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ABSTRACT

Hyperspectral imaging (HSI) technology captures spectral information across a
broad wavelength range, providing richer pixel features compared to traditional
color images with only three channels. Although pixel classification in HSI
has been extensively studied, especially using graph convolution neural networks
(GCNs), quantifying epistemic and aleatoric uncertainties associated with the HSI
classification (HSIC) results remains an unexplored area. These two uncertainties
are effective for out-of-distribution (OOD) and misclassification detection, respec-
tively. In this paper, we adapt two advanced uncertainty quantification models,
evidential GCNs (EGCN) and graph posterior networks (GPN), designed for node
classifications in graphs, into the realm of HSIC. We first analyze theoretically
the limitations of a popular uncertainty cross-entropy (UCE) loss function when
learning EGCNss for epistemic uncertainty estimation. To mitigate the limitations,
we propose two regularization terms. One leverages the inherent property of HSI
data where pixel features can be decomposed into weighted sums of various ma-
terial features, and the other is the total variation (TV) regularization to enforce
the spatial smoothness of the evidence with edge-preserving. We demonstrate
the effectiveness of the proposed regularization terms on both EGCN and GPN
on three real-world HSIC datasets for OOD and misclassification detection tasks.
The code is available at https://anonymous.4open.science/r/HSI_
torch-1586/

1 INTRODUCTION

Hyperspectral (HS) data is widely used in various real-world applications including atmospheric
science (Saleem et al., 2020), food processing (Ayaz et al., 2020), and forestry (Khan et al., 2020),
benefiting from rich spectral information measured at individual pixels. Unlike human eyes which
possess only three color receptors sensitive to blue, green, and red channels, HS data provides a wide
spectrum of light (visible and near-infrared range) for every pixel in the scene, which enables more
faithful classification results compared to traditional classification using color images. As a result,
hyperspectral image classification (HSIC) attracts considerable research interests (Chen et al., 2014;
Ahmad et al., 2017; Hong et al., 2018; Ahmad et al., 2021). Specifically, graph convolution neural
network (GCN) (Kipf & Welling, 2016) has found extensive use in HSIC (Shahraki & Prasad, 2018;
Qin et al., 2018; Wan et al., 2020; Hong et al., 2020) due to its ability to effectively model the
interdependency among pixels (especially when they are far away).

However, there is limited work related to predictive uncertainty quantification for HSIC. For ex-
ample, it is not practical to assume that all categories (materials) in the scene are known and have
available samples for model training. In such scenarios, the model is expected to have the capability
to know what they do not know, which can be measured by epistemic uncertainty from a probabilistic
view (uncertainty of model parameters due to limited training data). On the other hand, pixels may
be misclassified due to various factors, such as environmental noise, material similarity, and atmo-
spheric effects. Thus, it is desirable for a training model to identify the unknown what they do not
know, which can be measured by aleatoric uncertainty (uncertainty due to randomness). Overall, it
is necessary to quantify these two uncertainties to ensure the reliability of HSIC models.

The epistemic and aleatoric uncertainties at the pixel level can be used to detect out-of-distribution
(OOD) pixels that belong to unknown materials and detect pixels that are misclassified to the wrong
categories, respectively. OOD detection in HSIC performs ID classification and OOD detection
simultaneously, which is different from HSI anomaly detection, as the latter only involves detect-
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ing pixels whose spectral characteristics deviate significantly from surrounding or background pix-
els. Literature has found that epistemic uncertainty is the most effective for OOD detection, while
aleatoric uncertainty is most effective for misclassification detection (Zhao et al., 2020; Stadler et al.,
2021).

Graph-based models for HSIC construct a graph by regarding each pixel as a node and the inter-
dependency among nodes is defined by an adjacency matrix. As a result, the nodes on the graph
are dependent on each other. In contrast to extensive literature for independent inputs (Lakshmi-
narayanan et al., 2017; Gal & Ghahramani, 2016; Charpentier et al., 2022), uncertainty estimation
for semi-supervised node classification on a graph with dependent inputs is more complex and thus
less explored (Abdar et al., 2021). Notably, two primary investigations have been conducted em-
ploying deterministic methodologies. One is the evidential graph neural network (EGCN) (Zhao
et al., 2020), and it extends the evidential neural network (ENN) (Sensoy et al., 2018) on images
(independent inputs) to graph data (dependent inputs) with GCNs and graph-based kernel Dirichlet
estimation. Throughout the paper, we refer to this model as GKDE or EGCN for brevity. The other is
graph posterior network (GPN) (Stadler et al., 2021) that adapted the posterior network (PN) (Char-
pentier et al., 2020) together with an evidence propagation through the graph nodes. Both GKDE
and GPN predict the conjugate prior distribution of categorical distribution, i.e. Dirichlet distribu-
tion at each node, and incorporate the uncertainty-cross-entropy (UCE) loss (Bilos et al., 2019) in
the overall optimization problem to train the model parameters.

However, the UCE loss function has limitations in effectively learning uncertainty quantification
models. First, the models learned based on UCE tend to peak the Dirichlet distribution and be-
come overly concentrated on the predictive classes in the simplex (feasible) space composed of the
class-probability vectors (Bengs et al., 2022), which can be alleviated by introducing entropy-based
regularization to encourage the predicted Dirichlet distributions to be uniform (Charpentier et al.,
2020; Stadler et al., 2021). Second, it is known empirically that learning models based on UCE alone
do not produce accurate epistemic uncertainty for OOD detection, which can be aided by additional
regularization terms, e.g., the aforementioned GKDE (Zhao et al., 2020). However, we show in our
experiments both GKDE and GPN do not have satisfactory results in HSIC.

In this work, we consider the uncertainty quantification task for graph-based hyperspectral image
classification. Our Contributions are summarized as follows. First, we provide a theoretical anal-
ysis of the limitations of UCE for learning EGCNSs to enable accurate epistemic uncertainty esti-
mation. In particular, minimizing the UCE loss does not help an EGCN to learn embeddings that
are capable of mapping OOD nodes into the detectable region near the decision boundary. Sec-
ond, we propose a multidimensional uncertainty estimation framework for HSIC. To the best of our
knowledge, this is a pioneer work in discussing the uncertainty estimation on the graph-based HSIC
models. Third, we introduce a physics-guided unmixing-based regularization (UR) to address the
shortcomings of the UCE loss when quantifying epistemic uncertainty. Here, we assume that OOD
pixels are mostly composed of an unknown material and the UR term is the reconstruction squared
loss for decomposing into the in-distribution (or known) materials and the OOD material. Fourth,
we adopt the total variation regularization to propagate predicted evidence along the decision bound-
ary (not across), thus preserving spatial edges between ID and OOD nodes. Finally, we present ex-
tensive empirical experiments to demonstrate the effectiveness of the proposed regularization terms
on both EGCN and GPN using three real-world HSIC datasets for OOD and misclassification de-
tection tasks in comparison with 5 competitive baselines.

2 PRELIMINARY

In this section, we review graph-based hyperspectral image classification in Section 2.1, EGCNs in
Section 2.2, and relevant concepts of uncertainty quantification in Section 2.3.

2.1 GRAPH-BASED HYPERSPECTRAL IMAGE CLASSIFICATION (HSIC)

HSIC aims to assign a unique label to each pixel based on its spectral and spatial properties. Mathe-
matically, the input HS data can be represented as X = [x!, 22, --- ,&(HW)] ¢ RUIXW)XB \where
B is the number of spectral bands (feature dimension) and H x W is the spatial dimension. Letting
N = HW, we stack the 2D spatial domain to a vector, and hence each pixel ¢ is associated with
a feature vector ' € R, Vi € [N]. For classification purposes, each pixel i has a class label
y* € [C] associated with a specific constituent material, where C'is the number of classes known as

a priori.
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The graph-based HSIC technique (Qin et al., 2020) builds a graph, in which each vertex corresponds
to a pixel in the 2D spatial domain and the weighted adjacency matrix A is calculated based on
similarities between node-level features: i.e.,

Aij = eXp(fd(Xi,Xj)/U), Vi, j € [N]a (D

where d(x?,x7) is the Euclidean distance (or minus cosine similarity) between vertices i and 7,
and o is tuned to optimize how similar two nodes are. Suppose the resulting graph is defined as
G(V,E, X,Y1), where V = {1,--- , N} is a ground set of nodes, E C V x V is a ground set of
edges, X = [z, 22, V] € RVXF is the node-level feature matrix, z* € R? is the feature
vector of node 7, yi, = {y’|i € L} € RI" is the label for the training node set . C V, and y* € [C]
is the label for node 7. The GCN-based HSIC method (Hong et al., 2020) can be formulated as
[p'licv = f(A,X;8), where p’ is the probability vector of node i and f(-) is a standard GNN
function that depends on the adjacency matrix A, the data matrix X, and a set of network parameters,
denoted by 6.

2.2 EVIDENTIAL GRAPH CONVOLUTIONAL NETWORKS FOR NODE CLASSIFICATION

An evidential GCN (EGCN) (Zhao et al., 2020) takes graph G as INPUT and predicts an evidence
vector €' = [el, -+, eL] for each node i as OUTPUT: [e'];cv = f(A, X; 6), where ¢’ is a measure
of the amount of support collected form the training labels g, in favor of node ¢ to be classified
to the class c. EGCN is the same as a classical GCN, except that the activation function (e.g.,
exponential or ReL.U) of the output layer is unbounded, outputting an evidence vector, instead of
the softmax function outputting class probabilities. The evidence vector can quantify predictive
uncertainty through a well-defined theoretical framework called subjective logic (SL) (Jsang, 2018).
More specifically, a multinomial opinion w = (b, ) in SL can be defined as:

e C
bo=— and u=—, for c=1,--- ,C, 2
5 u 5 c 2)
where b = [by,--- ,bc|" represents the beliefs of the C' classes, u is the uncertainty mass repre-

senting the vacuity of evidence, and S = chzl(ec + 1). It is straightforward that b, > 0,u > 0,

and ZcC:l b +u = 1. A multinomial opinion w can be equivalently represented by a Dirichlet
distribution: P(p) ~ Dir(a), where p = [p1,--- ,p¢] is a probability vector of C classes and
a = [ay,- -+ ,ac| are called concentration parameters with . = e.. + 1. The class label y*, prob-
ability vector p’, and the evidence vector e’ for node i have the following probabilistic relations:

y' ~ Cat(p’), p’ ~ Dir(p‘|a’), o' =e' +1, [e]icy = f(A,X;0). 3)
The expected class probability is equal to the mean of the Dirichlet distribution, i.e. p = < in the

sense that S can also be defined by S = 25:1 a.. Based on the principles of evidential theory,
a lack of evidence, i.e., “I don’t know,” can be expressed through a close-to-zero vacuity u (or
equivalently a uniform Dirichlet).

