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The Lottery Ticket Hypothesis for Self-attention in
Convolutional Neural Network®
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Abstract—Recently many plug-and-play self-attention modules
(SAMs) are proposed to enhance the model generalization by
exploiting the internal information of deep convolutional neural
networks (CNNs). In general, previous works ignore where to
plug in the SAMs since they connect the SAMs individually with
each block of the entire CNN backbone for granted, leading to
incremental computational cost and the number of parameters
with the growth of network depth. However, we empirically find
and verify some counterintuitive phenomena that: (a) Connecting
the SAMs to all the blocks may not always bring the largest
performance boost, and connecting to partial blocks would be
even better; (b) Adding the SAMs to a CNN may not always
bring a performance boost, and instead it may even harm the
performance of the original CNN backbone.

Therefore, we articulate and demonstrate the Lottery Ticket
Hypothesis for Self-attention Networks: a full self-attention
network contains a subnetwork with sparse self-attention con-
nections that can (1) accelerate inference, (2) reduce extra
parameter increment, and (3) maintain accuracy. In addition
to the empirical evidence, this hypothesis is also supported by
our theoretical evidence. Furthermore, we propose a simple
yet effective reinforcement-learning-based method to search the
ticket, i.e., the connection scheme that satisfies the three above-
mentioned conditions. Extensive experiments on widely-used
benchmark datasets and popular self-attention networks show the
effectiveness of our method. Besides, our experiments illustrate
that our searched ticket has the capacity of transferring to some
vision tasks, e.g., crowd counting and segmentation.

Index Terms—Self-attention, Lottery Ticket Hypothesis, Rein-
forcement Learning, Neural Architecture Search.

I. INTRODUCTION

ECENTLY, various plug-and-play self-attention mod-

ules (SAMs) which enhance instance specificity by the
interior network information [1] are proposed to boost the
generalization of convolutional neural networks (CNNs) [2]-
[7]. The SAM is usually plugged into every block of a CNN,
e.g., the residual block of ResNet [8]. We display the structure
of a ResNet in Fig. 1 (a) and a full self-attention network
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Fig. 1.  (a) Original ResNet; (b) Full-SA network. A network is called
a Full-SA network if the SAM is individually defined for each block. The
SAM can be divided into three steps [5]: (1) Extraction: the plug-in module
extracts internal features of a network by computing their statistics, like mean,
variance; (2) Processing: the SAM utilizes the extracted features to adaptively
generate a mask via a trainable module; (3) Recalibration: the mask is used
to calibrate the feature maps by element-wise multiplication or addition.

(Full-SA) whose each block connects to an individual SAM
as in Fig. 1 (b). As illustrated in Fig. 1, the implementation
of SAMs incorporates three steps: extraction, processing, and
recalibration. These operations and trainable components in
SAMs require extra computational cost and parameters, result-
ing in slow inference and cumbersome network [9]. This limits
self-attention usability on industrial applications that need a
real-time response or small memory consumption, such as
robotics, self-driving car, and mobile device. Therefore, other
than only improving the capacity of the SAM, previous works
also focus on the light-weight SAM design, e.g., reducing the
parameters of an individual SAM [4], [10].

However, the extra cost of the lightweight SAM is still non-
negligible for a deep network [4], [9]. The main reason lies in
the conventional paradigm where the SAMs are individually
plugged into every block of a CNN for granted [2], [3].
The additional inference time and the number of parameters
increase with the growth of the network depth, which creates
a bottleneck when applying SAMs to a deep network. On
the other hand, the network compression algorithms, such as
network pruning [11]-[13] and neural architecture search [14],
[15], effectively reduce the network size by removing the
redundant components while maintaining the accuracy of
the slimmed network. Note that these techniques inherently
alternate the connections between different ingredients (e.g.,
neurons, layers, or weights) in the CNN. This inspires us to
pay more attention to the connections between the SAMs and
the CNN backbone instead of the individual SAM design. If
the number of connections is lessened, the computation and
parameter cost will be reduced obviously. Based on these
motivations, we articulate the Lottery Ticket Hypothesis for
Self-attention Networks (LTH4SA):

A full self-attention (Full-SA) network contains a sub-
network with sparse self-attention connections that can (1)



accelerate inference, (2) reduce extra parameter increment,
and (3) maintain accuracy.

Every SAM connects or disconnects to the block, and
we call the set of these connection states for a CNN as a
connection scheme (see Section II-B). A connection scheme is
called a ticket if the self-attention subnetwork with this scheme
satisfies the three above-mentioned conditions of LTH4SA. In
Section III, for the first time we both empirically and formally
investigate the existence of LTH4SA. Our main observations
are: (1) Empirically, there exist some self-attention subnet-
works with sparse connection schemes achieving even better
accuracy than the full self-attention network, which is also
supported by our theoretical evidence where the large network
can be approximated by its subnetwork; (2) The additional
statistical analysis of the connection scheme shows that no
specific block of the CNN dominates the accuracy when con-
necting SAM to the block. These observations indicate the key
to obtaining a ticket is how to combine different connections
of block and the SAMs. Certainly, finding the combination of
the blocks and the SAMs to be a ticket is equivalent to solving
a searching problem, and the corresponding algorithm should
satisfy the following requirements based on the definition of
LTH4SA and our empirical observations: (1) The searched
connection scheme should be sparse and accurate enough to
be a ticket; (2) The algorithm itself should have sufficient
capacity to cover diverse connection schemes. Therefore,
we propose a simple yet effective reinforcement-learning-
based (RL-based) baseline method to search for a ticket given
that the RL-based method can naturally handle multi-targets
searching problems, and the rewards are designed exactly
based on the requirements mentioned above. We call our
proposed baseline method Efficient Attention Network (EAN).
In Section II, we will briefly review the formulation of self-
attention networks. Our proposed method for searching a
ticket is introduced in Section IV and extensive experiments
on widely-used benchmark datasets and popular self-attention
networks are shown in Section V. The property of EANs will
be discussed in Section VI. Finally, we discuss the related
works in Section VII. We summarize our contribution as
follows:

1) We empirically find some counterintuitive phenomena:
(a) Connecting the SAMs to all the blocks may not
bring the largest performance boost; (b) Some connection
schemes are harmful.

2) We propose a lottery ticket hypothesis for self-attention
networks and provide both numerical and theoretical
evidence for the existence of the ticket. Besides, we
propose an effective searching method as a baseline to
obtain a ticket and avoid harmful connection schemes.

II. PRELIMINARIES

In this section, we first briefly review ResNet [8] and the
Full-SA network and then introduce the connection scheme.

A. ResNet and the Full Self-attention (Full-SA) Network

ResNet. The structure of a ResNet is shown in Fig. 1 (a). In
general, the ResNet has several stages, and each stage, whose

feature maps have the same size, is a collection of consecutive
blocks. Suppose a ResNet has m blocks. Let x; be the input
of the /** block and f,(-) be the residual mapping, then the
output x4, of the /*" block is defined as

Top1 = 2+ fo(xo). (1)

Full Self-attention (Full-SA) Network. A network is called
a Full-SA network if the SAM is individually defined for each
block as Fig. 1 (b). Note that the term “full” refers to a scenario
when all blocks in a network connect to the SAMs. Many
popular SAMs adopt this way to connect with the ResNet
backbone [2], [3]. We denote the SAM in the ¢! block as
M(-; W), where W, are the parameters. Then the attention
will be formulated as M (f;(x¢); Wy) which consists of the
extraction and processing operations introduced in Fig. 1. In
the recalibration step, the attention is applied to the residual
output fo(zy), i.e.,

Top1 = 20 + M(fo(x0); We) © fo(we), (2)

where ¢ = 1,...,m and © is the element-wise multiplication.
Eq.(2) indicates that the computational cost and the number
of parameters grow with the increasing number of blocks m.

