality and maintain model

performance on clean images, and some of the methods are

easy to deploy. On the other hand, some of the methods are

found to be weak in defending against white-box adaptive
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TABLE XI
DATA PREPROCESSING METHODS FOR ADVERSARIAL EXAMPLE DETECTION AND DEFENSES

attacks, and others are found to cause gradient masking based

on characteristics. Also, some of the methods proposed require

fine-tuning the processed data and adjusting the significance

map intensity related to the sample to improve the performance

further.

3) Summary: Adversary detection approaches offer a strat-

egy to defend against adversarial attacks in recent years.

These methods attempt to detect adversarial samples in

the input data and reject them, rather than modifying the

original models and inputs. The advantages of adversar-

ial detection include the ability to be used in combina-

tion with other defense methods and the ability to ana-

lyze whether the inputs contain an adversarial sample when

the results of the baseline and robust classifiers do not

agree.

On the other hand, adversarial detection methods have lim-

itations. Some methods, such as LID&CD [58], ADNet [222],

and UnMask [223], extract feature dimensions to detect

adversarial samples. Other methods, such as CMAG [219],

detect adversarial examples based on sample reconstruction

comparisons. However, LID&CD [58] has insignificant

detection performance when the perturbation is small.

ADNet [222] has a better detection success rate for adversarial

samples than for clean samples [225], and higher sensitivity

for intra-class samples. They may also be bypassed by attack-

ers who understand the detection mechanism. In the future,

a combination of detection and defense is expected to be a

promising direction to pursue.

C. Robustness Enhancement for Deep Learning Models

Current methods for defending against adversarial attacks

focus primarily on improving model robustness. This goal is

accomplished by incorporating regularizers into the model’s

loss function to make it more smooth. In other words, the

gradient is Lipschitz continuous [243]. The goal is to make

the model less sensitive to irrelevant variations in the input

and off-manifold perturbations through effective regulariza-

tion. The recent studies improving adversarial robustness can

be broadly categorized into four main layers that regulariza-

tion can be deployed: The input layer, middle layer, output

layer, as well as across the layers.
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TABLE XII
REGULARIZATION ON INPUT LAYER (I)

1) Regularization on Input Layer: The essence of input

layer regularization is to strengthen the generalization ability

of neural networks through data enhancement. This can pro-

cess input images, such as projection to non-adversarial mani-

fold [244] and image conversion [245]. It can also train models

by adding noise or using pseudo-labels in a semi-supervised

learning mechanism [246]. Tables XII and XIII summarize the

latest breakthroughs in the regularization of the input layer,

divided into several aspects, including strategy, input, attack

type, and inv-metric.

a) Noise perturbation: Noise Perturbation means processing

input samples by injecting some mask or noise. Adversarial
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TABLE XIII
REGULARIZATION ON INPUT LAYER (II)

Margin Maximization Networks (AMM) are provided by

Yan et al. [247] as a learning-based regularization, which sub-

stitutes an adversarial perturbation for the geometric margin.

By carefully crafting aggregation and shrinkage algorithms,

AMM directly improves the classification margin. For many

DNN designs, AMM greatly enhances test set precision while

maintaining training set accuracy, demonstrating increased

generalization power. Nevertheless, the computational cost of

AMM increases due to the usage of repeated updates to esti-

mate the classification margin and the calculation of high-order

gradients during optimization.

By integrating random differentiable picture transformations

when training DeepFake models [29], Yang et al. [248] present

a transformation-aware adversarial face generation strategy to

increase the defense capability against GAN-based DeepFake

variants in the black-box situation. The technique can persis-

tently yield more distortions in simulated face images, making

it simpler to identify generated counterfeit images and videos,

which are independent of models and data. The process fol-

lows the same steps under all settings. One potential downside

is that the process of model training can be time-consuming.

Yu et al. [249] propose Progressive Diversified

Augmentation (PDA), which increases the resilience of

DNNs by gradually infusing different adversarial sounds

in the training phase. This improves the system’s overall

resilience against adversarial examples and common corrup-

tion. Not only does PDA employ gradient information to

make adversarial noises with negligible additional time cost,

but it also uses a progressive schedule to vary the magnitudes

of inputs during the training process. However, attaining

robustness concurrently with PDA for white-box adversarial

attacks restricted to numerous locations may be challenging

due to the incompatibility of different adversarial robustness.

To address concerns pertaining to network security and

network traffic analysis, McCarthy et al. [69] propose an

innovative defense strategy, leveraging hierarchical learning

to constrict the attack surface that adversarial examples may

exploit given the constraints of an anticipated attack’s param-

eter space. This robust defense learning model can withstand

meticulously crafted adversarial attacks, maintaining classifi-

cation accuracy on par with the original ML model when not

under attack.

To enhance the robustness of Meta Reinforcement Learning

(MRL), Chen et al. [143] propose adversarial Meta

Reinforcement Learning (adMRL) to generate adversarial

attack instances by using an adversarial GAN (adGAN)

and leverage the generated examples to enhance the MRL

algorithm’s robustness. AdGAN and MRL can obtain good

results by optimizing a minimax objective function during

training. Building on model-agnostic meta-learning, the agents

can learn the initial parameters with better generalization abil-

ity. Thus, when facing an unknown new task, the agents can

learn to counteract these “bad” samples. However, the exper-

imental attack methods only test on FSGM and random noise
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Fig. 17. An illustration of the alternation of the predicted distribution before
and after an adversarial attack. (a) Traditional DNNs; and (b) The proposed
induction method. Here, “GT” stands for “Ground Truth.”

attacks, which may not be sufficient to fully demonstrate the

robustness of the method.

Deep spiking neural networks (SNNs) modeled after the

brain have gained popularity owing to their ability to reduce

the power consumption of deep learning applications. In their

study, Kundu et al. [250] present a spike-timing-dependent

back-propagation (STDB)-based SNN training method to bet-

ter leverage the inherent robustness of SNNs. Instead of

continually displaying the same image, this approach makes

use of the temporal phases of SNN training to input sev-

eral noisy copies of the same image, hence decreasing the

requirement for intermediate gradient storage and eliminat-

ing superfluous training time. The enhanced robustness of

this method is not a result of gradient masking, and it

demonstrates outstanding performance under black-box and

white-box attacks, with a negligible loss in clean accuracy.

b) Adversarial learning: Adversarial learning aims to

improve network security by improving the robustness of

machine learning algorithms. As the main branch of adver-

sarial learning, adversarial training, which involves training

DNN models with adversarial examples, is another strategy

for strengthening DNN robustness. Adversarial examples are

produced with known adversarial attack algorithms, e.g., those

described in Section III. Adversarial training can also be

viewed as a special case of data augmentation that differs

from traditional methods. Rather than introducing randomly

transformed examples to improve model generality, adversarial

learning introduces adversarially perturbed data to strengthen

the model’s robustness.