An EGCN is trained based on the uncertainty cross-entropy (UCE) loss function, defined by
UCE(a77 ylv 0) = EpiwDir(pi\ai) [_ 1Og P(?JWP?)} s 4)

which can be interpreted as the expectation of the standard cross-entropy loss with respect to the dis-
tribution of class probabilities: p* ~ Dir(p’|a’). Alternatively, Stadler et al. (2021) proposed a new
network architecture (as opposed to a classical GNN architecture), namely graph posterior networks
(GPN), to predict node-level Dirichlet distributions. Specifically, GPN consists of three modules:
multilayer perceptron (MLP) layers for node-level feature embedding, a normalizing flow module
to estimate node-level densities in the embedded space, and a personalized page rank propagation
layer (Gasteiger et al., 2018) to smooth the concentration parameters among neighboring nodes.

2.3 UNCERTAINTY QUANTIFICATION

Aleatoric uncertainty is the uncertainty in the class prediction that is measured by the entropy of
categorical distribution(Malinin et al., 2017), i.e. u¥* = H(Cat(p)) or confidence (Charpentier
etal., 2020), i.e., u¥? = —max.p.. It exhibits higher values when the categorical distribution is flat.
In contrast, epistemic uncertainty is the uncertainty on categorical distribution and can be measured
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by the total evidence count, i.e. uP® = C/S, which is referred to as vacuity from the viewpoint of
evidential uncertainty (Josang et al., 2018). When the distribution of categorical distribution, which
is the Dirichlet distribution in the evidential-based models, is spread out, the epistemic uncertainty
is high. Aleatoric uncertainty is proven to be more effective for detecting misclassifications while
epistemic is better for identifying OOD samples (Zhao et al., 2020).

3 UNCERTAINTY-AWARE REGULARIZED LEARNING

This section first discusses the limitations of the UCE loss function and the GKDE-based regulariza-
tion term on epistemic uncertainty quantification in Section 3.1. We then propose two regularization
terms specifically designed for HSIC: unmixing-based regularization (UR) and evidence-based total
variation (TV) regularization in Section 3.2.

3.1 LIMITATIONS OF UCE AND EXISTING REGULARIZATION TECHNIQUES

Without the loss of generality, we focus on binary classification task throughout this section; the
generalization to multiple classes can be analyzed similarly to Collins et al. (2023) and Kristiadi
et al. (2020). A typical EGCN architecture has several graph convolutional (GC) layers followed
by one MLP layer (Zhao et al., 2020). The GC layers produce node-level embeddings to capture
the graph dependency among the nodes in the sense that nodes that are neighbors in the graph are
more likely to be spatial neighbors in the embedded space, denoted by D C RP. Specifically for
homophily graphs (Ma et al., 2021), GC layers can generate embeddings that can separate different
classes. Note that the three HSIC datasets used in our experiments are indeed homophily graphs, as
discussed in Appendix B. The MLP layer in EGCN helps to reduce the dimensions of the embedded
space while producing node-level evidence. We demonstrate that the MLP layer learned based on
UCE fails to produce accurate evidence predictions, even in the ideal case where the GC layers can
produce perfectly separable node embeddings. Let z° € R” denote the embedded vector of node
1 € V. The MLP layer for node-level evidence prediction can be formulated as:

e(z;0) :=[e(2;0),e_(2;0)] = [o(wlz+b),0(—w'z —b)], (5)
where = {w,b}, w € RP | b € R, and o(-) is the activation function (e.g. ReLU and exponential)
that outputs evidence values. We start with the lower and upper bounds for MLP-based ENNS.

Proposition 1. Suppose z € D C RP is a data point in the embedded space and y € {—1,+1} is
its binary class label. An MLP-based ENN has the lower and upper bounds for the UCE loss:

< UCE(al(z;0),y;0) < e 0 1

ey(2z;0)+1 ~ - ey(z;0) ’ ©

where e, (z; 0) is the evidence of classs y, o(z; 0) = e(z;0) + 1, and [-] is the ceiling operator. If
the ENN can predict y correctly: y(es(z;0) — e_(z;0)) > 0, we have a tighter upper bound:
r+1

UCE(a(z),y;0) < UCE(a(z),y;0) := e (2,0)’

(N
where r = 0 for the ReLU activation function and r = 1 for the exponential activation function.

Please refer to Appendix A.1 for the proof of Proposition 1. Note that the upper bound in (7) is tight

. r+1 . r+1 1 _ ey (z0)+r+1
as the error bound: IW — UCE(av,y;0)| < e T O = et o) 0 as

ey(z; @) — oo. Under the assumption of the universal approximation theorem (Pinkus, 1999) for an
MLP network, the optimal parameter 8* that minimizes the UCE on a training set has the property:
ey(z;0*) — oo and e_,(z; 0*) — 0, as demonstrated in Lemma 2 in Appendix A.1.

We establish in Theorem 1 that the optimal solution when minimizing the upper bound
UCE(«(z),y; 0) defined in Equation (7) with the exponential activation function o (+) has a closed-
form expression that is equivalent to the optimal solution of linear discriminative analysis (LDA)
under certain assumptions.

Theorem 1. We assume that (i) feature vectors belonging to classes {1} follow Gaussian distri-
butions with the same covariance matrix and the means tu, respectively, i.e., P(z,y) = P(y =
+DN(z; 0, 2) + Ply = —1DN(z;—p, %), with Ply = +1) = Py = —1) = 0.5; (i)

the optimal solutions 0* that minimize E(; )~p(z,y)UCE(c(z),y; @) can linearly separate both
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classes: ey(z;0) > e_,(2;0),V(z,y). Let o(-) be the exponential function. The optimal solution
0* = (w*,b*) is the same as the optimal solution of LDA, i.e.,

w* ="ty and v* = 0. 8)
Theorem 1 has several important implications when the
classes are separable. First, the MLP layer in EGCN
learned based on UCE has the same objective as in
LDA: Finding a projection that maximizes the separa-
tion between the projected class means with a small vari-
ance within each class. Unfortunately, as illustrated in
Fig. 1, this objective does not help learn a projection
that maps OOD data points to the grey region of low
evidence near the decision boundary, where GCNs can
effectively detect OODs: e,(z;0*) = 1 (or equiva-
lently w*’'z 4+ b* = 0), to have the required small ev-
idence values (or large epistemic uncertainty values due
to Eq. (2)). For any far-away OOD data point z = 0 - z,

w*Tz+b*

e,(z)=e
k\

Figure 1: Two-separable-class case: The

where 6 — oo and (z,y) € P(z,y) is an ID data
point, the predicted evidence approaches +oco evidence
(the epistemic uncertainty approaches 0, equivalently):
ey(2:0%) = exp(y(w*'z + b)) = exp(yw*’dz) =
(exp(yw*T2))® — oo, when 27X~y # 0, given that

grey region in the feature space is a de-
tectable OOD region by one-layer MLP-
based ENN learned using UCE. The light-
blue and light-green OOD regions are not
detectable by ENN.

b* = 0 and exp(y(w*'z + b*)) = exp(yw*’z) > 1.

Second, the evidence predictions for the testing data points are not influenced by the distance be-
tween the two class means, as it is not a factor in w* and b*. Third, Fig. 1 shows that we can
identify the light-blue and light-grey OOD regions of different characteristics in the feature space
of z based on the projection w* = X~!u. In particular, the learned MLP layer predicts higher
evidence for OOD nodes in the light-blue region than the one of ID nodes; and predicts evidence
similar to those of ID data points for OOD data points in the light-grey region. The learned MLP
can only predict small evidence for OOD points in the small light-grey region near the decision
boundary: w*’z 4+ b* = 0.

We remark on several assumptions in Theorem 1.  First, the assumption on the Gaus-
sian means p and —p can always be true by translating the origin of the feature space
to the middle point of two centers as a preprocessing step. Second, we assumed the
same covariance matrix ¥ for the two Gaussians to obtain an analytical solution in Eq. (8).
For different covariance matrices, the optimal solution
is non-identical to that of LDA. Third, we assume that
the classes are linearly separable so that the MLP layer
can be defined in Eq. (5). The linear separability has
been assumed in OOD-related theoretical analysis such as o
Ahuja et al. (2021). For the non-separable case, the MLP oo
layer is defined as e(z;0) = [e1(2;0),e_(2;0)] = | () =elotns1 Z°
[o(wTz +b1),0(wiz+ b)], where the weight and bias 7
parameters for predicting the evidence values of the two
classes are different. As demonstrated in Fig. 2, the grey,
light-green, and light-blue regions have more complex
shapes compared to the separable case in Fig. 1. The
OOD points that can be detected by the MLP layer are

e_(z) =eWizths > 1

Figure 2: Two-non-separable-class case.

within the grey region: {z|e,(z;0) < 1,e_,(z;6) < 1}.
Further, there is an orange region for the non-separable
case: {z|e,(z;0) > 1,e_,(z;0) > 1}, in which the evi-

The grey, light-green, and light-blue regions
are the same as those in Fig.1. In the orange
region, the predicted evidence values of both

dence values for both classes are larger than 1. Our theo-  classes are larger than 1.

retical results on EGCN may not be generalizable to GPN. GPN predicts evidence values based on
density estimation in the embedded space instead of MLP layers as used in EGCN.

We demonstrate that minimizing the UCE loss does not help to learn the MLP layer to map the
OOD regions (e.g., light-green and light-green OOD regions in Figs. 1 and 2) into the detectable
OOD region of EGCN near the decision boundary. Zhao et al. (2020) proposed to use the KL
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divergence-based regularization term: ZieL KL(Dir(p‘|&?), Dir(p?|at)), to enforce the closeness
between &' and o, Vi € V, where &' is a pre-computed teacher based on graph-kernel distance.
However, this term assumes that OOD test nodes are far away in terms of graph-based distance from
the training (ID) nodes compared to ID test nodes. This assumption is not always valid based on our
empirical performance of the GKDE teacher on three HSIC datasets in Appendix E.2.