B. Connection Scheme

Suppose that a ResNet has m blocks. A sequence a =
(a1,a9,- - ,a,,) denotes a connection scheme, where a; = 1
if the i™ block is connected to a SAM, otherwise it equals 0.
A subnetwork specified by a scheme a can be formulated by:

werr = e+ (ac Mfo(we); Wo) + (1= ar) - 1) © folwe),
)

where 1 denotes an all-one vector and /¢ is from 1 to m. In
particular, it becomes a Full-SA network if a is an all-one
vector, or an original ResNet if a is a zero vector.

III. LOTTERY TICKET HYPOTHESIS FOR SELF-ATTENTION

In this section, we first study the existence of LTH4SA from
empirical and theoretical perspectives. Then we investigate
which block we should connect the SAMs to such that the
corresponding connection scheme can achieve good accuracy.

A. Empirical evidence of LTH4SA Existence

We empirically validate the proposed LTH4SA by inves-
tigating the accuracy of the self-attention subnetwork under
different connection schemes.

Specifically, we conduct classification on CIFAR100 using
SAMs with the shallow and deep network backbones, i.e.,
ResNet38 and ResNet164, under different SAM connection
ratios, i.e.,, the ratio of the number of connections to the
number of blocks. Squeeze-and-Excitation SAM [2] is used
in our experiments. We traverse all the connection schemes
for ResNet38. However, as ResNet164 contains 54 blocks,
there are 2°¢ different connection schemes. Traversal of all
schemes is infeasible, and hence we randomly sample 100
connection schemes under each ratio. For simplicity and clear
clarification, we choose the connection ratio 0.2, 0.4, 0.6, 0.8
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Fig. 2. Violin plot of accuracy, number of parameters, and inference time increment under different connection ratios. Three bars of each vertical line from
the top to the bottom represent maximum, mean, and minimum, respectively. The light color shows the distribution. The black dotted line is the performance
of the Full-SA network while the red line is the performance of the original CNN. The network with accuracy higher than the black dotted line is a ticket.

to present the empirical results given that they are sufficient to
cover different sparsity levels. Fig. 2 displays the distribution
of accuracy, the number of parameters, and inference time
increment under different connection ratios. From Fig. 2, we
observe that:

1) For different SAM connection ratios, there exist self-
attention subnetworks with higher accuracy than the full
self-attention network, even when the connections are
very sparse, e.g., the connection ratio is 0.2.

2) For different SAM connection ratios, there exist self-
attention subnetworks with lower accuracy than the orig-
inal CNN, which means some connection schemes are
harmful.

3) Under the same connection ratio, the parameter and
inference time of different connection schemes vary con-
siderably.

Observation 1 shows the existence of the subnetwork with
sparse connections yet good accuracy, which empirically illus-
trates the potential of finding some connection schemes that
satisfy LTH4SA. Moreover, Observation 2 and Observation 3
reveal that even though there exist some connection schemes
that satisfy the three conditions of LTH4SA, it is still necessary
to carefully design methods to find tickets as the sparse
connection scheme may harm the accuracy of the network
and incur larger parameters and computational cost.

B. Theoretical Evidence of LTH4SA Existence

In Section III-A, the empirical evidence of the existence
of LTH4SA has been demonstrated. Now we provide some

theoretical evidence of the existence as well. The hidden
neuron can be considered as a SAM as they apply internal
information from the previous layer to the following network
outputs. Hence, we can consider a more general scenario that
given a network, there exists a subnetwork that approximates
the original network and can be obtained by removing the
hidden neurons from the original network.

We first consider a 1-hidden-layer feed-forward network and
the network follows the initialization as [16].

Theorem 1. A [-hidden-layer feed-forward NN is defined as
NN(z) = W2a(W1x), where input x € R with ||z|]2 < 1,
W is of size m x d, W2 is of size 1 x m and o is ReLU

activation. Wllj is initialized i.i.d. by the Gaussian distribution

N (0, (\/%)2) and W7 ; is initialized by the uniform distribu-
tion Uniform{1l,—1}. Let P(d—1,¢€) be P{x*(d—1) > ¢*},
where x?(d — 1) is a chi-square variable with d — 1 degree of
freedom. Then for any €,5 > 0, when the number of hidden
neurons m > ——A2)__ " then there exists the row j of W1
In(P(d—1,¢))’ J
such that when we set the row j to be zero, i.e., B;W* with
Bj = diag{1,---,1,0,1,--- ,1} (the j'" entry is 0), we have

|W2a(Wiz) — W2 (B;W'a)|s < e,
with probability higher than 1 — 6.

The proof for Thm. 1 is in Appendix. Thm. 1 shows that
when the width of the network is sufficiently large, we can
find a subnetwork that approximates the original network with
high probability. Next, we consider a more general and modern
network structure, i.e., the ResNet [8] with ReLU.



Theorem 2. Let T'(xz) be a Lipschitz continuous and Lebesgue
integrable function in d-dimensional compact set K. And
Ryu(z, 64u) is a ReLU ResNet structure with parameters Opy.
Let €9 > 0 be a constant. Suppose that there exists 9,2«11 such
that [, |Rpu(x,09,) — Tldz < . If the width of each layer
in Ry (x, Opu) is larger than d and the depth of Ry, Opu)
is larger than a constant that depends on e€q, then for any
€ € (eo, 1), there exists a subnetwork Ry (x) of Rpu(x, Opu)

such that

/ R (2, 0%) — Ruup()|dx < e, 4
K

The proof for Thm. 2 is in Appendix. In industrial applica-
tions, it is not necessary for the discrepancy between the output
of two networks to be arbitrarily small if they have comparable
performance. In practice, the discrepancy is acceptable if it
reaches some certain levels, such as ¢ = 10~° or 10710,
When a sufficiently small discrepancy ¢ is given, Thm. 2 can
guarantee that a large-size network contains a subnetwork that
has similar performance.

C. Which block should we connect the SAMs to?

By studying the statistical characteristics of tickets and
some harmful connection schemes, in this part, we investigate
which block we should connect the SAMs to such that the
corresponding connection scheme can achieve good accuracy.

We consider a statistics called connection score which
characterizes the frequency of the connections of a scheme
set. Given a network with m blocks and a set of /N connection
schemes with each scheme a; = (ail,aiQ,...,aim),ajj S
{0,1},i = 1,...,N,j = 1,...,m, we define the connection
score of a scheme set as follows,

AN L ¢
NZail’Nz;aig,...7NZaim . (5)
i=1 i= i=1

This statistic can characterize the importance of each block
based on their frequency of connecting with the SAM. If the
connection score of a block is large, the connection between
this block and the SAM appears in large portion among N
connection schemes.

We consider two sets of connection schemes, i.e., the ticket
set and the bad scheme set, for ResNet38 as presented in
Fig. 3. The ticket set stands for the set of schemes that satisfy
the LTH4SA, while the bad scheme set stands for a set of
schemes whose accuracy is lower than the original network.