According to [251], the principal consequence of adver-

sarial attacks is the modification of the prediction distri-

bution. On the basis of this, they suggest Induced Class

Adversarial Training (ICAT), a simple but successful strat-

egy that incorporates an extra-induced class to defend against

adversarial examples. Fig. 17 illustrates the alteration of pre-

dicted distributions before and after an adversarial attack. The

method demonstrated better defense against white-box attacks

compared to black-box attacks.

Fig. 18. The min-max game’s and ART’s concepts: Different classifications
of data, denoted by color and circle style, compete for a larger influence area
in the middle of the circles. (a) The gray area where the influence regions
overlap should be the location of the optimum robust decision border. (b) The
current decision boundary is shown by the solid line.

Yao et al. [252] target at classification and proposed

Adaptive Retraining (ART) for neural networks, which implic-

itly improves a model’s capacity in maximizing the minimal

distance from data instances of all classes to the decision bor-

der. ART additionally builds a feedback loop and steers the

data-generating process with categorization results for data

augmentation. Fig. 18 shows the concept of the min-max game

and ART. ART has a negligible negative impact on classifica-

tion accuracy, reducing the computational resources for data

augmentation and time increment for model retraining, mak-

ing it suitable for the online optimization of neural networks.

However, experiments have only been conducted on small

datasets, lacking the verification of defensive performance on

large-scale datasets under strong attacks.

Gong et al. [253] present MaxUp, a simple yet effective

method for enhancing generalization and minimizing overfit-

ting. The objective of the technique is to construct a collection

of enhanced data with randomly generated perturbations or

modifications, and then to minimize the greatest loss across

the improved data. To improve generalization performance,

the method implicitly incorporates a smoothness or robust-

ness regularization against random disturbances. While an

additional forward pass is all that is required, MaxUp still

has non-negligible additional time costs that can be low-

ered by employing low-resolution picture acceleration during

selection.

Tripartite Adversarial Training for Network Embeddings

(TriATNE) is an adversarial learning system designed by

Liu et al. [254], which learns stable and durable node embed-

dings with three players. A basic producer collects features

for node pairings, a dynamic seller selects negative samples,

and a biased consumer perturbs the objective function, all at

the same time measuring the performance of node embed-

dings. Producing and selling are in competition for consumers.

TriATNE is founded on the idea that a resilient approach must

be able to endure interruptions and assaults. The TriATNE

framework outperforms baselines on link prediction across all

datasets and performs well on homogeneous networks, despite

limitations in heterogeneous network learning.

Poursaeed et al. [255] propose Generative Adversarial

Training (GAT) to boost the model’s generalization ability to

test sets and out-of-domain data, and its resilience against
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Fig. 19. The training process of GraphAT: step 1) Producing graph adversarial
instance and step 2) Optimizing model parameters through minimizing the loss
and graph adversarial regularizer.

unanticipated adversarial attacks. GAT utilizes generative

models with a disentangled latent space to produce a vari-

ety of low-, mid-, and high-level adjustments as opposed to

modifying a single image feature. In addition to improving the

model’s performance on clean images and out-of-domain data,

adversarial training with these cases makes it more robust to

unforeseen attacks. The method is applicable to several appli-

cations, including classification, semantic segmentation, and

object identification.

Hong et al. [256] claim that properly blending the content

and style of two input images can result in more numerous

and robust samples, which enhances model generalization dur-

ing training. Based on this concept, they present StyleMix,

a new data augmentation approach that provides a vari-

ety of training samples via convex combinations of content

and style attributes. They further expand this technology

to StyleCutMix, which enables sub-image level modification

through CutMix’s cut-and-paste methodology [257]. They also

devise a method for automatically determining the degree

of style mixing based on the class distance between two

images. Experiments show that their strategies increase clas-

sifier robustness against adversarial attacks more than other

recent mixup methods and improve model training general-

ization.

Feng et al. [214] propose a dynamic regularization scheme

called GraphAT, as shown in Fig. 19. The scheme breaks

the smoothness of linked nodes to the greatest degree possi-

ble and generates network adversarial examples by perturbing

the input of associated clean examples. Furthermore, it mini-

mizes the graph neural network’s objective function using an

extra regularizer across adversarial graph samples. This pro-

motes smoothness between adversarial and linked example

predictions, making the model more robust to perturbations

transmitted across the graph. However, the computing cost

grows linearly with the neighbors sampled. In addition, the

work focuses only on graph-based learning from a single

graph, but future research objectives seek to determine the

efficacy of graph-adversarial training on numerous graphs.

Shen et al. [258] suggest a novel method for safeguard-

ing a particular class from adversarial attacks, which is

different from previous defensive approaches that try to

increase the resilience of overall classes. They adopt CSA

and cost-sensitive adversarial extension (CSE) to include cost

sensitivity in adversarial learning and enhance the model’s

adversarial robustness. Fig. 20 depicts an overview of the

adversarial learning system, as well as the CSA and CSE algo-

rithms. The techniques have been tested on the MNIST and

CIFAR datasets. However, the gain in robustness for more

complicated datasets may be limited.

In view of human outstanding generalization ability,

Chen et al. [259] argue that a resilient CNN should be

able to endure changes in amplitude while concentrating on

the phase spectrum. In order to do this, they provide a

unique data enhancement approach dubbed Amplitude-Phase

Recombination. APR integrates the phase spectrum of the cur-

rent picture with the amplitude spectrum of an adversarial

image to generate a new training sample with the same label

as the current sample. This strategy allows the CNN to get

more structured data from the phase components than from

the amplitude components. APR is at the forefront of sev-

eral generalization and calibration problems, such as adaption

for surface fluctuations and common corruptions, adversarial

assaults, and out-of-distribution detection.

c) Feature Extraction: To train a model, feature extraction

focuses on the texture features of images. Sun et al. [260] are

particularly interested in shape features and propose two edge-

enabled pipelines, namely, EdgeNetRob and EdgeGANRob,

to force CNNs to rely more on edge features, inspired

by the fact that the visual system of humans ends up

paying more attention on global features, such as shapes,

for recognition, whereas CNN models are biased towards

local features (e.g., textures) in images. Both EdgeNetRob

and EdgeGANRob use an edge detection technique to

extract structural attributes from a picture. EdgeNetRob

then trains downstream learning tasks using the recov-

ered edge features, while EdgeGANRob rebuilds a new

image by filling in texture features using a learned GAN.

These findings demonstrate adding edge features can increase

the model’s robustness while decreasing clean accuracy

significantly.

2) Regularization on Middle Layer: Intermediate layer

regularization can be achieved by operating on neu-

rons, hidden layers, and Lipschitz condition constraints.