3.2 UNMIXING AND EVIDENCE-BASED UNCERTAINTY REGULARIZATIONS

Due to the limited spatial resolution of HSI sensors, it is conceivable that each pixel in HSI data
may contain a combination of materials, and hence it is desirable to decompose a single pixel into
the proportions of constituent materials (a.k.a. abundance). We assume that there exist C pure
materials (a.k.a. endmembers) in the scene, each with the corresponding signature m,. € RZ, ¢ €
{1,---,C}. A matrix formed by all of these signatures is called a mixing matrix and denoted by
M = [my,...,m¢] € REXC. The abundance map obtained by the abundance coefficients of all
the pixels can be represented by a matrix V' € RE* . We adopt a simple linear mixing model in
which the spectral measurement at each pixel is a linear combination of the endmembers, i.e.,

. c . )
= Zc:l vem, +n', 9)

where v! is the abundance coefficient for the c-th material at the ith pixel and )’ denotes a noise

term. Denote v* = [v},...,v&]. It is typical to assume Z o—1 Ve = 1, as each abundance vec-
tor resides within the probablhty simplex. We adopt the linear mixing model (9) for its simplicity.
There are more complicated nonlinear models by taking into account endmember-wise scaling fac-
tors (Drumetz et al., 2016), spectral variability (Hong et al., 2018), and illumination-induced vari-
ability (Drumetz et al., 2019). Decomposing the HS data X into a collection of reference spectral
signatures M with associated abundance matrix V is referred to as hyperspectral unmixing.

Unmixing-based Regularization (UR). HSIC is related to hyperspectral unmixing in that the in-
distribution (ID) classes are associated with the C known endmembers. Under the OOD detection
setting where OOD classes are associated with unknown materials, we can consider a linear mixing
model, where the signatures of the ID materials, {m,--- ,m¢} are given. We assume that OOD
nodes are associated with the same unknown material that is denoted by m,. The hyperspectral
unmixing problem can be formulated as

min E

m,,vt,vl i€V

2" — Mo — vim,|3. (10)

We propose to use the beliefs b’(0) and the vacuity u’(@) (the epistemic uncertainty measure) to
approximate the abundance coefficients v* of ID materials and the abundance coefficient v;, of the
OOD material, respectively. The rationale of such approximations, b*(6) =~ v’(@) and uZ(H) ~

v (), is threefold. First, the sum-to-one property on beliefs and vacuity: ZCC b +Hut =1, 1s

aligned with the one on abundance coefficients: Zf_l v + v = 1. Second, the vacuity u® for
ID node 7 should be close to zero, and hence the beliefs are analogous to class probabilities (Jsang,
2018), which can be used to approximate the abundance coefficients (Chen et al., 2023). Third, the
vacuity for an OOD node is close to one and its belief is close to zero, implying that the abundance
coefficient v? (@) should be close to one and v*(8) be close to 0. Using the approximations, we turn
the unmixing problem (10) into an unmixing regularization (UR) term,
. o i i i 2

ity UR(mo, 6) = ) oy o = MY'6) = o O)molf an
where b, u! (Vi € V) can be derived by the evidence €‘(6) = f;(A,X;8), or e for brevity.
Minimizing the UR term encourage high vacuity for OOD nodes and low vacuity for ID ones. Given
0, there is a closed-form solution for the optimal m,, i.e.,

* ZieV ul,(6)(x' — Mb'(9))

m* = | . (12)
> iev(ub(0))?
Please refer to Appendix A.3 for more details. Using the definitions of b = C+27e u =
c=1 "¢
ﬁ we rewrite UR(m, ) with respect to evidence e, i.e.,

ZC elm, cm*

c=1 "¢

C—"_Zc:leti: CV—"_Z:cl €c

UR(e) =) '~ -13. (13)
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Proposition 2. Assume the linear model (9) holds without noise, the gradient descent for minimizing
the UR(e) regularization increases the predicted evidence of ground-truth class for ID instances and
decrease the total evidence for OOD instances with the corresponding pure material contained in
the pixel. Formally, we have

(a) For an instance (x*,y") with feature matrix x* = m,: and yt € {1,...,C} is the ground
truth label, one has
OUR
(e) <. (14)
8e;i

(b) For an OOD instance instance (x*,y') withx' = m* and y' = o ¢ {1,...,C}

< OUR(e)
oel,

>0, (15)

c=1

We present two desired properties of the UR term in Proposition 2. Part (a) is consistent with
minimizing the UCE loss for ID nodes, aiming to predict high class-wise evidence for ground truth
class. This often results in an increased total evidence for ID nodes during training iterations. Part
(b) implies a decrease in total evidence for OOD samples when minimizing the UR term, resulting
in a higher vacuity score, which provides additional information beyond the UCE loss. It is the
inherent physical characteristics of hyperspectral data that implicitly help distinguish OOD and ID.
Specifically, each pixel in a hyperspectral image contains a spectrum, which is a mixture of the
spectra of all materials present in that pixel. ID and OOD pixels naturally contain different materials.
The results above are agnostic to model architectures, i.e. the unmixing-based regularization term
can be applied for arbitrary uncertainty quantification architectures and is guaranteed to have the
above properties with reasonable assumptions.

Evidence-based Total Variation Regularization (TV). The graph G does not incorporate spatial
information. For hyperspectral unmixing, the total variation (TV) regularization (Iordache et al.,
2012) was applied to the abundance coefficients to enforce the spatial smoothness, while preserving
edges. We propose the use of TV on the node-level vacuity value, which is inversely proportional to
the Dirichlet level strengths (or equivalently total evidence). To define the discrete TV regularization,
we represent a 2D image of size H x W as a vector via a linear indexing, i.e., (h — 1)H + m)-
th component denotes the location at (h,m). Define two matrices D, D, to be the finite forward
difference operators with periodic boundary conditions in the horizontal and vertical directions,
respectively. Then the discrete form of the (anisotropic) TV norm is defined by

TV(u) = [ Doully + [ Dyul:. (16)
Regularized Learning. The regularized learning objective has the following form:
LOm) = (UCE(ai, vi:0)) + >\1R(0)) + MUR(,m,) + AsTV(u(0)),  (17)

where R(0) refers to the model (GKDE or GPN)-specific regularization term and A1, A2, A3 are
hyperparameters. For GPN, R(0) = >_..; ENT(Dir(p’|a’)). The GKDE regularization term can
be found in the last paragraph of Section 3.1. The TV term is applied on the vacuity score w(8).
The last two terms only require node features and are applied to the whole graph V. The model
parameter 6 and m, in UR term can be optimized alternatively: closed-form solution for m, in
(12) and gradient descent to update the model parameters 6.

4 EXPERIMENT
4.1 EXPERIMENT SETUP

Datasets We use three HSIC datasets for evaluation: the University of Pavia (UP), the University
of Houston (UH), and the Kennedy Space Center (KSC) dataset. For train/(validation + test) split,
we use the public challenge split for UH (Debes et al., 2014), the same split as (Hong et al., 2020)
for UP, and a random split for KSC with 20 nodes for training. For validation/test split, we use
0.2/0.8. The number of disjoint train/validation/test samples selected from each class used for all
the experimental results is presented in Appendix B.
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Competing Schemes We consider two state-of-the-art uncertainty quantification backbones for
graph data: EGCN (Zhao et al., 2020) and GPN (Stadler et al., 2021). For EGCN, we include
GKDE regularization by default. We apply our two regularization terms to the original model loss
and analyze the effect of our proposed UR term and TV term. We then compare our proposed models
with three baselines. Softmax-GCN (Kipf & Welling, 2017) is a classic GCN for semi-supervised
node classification and uses the softmax as the last activation layer. We use the entropy as the uncer-
tainty score as (Hendrycks & Gimpel, 2016). Though this paper focuses on OOD detection, we also
include two anomaly detection models TLRSR (Wang et al., 2022) and RGAE (Fan et al., 2021) in
our baselines as anomaly detection is widely researched in HSI. We use the features of all pixels to
do the anomaly detection and take the OOD class as the anomalies. The detailed settings and param-
eter tuning are presented in Appendix D. We evaluate the performance of all above models using the
area under the ROC (AUROC) curve and the area under the Precision-Recall (AUPR) curve in both
experiments. Specifically, the detection rankings are based on epistemic uncertainty score in OOD
detection tasks and aleatoric uncertainty in Misclassification detection tasks.

Table 1: AUROC and AUPR for the Misclassification Detection.

dataset . up . . UH . . KSC .
Mis ROC Mis PR Mis ROC Mis PR Mis ROC Mis PR
softmax-GCN 78.95+1.18  47.5840.78 89.2240.25 52.854+1.62 89.2240.25 52.85+1.62
EGCN 77.3740.61 47.78+0.44 87.98+0.50  76.18£0.82 90.1840.32 54.38+1.59
EGCN - UR 77.89+1.37  47.1640.52 88.47+0.56 76.77+1.15 90.2140.38 53.51+1.79
EGCN - UR - TV(Ours) 78.8340.85 48.7310.49 87.96+0.69 75.76+1.51 90.371+0.54 55.09+1.71
GPN 73.394+0.70  44.3840.60 80.66+0.95 67.244+1.92 78.131+13.82  54.68+7.69
GPN - UR 73.584+0.36  45.0240.42 81.08+1.05 67.25+1.24 82.38+6.78 55.28+6.17
GPN - UR - TV(Ours) 73.354+0.33 47.99+£2.37 83.36+0.68 67.574+1.83 78.231+6.58 53.08+8.09

4.2 RESULTS

Misclassification detection. The misclassification detection is to detect whether a given prediction
is incorrect with an uncertainty score. It is evaluated on the clean graph and the positive cases corre-
spond to wrongly classified nodes and the negative cases represent correctly classified nodes. Table
1 shows the misclassification detection result where the bold numbers are the best results over all
models. We can observe that softmax-GCN is not bad on misclassification detection, which indicates
that misclassified nodes tend to have predicted class probabilities spread out across ID categories and
entropy can capture reasonable aleatoric uncertainty for deterministic softmax models. Besides, our
proposed uncertainty quantification frameworks show comparable results with softmax-GCN on the
misclassification detection task for UP and UH, and have slightly better ROC and PR on KSC.