From Fig. 3, we can observe that the connection score of
each block is almost the same for both the ticket set and bad
scheme set. Besides, for each set, we use univariate linear
regression to fit these scores, and use slope to characterize
their trends. We can see that the slopes of two scheme set are
close to zero. These observations indicate no specific block of
the network will dominate the accuracy, and each block can
be connected to the SAMs with almost equal frequency in a
ticket.

Since no specific block dominates the accuracy, it is not easy
to define a metric to identify the importance for the connection
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Fig. 3. The comparison of the connection scores of the ticket set or the bad
scheme set with ResNet38.

Algorithm 1 Searching a ticket of LTH4SA

Input: Training set Dy.,;,; validation set D, ; a Full-SA atten-
tion network €(x|1); the pre-training step K; the searching
step T'; the probability of retaining connection [.

Output: The trained controller x4 (qo).

: > Pre-train the supernet
: for ¢ from 1 to K do

a ~ [Bernoulli()]™

train Q(x|a) with Dyin
end for

> Policy-gradient-based search

: for ¢t from 1 to T do
Po < Xo(%)
a~ Py
Calculate the rewards gspa,gval,gmd (see Appendix)
Update the trainable parameters.
: end for
: return xo(qo)

R AN A R >

—_ = = =
W N = O

of each block as the network pruning algorithms do [17], [18].
Hence, it is necessary to design an effective search method
to find the tickets from the thousands of possible connection
schemes.

IV. PROPOSED BASELINE METHOD

In this section, we introduce the proposed method which
consists of two parts. First, we pre-train a supernet as the
search space. The supernet assembles different candidate
network architectures into a single network by weight shar-
ing [19]. Each candidate architecture corresponds to a subnet-
work and in our problem, each connection scheme corresponds
to a specific subnetwork sampled from the supernet. Second,
we use a policy-gradient-based method to search for an opti-
mal connection scheme from the supernet. The basic workflow
of our method is shown in Alg.1.

A. Problem Description

According to LTH4SA, our goal is (1) to find a connection
scheme a, which is sparse enough for less computational cost
and parameters, from 2™ possibilities; (2) to ensure that the
subnetwork specified by the scheme can maintain the accuracy
as the Full-SA network.

To determine the optimal architecture from the pool of
candidates, it is costly to evaluate all the candidates’ per-
formances after training from scratch, since even training a



candidate individually from scratch will require a large number
of computation times (e.g., tens of hours), not to mention
traversing such an extensive pool. In many related works on
Neural Architecture Search (NAS), the validation accuracy of
the candidates sampled from a supernet can be served as a
satisfactory performance proxy [15], [20], [21] to approxi-
mately estimate those candidates’ stand-alone! performance,
which can effectively reduce the extensive computational
cost correspondingly. Thus similarly, to efficiently obtain the
optimal connection scheme, we propose to train the supernet
as the search space. We follow the DropAct [22] training
strategy to train the supernet. Then we consider the validation
performance of the sampled subnetworks from the supernet
as the proxy for their stand-alone performance. We consider a
supernet €2(x|a) with m blocks and input x. {2(x|a) has the
same components as a Full-SA network, but its connections
between blocks and SAMs are specified by a.

B. Pre-training the Supernet

Given a dataset, we split all training samples into the train-
ing set Dyin and the validation set Dy,. To train the supernet,
we activate or deactivate the SAM in each block of it randomly
during optimization. Specifically, we first initialize a supernet
Q(x[a®), where a(® = (1,--- ,1). At the iteration ¢, we ran-
domly draw a connection scheme a®) = (at,--- ,al,), where
at is sampled from a Bernoulli distribution Bernoulli(f3).
Then we train subnetwork €(x|a¥)) with the scheme a(*)
from the supernet on Dy, via weight sharing. More detail

of training the supernet is provided in Appendix.

C. Training Controller with Policy Gradient

We introduce the steps to search for the optimal connection
scheme. Concretely, we use a controller to generate connection
schemes and update the controller by policy gradient.

We use a fully connected network as the controller x4 (go)
to produce the connection schemes, where 6 are the learnable
parameters, and ¢p is a constant vector 0. The output of
xo0(qo) is pg, where Py = (pp,p3,...,py') and p, represents
the probability of connecting the SAM to the i block. A
realization of a is sampled from the controller output, i.e.,
a ~ py. The probability associated with the scheme a is
Do = (B, 53 ... By"). where py = (1 — a;)(1 — p}) + aip.

We denote G(a) as a reward for a. The parameter set 0
within the controller can be updated via policy gradient with
learning rate 7, i.e.,

Ry =G(a)- Y logph, 60+ 0+n-VRy. (6)
i=1
In this way, the controller tends to output the probability that
results in a large reward G. Therefore, designing a reasonable
G can help us search for a good structure.

To find a ticket, we should incorporate the accuracy and
connection ratio into the reward G. We use the validation
accuracy gva of the subnetwork €)(x|a) sampled from the
supernet as a reward, which depicts the performance of its

Train the subnetworks from scratch

structure. Besides, we complement a sparsity reward ggpa
to encourage the controller to generate the schemes with
fewer connections between SAMs and backbone. Finally, to
encourage the controller to explore more potentially useful
connection schemes, we add the Random Network Distilla-
tion (RND) curiosity bonus gpg in our reward [23]. Therefore,
G(a) = A1 - gopa + A2 - Gval + A3 - gmd» Where Aq, Ao, A3 are the
coefficient for each bonus. The detailed definition of ggpa, gval,
and gmg can be found in Appendix.

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
method in finding the ticket. First, we show that our method
can outperform some popular NAS and pruning algorithms.
Next, to further reduce the number of parameters for various
types of SAMs, we search the ticket from another self-
attention framework proposed in [5]. Finally, we conduct a
comprehensive comparison with various searching methods.

A. Datasets and Settings

On CIFAR100 [24] and ImageNet2012 [25] datasets, we
conduct classification using ResNet [8] backbone with differ-
ent SAMs, including Squeeze-and-Excitation (SE) [2], Spatial
Group-wise Enhance (SGE) [4] and Dense-Implicit-Attention
(DIA) [5] modules. The description of these SAMs is in
Appendix. Since the networks with SAMs have extra compu-
tational cost compared with the original backbone inevitably,
we formulate the relative inference time increment to represent
the relative speed of different self-attention networks, i.e.,

I,(CNN with SAMs) — I,(Original CNN)
I;(Original CNN)

where I;(-) denotes the inference time of the network. The
inference time is measured by forwarding the data of batch
size 50 for 1000 times.

CIFAR100. CIFAR100 consists of 50k training images and
10k test images of size 32 by 32. In our implementation, we
choose 10k images from the training images as a validation
set (100 images for each class, 100 classes in total), and the
remainder images as a sub-training set. Regarding the exper-
imental settings of ResNetl64 [8] backbone with different
SAMs, the supernet is trained for 150 epochs, and the search
step T is set to be 1000.