Tables XIV and XV briefly introduce the latest regularization

methods on the middle layer and compare their advantages

and disadvantages.

Layer regularization: On the middle layer, the most com-

monly adopted regularization method is layer regularization,

where a regularization term is added to the hidden layer.

Adversarial Noise Propagation (ANP) [261] is a simple

yet strong training technique that, unlike classic adversarial

defensive methods, does not manipulate solely the input layer

(as discussed in Section IV-C1). During training, it injects

noises into the hidden layers by propagating backward from

the adversarial loss. This enables the learned parameters in

each layer to produce accurate and consistent results for the

benign instance and its distributed noisy surrogates, resulting

in a high degree of resilience. Due to the fact that each layer

helps improve the resilience of the model to differing degrees

in this technique, it is necessary to build a more adaptable
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TABLE XIV
ROBUSTNESS REGULARIZATION ON MIDDLE LAYER (I)

algorithm that takes into consideration the changing behavior

of different levels. While perturbing the deep layers boosts the

model’s robustness, adding noises to the shallow layers has an

adverse effect. Nevertheless, the root source of this issue is

not studied in [261].

Regarding countermeasures to adversarial attacks in the

context of communication networks, researchers have made

significant strides in adversarial defense. Dong et al. [262]

put forth an innovative defense mechanism, underpinned by a

GAN framework. The proposed model sheds light on the role

of adversarial attacks and defense within an end-to-end learn-

ing process of communication systems, utilizing an approach

comprising triple training. Specifically, it involves the joint

adversarial training of encoder and decoder communication

neural networks against adversarial attacks. Zhang et al. [2]

propose a defense system against adversarial samples in

transformer-based modulation classification, aiming to trans-

fer the trained adversarial attention mapping from a large

transformer to a more compact transformer. This contributes

to robustness in the face of adversarial attacks. They used

a special adversarial attack, i.e., the white-box PGD algo-

rithm, to generate adversarial examples. It is proved that

the transformer-based neural network is more robust to PGD

attacks than CNN.
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TABLE XV
ROBUSTNESS REGULARIZATION ON MIDDLE LAYER (II)

Zhang et al. [263] provide a unique perspective of neuron

sensitivity to explain adversarial resilience for deep models,

as assessed by the magnitude of variance in neuronal activ-

ity in response to benign and adversarial situations. They

suggest a Sensitive Neuron Stabilizing (SNS) approach after

analyzing the behaviors of the model’s intermediate layers

and demonstrating dependence between adversarial resilience

and neuron sensitivities. By stabilizing sensitive neurons

(instead of obfuscation), the technique tries to increase the

model’s robustness to adversarial samples. However, dynami-

cally updating sensitive neurons incurs a greater computational

expense.

Yao and Gao [25] offer a defensive model that makes use

of a supervision method to enhance the model’s robustness.

The assumption is that supervision can increase the quality

of feature maps for the hidden layer, hence increasing the

resilience of the model. As a secondary classifier, a super-

visory layer is appended to the main neural network model

to perform this strategy. By utilizing the classification results

of intermediate layers to assess perturbation properties and

by continuously changing the loss function of the supervisory

layer, the quality of the hidden layer’s recovered features may

be enhanced. This decreases the impact of adversarial pertur-

bation and boosts the model’s overall resilience. Under both

black-box and gray-box threat models, the suggested technique

can survive assaults from FGSM as well as C&W, BIM, and

DeepFool attack algorithms to a large degree. However, under

a white-box threat model, it will only reduce the confidence

of the attacker and cannot effectively defend against attacks,

being considered a weakly supervised defense model.
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Fig. 20. Comparison of conventional adversarial learning and CSA/CSE algorithms. (a) In adversarial learning, clean and adversarial examples are alternately
supplied into the neural network. (b) To accomplish the min-max property, the framework for CSA and CSE algorithms applies the convolution parameter to
the loss function by adding a normalization.

Taking steps to shield ML-based radio signal (or modula-

tion) classification from adversarial attacks, Zhang et al. [59]

investigate a defense mechanism based on train-time and

run-time defense techniques. The train-time defense consists

of adversarial training and label smoothing, while the run-

time defense employs neural rejection (NR) based on support

vector machines (SVMs). Specifically, the system uses label

smoothing and Gaussian noise augmentation (LS-GNA) while

adopting a stronger form of attack generated by customized

Adversarial Training (AT) to generate adversarial perturbations

for each sample according to the parameters and architecture

of the CNN. The disturbance level and corresponding label

are customized in the process of adversarial training.

Schwartz and Ditzler [264] propose a method called HLDR

to improve adversarial robustness by using latent disparity

regularization. The regularizer is defined to depend linearly

on the disparity in representations created in the hidden lay-

ers based on benign and adversarial data. The regularizer

penalizes the discrepancy and provides significant improve-

ments in adversarial robustness while also reducing training

time. However, the method only considers training programs

with fine-tuned subsets constructed using one method. It is

not yet understood how HLDR performance may be affected

by adversarial, Gaussian or other forms of distortion, dif-

ferent training methods for fine-tuning subsets, and different

objective functions.

Dual Head Adversarial Training (DH-AT) [265] is a novel

defensive method that employs a dual-headed architecture

to increase both clean accuracy and adversarial resilience

as an enhanced form of Adversarial Training (AT) in both

network structure and training strategy. The architecture of the

lightweight CNN used by DH-AT is outlined in Fig. 21. As

seen in the diagram, DH-AT connects a second network head

(or branch) to a network’s intermediate layer before combining

the outputs of both heads using a lightweight CNN. In order

to attain both clean precision and resilience in the meantime,

the training technique is modified to account for the relative

significance of the two heads. A potential drawback is that

DH-AT may require longer training time.

Zheng et al. [47] introduce PUAA with the aim of assess-

ing the robustness of DNN-based spectrum sensing models.

The PUAA method introduces a meticulously engineered

disturbance to the benign primary user signal, resulting

in a substantial reduction in the detection probability of

Fig. 21. The workflow of DH-AT. DH-AT connects another head to an
intermediate layer of the neural network, and utilizes a shallow CNN to
integrate the outputs of the two heads.

the spectrum sensing model. In response, they propose an

autoencoder-based defense method named DeepFilter to coun-

teract PUAA, as shown in Fig. 22. The integration of LSTM

neural networks and CNNs within DeepFilter enables simulta-

neous extraction of temporal features and local features of the

input signal, contributing to its effective defense capabilities.

Experimental evidence validates that DeepFilter can efficiently

guard against PUAA, without compromising DNN-based spec-

trum sensing mode’s detection performance.

Li et al. [266] propose an Embedding Regularized Classifier

(ER-Classifier) to improve the adversarial resilience of classi-

fiers. The intrinsic dimension of image data is substantially

less than its pixel space dimension, and hostile examples

often dwell outside the manifold of natural image data.