OO0D detection. OOD detection involves whether a given example is out-of-distribution based on an
estimate of uncertainty compared to the training set. The positive class corresponds to OOD nodes
and the negative class pertains to ID nodes. The OOD detection is on the Left-out classes setting
consistent with Zhao et al. (2020) and Stadler et al. (2021). Note that we remove the Left-Out
classes from the training set but keep them in the graph. Within each dataset, we create four random
configurations, and in each one, one class is picked as OOD. we display the weighted average,
factoring in the count of test OOD nodes for every dataset in Table 2. We report the mean and stand
deviation of 5 random runs. Due to the space constraint, the detailed setting and result for each OOD
setting can be found in Appendix E.2. The bold numbers are the best results over all models. The
underlined numbers are the best results within the same model type if it is not the best of all.

We observe that our proposed uncertainty quantification framework with both two implementations
outperforms the softmax-GCN and anomaly detection baselines. This result indicates that softmax
entropy can not capture the epistemic uncertainty well, which is the key for OOD detection, leading
to worse performance on OOD detection. Anomaly detection techniques are designed to identify
pixels with abnormal features across an entire image, without relying on supervised information
about what’s considered “normal”. Compared to models specifically designed for OOD detection,
these models are unable to perform ID classification and struggle to recognize OOD. One possible
scenario is the most distinct elements might actually belong to an easily classified ID category. In
addition, GPN backbone performs best on UP while EGCN performs best on UH and KSC. This
may be because the GKDE teacher in the EGCN model (full name EGCN-EGCN) has a better
instruction effect on UH and KSC and the performance of EGCN model is highly dependent on the
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Table 2: AUROC and AUPR for the OOD Detection.

dataset UP UH KSC

OOD ROC OOD PR OOD ROC OOD PR OOD ROC OOD PR
softmax-GCN 57.0445.80 16.344£3.29 | 56.78+2.63 19.18+£0.57 | 77.12+£0.65  54.18+1.29
RGAE 77.224n.a. 24.81+n.a. 52.51+n.a. 10.59+£n.a. 69.62+n.a. 34.10£n.a.

TLRSR 74.03+n.a. 20.11%n.a. 48.95+n.a. 6.24+n.a. 58.14+n.a. 9.84+n.a.
EGCN 87.21£0.67  45.50£0.65 | 88.64+0.33  39.68+1.77 | 89.294+0.13  70.1740.55
EGCN - UR 90.434+0.18  46.064-0.31 89.814£0.56  43.25£2.75 | 89.45+0.32  70.81+1.11
EGCN - UR -TV(Ours) | 91.5740.12  46.4440.18 | 90.69+0.46  46.77+2.90 | 92.21+0.42  72.131+1.63
GPN 82.824+3.21  40.96+£2.50 | 82.16+£1.25  46.30+3.07 | 79.66+3.82  59.3040.59
GPN - UR 93.631+0.62  48.714+1.87 | 84.754+0.76  49.57£1.07 | 88.40+0.80  62.01+0.81
GPN -UR -TV (Ours) 94.554+0.23  51.8440.72 | 87.294+1.04  52.02+£2.36 | 88.78+1.71  63.11+1.11

teacher. As experimental evidence, we directly use the alpha teacher to do the OOD detection and
get 87.24% and 87.2% ROC values on UH and KSC respectively, and 69.88% on UP.

It is also worth noting that ROC and PR values are not always consistent. For example on UH, the
GPN-UR-TV has higher PR but shows lower ROC than EGCN-UR-TV. ROC and PR offer different
perspectives to measure the quality of a ranking on data points for separating positives and negatives.
Davis & Goadrich (2006) pointed out that algorithms that optimize AUROC are not guaranteed to
optimize AUPR and vice versa. Yuan et al. (2023) also reported similar empirical observations for
classification tasks. A low AUROC but a high AUPR for GPN-UR-TV indicates that the GPN-based
produces more true positives among the top-ranked nodes than EGCN-based, while EGCN-based
can separate true positives and negatives better than GPN-based among the lower-ranked nodes.

To further illustrate the above ob-

servation, Figure 3 displays example
curves of ROC and PR on UP dataset
with “shadows” selected as the OOD
class. Although TLRSR and RGAE
exhibit impressive ROC performance ¢
(over 93%), their PR outcomes are o
notably poor (below 12%), in con-
trast to the PR of our proposed frame-
work (over 93%). A high ROC with
an extremely low PR for a balanced
dataset means that the model tends to
produce tremendous false positive er-
rors. For example, most nodes have
very comparably high predicted uncertainty scores, which are not distinguishable for ID and OOD.

ROC Curve PR Curve

TLRSR - 93.15 0.6 TLRSR - 11.62
—— RGAE-93.19 5 —— RGAE-11.95
N-97.72 9

Figure 3: OOD detection on UP with “shadows” as OOD class

Ablation Study. We highlight the contributions of the proposed two terms by comparing the results
of EGCN and GPN variants in Table 1 and Table 2. The key findings are: (1) For misclassification
detection, the UR and TV can improve the performance of EGCN and GPN. Specifically, UR pro-
motes 5 out of 6 cases, TV promotes 3 out of 6 cases. (2) For OOD detection, when we apply the
proposed UR term to EGCN and GPN, they both show significantly promoted performance on all
datasets of up to 10% in ROC and 7% in PR on UP dataset with GPN-UR. We then apply TV regu-
larization on EGCN-UR and GPN-UR and the performance is further improved on all datasets. For
instance, GPN-UR-TV increased 1% in ROC and 3.1% in PR on UP dataset compared to GPN-UR.

5 CONCLUSION

We proposed a graph-based uncertainty quantification framework for HSIC. We analyzed the limi-
tations of ENN models based on the UCE loss. To mitigate the limitations, we leveraged inherent
physical characteristics of HS data and edge-preserving regularization to propagate evidence in the
spatial domain, leading to unmixing regularization (UR) and evidence-based total variation (TV), re-
spectively, both are novel in GNN and hyperspectral literature. We conducted experiments on three
datasets to demonstrate the effectiveness of the proposed regularizations. As the effectiveness of the
UR term largely relies on the performance of hyperspectral unmixing, we will develop a more stable
HSCI model subject to errors introduced by inaccurate mixing model and mixing matrix (please
refer to Appendix G for limitations of the proposed approach). Another future direction lies in the
scenario with multiple OOD material categories (as opposed to only one in this work).
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A PROOFS FOR THEORETICAL RESULTS

A.1 PROOFS FOR LIMITATIONS OF UCE AND EXISTING REGULARIZATION TECHNIQUES

Proposition 1. Suppose z € D C RP is a data point in the embedded space and y € {—1,+1} is
its binary class label. An MLP-based ENN has the lower and upper bounds for the UCE loss:

[e—y(z:0)] +1

1
ez 0) 11 < UCE(a(z),y;0) < e, (z:0) (18)

where e, (z; 0) refers to the output evidence for the classs y and o(z) = e(z; 0) + 1. If @ can predict
y correctly: y(es(z;0) — e_(2z;0)) > 0, we have the following tighter upper bound:

UCE(c(z),y;0) < UCE(c(z),y;0) := BT(JZF. ;),

(19)
where r = O if the output activation function is ReLU and r = 1 if it is the exponential function.

Proof. The UCE loss function has the analytical form:

UCE(Q(Z), Y; 0) = EpNDir(p\a(z)) [_ 1Og P(ylp)] (20)

= U(ey(2;0)+e_y(2;0)+2)— TU(e, + 1), (1)

where ¥(-) is the digamma function and —y refers to a different class label other than y. For

example, if y = +1, then —y = —1 refers to the negative class. As ¥(+) is a monotonic increasing
function, we have the lower bound:

UCE(c(z),y30) = (e, (2:0) + e, (2:0) +2) — (e, + 1) 22)

> U(ey(z;0)+ |le—y(2;0)] +2) — U(ey(z;0) +1). (23)

It follows from the recurrence relation of the digamma function, i.e., U(x+1) = ¥(z)+1/z, Yz > 0
that a lower bound of the UCE loss function:

UCE(c(2),y;0) > W(ey(20)+ [e—y(20)] +2) — Uley(20) +1) 24
> U(ey(z;0)+2) — V(ey(z;0)+1) (25)
1
BCCUE =
Similarly, we can achieve an upper bound:
UCE(a(2),:0) = W(ey(z:0) + o (2:0) +2) — U(e, () + 1) @
< U([e—y(z;0)] + ey(z;0) +2) — U(ey(z;0) + 1) (28)

[e—y(z:0)]+1

S 1 Jeu@olrl 09)
p ey(z;0) +1 ey(z;0)
Since [e_,(2;0)] < e_y(z;0) + 1, we get a desired upper bound as in (18).
In the separable case, the last MLP layer of the ENN can be defined as:
e(z;0) :=[e(2;0),e_(2;0)] = [o(wlz+b),0(—w’z —b)], (30)

where 2 is the input to the last MLP layer @ = {w,b}, w € RP , b € R, and o(-) is the activation
function (e.g. ReLU and exponential) that outputs evidence values. If the configuration € can
separate the example (x, y) correctly: y(e4(2;0)—e—_(2;0)) > 0, we have that e4 (2; 0) > e_(2;0)
fory = +1 and e4(2;0) < e_(2;0) for y = —1. We discuss two types of activation functions
separately.

a) Exponential function: exp(w’z+b) > exp(—w?2—b) fory = +1 and exp(wz+b) <
exp(—w7T% — b) for y = —1, which implies that 0 < exp(—-w'z —b) < 1fory = +1
and 0 < exp(w’z +b) < 1fory = —1. It follows that: [e_,(2,0)] < 1. Therefore, we
obtain a tighter upper bound in Equation (19) with » = 1.
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b) ReLU function: ReLU(w’2% + b) = 1 and ReLU(—w'% — b) = 0 when y = +1.
When y = —1, we ReLU(w’z + b) = 0 and ReLU(—w7T% — b) = 1. we then have:
[e_y(2,0)] = 0. We obtain a tighter upper bound in Equation (19) with r = 0.

O

We note that the condition of separability: y(ey(2;0) — e_(2;0)) > 0 implies that the training
examples in the training set D, i.e., (2,y) can be correctly classified based on the projected class
probabilities: y(p4(z) —p-(2)) > 0, where [p1(z),p-(2)] = [(e4(2;0) +1)/5, (e—(2;0)+1)/5]
and S = ey (2;60) +e_(2;0) + 2.

