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Abstract

Over the past decade, Alzheimer’s disease (AD) has become increasingly severe and gained greater attention. Mild
Cognitive Impairment (MCI) serves as an important prodromal stage of AD, highlighting the urgency of early diagno-
sis for timely treatment and control of the condition. Identifying the subtypes of MCI patients exhibits importance for
dissecting the heterogeneity of this complex disorder and facilitating more effective target discovery and therapeutic
development. Conventional method uses clinical measurements such as cognitive score and neurophysical assessment
to stratify MCI patients into two groups with early MCI (EMCI) and late MCI (LMCI), which shows their progressive
stages. However, such clinical method is not designed to de-convolute the heterogeneity of the disorder. This study uses
a data-driven approach to divide MCI patients into a novel grouping of two subtypes based on an amyloid dataset of 68
cortical features from positron emission tomography (PET), where each subtype has a homogeneous cortical amyloid
burden pattern. Experimental evaluation including visual two-dimensional cluster distribution, Kaplan-Meier plot,
genetic association studies, and biomarker distribution analysis demonstrates that the identified subtypes performs
better across all metrics than the conventional EMCI and LMCI grouping.

Introduction

Alzheimer’s disease (AD), a degenerative neurological condition, is currently the fifth most common cause of death
among individuals aged 65 and above in the United States [1]. It results in irreversible cognitive deterioration, marked
by a slow decline in cognitive and behavioral abilities [2]. According to the World Health Organization (WHO)1,
dementia has impacted 55 million individuals globally in 2023. The figure may rise to 139 million by 2050 due to
an aging population. Over two-thirds of dementia cases are attributed to Alzheimer’s disease (AD), making it the
leading cause. Nonetheless, AD is a complicated brain disorder with a mechanism that is still not well understood.
Identifying the subtypes of AD and understanding the genetic and biomarker components could aid in the creation of
new medications and provide direction for early-stage treatments for this serious disease.

Mild Cognitive Impairment (MCI) serves as an important prodromal stage of Alzheimer’s Disease (AD), highlighting
the urgency of early diagnosis for timely treatment and control of the condition [3]. However, quantifying the pro-
gression of MCI individuals is difficult because the brain alterations in MCI are often subtle. Traditional method uses
cognitive score supported by a subjective clinical test to assess the progression of MCI [4]. In addition, biomarker
measurements can also be used to trace MCI development, which is an additional information source for MCI sub-
type discovery [5]. Normalized amyloid measurement from PET is a common quantitative trait that is investigated
throughout AD diagnosis.

Due to the high-dimensional nature of biomarker measurements, only a few important features are used during clinical
evaluation. To account for this limit, several studies combine multi-modal data source and use a data-driven approach
in order to identify more effective subtype groupings. Feng et al [6] uses clustering to identify subtypes via multimodal
data, performs survival analysis, learns a nonlinear embedding, and analyzes canonical correlation . In order to study
the data in the multimodal domain, the intersection of all modalities restricts the number of valid subjects in the study.
This paper uses a much larger cohort in a single modality and proves that the pattern we observe generalizes well in
domains of all other modalities.

In this paper, we leverage a set of data analysis tools specialized for high-dimensional data to identify novel subtypes
in the MCI population. K-means clustering, spectral clustering, and agglomerative clustering are used as an attempt to

1https://www.who.int/news-room/fact-sheets/detail/dementia



Figure 1: Confusion matrices between MCI benchmark and the three clustering results. Category K1 and K2 represent
k-means cluster 1 and 2. Category S1 and S2 represent spectral cluster 1 and 2. Category A1 and A2 represent
agglomerative cluster 1 and 2. Subfigures a), b), and c) compares k-means, spectral, and agglomerative clustering
results with MCI benchmark respectively. Subfigures d), e), and f) performs pairwise comparisons between the three
clustering results.

generate new subtypes. t-SNE and UMAP are applied to perform dimension reduction such that local neighborhood
information across a high-dimensional manifold can be visualized. Clustering quality can be assessed qualitatively by
observing the patterns in the projected 2-dimensional space. A traditional survival analysis technique called Kaplan-
Meier [7] is applied as a quantitative metrics to check whether the two groups are stratified with significant risk
discrepancy. After an effective subtyping result is discovered, a genome-wide association study (GWAS) is performed
to find significant single nucleotide polymorphisms (SNPs) that distinguish the two subtypes. Aside from the genetic
domain, important biomarker measurements are compared between the two subtypes to study the results in the imaging
domain. Throughout this study, the EMCI and LMCI diagnosis labels are used as the benchmark grouping strategy.