The approach projects high-dimensional input images into

a low-dimensional space and returns adversarial samples to

the manifold of natural image data via regularization. This

enhances classification accuracy when faced with adversar-

ial scenarios. In addition, the framework may be utilized in

conjunction with detection approaches to discover adversarial

instances. Exploration of low-dimensional areas to improve

the resiliency of DNNs is a potential innovation.

Similarly, Carbone et al. [267] propose RP-

Ensemble, a training approach based on the Manifold

Hypothesis [268], [269]. Using projected representations of

the original inputs, this method enhances the robustness of a

pre-trained classifier against adversarial examples. Moreover,

they develop the RP-Regularizer, a regularization term based

on the norms of the loss gradients, which measures vulner-

ability, with the expectation over random projections of the

inputs. This is done during training to capitalize on pertinent

adversarial characteristics. The strategy is computationally

efficient and independent of the attack norm type. However,

the CIFAR-10 dataset produces less impressive results than

the MNIST dataset.
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Fig. 22. The defense framework based on DeepFilter, which is composed of encoder and decoder. The encoder extracts the local and primary features, and
the decoder reconstructs the signal according to the extracted features. DeepFilter does not affect the benign signals and can process the adversarial signals
as benign signals.

Boora et al. [66] conduct an in-depth investigation into

the implications of adversarial attack and defense mecha-

nisms, specifically adversarial training, on massive MIMO

localization utilizing CNN and ODE model. The authors

propose a novel Neural ODE method, combining convolution

blocks, ODE blocks, and dense layers to achieve a localized

regression solution. The adversarial training of this Neural

ODE helps to resist adversarial samples, thereby improving

the robustness of massive MIMO localization.

CNNs usually ignore key auxiliary properties, whilst current

adversarial training and regularization approaches overlook

the independence of local features. Liu et al. [270] introduce

TENET Training, a group-wise inhibition-based regulariza-

tion approach for enhancing feature diversity and network

resilience. The suggested approach dynamically regularizes

CNNs during learning by suppressing regions with the high-

est activation values that are the most discriminative. This

allows the network to study more diverse aspects, which can

more accurately depict pictures, even when they have been

altered maliciously. TENET Training improves both robust-

ness and generalization significantly in comparison to other

SOTA methods.

While classifying hyperspectral pictures, a novel self-

attention context network (SACNet) [271] is presented to

strengthen the network’s inherent resilience to adversarial sam-

ples. Existing adversarial learning algorithms are designed to

recognize RGB pictures, but this strategy targets hyperspectral

images (HSIs). In contrast to local feature extraction, global

context information extraction necessitates the construction of

associations between a specific pixel and all relevant pixels in

the whole picture. This pixel’s network prediction would be

impacted by its neighboring pixels, and the overall loss would

be dispersed across all neighboring pixels. Therefore, tack-

ling these networks may need a greater degree of disturbance.

The suggested SACNet has a very high temporal cost since

self-attention learning and contextual encoding raise the com-

puting burden of the overall framework. Future research should

also examine if SACNet can defend against adaptive RGB

images.

According to [272], the downsampling method is primarily

responsible for CNNs’ poor noise resilience. They combine

frequently employed CNN designs with a discrete wavelet

transform (DWT) to produce wavelet-integrated convolutional

networks (WaveCNets), which address the issue of aliasing

in CNNs and enhance noise resistance in image classifica-

tion. During downsampling, DWT separates the WaveCNets

feature maps into low-frequency and high-frequency compo-

nents. Low-frequency components are passed to succeeding

layers to retain robust high-level characteristics, while high-

frequency components are deleted to avoid noise transmission.

Although WaveCNets regularly resists different forms of noise,

its performance is inferior to that of well-trained defen-

sive systems. The wavelet transform also adds computational

complexity.

Yu et al. [176] show that universal adversarial patches in

prevalent CNNs often generate deep feature vectors with large

norms. They suggest a simple but effective defensive technique

based on a unique feature norm clipping (FNC) layer. This

differentiable module can be dynamically introduced to vari-

ous CNNs to prevent the adaptive creation of huge norm-deep

feature vectors. An FNC investigation of the effective recep-

tive field (ERF) reveals that the adversarial patch’s impacts

may be minimized naturally, resulting in enhanced classifica-

tion accuracy against adversarial patch attacks. Experiments

conducted on multiple datasets demonstrate that this proposed

technique enhances the robustness of various CNNs against

white-box universal patch assaults while retaining acceptable

identification accuracy for clean samples and incurring a lit-

tle computational cost. However, it remains unclear why this

method is still valid for position-independent image patches.

Mok et al. [273] investigate the topic of constructing an

adversarially resilient neural network with strong inherent

resilience and robust training strategies. Adversarially robust

architecture rush (AdvRush) is an adversarial robustness-aware

neural architecture search (NAS) approach based on the obser-

vation that the inherent robustness of a neural network depends

on the smoothness of its input landscape regardless of the

training procedure. Using a regularizer that prefers candidate

architectures with a smoother input loss landscape, AdvRush

selects a neural network that is resistant to adversarial inputs.

The approach is very adaptable to many datasets. Future

studies will examine the robustness of neural network archi-

tecture on multimodal datasets and broaden the search area to

include activation functions.
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Yeo et al. [274] present a general framework for developing

robust predictions based on the creation of a varied ensemble

of different middle domains. The suggested method makes

predictions by combining a variety of cues (called “middle

domains”) into a single strong prediction. The concept is that

predictions based on distinct cues react differently to a distri-

bution adjustment. As a result, they can be combined into a

robust final prediction. The method can change without man-

ual modification or redesign, or any additional supervision

or labeling already attached to the dataset. It can generalize

to new non-adversarial and anti-corruption scenarios. On the

other hand, the limitations of the method include its reliance on

reasonable uncertainty estimates in the presence of distribution

shifts and its use of only unimodal distributions for the study.

Additionally, the selection of middle domains and the use

of ensemble-based methods inevitably increase computational

complexity.

b) Lipschiz condition: To mitigate the sensitivity of the out-

put to changes in the input, Amini and Ghaemmaghami [215]

offer a new non-smooth regularization term in the optimization

formulation and two non-smooth regularizers that construct

direct linkages for the weight matrices in each neural network

layer. These regularizers adjust the Lipschitz constant of

the underlying architecture to make the mapping between

inputs and outputs more stable, hence reducing the network’s

sensitivity to small perturbations. However, regular gradient-

based learning methods become less useful when non-smooth

variables are included.

It has been demonstrated in [275] that limiting a neu-

ral network’s Lipschitz constant gives certifiable robustness

guarantees against local adversarial attacks and increases the

model’s generalization ability and interpretability. Therefore,

Serrurier et al. [276] provide a novel optimal transport-based

classification framework that takes into account the Lipschitz

constant and the gradient norm preservation requirement.