ImageNet2012. ImageNet2012 comprises 1.28 million
training images. We split 100k images (100 from each class
and 1000 classes in total) as the validation set and the
remainder as the sub-training set. The testing set includes 50k
images. Besides, the random cropping of 224 by 224 is used.
Regarding the experimental settings of ResNet50 [8] backbone
with different SAMs, the supernet is trained for 40 epochs, and
the search step T is set to be 300.

x 100%, (7)

B. Searching Tickets from the Full-SA Network

In this part, we compare our search method with some
popular NAS and pruning algorithms, e.g., Genetic Algorithm
(GA) [14], ENAS [26] and DARTS [27], ¢; pruning, and



TABLE I
COMPARISON OF RELATIVE INFERENCE TIME INCREMENT (DENOTED BY INFERE. (%) AS IN EQ.(7)), THE NUMBER OF PARAMETERS (#P (M)), AND
TEST ACCURACY (AccC.) ON CIFAR100. HERE THE CONNECTION SCHEMES ARE SEARCHED WITH SE MODULE ON RESNET38 AND RESNET164, USING
DIFFERENT SEARCHING METHODS. “TICKET?” PRESENTS WHETHER THE FOUND CONNECTION SCHEME IS A TICKET OR BELONGS TO TOP 5% HIGH
ACCURACY. WE TRAIN A SUPERNET WITH THE PROBABILITY 3 OF RETAINING CONNECTION AS IN ALG. 1.

ResNet38 ResNet164
B Method Acc.  #P (M) Infere. (%) Top5%?  Ticket? B Method Acc.  #P (M) Infere. (%)  Ticket?
ENAS 6494  0.43 0.00 X X ENAS 74.29 1.73 0.00 X
DARTS 66.07  0.44 13.04 X X DARTS 7442 174 8.43 X
GA 6525 047 32.88 X X GA 76.07  1.80 15.64 v
02 4 66.06 045 6.37 X X 02 4 7450 181 8.92 X
GM 66.39 045 6.45 X X GM 75.09 1.81 8.24 X
EAN 66.78 045 23.21 X v EAN 7653 185 25.84 v
ENAS 65.09 045 26.55 X X ENAS 7533 1.81 18.13 X
DARTS 66.06 044 20.02 X X DARTS 7344 185 21.97 X
GA 65.57 044 19.82 X X GA 75.75 1.76 15.21 X
05 £ 6586 047 20.00 X X 05 £ 7379 1.90 23.23 X
GM 6627 046 19.50 X X GM 7537 1.90 22.04 X
EAN 6690  0.45 26.52 v v EAN 76.21 1.82 22.41 v
ENAS 66.77 047 38.98 X X ENAS 7580 193 43.56 X
DARTS 66.67 046 29.55 X X DARTS 7542 1.90 34.42 X
GA 6621 046 33.61 X X GA 75.10 178 13.91 X
08 4 6632 047 29.60 X X 08 £ 76.27 1.92 34.66 v
GM 66.61 0.47 29.60 X X GM 75.55 1.92 34.29 X
EAN 67.06  0.46 19.98 v v EAN 7580  1.82 20.64 v
Original CNN  64.94 043 0.00 - - Original CNN 7429  1.73 0.00 -

Geometric Median (GM) pruning [18]. Table I displays the
experiments conducted on CIFAR100 with Full-SA networks
including ResNet38 and ResNet164 using SE for different
searching methods under different supernets.

From Table I, our method outperforms the heuristic method
GA. Different from DARTS that searches schemes by mini-
mizing the validation loss, the RL-based method (e.g., ENAS
and our baseline method) can directly consider the validation
accuracy as a reward although the accuracy or sparsity con-
straint is not differentiable. However, ENAS does not learn
an effective scheme from the reward because of its controller
architecture as discussed in Section V-D.

Since the pruning algorithms (¢/; and GM) are based on intu-
itive design [28] to measure the importance of the connection
individually and ignore the combination of the connections of
a network as mentioned in Section III-C, they may fail to find
the reasonable connection scheme and obtain unstable results
in some cases.

C. Searching Tickets from Full-Share Network

We demonstrate that our search method can also be applied
to other self-attention frameworks, such as sharing mecha-
nism [5], which shares a SAM with the same set of parameters
to different blocks in the same stage. We call a network as Full-
Share network if each block in the same stage of this network
connects to a shared SAM. The shared SAM significantly
reduces the trainable parameters compared with the Full-SA
network.

() 0]
I @ ] sam — Recalibration
(2) EAN l:l Block without — Extraction
SAM — Forward
.//' H Block with Skip
SAM —* Connection

(b) Share-EAN

Fig. 4. The network structures of (a) EAN and (b) Share-EAN.

The connection scheme found by our method from a Full-
Share network is called Share-EAN, as illustrated in Fig. 4
(b). We show the test accuracy, the number of parameters,
and relative inference time increment on CIFAR100 and
ImageNet2012 of Share-EAN in Table II, searching from the
supernet trained with retaining ratio 5 = 0.5.

From Table II, we can observe that most results of Share-
EAN satisfy the three conditions of LTH4SA. Since both
Share-EAN and the Full-Share network use sharing mecha-
nism [5] to implement the SAM over the original ResNet,
they both have fewer parameters increment than the Full-
SA network. Besides, Share-EANs achieve faster inference
speed among the Full-Share network and the Full-SA network.
Furthermore, the accuracy of Share-EANs is on par or even
surpass that of the Full-Share networks.



TABLE 11
COMPARISON OF THE RELATIVE INFERENCE TIME INCREMENT (SEE EQ.(7)), THE NUMBER OF PARAMETERS, AND TEST ACCURACY BETWEEN VARIOUS
SAMS ON CIFAR100 AND IMAGENET2012. “ORIGINAL CNN” STANDS FOR RESNET164 BACKBONE IN CIFAR100 AND RESNET50 BACKBONE IN
IMAGENET. THE SAM IN DIA 1S A RNN SO DIA NETWORK DOES NOT HAVE FULL-SA STRUCTURE.

Test Accuracy (%)

Parameters (M) Relative Inference Time Increment (%)

Dataset Model

Full-SA  Full-Share ~ Share-EAN Full-SA  Full-Share  Share-EAN Full-SA  Full-Share Share-EAN
=3 Original CNN 74.29 - - 1.727 - - 0.00 - -
~ SE [2] 75.80 76.09 76.93 1.929 1.739 1.739 43.56 41.66 18.81 (| 22.85)
§ SGE [4] 75.75 76.17 76.36 1.728 1.727 1.727 93.60 93.41 50.49 (] 42.92)
O DIA [5] - 77.26 77.12 - 1.946 1.946 - 121.11 65.46 (| 55.65)
153 Original CNN 76.01 - - 25.584 - - 0.00 - -
%ﬁ SE [2] 77.01 77.35 77.40 28.115 26.284 26.284 25.94 25.92 10.35 (| 15.57)
E SGE [4] 77.20 77.51 77.62 25.586 25.584 25.584 40.60 40.50 19.66 (| 20.84)
= DIA [5] - 77.24 77.56 - 28.385 28.385 - 27.26 16.58 (| 10.68)
TABLE IIT
COMPARISON OF THE ACCURACY AND RELATIVE INFERENCE TIME INCREMENT OF THE SEARCHED NETWORK FOR DIFFERENT METHODS.
Method Acc. Time Increment (%) Method Acc. Time Increment (%)
Share-EAN  76.93 18.81 (]22.85) HSP (101010..)  75.02 21.29 (120.37)
DARTS 7541 28.02 (J13.64) HSP (010101..)  74.87 21.29 (120.37)
GA 76.09 20.87 (J20.79) HSP (100100..)  75.29 14.50 (J27.16)
ENAS 76.08 28.05 (J13.61) HSP (010010..)  74.01 14.50 (127.16)

D. Comprehensive Comparison with Searching Methods

In this part, we compare our method (EAN) with heuris-
tic selection policy (HSP), Genetic Algorithm (GA) [14],
ENAS [26] and DARTS [27] for the Full-Share network.
HSP is a heuristic policy that makes SAM connection every
N layers. For example, when N = 2, the schemes can be
10101--- or 01010---. Table III displays the experiments
conducted on CIFAR100 with ResNet164 and SE module
for different searching methods. From Table III, our method
achieve better results of the Full-Share network compared with
other methods, which is consistent with the results of the Full-
SA network in Section V-B. Besides, the heuristic design of
the connection scheme like HSP does not give a scheme for
good accuracy, and hence it is necessary for a careful search
algorithm as mentioned in III-C.