Methods

Data: Data used in this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http:
//adni.loni.usc.edu/) database [8]. The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD. All participants provided written
informed consent and study protocols were approved by each participating site’s Institutional Review Board (IRB).
For up-to-date information, see www.adni-info.org. In this paper, we use the longitudinal amyloid imaging data and
we used baseline data which totally have 560 subjects including 327 early mild cognitive impairment (EMCI), 233
late MCI (LMCI). The detailed demographic information of gender, age and education years are shown in Table 1.
The race of this population is non-Hispanic white.

Table 1: Demographic information of Amyloid imaging data.

subjects EMCI LMCI
Number 327 233

Gender(M/F) 141/186 96/137
Age(mean±std) 72.03±7.30 74.34±8.23

Education(mean±std) 16.08±2.64 16.23±2.77



Figure 2: t-SNE visualization of 68 amyloid features of 327 EMCI subjects and 233 LMCI subjects. For each cluster-
ing algorithm, cluster 1 refers to the amyloid negative subtype and cluster 2 refers to the amyloid positive subtype.

Amyloid Imaging Data Preprocessing: Amyloid imaging data have been downloaded from the ADNI website as
preprocessed. Briefly, Amyloid PET used florbetapir (18F) as a tracer to measure amyloid-β (Aβ) plaques [9]. For
each subject, brain regions of interest (ROIs) were defined from structural MRI through segmentation and parcellation
using Freesurfer [10]. Then, each florbetapir scan was coregistered to the corresponding MRI and calculated the mean
florbetapir uptake within the predefined ROIs. All the regional Amyloid deposition was re-normalized using whole
cerebellum as reference region. Finally, we have amyloid measurement in 68 cortical ROIs. More detailed image
processing information can be found in [11, 12]. To remove potential bias, we then did pre-adjusted using baseline
age, gender with the weight derived from healthy controls. Finally, they were normalized to zero mean and unit
variance for subsequent analysis.

Subjects of Interest: 68 amyloid features are used for t-Distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction visualization. t-SNE performs
dimensionality reduction such that similar objects are modeled by nearby points and dissimilar objects are modeled
by distant points with high probability. UMAP performs dimensionality reduction such that a Riemannian manifold
is modeled with a fuzzy topological structure. No distinct pattern is observed between groups of EMCI and LMCI
patients identified by current diagnosis labels. As a result, this study aims for identifying effective patient subtypes
for the MCI cohort. Patients that are diagnosed as EMCI or LMCI at baseline, including 327 EMCI subjects and 233
LMCI subjects, are thus selected as the subjects of interest for this study.

Clustering Algorithms: Kmeans clustering, spectral clustering, and agglomerative clustering are selected as the
clustering algorithms of this study. Instead of performing an empirical experiment to determine the optimal number
of clusters, we fix the number of clusters to be 2 for this study for the two reasons. First, we would like to use the
EMCI and LMCI diagnosis label as a benchmark grouping strategy for this study. Second, 2 distinct clusters can be
visually observed in the 2D space from multiple trials of t-SNE and UMAP dimensionality reduction. All clustering
algorithms are used on 560 MCI subjects at baseline, each subject with 68 amyloid features.

Visualization of Identified Clusters: t-SNE and UMAP dimensionality reduction algorithms are used to transform
identified clusters into the 2D space for qualitative assessment and visualization. The visualization that reveals a more



Figure 3: UMAP visualization of 68 amyloid features of 327 EMCI subjects and 233 LMCI subjects. Subfigures b),
c), and d) shows k-means, spectral, and agglomerative clustering results respectively. For each clustering algorithm,
cluster 1 refers to the amyloid negative subtype and cluster 2 refers to the amyloid positive subtype.

obvious pattern of separating two groups should have a higher clustering quality.