They use a regularized Kantorovich-Rubinstein formulation

that includes a hinge loss term, which provides the desired

robustness guarantees with little accuracy loss. One possi-

ble drawback is that the computation time increases during

learning.

Some defensive approaches augment the standard train-

ing aim for intermediate layers with graduated penalties. For

example, by using a layer-by-layer contrast penalty term, Gu

and Rigazio [277] are able to retain the output of a DNN

unaffected by input disturbances. FNC [176] is also a novel

feature norm shear layer that can be placed flexibly into vari-

ous networks to adaptively suppress the creation of big norm

depth eigenvectors and enhance its overall performance.

3) Regularization on Output Layer: The output layer can

be regularized through defense distillation, label smoothing,

or by modifying loss functions. An overview of the possi-

ble regularization methods in the output layer is provided

and compared in Table XVI. As delineated in Section III,

adversarial attacks can be primarily categorized into three

types depending on the nature of the attacks: black-box

attacks, white-box attacks, and gray-box attacks. White-box

attacks, despite being the most potent variant of adver-

sarial attacks, are arguably the least prevalent in practical

applications. They are frequently employed to assess the

robustness of defense and/or classification models under strin-

gent conditions. In the case of black-box attacks, the attacker

is devoid of any knowledge concerning the internal structure,

training parameters, and defensive mechanisms of the targeted

model, and can only engage with the model through its output.

Consequently, defense methods predicated on gradient mask-

ing face challenges in resisting black-box attacks. During a

gray-box attack, the attacker has access to the classification

model but lacks any information about its defense strategy.

Gray-box attacks represent a middle ground and can be very

useful for evaluating the robustness of defenses and classifiers.

a) Distillation: Many recent works enhance the resilience of

a student network with a teacher network by using Knowledge

distillation (KD) [278] in combination with adversarial train-

ing. They build on adversarial training by using a teacher

network that has already been pre-trained in the form of adver-

saries. According to [187], adversarial training approaches are

more successful on large models and less effective on small

models. To solve this issue, Zi et al. [187] propose RSLAD,

a unique method for training small, robust student models by

distilling from adversarially trained large models. This strategy

replaces hard labels with robust soft labels inside supervi-

sion loss terms. It employs the huge, robust instructor model’s

robust soft labels to assist student learning in both natural and

adversarial situations. However, one downside of the strategy

is that when the teacher network grows too complicated for the

student network to learn from, the student’s robustness tends

to decline.

Attention Guided Knowledge Distillation and Bi-directional

Metric Learning (AGKD-BML) is a new adversarial training-

based model proposed by Wang et al. [279]. By lever-

aging knowledge distillation, the approach is made up of

two parts: Bidirectional attack metric learning (BML) and

attention-guided knowledge distillation (AGKD). To enhance

the attention map for adversarial instances and repair dam-

aged intermediate features, the AGKD module extracts clean

image attention information to the student model. The BML

component employs bidirectional metric learning to standard-

ize the feature space representation. The combination of these

two modules consistently surpasses cutting-edge techniques,

including single-directional metric learning (SML) [280],

Bilateral [281], and feature scattering (FS) [282]. The authors

further demonstrate that the model’s robustness is not gener-

ated from gradient obfuscation, but rather from a slight drop

in clean accuracy.

Beamforming prediction is integral to the advance-

ment of next-generation wireless networks. In this regard,

Kuzlu et al. [283] highlight the security vulnerabilities asso-

ciated with employing DNN for beamforming prediction in

6G wireless networks. They portray the prediction as a multi-

output regression problem and offer two mitigation meth-

ods - iterative adversarial training and defensive distillation

methods. These strategies successfully enhance the predictive

performance of RF beamforming, generating more accurate

predictions. Additionally, the proposed scheme demonstrates

efficacy even when adversarial samples contaminate the train-

ing data. Experimental results substantiate that the method can
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TABLE XVI
ROBUSTNESS REGULARIZATION ON OUTPUT LAYER

effectively shield DNN models from adversarial attacks in the

context of next-generation wireless networks.

Wu et al. [284] build a distilled differentiator using

activation-based network pruning to decrease attack transfer-

ability, meanwhile retaining accuracy. As a two-phase defense,

they use an ensemble structure of diverse differentiators. In

the first step, the student model is utilized to narrow down the

possible differentiators to be developed. In the second stage, a

small, predetermined number of differentiators are employed

to properly evaluate clean or reject hostile inputs. This solu-

tion fits the criteria for defense rate, model accuracy, and

scalability. Through small-scale integration models, the archi-

tecture retains scalability, efficacy, and comparable clean input

accuracy while being more efficient and simpler to implement.

However, ensemble-based methods, such as boosting [285]

and bagging [286], would inevitably increase the computa-

tional complexity compared to non-ensemble models, due to

their need for extensive model training and a combination of

multiple prediction results into a final result.

b) Loss function: Many training techniques have been

developed to enhance performance by modifying or adding

new regularization terms to the models’ loss functions.

In addressing the modulation classification problem based

on DNN, with the objective of crafting a DNN model

resilient to attacks, Manoj et al. [63] introduce three defense

techniques: random smoothing, Hybrid Projection Gradient

Descent (HPGD) adversarial training, and rapid adversar-

ial training. These methods have been assessed under the
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Fig. 23. On the left, x ′ dupes M ◦ P by flipping the non-robust feature
f ◦ P (to the green class). On the right, however, f can be a robust feature,
in which case M will not be deceived (still in the pink class).

conditions of both white-box and black-box attacks. The find-

ings reveal that rapid adversarial training exhibits superior

robustness and computational efficiency compared to other

techniques, and it is capable of generating models demon-

strating robust defenses against realistic attacks.

Mustafa et al. [287] explain the proximity of distinct classes

of samples in the learned feature space of deep learning mod-

els is the primary reason for the vulnerabilities in DNNs. As a

proactive protection against adversarial attacks, they suggest a

distance-based training technique, Prototype Conformity Loss

(PCL), to solve this issue. This strategy aims to maximally seg-

regate the learned feature representations at many layers of a

DNN so that there is little intersection between any two classes

in the decision layer, as well as the intermediate feature space.

Such a strategy assures that an adversarial instance with a lim-

ited perturbation budget can no longer deceive the network.

The strategy significantly increases the model’s robustness

with a shorter training period, without diminishing the classi-

fication accuracy of clean pictures. However, the model is less

resistant to white-box attacks than it is to black-box attacks

since gradient masking is not utilized in its defense.

Bernhard et al. [186] create an innovative technique known

as the “luring effect” to prevent transferability between two

models to pave a new path for robustness in a realistic black-

box situation. They provide a deception-based method that

is applicable to any pre-trained model and needs no labeled

dataset. The target model is reinforced with a neural network

designed to have an appealing effect and trained with a loss

function that employs logit sequence order.