The controller of ENAS tends to converge to some periodic-
alike schemes at a fast speed. In this case, it will conduct
much less exploration of the potential efficient structures. We
show the list of connection schemes by ENAS (an example)
in Table V. The majority of the schemes searched by ENAS
are “111...111” (Full-Share network) or “000...000” (Original
network), which shows that it can not strike the balance
between the performance and inference time. In Table IV, the
minority of the periodic-alike schemes searched by ENAS are
shown, e.g., “001” in ENAS (a). Such schemes may result
from the input mode of ENAS, i.e., for a connection scheme
a = (a1,as,...,a,), the value of component a; depends
on aj_1,a;—2,...,a1. This strong sequential correlations let
the sequential information dominate in the RNN controller
instead of the policy rewards. Compared with the periodic-
alike connection schemes searched by ENAS, Share-EAN
demonstrates better performance.

Besides, our experiment indicates that ENAS explores a
much smaller number of candidate schemes. We quantify the
convergence of the controller using p = % S, Dh, which
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Fig. 5. Comparison of the convergence speed between ENAS and EAN. The
controller tends to generate a deterministic scheme when p is close to 1.

is the mean of the probability p associated with the scheme.
When p is close to 1, the controller tends to generate a deter-
ministic scheme. Fig. 5 and Table V show the curve of p with
the growth of searching iterations, where p of ENAS shows
the significant tendency for convergence in 20 iterations and
converges very fast within 100 iterations. Generally speaking,
methods in NAS [26], [29] require hundreds or thousands of
iterations for convergence.

VI. ANALYSIS

In this section, we demonstrate that the found self-attention
subnetwork has the capacity of capturing the discriminative
features as the full network and transferring to the downstream
tasks. Besides, we compare the training time and the searching
time to show that our search time is acceptable.

A. Capturing Discriminative Features

To study the ability of Share-EAN in capturing and ex-
ploiting features of a given target, we apply Grad-CAM [30]



THE CONNECTION SCHEMES SEARCHED BY ENAS [26] OR OUR METHOD. THE EXPERIMENT IS CONDUCTED ON CIFAR100 WITH SE MODULE AND
RESNET164 BACKBONE.

TABLE IV

Method Stagel Stage2 Stage3 Test Accuracy (%)
ENAS (a) 001001001001001001  001001001001001001  001001001001001001 75.80
ENAS (b) 100100101100100100  101101100100101101  100100101101100100 75.11
ENAS (¢) 110110110110110110  110110110110110110  110110110110110110 76.08

Our method (a)  001100100101110101  001100000111001111  101100000111110001 76.93
Our method (b)  001100000001010111  011100001000010111  101000100110000000 76.71

TABLE V
THE CONNECTION SCHEME SEARCHED BY ENAS. p IS THE AVERAGE OF
THE PROBABILITY ASSOCIATED WITH THE SCHEME. THE CONTROLLER
TENDS TO GENERATE A DETERMINISTIC SCHEME IF P IS CLOSE TO 1. THE
EXPERIMENT IS CONDUCTED ON CIFAR100 wiTH RESNET164 AND SE

MODULES.

Iteration Connection Scheme Sparse P
0 000110000001111101110010000001000110111110110110010011 0.52 0.50
5 100100111101010011110001110101011111011100110001000011 0.44 0.51
10 100001001011110110001000110011011101110111110111000011 0.44 0.50
15 111001000110011110111000111001011011111011011110111001 0.37 0.57
20 111111001111111111000111001111001011101100111111110111 0.26 0.67
25 101111111111111100111111110000010001101111111100111111 0.26 0.64
30 011110011111111111111110001111111111111001111111101111 0.17 0.85
35 1111111100011111111110111 111111111111 11111111111111111 0.07 091
40 1011111111111 1111111111111 111111t 0.02 0.96
45 111111111111 1111101 111111111 i it i it 0.02 0.98
50 OIT1111111111111111110001 11111111111 111111 111111111111 0.07 0.98
55 T1111111111001 1111111111111 111 1111111111 11111111111111 0.04 0.98
60 BB RN NN a RN nR s anainiiaaiasniniaisiissiiniy! 0.00 0.98
65 TIITIII I I i I i e i e e eeaae111111111111 0.00 0.99
70 I11111111111111110011 1111111111111 11111111111111111111 0.04 0.96
75 O111111111111111111 1111111111111 1111111 111111111111111 0.02 0.99
80 111t e eIt aareII1II111eeenn 0.00 1.00
85 1111111111111l 0.00 1.00
90 1111111111111 e ea1aeeaaaereaaatetIaaeeeaan 0.00 1.00
95 11111111111 1111111 i i i i i i i 0.00 0.98
100 JE R R R R RRRRRRRRRRREE! 0.00 0.99
105 TITE ettt e et e e e e e e e e e el 0.00 1.00

110 T e e e e e e e el 0.00 1.00
115 T e e e e e e e el 0.00 1.00
120 T e e e e e e e e e e 0.00 1.00
125 T i e e e e e e e e 0.00 1.00
130 T i i e e i e e e naan 0.00 1.00
135 T I i i1l 0.00 0.99

to compare the regions where different models localize with
respect to their target prediction. Grad-CAM is a technique
to generate the heatmap highlighting network attention by the
gradient related to the given target. Fig. 6 shows the visualiza-
tion results and the softmax scores for the target with original
ResNet50, Full-Share, and Share-EAN on the validation set
of ImageNet2012. SE module is used in this part. The red
region indicates an essential place for a network to obtain a
target score while the blue region is the opposite. The results
show that Share-EAN can extract similar features as Full-
Share, and in some cases, Share-EAN can even capture much
more details of the target associating with higher confidence
for its prediction. This implies that the searched connection
scheme may have a more vital ability to emphasize the more
discriminative features for each class than the two baselines
(original ResNet and Full-Share). Therefore it is reasonable
to bring additional improvement on the final classification
performance with Share-EAN in that the discrimination is
crucial for the classification task, which is also validated from
ImageNet test results in Table II.

B. Comparison of Training Time and Search Time

For NAS, we not only need to care about whether the search
method can find a neural network structure that satisfies certain
conditions but also need to focus on its computational cost.
Taking the experiments (8 = 0.5) in Table I as example, we
measure the time of these experiments in Table VI. The time
for training ResNet38 and ResNet164 from scratch is 1.61h,
4.46h on a single GPU 1080Ti while our RL-based method
requires only 25.4%, 21.3% of the train time for searching
from the supernet, respectively. The search time is acceptable
and worthwhile as the found ticket may be applied to the
downstream tasks that will be discussed in the next part.