Lemma 2. Assume that the universal approximation property holds for an MLP-based ENN, i.e.,
the ENN can learn an arbitrary mapping function from the feature vector z to the evidence values
of binary classes: e(z;0) :]\ieJr(z; 0),e_(z;0)]T € [0,00)% Then, the UCE loss defined based on
the train set D = {(2z*,y") };=, approaches the infimum value 0, if the solution 0* has the property:
ey(2;0%) = o0 and e_,(z;0*) — 0,Y(z,y) € D.

Proof. Thanks to the universal approximation property, the optimal solution 8* can predict the
Dirichlet distribution Dir(a*) that has the minimal UCE loss for each training example (x,y) € D,
where a* = e(z;0*) + 1. Minimizing over 6 is equivalent to minimizing ., i.e., for each example
(z,y) € D:

ot = arg moizn UOE(OL, y) = EPEDiT(OL) [ECE (p7 y)]7 (31)
where (g (p, y) is the standard cross entropy function. It holds that:
Epepir(a) [lor(P:y)] > Lor(Epepir(a) [P, Y)- (32)
Let & be the minimizer of the above lower bound:
a = arg rnoizn gCE(E’pGDiT(a)[pLy)' (33)
Let p = Epepir(a)[p]. We can derive that p = [py,p_], where p, = 1 and p_, = 0. Let
Dir(é&) = 65, where 6(+) is the delta function and E e pir(a) [p] = 5. Then,
UCE(a,y) = Epepirallcr(p,y) (34)
lee(P.y) (35)
= ZC'E (]EpEDir(d) [p]a y) (36)
It follows that UCE (e, y) > UCE(é&,y),Va € [1,+00)?, and hence ¢ is an optimal solution. As
Dir(é) = 6p, we conclude that e, (z; %) — +o0 and e_,(z; %) — 0. O

Theorem 1. We assume that (i) feature vectors belonging to classes {£1} follow Gaussian distri-
butions with the same covariance matrix and the means tu, respectively, i.e., P(z,y) = P(y =
+D)N(z; 1, ) + Py = —1)N(z; —p, 2), with P(y = +1) = P(y = —1) = 0.5; (ii) the optimal
solutions 0* that minimize K, ) p(z,,) UCE(c(z),y;0) can separate both classes: e,(z;0) >
e_y(2;0),Y(z,y). Let o(-) be the exponential function. The optimal solution 0* = (w*,b*) is the
same as the optimal solution of LDA, i.e.,

w* =Xy and b* = 0. 37)

Proof. According to the assumption on Gaussian distributions for the two classes, the generalization
UCE loss has the following relations:

E(2.4)~P(z.4) UCE(c(2),y; 0) (38)

_ %EZN A3 UCE(cx(2), +1; 0) + %EZN Ny UCE(a(z), ~1:0)  (39)

S VIR ) [2] + BN (—p,3) [2} (40)
ey (z;0) e_(z;0)

= E,ons)2 exp(—w’z —b) + Ep N (—p, )2 exp(w’z +b) 41

BN (p,5) exp(—sz —b) +Epn(—px) exp(sz +b). (42)
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Given that z ~ N (p,X), we have w'z + b ~ N(wlp + b,wI'Yw). Based on the property:
Elexp(r)] = exp(p + 02/2) for r ~ N (, 02), we have that

Epn(n,x) [exp(—sz — b)] =exp(—wlp —b+wlBw/2) (43)
Eon(—px) [exp(w'z +b)] = exp(—w" p+ b+ w' Ew/2). (44)

Plugging Equations (43) and (44) into Equation (42), we have the following relations:
]E(z,y)NP(z,y)UCE(a(Z)a y; 0) 45)
o exp(—wlp —b4+wlEw/2) +exp(—wlpu + b+ w Zw/2) (46)
= exp(—wlp+wlEw/2)(exp(—b) + exp(bh)). 47

The minimization problem of the generalization UCE loss has the relations:

molnE(z,y)mP(z,y)UCE(a(z)ﬂYa 0) (48)
= Iniil exp(—w! p + wlZw/2)(exp(—b) + exp(b)) (49)
= minexp(—w? p 4wl Zw/2) mbin(exp(—b) + exp(b)) (50)

The following problem has the optimal solution for b:
b* =0 = arg mbin(exp(—b) + exp(b)) (1)
Due to the monotonicity of the exponential function, we obtain the equivalent optimization prob-
lems,
minexp(—w’ p 4+ w! Zw/2) = min —w’ p + w’ Zw/2. (52)
By taking the gradient and setting it to zero, i.e., —pt + Xw = 0, there is a closed-form solution for
the optimal solution, given by

w*=3"1u. (53)
O

A.2 GRADIENT ANALYSIS OF PROPOSED UNMIXING-BASED REGULARIZATION(UR TERM)

Proposition 2. Assume the linear model equation 9 holds without noise, the gradient descent for
minimizing the UR(e) regularization increases the predicted evidence of ground-truth class for ID
instances and decrease the total evidence for OOD instances with the corresponding pure material
contained in the pixel; formally,

a) For an instance (x',y") with feature matrix ' = m,: and y* € {1,...,C} is the ground
truth ID class label, one has
OUR
©) _y. (54)
Oet,

y

b) For an OOD instance instance (x*,y*) withz* = m’ andy' = o ¢ {1,...,C}

c
OUR
f)zo (55)
— Oe
Proof. Given an instance (z,y%) with x € RP, y* € {1,...,C, 0}. The ID material signature

m, € RB_, ¢ = {1,...,C}, The optimal OOD material signature m;, € RE; The subjective logic
opinion w* = (b',u") is based on model prediction e’(0) (we omitted 6 in the following proof for

brevity). b* =

i

e’ _ C
oI e u = S The UR term can be formulated as

UR(e) =Y ot - e ime O (56)
eV ¢+ 25:1 e. C+ 25:1 ci

c

c
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Taking the partial derivative to e}'c, which is the evidence scalar of class k for instance 7, we obtain

. T . .
OUR(e) 5 (mi B ch Leeme + C’mj;) (X exr e+ C)my — 3 ecme — Cmy

ae;;’ C + Z(,—l c (C + Z(, 1 F)
(57

With the condition that y* € {1,...,C} and &' = m,, it indicates the instance has a pure ID
material, then we have the partial gradient with respect to the ground truth class y* as follows:

. . T . .
oUR(e) _ ((C+ Ly, €)My = (Spyi eime +Cm)) - ((Spyi et + Chmys = (i ebme + Cmi) )
e’ ; (C+ 3, el)?
9 H(C + 207&1 c)m7 (Z(‘,#yi 6imc + Cmu)“z <
C+XT,ei)? =

(58)

With the condition that 4* = o and &’ = m, it indicates the instance has a pure OOD material.
Then it follows from (57) that

OUR(e) (<C+Ec Lebyms = (S8, eime +0m?) " ((Sopy el + Oymi — (S, p cime + Cm3))
e (C+TLyel)?
2 (T, cim} -2, cim.)” | |
= . e+ C)ymy, — 67'mC+CmZ .
GRS SN <§ ym (% )
(59)
The gradient descent to update the total evidence can be expressed as
i i 8UR
€ 1= € — 8@}& )
c c (60)
Zek .—Zek 752?’
k=1 k=1 k=1
where § is the learning rate and the summation of class-wise gradient is calculated by
e} OUR(e) —2 (ZL 1 eLm — ZLC 1 ecmC)T c ) c
— = e, +C — e.me + Cm),
& oo (€+27, e 2 (2ot O 22 e Om)
—2 ( LC 1 ELm - ZS=1 eimc) < <
= (C+Zc:1ec)3 231(;% 7‘ruc-&-C'CX=:17nC ; —-1) ekmk—Cm
-2 ( LC 1 eam - 25:1 eimc)T <
- GRS ENE . C;(mL m)+z:1§€e —(C = 1)eb)ymy, | .
61)
Without loss of generality, we assume that there is only one ID class, i.e. C' = 1, then we have
c
OUR (e 202 €c
Z 5 Z( ) — (Zc 1 ) . Hmo _ mIDH% > 0. (62)
=1 Y% (C+ 3 e)?
O

A.3 ANALYTICAL SOLUTION FOR SIGNATURE OF OOD MATERIAL

Given the feature set of the whole graph {x i € V} and each instance has an associated evidence
vector e’(0) with fixed 6. Then the optimal OOD material’s signature with minimizing UR(m,,)
over the graph has analytical form as

Tyl = Eegme) 4
C
ZieV giZ

(63)
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Proof. The summation of UR term over graph is as follows:

e mc C
=> | i Ll —m,|[3 (64)

S
1€V

Take the derivative of Equation 64 with respect to m,,, we have

8UR mo e 2cCeMe C C
=2 e~ my)(——
ZEZV G gme) (- )
(65)
i E: e ”16
=-2C > (= > 7o
i€V i€V
When % = 0, we have
i . elme
m, = 2iev(@ = =5 )5t (66)

c
EiEV 52

For a dataset, in which the feature vectors for ID nodes coincide with the material signature and
predicted evidence is sparse for ID pixels and is all zero for OOD pixels, then we have:

> ieyoon T’

7
o ©7)

m, =

O

B DATASET DETAILS

HSI captures numerous images at various wavelengths for a given spatial region. Unlike the human
eye, which possesses only three color receptors sensitive to blue, green, and red light, HSI precisely
measures the complete spectrum of light for every pixel in the scene acquired by sensors such as
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It offers detailed wavelength
resolution not just within the visible range but also in the near-infrared range.

We use three HSI datasets that are widely used in the HSIC task and details are shown in Table 3.
“Spatial” is the 2D dimension in terms of width and height, “Spectral” is the spectral bands, i.e.
number of features for each pixel within the “Wavelength” range (nm). “Labeled pixels” counts the
labeled pixels in the ground truth datasets and we do not care about the unlabeled pixels. “Training
ratio” calculates the proportion of training pixels across all labeled pixels. The “homophily score”
measures how likely nodes with the same label are near each other in a graph. The three datasets
we used all show high homophily properties (exceeding 79% homophily score), and it indicates that
pixels with similar spectral features tend to belong to the same category.