Fig. 23 illustrates the two cases of the Luring effect. On

the left, x ′ dupes M ◦ P by flipping the non-robust feature

f ◦ P . However, on the right of the figure, f can be a robust

feature, in which case M will not be deceived (still in the pink

class), or a non-robust feature, in which case f ◦P toggle will

not be tracked. Even with massive adversarial perturbations,

the approach can successfully limit the efficiency of cutting-

edge transfer black-box attacks. It may be effectively coupled

with existing defense strategies. The benefits of the method

for robustness are more pronounced on the SVHN and MNIST

datasets, but the CIFAR-10 results only perform well within

the range of defense schemes that need a pre-trained model.

Like conventional method for improving adversarial

resilience by limiting logit norms to tiny values [288],

Kanai et al. [289] introduce a function named bounded logit

function (BLF), which employs a bounded activation function

shortly before the softmax to confine the logit norms. BLF

is constrained by finite values. Moreover, its pre-logit at

the maximum or minimum points is constrained by finite

values. Consequently, introducing BLF right prior to soft-

max gives finite values to the optimal logit and pre-logit.

Despite its simplicity, the approach successfully enhances

robustness in adversarial training compared to alternative logit

regularization methods. However, although BLF is effective

against powerful non-target attacks, it is useless against tar-

get attacks. Furthermore, the approach reveals the softmax

cross-entropy’s fragility, as well as the efficiency of logit reg-

ularization. However, it is unclear why a small logit enhances

robustness.

c) Boundary Estimation: Liu et al. [290] concentrate on

constructing certifiers to identify certified areas of the input

neighborhood where the model produces the right prediction

and employing such certifiers to train a model to be verifiably

resilient to adversarial attacks. They developed a stronger cer-

tifier, the polyhedral envelope certifier (PEC), as well as a

regularization scheme named polyhedral envelope regulariza-

tion (PER), which can be applied to networks of different

architectures with general activation functions. Different from

some earlier methods, such as COnvex Layer-wise adversar-

ial Training (COLT) developed in [291], PER has minimum

computing cost and offers improved robustness guarantees and

precision on clean data in a variety of circumstances. However,

the method can be restrictive for large models, particularly

for deeper networks. The boundary of the output logarithm

inevitably becomes less tight, irrespective of the linearization

method being used. In addition, the linear approximation is in

favor of the ℓ∞ norm over other ℓp norms, performing better

in the case of ℓ∞ than it performs in the case of ℓ2.

4) Regularization Across Layers – Gradient Masking:

Gradient masking here refers to a typical approach for protect-

ing against white-box attacks that depend on model gradients.

This method includes adding an extra training layer to the

model, which decreases its sensitivity to tiny changes in

the input data. This is often accomplished by using random

noise or perturbations to obfuscate gradient information, or

by employing a gradient near or at zero to neutralize or mit-

igate gradient-based attacks. However, gradient masking does

not alter the decision boundaries. Instead, it just makes it more

challenging for an attacker to influence the model using gradi-

ent information. This means that gradient masking is generally

not effective against black-box attacks. The attacker can sim-

ply self-train an agent model to mimic the defense model,

e.g., by observing the real discriminant labels of the input

samples.

Many defense approaches have been developed based on

gradient masking [292]. Some are directly designed to per-

form gradient masking, such as replacing the smooth sigmoid

function with a hard threshold [293]. Some strategies add regu-

larization terms with a gradient penalty component, making the

model less susceptible to tiny input perturbations [214], [264].

However, this strategy has the potential to significantly dimin-

ish the model’s precision and learning capability. Defensive

distillation substitutes the last layer with a soft maximum

function and a temperature junction to regulate the degree of

distillation after the training process [284].
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Fig. 24. Anatomy of breakthroughs in adversarial defenses since 2021. We classify adversarial defense methods as data-oriented and model-oriented methods.
From the model-oriented angle, we further divide defense methods into robustness regularization in different layers and detection.

Gradient masking has used regularizers or smoothing labels

to make the model less susceptible to input perturbations.

Some of these strategies include blurring or masking gradi-

ent data, akin to gradient masking. HLDR [264], for instance,

adds a regularization term to penalize the difference between

benign and adversarial data representations in the hidden

layer. GraphAT [214] aims to minimize an adversarial graph

regularizer and reduce prediction divergence between a dis-

turbed target instance and its related instances. Robust CNN

Training with Inf-Norm and Inf-Ind regularization [215] is

used to improve the total Lipschitz constant and consistency

of input-output maps. However, these methods do not use

a gradient step to update the penalty parameter, which can

lead to ambiguity in the adversary. In other words, they also

blur the gradient. The RP-Regularizer [267] integrates the

specification of the loss gradient, intended as a metric of vul-

nerability, with the expectations of stochastic predictions of the

inputs. To prevent steep gradients caused by binary masks, in

TENET Training [270], researchers propose Rectified Reverse

Function (RRF) to smooth the group inversion mapping.

MaxUp [253] adds a gradient-norm smooth regularization for

Gaussian perturbations. The regularization procedure in ER-

Classifier [266] may assist in eliminating adversarial distortion

effects and returning adversarial instances to normal data

manifolds. GAT [255] provides variety and realism to adver-

sarial training examples to close the distributional gap between

adversarial and actual samples. AdvRush [273] introduces

regularizers for candidate architectures that smooth input loss

landscapes.

Defensive distillation is an additional kind of gradient mask-

ing [294], which substitutes the last layer with a protective soft

maximum function and a temperature junction to modify the

level of distillation after the training process. RSLAD [187]

is a strategy that uses resilient, soft labels created by an

adversarially-trained teacher model to guide the training of

students on both clean and adversarial samples. Distilled

Differentiator [284] utilizes an ensemble structure built on

specialized classifiers called differentiators and activation-

based network pruning to limit attack transferability while

maintaining precision.

5) Summary: In the past few years, researchers have made

many contributions to the field of regularization methods for

adversarial defense from four perspectives: Input layer, middle

layer, output layer, and across layers. Regularization methods

at the input layer can be divided into noise addition, adversarial

learning, and feature extraction. Amongst these, adversar-

ial learning, which is the most effective and widely used

defense method, has developed many variants in recent years.

Regularization methods at the middle layer focus on chang-

ing the model structure to improve its inherent robustness.

The output layer regularization can be classified as distillation,

decision boundary estimation, and loss functions design, and it

effectively improves the robustness of the models from differ-

ent perspectives. Last but not least, certain defense techniques
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attempt to combat adversarial attacks across neural network

layers by implementing gradient masking, which is ineffective

in the face of black-box attacks.