TABLE VI
THE TRAINING TIME OF OUR BASELINE METHOD. “TRAIN TIME”
DENOTES THE TIME OF TRAINING A NEURAL NETWORK FROM SCRATCH.
“SEARCH TIME” DENOTES THE TIME OF OUR RL SEARCH.
“SEARCH/TRAIN” REPRESENTS THE RATIO OF SEARCH TIME TO THE
TRAIN TIME. ALL EXPERIMENTS ARE CONDUCTED ON A SINGLE GPU.

GPU Model Train Time  Search Time  Search/Train
1080Ti ResNet38 1.61 hrs 0.41 hrs 25.40%
1080Ti  ResNetl164 4.46 hrs 0.94 hrs 21.30%

C. Transferring Connection Schemes

In this part, we study the transferability of the network
architecture searched by our baseline method. Specifically, we
conduct experiments on transferring the optimal architecture
from image classification to crowd counting task [31]-[34] and
segmentation [35]. The model trained with classification is typ-
ically used to initialize the model for downstream tasks [36],
[37]. If the found network have the transferability, we will have
the advantages as follows: (I) We do not need to spend extra
time searching for a ticket for the new task; (II) The model
for the new task inherits a good representation ability of the
pretrained model; (III) The model with fewer SAMs has less
forward and back-propagation cost compared with Full-SAM.
In this case, the computational cost of our RL-based search
shown in Table VI is acceptable.

Crowd counting. Crowd counting aims to estimate the
density map and predict the total number of people for
a given image, whose efficiency is also crucial for many
real-world applications, e.g., video surveillance and crowd
analysis. However, most state-of-the-art works still rely on
the heavy pre-trained backbone networks [38] for obtaining
satisfactory performance on such dense regression problems.



TABLE VII
COMPARISON OF PERFORMANCE BETWEEN DIFFERENT PRE-TRAINED MODELS ON CROWD COUNTING. SMALLER MAE/MSE IS BETTER.

MAE/MSE (]) Relative Inference Time Increment (%)
Dataset  Model Ful.lSA  Full-Share  Share-EAN Full.SA  Full-Share  Share-EAN
SE [2] 9.5/15.93 8.9/14.6 8.6/14.7 19.19 19.19 6.16 (| 13.03)
SHHB  DIA [5] - 9.1/14.9 8.2/13.9 - 16.93 8.71 (| 8.22)
SGE [4] 93.9/144.5 91.6/143.1 88.4/140.0 58.98 58.85 30.55 (| 28.30)
SHHA SE [2] 89.9/140.2  89.9/140.2 79.4/127.7 49.50 49.00 21.07 (J 27.93)
DIA [5] - 92.5/130.4 90.3/141.6 - 51.75 29.43 (] 22.32)
Input DIA and SE. Again, our results indicate that the Share-EAN

Original ResNet Full-Share
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Fig. 6. Grad-CAM visualization of different networks. The red region

indicates an essential place for a network to obtain a target score (P) while
the blue one is the opposite.

The experiments show that the Share-EAN trained on Ima-
geNet serves as an efficient backbone network and can extract
the representative features for crowd counting. We evaluate
the transferring performance on the commonly-used Shang-
hai Tech dataset [31], which includes two parts. Shanghai
Tech part A (SHHA) has 482 images with 241,677 people
counting, and Shanghai Tech part B (SHHB) contains 716
images with 88,488 people counting. Following the previous
works, SHHA and SHHB are split into train/validation/test
set with 270/30/182 and 360/40/316 images, respectively. The
performance on the test set is reported using the standard Mean
Square Error (MSE) and Mean Absolute Error (MAE), as
shown in Table VII. Our Share-EANs outperform the baseline
(Full-SA and Full-Share) while reducing the inference time
increment by up to 28% compared with the baseline.
Semantic segmentation. We verify the transferability of
the Share-EAN on semantic segmentation task in Pascal VOC
2012 [39] dataset. Table VIII shows the performance com-
parison of the backbone with different types of SAM, e.g.,

can maintain the performance of the Full-Share network and
significantly reduce the time increment compared with the
Full-Share network, which shows Share-EAN has the capacity
of transferring to segmentation.

TABLE VIII
PERFORMANCE AND RELATIVE INFERENCE TIME INCREMENT
COMPARISON ON PASCAL VOC 2012 VALIDATION SET.

Model mloU/mAcc/allAcc (%)  Time Increment (%)

Original ResNet
Full-Share-SE
Share-EAN-SE
Full-Share-DIA
Share-EAN-DIA

69.39 / 78.87 / 92.97
73.03 / 82.13 / 93.74
73.68 / 83.08 / 93.79
74.02 / 83.11 / 93.92
7391/ 8293 /93.92

48.16
16.43 (| 31.73)
64.86
7.68 (| 57.18)

VII. RELATED WORKS

Lottery Tickets Hypothesis (LTH). The Lottery Ticket
Hypothesis [40] conjectures that: every random initialized
and dense NN contains a subnetwork that can be trained in
isolation with the original initialization to achieve comparable
performance to the original NN. This original LTH attracts
many researchers to rethink the training of the overparameter-
ized model, leading to variants of LTH under different learning
paradigms and machine learning fields [41]-[43]

On the other hand, Malach et al. [44] try to prove a LTH

variants [41] by showing that given a target NN of depth [
and width d, any random initialized network with depth 2/ and
width O (d512 / 62) contains subnetworks that can approximate
the target network with e error. Following works [45], [46]
further reduce the width to O(dlog(dl/e€)) for the random
initialized network.
Neural Architecture Search (NAS). Designing a satisfac-
tory neural architecture automatically, also known as neural
architecture search, is of significant interest for academics
and industries. Such a problem may always be formulated
as searching for the optimal combination of different net-
work granularities. The early NAS works require expensive
computational costs for scratch-training a massive number of
architecture candidates [29], [47]. To alleviate the searching
cost, the recent advances of one-shot approaches for NAS
bring up the concept of supernet based on the weight-sharing
heuristic. Supernet serves as the search space embodiment of
the candidate architectures, and it is trained by optimizing dif-
ferent sub-networks from the sampling paths, e.g., SPOS [15],
GreedyNAS [20].



Self-Attention Mechanism. The self-attention mechanism is
widely used in CNNs for computer vision [1], [2], [4]-[7].
Squeeze-Excitation (SE) module [2] leverages global average
pooling to extract the channel-wise statistics and learns the
non-mutually-exclusive relationship between channels. Spatial
Group-wise Enhance (SGE) module [4] learns to recalibrate
features by saliency factors learned from different groups of
the feature maps. Dense-Implicit-Attention (DIA) module [5]
captures the layer-wise feature interrelation with a recurrent
neural network (RNN).

VIII. CONCLUSION

Lottery Ticket Hypothesis for Self-attention Networks is
proposed in this paper, which is supported by numerical and
theoretical evidence. Then, to find a ticket, we propose an
effective connection scheme searching method based on policy
gradient as a baseline to find a ticket. The self-attention
network found by our method can maintain accuracy, reduce
parameters and accelerate the inference speed. Besides, we
illustrate that the found network has the capacity of capturing
the informative features and transferring to other computer
vision tasks.