Table 3: Summary of the HSI Datasets used for experimental evaluation

UP UH KSC
Spatial 610x 610 | 340x 1905 | 512x 614
Spectral 103 144 176
Wavelength 430-860 0.35-1.05 400-2500
Labeled pixels 42,776 17,270 4,364
Categories 9 15 13
Training ratio 8.67% 27% 7.72%
Homophily score 0.7913 0.7911 0.8109

The Pavia University dataset was acquired by a Reflective Optics System Imaging Spectrometer
(ROSIS) sensor during a flight campaign over the university campus at Pavia, Northern Italy. The
detailed class description and training/validation/test ratio are presented in Table 4 following (Hong
etal., 2020) '.

"https://github.com/danfenghong/IEEE_TGRS_GCN
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Table 4: Land-cover classes of the Pavia University (UP) dataset

Class No. Class Name Training  Validation Test
0 Asphalt 327 1260 5044
1 Meadows 503 3629 14517
2 Gravel 284 363 1452
3 Trees 152 582 2330
4 Painted metal sheets 232 222 891
5 Bare Soil 457 914 3658
6 Bitumen 349 196 785
7 Self-Blocking Bricks 318 672 2692
8 Shadows 152 159 636

Total 2774 7997 32005

The University of Houston dataset is collected by the Compact Airborne Spectrographic Imager
(CAS]) and released as a data fusion contest by The IEEE Geoscience and Remote Sensing Society.
Table 5 presents the classes and dataset split following the contest 2.

Table 5: Land-cover classes of the HOUSTON2013 (UH) dataset

Class No. Class Name Training Validation Test
0 Healthy grass 198 235 941
1 Stressed grass 190 252 1012
2 Artificial turf 227 113 455
3 Evergreen trees 188 215 861
4 Deciduous trees 186 222 890
5 Bare earth 196 28 115
6 Water 196 256 1024
7 Residential buildings 191 232 931
8 Non-residential buildings 193 272 1089
9 Roads 191 246 987
10 Sidewalks 234 266 1066
11 Crosswalks 192 247 990
12 Major thoroughfares 246 71 309
13 Highways 213 60 240
14 Railways 227 114 457
Total 3068 2835 11367

The Kennedy Space Center (KSC) dataset was gathered by Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). There is no widely-used public split for KSC and we randomly pick 20 nodes
from each class for training following (Kipf & Welling, 2016). The detailed class description and
training/validation/test ratio are presented in Table 6.

Table 6: Land-cover classes of the Kennedy Space Center(KSC) dataset

Class No. Class Name Training  Validation Test
0 Scrub 20 111 504
1 Willow swamp 20 33 152
2 Cabbage palm hammock 20 35 160
3 Cabbage palm/oak hammock 20 34 158
4 Slash pine 20 21 96
5 Oak/broadleaf hammock 20 31 142
6 Hardwood swamp 20 12 58
7 Graminoid marsh 20 61 280
8 Spartina marsh 20 75 340
9 Cattail marsh 20 57 261
10 Salt marsh 20 59 272
11 Mud flats 20 72 328
12 Wate 20 136 616

Total 260 737 3367

C GRAPH CONSTRUCTION

We construct an undirected graph based on the relations between spectral features of pixels. Specif-
ically, pixels that have similar features are more likely to connect with each other. Considering most

http://www.grss—ieee.org/community/technical-committees/data-fusion/
2013-ieee—-grss—data-fusion—-contest/
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HSI datasets only have part of the pixels labeled, we also only build the graph based on labeled
nodes following Hong et al. (2020).

We model all pixels in one HSI scene as a graph G = (V,E), where V € {1,2,..., N} denotes the
vertex set and E C V x V is the edge set. Edges can be represented as a weighted adjacency matrix
W € RV>*N and the weight is calculated with the radial basis function of the similarity between
two node features Qin et al. (2020),
Wij — eXp—d(wi,acj)/a

where d(x’, x’) is the distance between two vertices i and j, such as the Euclidean distance or
cosine similarity, and o > 0 is a control parameter for the similarity. We use the cosine similarity
for scale invariance based on the observation that illumination alters the scaling of spectra while
preserving their overall shape in the spectral domain (Merkurjev et al., 2014) and avoids the curse
of dimensionality.

<zl xl >
[l [[] |
To improve the computation efficiency with better scalability, we only keep the first K nearest

neighbors for each node to build a sparse graph. K and o are hyperparameters. K = 50 and
o = 0.1 in our case.

dz',x?) =1

The built graph exhibits a strong homophily characteristic where nodes typically associate with
others that are “’similar” or "comparable” from the perspective of their respective categories. It’s
been shown that GCN manages such highly homophilic graphs effectively (Ma et al., 2021).

D MODEL DETAILS

For our comparative analysis, we employ five baseline methods. Initially, we contrast our approach
with a classification model that utilizes entropy as its uncertainty metric. Subsequently, we se-
lect two representative anomaly detection techniques, as highlighted in a recent review (Xu et al.,
2022). Additionally, we incorporate two state-of-the-art uncertainty quantification models designed
for semi-supervised node classification.

For GCN-based models, we use two graph convolution layers and 0.5 dropout probability. Following
the graph size, KSC, UP, and UH have hidden dimensions of 64, 128, 256, respectively We use early
stopping with the patience of 30, a maximum of 5,000 epochs, and validation cross-entropy as a
stop metric. For all models, we use the Adam optimizer, and the learning rate and weight decay are
carefully tuned for each dataset.

Softmax-GCN We use classic two-layer GCNs optimized with Cross-Entropy loss following
(Hendrycks & Gimpel, 2016) based on the assumption that correctly classified examples tend to
have greater maximum softmax probabilities than erroneously classified and out-of-distribution ex-
amples.

Table 7: Hyperparamters for softmax-GCN Model
Ir

dataset wd
UP 1.00E-02 1.00E-05
UH 1.00E-02 1.00E-05
KSC 1.00E-03 1.00E-05

TLRSR Tensor Low-Rank and Sparse Representation model (Wang et al., 2022) first use a prin-
cipal component analysis (PCA) method as one preprocessing step to exact a subset of HSI bands
and then apply a TLR framework to preserve the inherent HSI 3-D structure, and finally extract the
LR background part as the dictionary of TLRSR. The problem can be solved by the well-designed
alternating direction method of multipliers (ADMMs). Following their parameter analysis, we also
search X and A" from the set {0.001, 0.005,0.01,0.05,0.1,0.2,0.3} as the original paper. The hy-
perparameters used in our experiments are in Table 8.
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RGAE Robust Graph AutoEncoder (Fan et al., 2021) is a modified autoencoder framework com-
bined with gradient normalization of each sample to make it more robust to noise and anoma-
lies. Besides, it has a graph regularization term for preserving the local geometric structure of
the given high-dimensional data. It is mentioned in the original paper that there are three hyper-
parameters that need to be tuned carefully. (1): Trade-off parameter A that balances the regular-
ization term and the range is set to {107%,1073,1072, 10!} (2) Number of superpixels S and
the rage is set to {50,100, 150,300,500} (3) Dimension of hidden layers ny;q and the range is
{20, 40, 60, 80, 100, 120, 140, 160}. We use the validation OOD ROC to pick the top performance
models. The hyperparameters used in our experiments are in Table 8.

Table 8: Hyperparamters for anomaly detection baselines

hyper UP UH KSC
Model = rameters 4 6 7 8 0 1 2 10 5 6 7 12
X 0.1 0.1 0.1 0.1 0.1 0.1 0.1 001 | 01 0.1 0.1 0.1
RGAE s 300 100 100 100 150 150 150 150 | 500 500 150 150
Nhid 160 120 120 120 80 80 20 40 160 160 40 40
TLRSR bY] 03 0001 0001 02 02 02 0.0 03 | 02 001 000l 03
Ao 001 001 001 001 | 0001 0001 0005 03 | 005 000 00l 03

EGCN-GKDE Similar to ENN, EGCN uses an activation layer instead of the softmax layer to out-
put non-negative values as the parameters for the predicted Dirichlet distribution. The representation
learning step uses GCN layers for graph learning. Graph-based Kernel Dirichlet distribution Estima-
tion(GKDE) associated with EGCN is designed to estimate prior Dirichlet distribution parameters
for each node, which is calculated based on the shortest path between test nodes and training nodes
belonging to different classes on the graph. The necessary condition is that nodes with a high epis-
temic uncertainty are far away from training nodes and nodes with a high aleatoric uncertainty are
near the boundary of classes. It may not show good performance when the condition is not satisfied,
that is OOD is close to ID training nodes. We present the detailed form of GKDE for analysis in
Section E.1.

In our experiments, we also integrate the GKDE teacher by default. we use § = 0.5 for KSC and
UP, 8 = 0.2 for UH. For hyperparameter tuning, we first tune the learning rate (Ir) and weight
decay (wd), as well as the trade-off parameter for GKDE teacher in A2 based on the average result
of ID accuracy and OOD/Misclassification ROC. We suppose there are OOD classes involved in
the validation set for hyperparameter selection for all models. The hyperparameters used in our
experiments are presented in Table9 and Table 10 for misclassification detection and OOD detection,
respectively.

Table 9: Hyperparamters for Misclassification Models

dataset GKDE GPN
Ir wd A1 A2 A3 Ir wd A1 A2 A3
UP 1.00E-02 1.00E-04 1.00E-03 1.00E-04 1.00E-04 1.00E-03 5.00E-03 1.00E-03 1.00E-02 1.00E-02
UH 1.00E-02 1.00E-04 1.00E-02 1.00E-04 1.00E-05 1.00E-04 1.00E-04 1.00E-04 1.00E-01 1.00E-04
KSC 1.00E-02 1.00E-04 1.00E-03 1.00E-02 1.00E-04 1.00E-02 1.00E-03 1.00E-03 1.00E-04 1.00E-02

GPN GPN applies multi-layer perceptions for representation learning and then use normalizing
flow for density estimation in the latent space. The graph structure is leverages for evidence propa-
gation at last. In detail, there are three components. (1) A feature encoder g4 maps the original node
feature ' € R, i € V onto a low-dimensional latent space z° € R with a simple two-layer multi-
layer perception (MLP) encoder, H is the latent dimension. i.e. z' = ge(x') and ¢ is the encoder
parameters. (2) A Radial normalizing flow h, estimates the density of the latent space per class,
which is used to compute the pseudo evidence (class counts) 8% := h,(z") = N, - P(z%|c; ) (3) A
personalized page rank message passing scheme diffuses the pseudo counts (density multiplied by
the number of training nodes) by taking the graph structures into account, i.e. a’ = > evll i BY
with [, , is the dense PPR score reflecting the importance of node v on 4. Similar to the GPN paper,
we use 10 dimensions of latent space and 10 radial layers for normalizing flow and use CE loss to
pretrain the flow layer, teleport is equal to 0.2 and propagation is iterated with 10 steps. For the pa-
rameters in the optimizer and tradeoffs for the loss function, the tuning process is the same as EGCN.
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Those parameters used in our experiments are presented in Table9 and Table 10 for misclassification
detection and OOD detection, respectively.