Kaplan Meier Plot of Survival Analysis of Identified Clusters: Kaplan-Meier Plot of survival analysis is performed
on the two clusters to quantify the effectiveness of clustering. The event is defined as the transition from any MCI
state to the AD state. Censorship refers to the transition of the subject from the MCI state to the AD state before the
last observation. If the conversion occurs, the subject is considered uncensored, and if the conversion does not occur,
the subject is considered censored. The Kaplan-Meier plot is created for the result of each clustering algorithm as
a qualitative visualization of survival probability between the two clusters at each time stage. P-value is used as a
quantitative metric to evaluate the quality of clusters.

Genetic Analysis of Identified Clusters and Functional Annotation: Genome-wide association study (GWAS)
[13, 14, 15] is performed to identify SNPs with the most significant variance between the two clusters. Plink is used as
the execution tool of GWAS for this study. A total of 565373 SNPs were used in this GWAS study. A logistic regression
is performed with cluster 1 patients as phenotype value 0 and cluster 2 patients as phenotype value 1. Gender, age,
and education are selected as the covariates of this study. P-values of the regression are used to identify the most
significant SNPs. Manhattan plots are produced to qualitatively assess the quality of clustering. Functional annotation
is performed through functional mapping and annotation of genetic associations with FUMA (FUMA GWAS) [16] 2.
The significant SNPs are projected to nearest genes defined by base pair distances. Biological pathways associated
with the two clusters are identified such that those claimed to be relevant with AD pathogenesis in prior literature serve
as a indicator as the effectiveness of our results.

Biomarker Analysis of Identified Clusters: Relevant AD biomarkers examined in the QT-Pad challenge are used
to evaluate the promise of our proposed clusters 3. If the identified cluster produces a difference between groups that
resembles or surpasses the observed pattern in the MCI benchmark, a more effective cluster result is obtained. 12 out

2https://fuma.ctglab.nl
3http://www.pi4cs.org/qt-pad-challenge



Figure 4: Kaplan-Meier survival curve of 68 amyloid features of 327 EMCI subjects and 233 LMCI subjects. For
each clustering algorithm, cluster 1 refers to the amyloid negative subtype and cluster 2 refers to the amyloid positive
subtype

of 15 biomarkers other than AV45, which is an amyloid-based biomarker, are used in this study.

Results

Confusion Matrix of Different Clustering Algorithms: The cluster labels generated from the algorithms are aligned
with MCI benchmark such that cluster 1 contains a higher portion of EMCI subjects and cluster 2 contains a higher
portion of LMCI subjects. Figure 1(a, b, c) compares the results of clustering algorithms with the MCI benchmark.
All confusion matrices have chi-square test p-values less than 1e-4, which indicate that the identified clusters are
different from the benchmark at a statistically significant level. Figure 1(d, e, f) shows a pairwise comparison between
the clustering results. Figure 1(d) indicates that the clusters identified by k-means and spectral clustering are close
to identical with 3 subjects as exceptions, which is a 0.536% difference. Figure 1(e, f) suggest that agglomerative
clustering identifies a slightly different subtype than that of k-means and spectral clustering. While over 90% of the
clusters still align, there is a close to 10% variance where agglomerative clustering classifies about 20 subjects as the
subtype with higher risk in MCI development.

t-SNE and UMAP Visualization: Figure 2 shows the t-SNE dimensionality reduction to 2-dimensional space while
Figure 3 shows the UMAP dimensionality reduction to 2-dimensional space. While randomized initialization leads to
different projects every time the algorithm is executed, a consistent pattern of 2 distinct clusters can be observed in the
projected population, which explains why we decide the number of clusters to be two in this study. Both visualizations
qualitatively evaluate the clustering qualities of each result: the MCI benchmark exhibits no significant pattern in both
t-SNE and UMAP while all clustering algorithms yield significant pattern of separation between the two subtypes in
the projected space. The comparison provides strong evidence that our study identifies a more effective subtype in
the high-dimensional data manifold. As discussed in the confusion matrix session, k-means and spectral clustering
produce an extremely similar result with some minor disagreeement in the border area while agglomerative tend to