APPENDIX
PROOF OF THEOREM 1

Theorem 1. A 1-hidden-layer feed-forward NN is defined
as NN(z) = W2g(Wlz), where input z € R¥*! with
lzlle < 1, W is of size m x d, W? is of size 1 x m
and o is ReLU activation. Wzlj is initialized i.i.d. by the
Gaussian distribution N(0, (ﬁf), and W7 ; is initialized by
the uniform distribution Uni form{1, —1}. Let P(d—1,¢€) be
P{x%(d — 1) > €2}, where x2(d — 1) is a chi-square variable
with d — 1 degree of freedom. Then for any ¢,§ > 0, when
the number of hidden neurons m > %, then there
exists the row j of W' such that when we set the row j to be
zero, ie., B;W' with B; = diag{1,---,1,0,1,--- ,1} (the
40 entry is 0), we have

IW20(W'z) — W2 (B;W'a)|| <,
with probability higher than 1 — 4.

Proof. Since W7 ; ~ Uniform{—1,1}, we have ||[Ws|ly =
v/m. We denote the row s of W' as W_1. Let’s consider the
following probability,

P{Ps: [Wla < ——1} = P{UT, [WL]2 > —
{ﬂS || s.||2 \/m} { 5_1” S.H2— \/ﬁ}
m

= [T eUwWi: > ﬁ}

| e
e} m - m
—Pd—1,6)™
In(4)

Let P(d — 1,€)™ < ¢, and then we have m > WPd-T.a)"
Therefore, when m > %, with probability greater

than 1 — 4, there exists j such that ||Wj1:||2 < =

Let G = diag{W'z > 0}, where the s-th diagonal compo-
nent of G is 1 if Wlz > 0 else 0. Then o(W'x) = GW'z
and o(B;W'z) = GB;W'x. Finally, we obtain

|[W2e(Whz) — W2a(B;W'z)|2
=|W2GW'z — W2GB; W'z,
<IW22 )Gl W = B;W 2 |zl2
VM X Ix |[Whz x 1 <e,

with probability greater than 1 — §. O

APPENDIX
PROOF OF THEOREM 2

Theorem 2. Let T'(x) be a Lipschitz continuous and
Lebesgue integrable function in d-dimensional compact set K.
And Rygy (2, Oran) is a ReLU ResNet structure with parameters
Oran- Let €g > 0 be a fixed constant. Suppose that there exists
Ofy such that [, |Ruu(z,0,) — T|dx < . If the width
of each layer in Rpy(z, 0nn) is larger than d and the depth
of Rey(x, Ory) is larger than a constant that depends on e,
then for any € € (eg, 1), there exists a subnetwork Rgy(z) of
Rfu"(x, qun) such that

/ | Rua (2, 0%) — Roun ()| dz < e. ®)
K

Lemma 1. [48] For any d € N, the family of ResNet with
one-neuron hidden layers and ReLU activation function can
universally approximate any Lebesgue integrable function f.
In other words, for any € > 0, there is a ResNet R with finitely
many layers and width not larger than d such that

/Rd |f(z) — R(x)|dz < e. 9)
Proof. See [48]. O

We use the notation dep(-) to denote the depth of a network.

Lemma 2. (Extension strategy) Let T be a Lebesgue inte-
grable d-dimensional function. For an € > 0, a ReLU ResNet
g(z, 92) with parameters 92 satisfies fRd ’g (x, 92) — T| dx <
¢, then there exists f(x,0%) with dep(f) > dep(g) such that

/ If (2.69) - T|d <
Rd

Here f(x, 9?) is obtained by adding some layers to the last
layer of g(x, 92).

(10)

g(z,09)
—_—
A <Ll b bl e e
N7 SV S VAN N S N PN
g(x,09) £, 09)

Fig. 7. The structure f(x, 9?) and g(z, 92).

Proof. As shown in Fig. 7, we can expand g by adding
some skip connection layers to its last layer. And then we set
all the values of the parameters of the extra layers to zeros.



Through the skip connections, we have g(z
and dep(g) < dep(f). Therefore,

/Rd\f(ffv@?) —T|dw=/w g (2,69) = T|dz < e (11)

O

792) = f(xvejof)

Lemma 3. Let f be the Lebesgue integrable function defined
on d-dimensional compact set K C R%. Ve > 0, according
to Lemma 1, there is a ResNet R(x) with finitely many layers
and width not larger than d such that [, |f(x)—R(z)|dz < e.
Then the depth of R(z) is O(1/r?), where r satisfies wi (r) <

€/ Vol(K) with wk (r) defined by
w(r) = max @)= @)l (12)
Proof. Refer to [48]. L]

Now, we prove Theorem 2 through the lemmas above.

Proof. First, T'(x) is a Lipschitz continuous function, so

T(x)

for z,y € K, where L is a constant. Then we have
T(2) = T(y)]

Lz -y

—T(y)| < Llz —yl, (13)

wi(r) = max
z,yeK,|lz—yl|<r

< max
z,yEK,Hzfyng

< Lr.

Since Eq.(13)

Let wi (r) < Lr = ¢/Vol(K), and then we have

€

~ Vol(K) - L (14
When r = ¢/(Vol(K) - L), then for any € € (e, 1),
01/ = O((2)) < O(Z)H = C(Z), a9

where C' is a constant. Therefore, according to Lemma 3, Ve €
(€0, 1), there exist a ResNet Rshor[(x) with width not greater
than d and the depth of at most C'(£ ) such that | K |T(x
Rgort (T )\dx < €/2. When the depth of R (z, O is greater
than C’(eo) , we can use Lemma 2 (extension strategy) to
construct a function Rlong(x) such that

dep ( Rlong ) - dep ( Rfull) 5

and the width of Rjo, is not greater than d. Also, for any
z € K, Riong() = Rshore(x). So we have

/|T( e |dm—/ e
K

(16)

shorl( )|daj < 6/2-

a7
Then
/ | R (2, 004) — Riong (2)]dr < / IT(2) — Riong ()|
K K
(18)
+ / | Rear (2, 00) — T(2)|da
K
(19)
<e€/2+¢€/2<c¢ (20)

Note that dep(Riong) = dep(Rpi). Also, Riong is a ResNet
with width not larger than d while the width of Rg, is greater
than d. Therefore, Riong is a subnetwork of Rgyy and satisfies
the inequality (20).

O

APPENDIX
DIFFERENT TYPES OF SAMS

In this part, we review the SAMs used in our paper, i.e.,
SE [2], SGE [4] and DIA [5]. We follow some notations of
Section II. Let x, be the input of the ¢ block, fi(-) be
the residual mapping, and M (-; W;) be the SAM in the ¢
block with the parameters WW,. The attention is formulated as
M (fo(20); Wy). We denote fo(xy) as X of size C'x Hx W,
where C, H and W denote channel, height and width, respec-
tively. For simplicity, we denote X’ = X*[c, h,w] as the
value of pixel (h,w) at the channel ¢ and X! = X*[c,:,:] as
the tensor at the channel c.

SE Module. SE module utilizes average pooling to extract
the features and processes the extracted features by a one-
hidden-layer fully connected network.

First, the SE module squeezes the information of channels
by the average pooling,

m! = AVG(X?') = 21

chwv

||M%

3 E
where ¢ = 1 ,C. Then, an one—hldden-layer fully con-
nected network FC(-;W;) with ReLU activation is used to
fuse the information of all the channels and here W, is the
parameter. The hidden layer node size is C'///r, where “//” is
exact division and “r” denotes reduction rate. The reduction
rate is 16 in our experiments. Finally, a sigmoid function (i.e.,

sig(z) = 1/(1+e7%)) is applied to the processed features and
we get the attention as follows,

613+ 3 6¢] = sig(FC([m{; -+ ;m&]; We)).