D. Summary and Lessons Learned

The latest adversarial defense techniques, especially those

published in the past few years, have been primarily focused

on adversarial detection and robustness enhancement tech-

niques. Adversarial detection methods are simpler and more

effective than modifying the original model and input images,

but they can be easily bypassed by attackers. On the other

hand, robustness enhancement techniques aim to improve

the accuracy of the model and reduce the success rate of

attacks. However, there are still challenges, such as reducing

data dependency, avoiding gradient masking effects, improv-

ing model generalization, reducing the cost of model training,

and improving resistance to unknown high-intensity attacks.

Combining detection and robustness-enhancing defense

methods is a promising direction for future research. Existing

methods, such as GAT [255], XEnsemble [235], APR [259],

and ER-Classifier [266], have already contributed to this

perspective. Future research is anticipated to focus on devel-

oping methods that combine the advantages of both detection

and robustness enhancement, while addressing the challenges

mentioned above. This will help to improve the overall

effectiveness of adversarial defenses.

V. LESSONS LEARNED AND OPEN ISSUES

In this section, we summarize the important lessons learned

from the comprehensive analysis of the recent research out-

comes in adversarial attacks and defenses, devise the remain-

ing open challenges and point to research opportunities in this

rapidly growing, important area.

A. Lessons and Challenges of Adversarial Attacks

It is important to strike a balance between effectiveness,

imperceptibility, complexity, and transferability in adversar-

ial attacks, among which there are obvious trade-offs. As

illustrated in Fig. 25,

• Gradient-based attack methods, such as LAFEAT [125],

DSNGD [127], SGA. [134], are known for their high

ASRs and good transferability. However, the methods

have limitations of high computational and time costs, as

well as the issue of “gradient saturation,” which reduces

their effectiveness. Gradient-based attacks limit the per-

turbation to a certain size during the generation of the

perturbation, guaranteeing invisibility.

• Constrained optimization-based attack methods, such

as GF-Attack [149], AdMRL [143], and SSAH [147],

have good transferability. However, they are known for

high computational and time costs, making it difficult

to use them in time-sensitive applications. Constraint

optimization-based attack methods can guarantee small

visibility of the attack by constraining the strength of the

perturbation, providing greater stealth.

• Search-based attack methods, such as FeaCP [154],

are highly transferable and can be extended to other

domains beyond image classification. Nevertheless, for

more complex datasets, such as ImageNet [252], search-

ing for the optimal adversarial sample needs significantly

more iterations and more computational cost. It can be

difficult to find an appropriate search start point for

search [295]. Current search-based methods are primar-

ily applied to the initialization or optimization of other

adversarial sample generation algorithms, such as Square

attack [23]. The search-based perturbation does not make

use of gradient information, and the perturbation magni-

tude of each search step is controlled to fall under a fixed

range to ensure a certain invisibility.

Future efforts are expected to reduce attack costs, improve

the transferability of attacks across different datasets and

models, and extend the attacks to more deep-learning tasks.

The exploration of adversarial attacks within the field of

communication networks holds significant value. Adversarial

attacks have the capacity to dismantle meticulously trained

network traffic classification models and deceive ML-based

IDS employed within the IIoT [6]. This underscores the need

for defensive solutions to mitigate these adversarial attacks

within IoT networks.

Countermeasures against adversarial attacks can aid in

addressing issues related to covert communication and privacy

disclosure in communications [91], [296], [297]. For instance,

in the context of RISs in wireless communication systems,

adversarial disturbance and RIS interaction vectors can be co-

designed to effectively enhance signal detection accuracy at the

receiver end [298], [299]. Concurrently, this reduces the detec-

tion accuracy at the eavesdropping terminal, enabling covert

communication [3]. Furthermore, by developing obfuscation

methodologies for traffic types, malicious traffic type analysis

(TTA) tactics can be misdirected, resulting in incorrect classi-

fication of traffic type or user activity, thus facilitating privacy

protection [79].

B. Lessons and Challenges of Defenses

It is crucial to provide effective and reliable countermea-

sures to adversarial attacks for an apparent reason. Existing

adversarial defenses can benefit from continuing development

to address the following challenges.

1) Trade-Off Between Defense Effectiveness and Overhead:

Designing a model that is robust against adversarial attacks

is an important aspect of ML. Adversarial attacks attempt to

mislead a model into making a mistake by slightly modifying

the input data. They exploit the vulnerabilities of the model

to achieve their purpose. Although mitigating these attacks is

necessary for the reliability and security of ML models, it

comes with its own overhead and challenges:

1) Computational Overhead: Enhancing the robustness

of models often demands additional computational

resources. Techniques, such as adversarial training, in

which the model is trained on adversarial examples,

are computationally expensive [54]. The requirement

of adversarial training to repeatedly run adversarial

attack algorithms for obtaining new adversarial exam-

ples against the optimized ML or DNN model within
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TABLE XVII
LESSONS LEARNED AND OPEN ISSUES

Fig. 25. The balance of four factors in adversarial attacks.

each training epoch further exacerbates this issue. This

“optimal” adversary is typically procured via multi-step

gradient descent, leading to a substantially extended time

frame for model learning when using standard adversar-

ial training methods, compared to conventional training

techniques. Moreover, for large datasets and complex

models, these methods can dramatically increase training

times.

For example, adMRL [143] enables agents to learn the

initial parameters with better generalization ability by

accumulating knowledge in difficult environments, such

that agents can learn the ability to fight these “bad” sam-

ples when faced with an unseen new task. PDA [249]

uses different magnitudes of adversarial samples to

increase the diversity of data, progressively injecting

diverse adversarial perturbations during training, which,

however, also increases the training cost. AMM [247]

focuses on the minimum (instance-specific) margin,

which is often considered a key factor in determining

a model’s generalization capability. A principled regu-

larizer is derived to improve the model’s performance

on unseen samples with certain types of distortions.

However, the requirements of training time and memory

space are greatly increased as a result of iterative updat-

ing processes and the use of higher-order gradients in

the optimization process.

2) Increased Model Complexity: Many methods of increas-

ing model robustness involve adding complexity to the

model architecture. This can involve augmenting the

model with additional layers or nodes [25], increasing

the risk of overfitting and requiring more data for effec-

tive training. For instance, Zhang et al. [300] use Graph

Convolutional Network (GCN) and neural random for-

est to build an end-to-end learning system, in which

the GCN module uses user information and evaluation

information to capture user hobby information. The ran-

dom forest module is used to detect malicious users.

However, the model becomes complex by containing

unusually many fully connected layers. The increased

complexity can also lead to higher memory require-

ments and longer inference times, which can impact

the overall performance of the model. Moreover, the

upgraded model in DH-AT [265] contains two heads

for robustness and clean accuracy independently, at the

expense of higher training time. The framework for clas-

sification based on optimum transport in [276] contains

a Kantorovich-Rubinstein (KR) regularization approach
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and more accurate constant evaluation of convolution

and pooling layers, but almost triples the training time.