Figure 5: Manhattan Plot of GWAS summary statistics. Only SNPs with p-values less than 5e-6 are selected as
candidate significant SNPs. The final cutoff uses a conventional threshold of 5e-8 to filter important SNPs.

classify more subjects in “zone of confusion” as cluster 2 where subjects are considered to carry more risk of AD
pathogenesis.

Table 2: Kaplan-Meier plot p-value

MCI k-means spectral agglomerative
p-value 3.136e-12 3.511e-29 7.427e-28 7.393e-26

Kaplan-Meier Plot as Visualization and Validation: While the previous analysis uses only the measurements at
baseline, we could also leverage the longitudinal data of the followup visits to analyze the quality of clustering.
Survival analysis is a common approach that assesses and predicts the risk of populations over time. Figure 4 shows
the Kaplan-Meier plots of the MCI benchmark and the proposed subtypes. The event is defined as transition to AD
while censorship is defined as whether the subject transitions to AD before it leaves inspection. Each survival analysis
calculates a p-value that quantifies how much the two subtypes differs in survival risks. A lower p-value indicates a
more significant difference of survival risk between the two subtypes, which refers to a more effective subtype. The
MCI benchmark has a p-value of 3.136e-12, which is a sanity check that the EMCI and LMCI population differs
significantly in the probability of transitioning to AD. K-means, spectral, and agglomerative clustering have p-values
of 3.511e-29, 7.427e-28 and 7.393e-26. Quantitatively, the clustering algorithms identify subtypes that are more
different in the risk of transitioning to AD. Qualitatively, we can visually observe that the subtypes start to diverge
more significantly than the benchmark from day 1500 through the end of the duration. The Kaplan-Meier plot provides
both quantitative and qualitative that the new subtypes are more effectively not only at the baseline level, but also
throughout the progression of MCI in a duration of 10 years.

Overview of Evaluation: While all qualitative and quantitative metrics suggest that the newly proposed subtypes are
more effective than that of the MCI benchmark, it is important to interpret how the novel subtypes divide the popu-
lation into groups with different genetic basis, biomarker measurements, and biological pathways. The introduction
of additional datasets not only provides alternative perspectives of explaining our subtypes but also validates the clus-



Figure 6: Violin plot of 12 biomarkers examined in the QT-PAD challenge. Category K1 and K2 represent k-means
cluster 1 and 2. Category S1 and S2 represent spectral cluster 1 and 2. Category A1 and A2 represent agglomerative
cluster 1 and 2.

Table 3: Significant SNPs identified by Plink GWAS analysis

k-means spectral agglomerative
chr SNP (Posi) p-value chr SNP (Posi) p-value chr SNP (Posi) p-value
1 6700744 2.905e-06 1 6700744 4.307e-06 1 11588804 3.167e-06
1 4649215 2.544e-06 1 4649215 3.802e-06 10 1325904 2.857e-06

10 10509549 2.001e-06 10 10509549 3.971e-06 17 4790408 4.113e-06
10 10509550 1.571e-06 10 10509550 3.077e-06 19 2075650 6.578e-13
10 1325904 3.799e-06 19 2075650 2.389e-12 19 157582 1.189e-15
10 10749593 4.904e-06 19 157582 3.141e-15 19 1160985 9.661e-07
19 2075650 6.233e-12 19 8106922 1.633e-06 19 769449 3.442e-15
19 157582 5.962e-15 19 1160985 1.611e-07 19 4420638 8.843e-19
19 8106922 1.037e-06 19 769449 6.846e-15 22 5771761 7.804e-07
19 1160985 1.085e-07 19 4420638 4.714e-19
19 769449 2.017e-14 20 1557183 3.174e-07
19 4420638 9.626e-19
20 6089530 4.359e-06
20 1557183 3.473e-07
21 2836445 4.861e-06
21 2836469 4.048e-06