DIA Module. DIA module integrates the block-wise infor-
mation by an LSTM (Long Short-Term Memory). Let mﬁ be
the output of average pooling as Eq.21. Then m’ is passed to
LSTM along with a hidden state vector hy_; and a cell state
vector cy_1, where hg and cq are initialized as zero vectors.
The LSTM generates h; and ¢, at the /™ block, i.e.,

(hesce) = LSTM([m!; - -+ ym&], he—1,co—1; W), (23)

where W is the trainable parameter of the LSTM. The hidden
state vector h, is used as attention to recalibrate feature maps.
The reduction ratio within LSTM introduced in [5] is 4 for
CIFAR100 or 20 for ImageNet2012.

SGE Module. SGE divides the feature maps into different
groups and then utilizes the global information from the group
to recalibrate its features. Let G be the number of groups and
then each group has C//G feature maps. Denote Y* of size
(C//G) x H x W as a group of feature maps within X*. The
extracted feature for the group Y* is

H W
g_AVG( *WZZ chw-*

(22)

(24)



Let g be [9;- - ;96 ). The importance coefficient for each
pixel (h,w) is defined as
Phw :g'Y[:7h7w]a (25)
where - is dot product. Then py,, is normalized by
A~ Phw — 4
w= T, 26
Dh p (26)

where the mean 4 and variance o2 are defined by

1 H W 1 H W
W= 2o D P 00 = > Y (o — ).

h=1w—1 h=1w=1
27

An additional pair of parameters (v, 3) are introduced for the
group Y to rescale and shift the normalized features, and
SGE modules get the attention for Y[:, h, w] as follows,

G is 4 for CIFAR100 and 64 for ImageNet2012 experiments.

APPENDIX
TRAINING DETAILS FOR SUPERNET

In Alg.1, we have presented the training strategy for su-
pernet briefly. We show this process in an intuitive way in
Fig. 8. First, for each step ¢, we can sample one connection
scheme from a [Bernoulli()]™ distribution. Next, based on
this sampled connection scheme, we can obtain a subnetwork
from supernet. Then, we train this subnetwork on the training
set Dlrain-

Train the subnetwork

Sample one connection scheme ) )
with sampled connection scheme

F F] %] lCA] a ~ [Bernoulli(3)]™ {} {‘ ’ ‘ D
=« GG T

Fig. 8. Procedure of training a supernet.

APPENDIX
TRAINING DETAILS FOR CONTROLLER

In this part, we provide the training details for the controller.
The training process is shown in Fig. 9. The reward function
of the connection scheme consists of three parts, i.e., sparsity
reward, validation reward, and curiosity bonus. Besides, we
supplement some details of Alg. 1.

Sparsity Reward gy,,. One of our goals is to accelerate
the inference of the Full-SA network. To achieve it, we com-
plement a sparsity reward gs,, to encourage the controller to

generate the schemes with fewer connections between SAMs
and backbone. We define g,y by

Il

Gspa = 1 — m (29)

where ||-||, is a zero norm that counts the number of non-zero
entities, and m is the number of blocks.

Validation Reward g,,. Another goal is to find the schemes
with which the networks can maintain the original accuracy.
Hence, we use the validation accuracy of the subnetwork
Q(x|a) sampled from the supernet as a reward, which depicts
the performance of its structure. The accuracy of 2(x|a) on
Dy, is denoted as gyq. In fact, it is popular to use validation ac-
curacy of a candidate network as a reward signal in NAS [15],
[20], [26], [29], [47]. Furthermore, it has been empirically
proven that the validation performance of the subnetworks
sampled from a supernet can be positively correlated to their
stand-alone performance [49]. We evaluate the correlation
between the validation accuracy of subnetworks sampled from
a supernet and their stand-alone performance on CIFAR100
with ResNet and SE module over 42 samples and obtain the
Pearson coefficient is 0.71, which again confirms the strong
correlation as shown in the previous works.

Curiosity Bonus ¢.,g. To encourage the controller to ex-
plore more potentially useful connection schemes, we add the
Random Network Distillation (RND) curiosity bonus [23] in
our reward. Two extra networks with input a are involved
in the RND process, including a target network o4(-) and
a predictor network os(-;¢), where ¢ is the parameter set.
The parameters of oy(-) are randomly initialized and fixed
after initialization, while o2 (-; ¢) is trained with the connection
schemes collected by the controller.

The basic idea of RND is to minimize the difference
between the outputs of these two networks, which is denoted
by term o4 () = ||o1(-) — oa(; )| ; over the seen connection
schemes. If the controller generates a new scheme a, o4(a) is
expected to be larger because the predictor o5(+; ¢) never trains
on scheme a. Then, we denote the term ||o1(a) — o2(a; ¢)||§
as gmd, which is used as curiosity bonus to reward the
controller for exploring a new scheme. Besides, in Fig. 5,
we empirically show that RND bonus mitigates the fast
convergence of early training iterations, leading to exploration
for more schemes.

To sum up, our reward G(a) becomes

G(a) = A1 Gspa T Az - Gval + Az 9rnd, (30)

where A1, Ao, A3 are the coefficients for each reward.

Data Reuse. To improve the utilization efficiency of
sampled connection schemes and speed up the training of
the controller, we incorporate Proximal Policy Optimiza-
tion (PPO) [50] in our method. As shown in Alg. 1, after the
update of parameter 6 and ¢, we put the tuple (pg, a, G(a))
into a buffer. At the later step, we retrieve some used connec-
tion schemes and update 6 as follows:

m A7

p
k= EaNpeozd G(a) Z 5t ’

i=1 Y0014

Vologph |,
0108 Py 31)

0+ 0+n-k,



[ D,
Controller [0] val  Guar
g e Q(x|a) Yspa
—
qo0— — ra \ loss
T /‘ ¢(3) Grnd ‘
?
Update

Fig. 9. The illustration of our policy-gradient-based method to search an
optimal scheme.

where 7) is the earning rate and the 6,;4 denotes the 6 sampled
from buffer. Note that we do not update with PPO until the
controller is updated for h times.

Finally, we give hyper-parameter settings for training a
controller on different datasets.

CIFAR100. We optimize the controller for 1000 iterations
with momentum SGD. The learning rate is set to be 5x1072.
The time step h to apply PPO is 10.

ImageNet2012. We optimize the controller for 300 itera-
tions with momentum SGD. The learning rate is set to be
5x1072. The time step h to apply PPO is 10.

APPENDIX
TRAINING DETAILS FOR STAND-ALONE PERFORMANCE

In this part, we introduce the parameter setting for the model
trained from scratch. In our experiments, we use cross-entropy
loss and optimize the model by SGD with momentum 0.9 and
initial learning rate 0.1. The weight decay is set to be 1074.
The results for all search methods reported are the best out
of three candidates with the highest reward (lowest validation
loss for DARTS) in one search.

CIFAR100. When ResNet164 is used, the model is trained
for 164 epochs with the learning rate dropped by 0.1 at 81, 122
epochs. When ResNet38 is used, the model is trained for 100
epochs with the learning rate following cosine learning rate
decay. In order to mitigate the over-fitting problems faced by
the deep networks, ResNet164 is trained with random flipping
and cropping. ResNet38 is trained with random flipping.

ImageNet2012. We use the ResNet50 backbone for Ima-
geNet experiments. The network is trained for 120 epochs
with the learning rate dropped by 0.1 at every 30 epochs.
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