Because self-attentional learning and context coding

raise the computing overhead of the overall framework,

SACNet [271] also has a somewhat lengthy execution

time. Due to the employment of numerous models,

several ensemble-based methods [267], [284] generally

increase inference complexity.

There have been many noteworthy efforts to reduce train-

ing costs, including transfer learning, partial training/updating,

optimizing training epochs, and parallel training. For exam-

ple, an adaptive retraining process is used in ART [252].

The Luring effect [186] can be used to improve a trained

model at a low cost, since it does not require labeled

datasets. It is also possible to introduce additional regu-

larization items, such as HLDR [264], or layers, such as

FNC [176], to neural networks for performance improvements

without increasing model parameters. In harnessing the inher-

ent robustness of energy-efficient deep spiking neural networks

(HIRE-SNN) [250], the weight updating only takes place after

T steps, thereby reducing the training cost while allowing

different adversarial image variants to train the model. The

iterative approach is only used for the unfrozen layer for the

Distilled Differentiator [284]. PDA [249] selects the iterative

steps that best balance robustness, precision, and comput-

ing cost. To parallelize training, random projections ensemble

(RP-Ensemble) [267] creates classifiers in separately projected

subspaces. In addition, models may be trained concurrently in

Distilled Differentiator [284]. These efforts alleviate the trade-

off between defense efficacy and expense to some degree, but

they do not eliminate the trade-off.

It is worth noting that research has shown that there is often

a trade-off between model accuracy on clean (non-adversarial)

data and robustness to adversarial attacks. More robust mod-

els often have reduced performance on clean data [301].

Moreover, new types of adversarial attacks are also developed

as new defense mechanisms are created. It is a continuous

arms race, which adds to the overhead as models must be

constantly updated and retrained to counter new attacks.

2) Unanswered Root Cause of Robustness Loss: Lipschitz

continuity is a mathematical concept used to measure the

degree of continuity between two functions [302]. More

specifically, a function f from S ⊂ R
n into R

m is Lipschitz

continuous at x ∈ S if there exists such a constant C that, for

all y ∈ S close to x,

‖f (y)− f (x )‖ ≤ C‖y − x‖.

In the context of deep learning, Lipschitz continuity is used

to measure the robustness of DNNs by assessing how small

changes in the inputs affect the outputs of the DNNs. In other

words, a Lipschitz-continuous function has a fixed-ratio bound

on the distances between the corresponding outputs of two

points close to each other in the input space [302]. A DNN is

said to be Lipschitz-continuous if small changes in its inputs

can only cause small changes in its outputs, implicating the

stability of a DNN in the face of noisy data or unexpected

inputs.

There are several methods for bounding the Lipschitz

Continuity of the gradient of DNNs. A few common methods

are Gradient Clip [303], which involves clipping the gradi-

ents to ensure they do not exceed a threshold, and Weight

Decay [304], which involves adding a regularization term to

the loss function of a DNN to limit the magnitude of the

gradients.

Another popular method for bounding the Lipschitz

Continuity of the gradient of DNNs is gradient masking [292],

which involves adding a penalty term to the loss function to

prevent abrupt changes in gradients. However, gradient mask-

ing is controversial in the case of adversarial defenses [292].

Some researchers have argued that although gradient masking-

based defense techniques, e.g., ER-Classifier [266] and Inf-

Norm&Inf-Ind [215], deliver effective defense against adver-

sarial attacks in some cases, they do not address the root cause

of adversarial attacks [292], which is the lack of Lipschitz

Continuity. As a consequence, gradient masking approaches

are vulnerable to attacks that are independent of the gradients

of the models under attack, such as high-intensity black-box

attacks [292].

3) Scalability and Generalizability: To defend against

(new) adversarial attacks, one approach is to design more

effective and robust neural network models [22], and the

other is to block malicious inputs before it is fed into the

model [305]. Since most heuristic defense strategies are unable

to defend against adaptive white-box attacks, many researchers

have begun to focus on provable defense mechanisms that

guarantee a certain level of defense performance, irrespective

of the attacker’s method of attack [254].

Scalability has been a key issue to the majority of exist-

ing provable defense approaches, e.g., the PGD method

developed in [22]. Proof-based defense strategies are effec-

tive in defending against less sophisticated “shadow” neural

networks, but are ineffective in the case of more advanced

“deep” neural networks [306]. Moreover, while provable

defense methods work satisfactorily on small-scale datasets,

e.g., the CIFAR-10 dataset with only ten classes, they dete-

riorate on more difficult tasks, such as classification on

the ImageNet dataset that consists of a thousand major

classes [252].

Generalizability, also known as transferability, is another

major concern of provable defense approaches. Specifically,

it is generally hard to apply a defense method that is effec-

tive on one DNN model or dataset, to other DNN models or

datasets [267]. One approach may yield satisfactory results on

homogeneous networks, but performs poorly on heterogeneous

networks [254].

4) Dependence on Data: Adversarial sample detection has

traditionally relied on data-driven methods. However, there is a

lack of agreement on the mathematical definition of adversarial

samples, limiting current research in this field [307]. Attackers

can easily bypass detections by exploiting the knowledge of

the detection mechanisms, rendering the detection mecha-

nisms ineffective [308]. To overcome this challenge, a mixed

approach that integrates both detection and defense strategies

can offer a promising solution. The defense component aims

to enhance accuracy and decrease attack success rate, while
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reducing data dependence and increasing resilience to high-

intensity attacks. These are important research areas in pursuit

of robust defense mechanisms.

VI. CONCLUSION

We have provided a comprehensive overview of the recent

advancements in adversarial attacks and defenses in ML and

DNNs with an emphasis on applications to communications

and networking. We have analyzed both the attack tech-

niques, including those based on constrained optimization

and gradient-based optimization, and their adaptations to

different threat models, such as white-box, gray-box, and

black-box attacks. We have reviewed the latest defense strate-

gies against adversarial examples, including detection and

robustness improvement, which mainly focus on enhanc-

ing robustness through regularization, data augmentation, and

structure optimization. Moreover, the transferability of adver-

sarial attacks has been thoroughly investigated, providing

deeper insights into the workings of DL models.

Our research highlights the significant impact of adversarial

attacks on communication and networking. We have discov-

ered that adversarial attacks can exploit vulnerabilities in ML

or DNN-based functions, including wireless signal classifica-

tion, modulation scheme recognition, and resource allocation

in MIMO networks. We have also identified adversarial attacks

in network management and NIDS, particularly in DNN-based

traffic classification. While some initial defensive strategies

have been proposed to combat the adversarial attacks, contin-

uing efforts are required to address surges of new adversarial

attacks that can potentially compromise communication and

networking systems.
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