tering quality through an additional source. In the genetic domain, Plink is used to perform GWAS, identify SNPs
that differ significantly between the two subtypes. More effective subtype should identify more significant SNPs as
the subtypes should differ more in the genetic domain. These SNPs can be mapped to nearest genes with relevant
biological pathways to interpret how the two subtypes differ genetically and functionally. Alternatively, we could also
use alternative biomarker measurements that are significant and compare the new subtype with MCI benchmark to
validate our results.

Genetic Domain: In the genetic domain, GWAS was performed to analyze the genetic basis of the subtypes proposed
by the clustering algorithms. As shown in Figure 5, only SNPs with p-values less than 5e-6 are selected as candidate
significant SNPs, where a complete list is present in Table 3. The MCI benchmark is not included in Figure 5 because
its summary statistics from GWAS does not output any SNPs with p-values less than 5e-6. A final p-value threshold



Table 4: Biological processes identified by significant SNPs from FUMA-GWAS.

k-means spectral agglomerative
Very Low Density Lipoprotein

Particle Clearance
Very Low Density Lipoprotein

Particle Clearance
Very Low Density Lipoprotein

Particle Clearance
Triglyceride Rich Lipoprotein

Particle Clearance
Triglyceride Rich Lipoprotein

Particle Clearance
Triglyceride Rich Lipoprotein

Particle Clearance
Triglyceride Metabolic Process Triglyceride Metabolic Process Phospholipid Efflux

Lipid Catabolic Process Lipid Catabolic Process High Density Lipoprotein Particle
Remodeling

Phospholipid Efflux Phospholipid Efflux
High Density Lipoprotein Particle

Remodeling
High Density Lipoprotein Particle

Remodeling
Neutral Lipid Metabolic Process Neutral Lipid Metabolic Process

of 5e-8 is used to obtain the significant SNPs, where all three subtypes identify rs2075650, rs769449, rs157582, and
rs4420638 at chromosome 19.

Single Nucleotide Polymorphysim: Chromosome 19 and the Apolipoprotein E4 (APOE4) gene has always been
considered as one of the most important genetic basis indicator of AD [17, 18]. TOMM40 is an adjacent gene of
APOE4, and its allele has been shown to encode high likelihood of Alzheimer’s onset in former studies [19]. rs2075650
is a polymorphism located at TOMM40 highly correlated with AD in various populations and potentially causes
neuroinflammation in AD [20, 21]. rs769449 is a SNP located at APOE and a proxy of rs429358 which encodes the
APOE4 allele [22]. rs157582 is another SNP located at TOMM40 that’s significantly correlated with dementia and
contributes to a high polygenetic risk score for AD [23, 24]. rs4420638 is also a proxy SNP to rs429358 with a minor
allele G that leads to lower mini-mental state examination (MMSE) score, higher AD assessment scale-cognitive
subscale 11 (ADAS-cog 11) score, and smaller entorhinal volume [25]. All of the SNPs identified in the GWAS
analysis are supported by literature reviews and earlier studies that they are highly correlated with AD and dementia,
which shows that the new subtypes preserve genetic basis pattern of AD pathogenesis.