Table 10: Hyperparamters for OOD detedction Models

Dataset hyper GPN GKDE
i parameters Ir wd A1 Ao A3 Ir wd A1 Ao A3

4 1.00E-04 5.00E-03 1.00E-04 1.00E-03 1.00E-03 1.00E-02 1.00E-05 1.00E-01 1.00E-04 1.00E-05

upP 6 1.00E-03 5.00E-04 1.00E-05 1.00E+00 1.00E-04 1.00E-02 1.00E-05 0.00E+00 1.00E-01 1.00E-05
7 1.00E-03 1.00E-03 1.00E-03 1.00E-01 1.00E-05 1.00E-03 1.00E-05 0.00E+00 1.00E-02 1.00E-05

8 1.00E-04 1.00E-04 1.00E-05 1.00E-01 1.00E-05 1.00E-03 1.00E-05 1.00E-02 1.00E-04 1.00E-05

0 1.00E-03 5.00E-03 1.00E-03 1.00E-05 1.00E-05 1.00E-02 1.00E-05 1.00E-02 1.00E-03 1.00E-04

UH 1 1.00E-03 1.00E-03 1.00E-05 1.00E-05 1.00E-04 1.00E-02 1.00E-05 1.00E-02 1.00E-04 1.00E-05
2 1.00E-04 1.00E-04 1.00E-04 1.00E+00 1.00E-03 1.00E-02 1.00E-05 1.00E-02 1.00E-04 1.00E-04

10 1.00E-03 5.00E-04 1.00E-03 1.00E-01 1.00E-02 1.00E-02 1.00E-05 1.00E-04 1.00E-01 1.00E-05

5 1.00E-03 5.00E-03 1.00E-04 1.00E-04 1.00E-03 1.00E-03 1.00E-05 1.00E-02 1.00E-04 1.00E-03

KSC 6 1.00E-03 5.00E-03 1.00E-04 1.00E+00 1.00E-03 1.00E-03 1.00E-05 1.00E-02 1.00E-01 1.00E-02
7 1.00E-03 5.00E-03 1.00E-04 1.00E+00 1.00E-05 1.00E-03 1.00E-05 1.00E-02 1.00E-02 1.00E-05

12 1.00E-03 5.00E-03 1.00E-04 1.00E-05 1.00E-01 1.00E-03 1.00E-05 1.00E-02 1.00E-04 1.00E-05

E ADDITIONAL RESULTS

E.1 ANALYSIS ON GKDE TEACHER

As our discussion in Section 3.1, GKDE assumes that OOD test nodes are far away in terms of
graph-based distance from the training (ID) nodes compared to ID test nodes. This assumption is
not always true in practice. We provide the GKDE form as follows:

0 Yl #c
he Yi, dij) = { ;
(v dij) 9(dij) ' =c,
2
with g(d;;) = exp(—jgg) and d;; denoting the graph distance. The evidence prior é; =

e h(y', dij) with h(y’,d;;) = [h1,... he,...,he]. B is the bandwidth in Gaussian kernel
function.

We first investigate the parameter 5. On a specific OOD setting, pixels belonging to “shadows”
in UP dataset are considered as OOD. Figure 4 shows the OOD detection performance for GKDE
prior model with different 3. With 5 = 1, GKDE can achieve 96.40% ROC and 70.13% PR value.
£ = 0.1 is random ranking result while 5 = 10 is a much worse result.

ROC Curve PR Curve

5=01-5090
— B=02-49.06
— B=05-7223
— B=1.7013
— p-2-1456

p=5-116
— p=10-10¢

B=01-50.00
— B=02-8764
— B=05-9529
— B=1-96.40
— B=2-7846

True Positive Rate.

4 §=5-2041
— B-10-651

Figure 4: ROC and PR curves for different 3 of GKDE teacher in OOD detection setting

Figure 5 presents the predicted vacuity map across various values of 3, compared to the ground
truth map where OOD is labeled as 1, and ID is 0. Note that unlabeled data in the hyperspectral
image is marked as O for all sub-figures. The choice of 3 can significantly influence OOD detection
outcomes. Within a single sub-figure, a comparative analysis reveals a clearer distinction between
OOD and ID regions when 8 = 1. For 8 = 0.1, nearly all pixels exhibit high vacuity, whereas for
B = 10, they display low vacuity uniformly. Hence, adjusting 3 is crucial for accessing a good the
GKDE prior.
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Ground truth
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Figure 5: Predicted vacuity map for different 3 of GKDE teacher in OOD detection setting

In comparison to the GKDE model, which achieves 99.1% on ROC and 96.9% on PR, the GKDE
prior doesn’t perform as effectively as EGCN. As seen in Table 11 through 16, the performance
disparity between GKDE and EGCN can reach up to 27% on ROC and 19% on PR. This suggests
that the GKDE teachers may not yield optimal results. Conversely, in certain situations, GKDE can
indeed enhance the learning process of EGCN.

E.2 DETAILED RESULT

For OOD detection experiments, we use the mentioned 3 datasets. Within each dataset, we create
four random configurations, and in each one, one class is picked as OOD. In the main paper, we
display the weighted average, factoring in the count of test OOD nodes for every dataset. In this
section, we show the detailed results for each of the twelve configurations.

Table 11 - 12 display the results for UP. It is worth noting that some classes are easier to classify
while some are challenging. For example, class-4 is easily discernible by both anomaly detection and
uncertainty quantification methods. However, the softmax-GCN struggles in this regard, whereas
our introduced framework significantly outperforms the anomaly detection benchmark. This may
indicate that class-4 class-4 possesses distinct features compared to other pixels in the image. On the
other hand, for class-6, the PR values are suboptimal across all models, indicating that a considerable
number of ID pixels have elevated predicted vacuities. When comparing class-7 and class-8 as the
OOD class, models based on GPN fare better with class-7, while those based on EGCN excel with
class-8. A similar trend is observed with the GKDE teacher, whucg performs commendably with
class-8 but falls short with class-7.

Figure 6 presents the predicted vacuity map for different models when “shadows” (class-8) as the
OOD class in UP. TLRSR and RGAE can not identify the OOD at all. EGCN tends to predict higher
vacuity scores for OOD nodes (exceeding 0.8) while GKDE has a much lower vacuity score for
all nodes (below 0.001). After applying UR term, there seem to be fewer false positives and lower
vacuity scores for ID nodes after applying TV term.

We have a similar conclusion for the other two datasets. Table 13 - 14 present the result for UH
dataset and Table 15 - 16 show the result for KSC.
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Table 11: OOD Detection Result for UP