Biological Processes: Functional Annotation is performed through FUMA GWAS. A list of biological processes
identified by the significant SNPs are shown in Table 4. Amyloid-beta accumulation in the brain is known to play
a central role in the development of AD. High-density lipoproteins (HDL) are crucial for maintaining cholesterol
balance. APOE is also a key HDL-associated protein involved in lipid transport in both the periphery and central
nervous systems. Former research revealed that Changes in high density lipoprotein (HDL) particles are specific to the
APOE genotype in Alzheimer’s disease, and HDL function and size are highly correlated with cognitive ability [26].
Very low density lipoproteins particle clearance, triglyceraide rich lipoprotein particle clearance, and high density
lipoprotein particle remodeling are all lipoprotein-related biological processes that could affect AD in a complicated
process. On the other hand, brain is highly enriched by lipids as it is the important component of forming cell mem-
branes. Disruption of lipid homeostasis is associated with neurologic disorders and neurodegenerative diseases such
as AD [27]. Aside from the crucial role of phospholipid and lipid in membrane formation, lipid also plays an impor-
tant role of cell signaling and other physiological functions. Prior research has shown that abnormal lipid synthesis,
degradation, traffic, and modification can result in AD pathogenesis through mechanisms including: 1) amyloid-beta
production, aggregation, and clearance, 2) APOE isoform neuroinflammation, tau phosphorylation, and 3) synaptic
function, learning, and memory [28]. Lipid catabolic process, phospholipid efflux, and neutral lipid metabolic pro-
cess can all be indicators of lipid disruptions. All biological processes are involved in identified mechanisms of AD
pathogenesis, which shows how the new subtype differentiates the MCI population based on biological processes.

Table 5: Biomarker distribution negative base 10 logarithm of p-value

MCI k-means spectral agglomerative
Average negative base10 logarithm of p-value 5.679 13.835 14.073 14.122



Biomarker Domain: In the biomarker domain, 12 out of 16 biomarkers identified in the QT-PAD challenge are
selected to analyze the new subtypes compared to the MCI benchmark. The biomarker amyloid PET is the biomarker
used in this study while biomarkers CSG ABETA, CSF TAU, CSF PTAU include missing data and are excluded from
this study to avoid bias. As shown in Figure 6, the directional patterns of the MCI benchmark subtypes are preserved
across all 12 biomarkers, with a substantial improvement of difference in ADAS13, CDRSB and FS Entorhinal. While
the violin plot serves as a qualitative evidence of the effectivesness of our results, t-test is also performed for each
of the 12 biomarkers. The average of the 12 negative base10 logarithms of the p-values from the t-test are used as a
quantitative metric. While the MCI benchmark has an average negative base10 logarithm of 5.679, k-means, spectral,
and agglomerative subtypes have average negative base10 logarithms of 13.835, 14.073 and 14.122. This metric
shows that the subtypes from clustering algorithms differ more on a population basis in all 12 biomarkers identified
by QT-PAD, which validates the quality of the new subtypes.

Discussion

Limit of This Study and Future Directions: The Kaplan-Meier Plot in this study is used as a visualization and
qualitative assessment of risk over time. In order to assess the development of AD-transition risk on a longitudinal
basis, a Cox model survival analysis should be performed. As the conventional Cox survival analysis evaluates features
on a linear basis, we will work on introducing non-linearity by implementing Cox survival analysis via deep neural
networks. By projecting amyloid features into a nonlinear latent space, we could study the pathogenesis of AD along
a amyloid defined manifold that provides novel insights.

Conclusion

Alzheimer’s disease is a complex neurodegenerative disease that serves as one of the leading causes of death in the
United States. Identify the stage of mild cognitive impairment progression is an important process for early diagno-
sis and timely treatment. Traditional diagnosis combines a cognitive score and biomarker measurements to divide
MCI patients into early MCI and late MCI subjects. This study leverages a data-driven approach to identify a novel
subtype in amyloid PET measurement that generalizes well in domains of other modalities including genetic basis,
FDG, VBM, freesurfer, and a few other AD biomarkers of interest. A pattern of two distinct clusters are observed
in the projected 2-dimensional nonlinear data manifold, which serves as a motivation of this study. Several common
clusters lead to a similar subtype that follows the trend we observed in dimensionality reduction plots. Subsequent
analysis show promising results across longitudinal risk of transitioning to AD, genetic pathway associated with bio-
logical pathways, and biomarker distribution studies compared to the MCI benchmark. The subtype proposed by the
clustering algorithms outperforms the MCI benchmark across all qualitative and quantitative metrics and preserves
or exemplifies directional patterns of the benchmark in all AD biomarkers of interest. This work provides important
insights regarding future diagnosis of MCI subjects from a data-driven perspective that could assist clinical trials by
providing a quantitative reference.
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