dataset UP-4 UP-6
ID OA OOD ROC OOD PR ID OA OOD ROC OOD PR
softmax-GCN 74.1+£1.8 62.9+14.6 6.5+6.1 77.4£2.0 29.8+2.7 1.940.1
GKDE 68.5+n.a. 99.6+n.a. 96.8+n.a. 71.0%n.a. 59.8+n.a. 3.1+n.a.
RGAE n.a.£n.a. 99.34n.a. 86.2+n.a. n.a.%n.a. 60.6+n.a. 2.9+n.a.
TLRSR n.a.tn.a. 98.5+n.a. 71.4+n.a. n.a.%n.a. 70.9+n.a. 3.8+n.a.
EGCN 75.5+£1.9 99.9+0.0 97.840.3 77.0+£2.4 72.3+£0.9 4.140.1
EGCN - UR 74.6+1.2 99.9+0.0 97.1+0.8 76.3+0.7 90.34+0.2 10.440.1
EGCN -UR-TV | 76.6+3.1 100.04+0.0  99.8+0.0 75.842.2 90.1+0.2 10.3+0.2
GPN 71.54+0.0 99.6+0.0 99.1+0.0 69.5+2.7  404+15.4 2.1£0.8
GPN - UR 71.54+0.1 99.6+0.0 99.14+0.0 50.9+1.7 89.9+1.4 10.5+14
GPN -UR -TV 63.1+0.6 99.640.0 98.9+40.1 51.742.0 90.7+0.6 11.3+0.8
Table 12: OOD Detection Result for UP (cont.)
dataset up-7 up-8
ID OA OOD ROC OOD PR 1D OA OOD ROC OOD PR
softmax-GCN 76.6+2.6 73.2+3.9 27.4+4.0 75.3£1.5 142455 1.3£0.5
GKDE 70.7+£n.a. 57.0+n.a. 9.8+n.a. 68.7+n.a. 95.3+n.a. 72.24+n.a.
RGAE n.a.£n.a. 70.3+n.a. 12.3+n.a. n.a.tn.a. 96.1+n.a. 18.9+n.a.
TLRSR n.a.£n.a. 62.3+n.a. 9.9+n.a. n.a.tn.a. 93.1+n.a. 11.6£n.a.
EGCN 75.6£0.8 84.5+0.9 28.1+1.0 74.3+1.1 99.1+0.2 96.9+0.4
EGCN - UR 75.740.8 85.240.2 27.540.2 73.9+1.2 99.340.3 97.34+0.4
EGCN - UR-TV | 73.0£0.5 87.34+0.1 26.9+0.2 75.0+0.3 99.8+0.0 99.1+0.1
GPN 65.242.6 86.5+1.3 26.3+1.9 68.14+0.3 96.0+0.6 69.6+10.8
GPN - UR 62.8+3.3 92.240.6 36.9+2.1 67.9+0.5 96.0+0.7 75.1+4.2
GPN -UR -TV 62.6+1.9 93.2+0.2 40.9+0.8 60.6+2.5 97.8+0.1 82.5+1.1
Table 13: OOD Detection Result for UH
dataset Houston - 0 Hosuton - 1
ID OA 0OOD ROC OOD PR ID OA OOD ROC OOD PR
softmax-GCN 66.8+2.9 81.9+2.0 46.44+0.9 67.7+2.2 13.8+3.5 5.0+£0.2
GKDE 68.9+n.a. 93.6+n.a. 68.7+n.a. 68.6En.a. 92.34n.a. 66.5+n.a.
RGAE n.a.tn.a. 85.6+n.a. 21.6%n.a. n.a.tn.a. 46.0+tn.a. 7.7+n.a.
TLRSR n.a.%n.a. 48.94n.a. 6.3+n.a. n.a.£n.a. 49.6+n.a. 8.0+n.a.
EGCN 69.5+0.5 93.5£0.4 438+1.5 70.2£2.3 96.6+£0.2 70.1+£4.3
EGCN - UR 71.7+1.0 94.440.1 47.540.8 70.3+1.9 97.140.3 73.1+5.0
EGCN-UR-TV | 71.3+1.2 96.04-0.7 54.246.2 70.5+1.0 97.0+0.4 70.9+1.9
GPN 66.71+0.4 99.1£0.3 87.8+7.2 64.5+14 96.5+1.8 63.4+34
GPN - UR 66.1+1.4 99.1£0.0 90.5+0.3 64.940.5 98.1+0.6 70.5+2.7
GPN -UR -TV 66.3+0.8 99.2+0.1 90.6+0.8 63.6+1.2 98.0+0.7 75.6+6.1
Table 14: OOD Detection Result for UH (cont.)
dataset Houston - 2 Houston -10
ID OA 00D ROC OOD PR ID OA OOD ROC OOD PR
softmax-GCN 65.9+1.7 62.0+4.9 4.940.5 73.4+0.4 73.2+14 14.7+0.6
GKDE 68.5+n.a. 92.34n.a. 56.9+n.a. 71.4+n.a. 74.7+n.a. 32.0tn.a.
RGAE n.a.tn.a. 63.8+n.a. 5.1%n.a. n.a.tn.a. 24.6+n.a. 5.9+n.a.
TLRSR n.a.tn.a. 49.4+n.a. 3.4+n.a. n.a.tn.a. 48.2+n.a. 5.7+n.a.
EGCN 70.0+0.8 90.6+0.1 16.7+0.1 73.0+0.3 76.0+0.5 17.0+0.3
EGCN - UR 69.7+1.6 91.0+£2.8 25.4+7.7 73.1£0.1 78.3+0.2 18.8+0.2
EGCN-UR-TV | 70.4+0.3 97.3+£0.4 44.94+4.2 73.1£0.6 77.1£0.4 18.14+0.3
GPN 64.1£0.3 70.1£0.6 6.1£0.1 70.940.7 58.7+£1.9 10.5+0.4
GPN - UR 64.1+0.2 70.8+£0.4 6.340.1 68.0+1.1 65.4+1.7 12.04+0.6
GPN -UR -TV 54.840.3 85.640.8 11.840.7 70.8+1.0 67.34+2.3 12.84+0.8
Table 15: OOD Detection Result for KSC
dataset KSC-5 KSC-6
1D OA OOD ROC 00D PR ID OA OOD ROC OOD PR
softmax-GCN 89.9+0.2 71.6+1.6 7.0+0.4 87.740.2 455+1.7 2.34+0.0
GKDE 87.5+n.a. 47.0%n.a. 5.1%n.a. 85.0+n.a. 43.2+n.a. 2.2+n.a.
RGAE n.a.tn.a. 68.6+n.a. 6.9+n.a. n.a.tn.a. 71.1%£n.a. 4.1%+n.a.
TLRSR n.a.tn.a. 67.7+n.a. 6.0tn.a. n.a.tn.a. 75.6+tn.a. 3.1%n.a.
EGCN 89.7+0.0 64.6+0.0 7.1£0.0 87.6+0.1 17.3£0.8 1.940.0
EGCN - UR 89.6+0.0 64.4+0.1 7.0£0.0 87.6+0.0 19.54+0.9 1.940.0
EGCN - UR-TV | 90.0+0.1 76.7+0.5 12.0+0.3 | 87.7+0.1 41.942.8 2.240.1
GPN 86.8+1.6 543174 47409 82.6+19  26.6+16.3 2.0£0.3
GPN - UR 86.3+2.2 58.742.6 5.0£0.3 80.7+0.9 86.7+1.9 7.8+1.4
GPN -UR -TV 88.540.6 58.3+9.0 52409 82.140.6 90.442.5 20.0+9.0
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Ground truth
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Figure 6: Predicted vacuity map for different models

Table 16: OOD Detection Result for KSC (cont.)

dataset KSC-7 KSC-12
ID OA OOD ROC OOD PR 1D OA OOD ROC OOD PR
softmax-GCN 88.0+0.2 38.9+0.8 6.4£0.1 83.9+0.3 98.9+0.2 91.7+£2.2
GKDE 85.8+n.a. 88.94n.a. 58.7+n.a. 80.94n.a. 100.0+n.a. 59.1%n.a.
RGAE n.a.%n.a. 18.6+n.a. 4.8+n.a. n.a.%n.a. 93.0+n.a. 56.6+n.a.
TLRSR n.a.tn.a. 67.9+n.a. 14.7+n.a. n.a.%n.a. 49.9+n.a. 9.1%+n.a.
EGCN 87.8+0.3 93.5+0.3 511422 84.31+0.1 100.0+0.0 99.9+0.0

EGCN - UR 877402 938410  53.6443 | 843401  100.0£00  99.940.0
EGCN-UR-TV | 87.940.1 937408 562462 | 84240.1  100.0£00  99.940.0
GPN 86.1L18  59.0X78  97L18 | 758L26 1000L£00 99.9L00

GPN - UR 82.014+1.1  78.6+14 189427 | 77.4£09  100.0+£0.0  99.9:+0.0
GPN-UR-TV | 81.6+1.6  795+1.6 206420 | 810407 100000  99.940.0

F RELATED WORK

Hyperspectral Imaging Analysis Due to the wealth of detailed spectral information available in
each pixel, hyperspectral imaging (HSI) has found widespread application in various real-world sce-
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narios. HSI classification (HSIC) aims to assign a distinct class label to each pixel. In their work,
(Chen et al., 2014) utilized stacked auto-encoder networks for HS image classification by lever-
aging dimensionally-reduced HS images obtained through principal component analysis (PCA).
Another study (Liu et al., 2017) introduced convolutional neural networks (CNNs) to effectively
extract spatial-spectral features from HS images, resulting in improved classification performance.
In separate work, a cascaded RNN was proposed (Hang et al., 2019) to utilize spectral information
comprehensively for achieving high-accuracy HS image classification. Furthermore, (Hong et al.,
2020) developed fusion modules that seamlessly integrate CNNs and miniGCNs in an end-to-end
manner. We refer (Ahmad et al., 2021) for a complete review of HSI classification task. HSI spec-
tral unmixing decompose the image into a collection of reference spectral signatures with associated
proportions, which is a non-negative Matrix Factorization problem (Lee & Seung, 1999), which can
be formed to blind and unblind problem with Linear mixing model (Qin et al., 2020) or Extended
linear mixing model (Drumetz et al., 2019). We refer (Bhatt & Joshi, 2020) for a systemic intro-
duction. HSI anomaly detection involves detecting pixels in an image whose spectral characteristics
deviate significantly from the surrounding or overall background pixels and attracts a lot of interest.
Deep learning-based methods can be divided into CNN-based (Li et al., 2017), autoencoder-based
(Bati et al., 2015), GAN based (Jiang et al., 2020) and RNN based (Lyu & Lu, 2016). There
are also some models that leverage other techniques, such as manifold learning (Lu et al., 2019),
and low-rank representation (Xie et al., 2021). A comprehensive review is conducted by Hu et al.
(2022).

Anomaly detection on HSI involves detecting pixels in an image whose spectral characteristics
deviate significantly from the surrounding or overall background pixels and attracts a lot of interest
Deep learning-based methods can be divided into CNN-based (Li et al., 2017), autoencoder-based
(Bati et al., 2015), GAN based (Jiang et al., 2020) and RNN based (Lyu & Lu, 2016). There
are also some models that leverage other techniques, such as manifold learning (Lu et al., 2019),
and low-rank representation (Xie et al., 2021). A comprehensive review is conducted by Hu et al.
(2022).

Uncertainty quantification models on i.i.d inputs Numerous studies have focused on developing
uncertainty quantification models for data that is independent of inputs, such as images. These ef-
forts encompass various approaches, including multi-forward pass models such as ensembles (Lak-
shminarayanan et al., 2017), dropout-based models (Gal & Ghahramani, 2016), and deterministic
models like Bayesian-based methods (Charpentier et al., 2022).

Uncertainty quantification on graph data As pointed out in the survey (Abdar et al., 2021),
uncertainty quantification on GNN and semi-supervised learning is under-explored. Most existing
models for uncertainty quantification on graphs are either dropout-based or BNN-based methods
that typically drop or assign probabilities to edges. Two approaches quantified uncertainty using
deterministic single-pass GNNs. One is called graph-based kernel Dirichlet distribution estimation
(GKDE) (Zhao et al., 2020), which consists of evidential GCN, graph-based kernel, teacher network,
dropout, and loss regularization. Another method is the GPN (Stadler et al., 2021) model that
combines PN (Charpentier et al., 2020) and personalized page rank (PPR) message passing to
disentangle uncertainty with and without network effects. In addition, a recent method (Wu et al.,
2023) used standard classification loss for OOD detection on graphs together with an energy function
that is directly extracted from GNN. This method is limited to OOD detection, not generally on the
topic of uncertainty quantification. However, these models have feature collapsing issues and the
physical mixing properties of HSI are not yet plugged into the models.

G LIMITATION

The UR term we introduce exhibits a strong correlation with the performance of unmixing. Specifi-
cally, its effectiveness hinges on the accuracy of the reference endmember matrix, which we assume
is available in our problem formulation. Currently, we adopt the approach outlined in (Qin et al.,
2020) to obtain an optimized endmember matrix, which serves as our reference. Nevertheless, a
universally accepted criterion for assessing the quality of endmember matrices is lacking, and a
possible inaccurate one could potentially undermine the positive impact of our UR term. Besides,
certain categories pose challenges for unmixing models due to unpredictable noise and intricate
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mixtures. In such instances, our proposed UR term might not offer substantial assistance. However,
we first introduce the uncertainty quantification problem in the HSI domain, which is less explored
but necessary in real applications. Then we propose a promising direction in that we can improve
deterministic uncertainty quantification models with domain knowledge and the observed insight
can be extended to other domains.
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