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The Lottery Ticket Hypothesis for Self-attention in

Convolutional Neural Network♣
Zhongzhan Huang, Senwei Liang∗, Mingfu Liang, Wei He, Haizhao Yang†, and Liang Lin†

Abstract—Recently many plug-and-play self-attention modules
(SAMs) are proposed to enhance the model generalization by
exploiting the internal information of deep convolutional neural
networks (CNNs). In general, previous works ignore where to
plug in the SAMs since they connect the SAMs individually with
each block of the entire CNN backbone for granted, leading to
incremental computational cost and the number of parameters
with the growth of network depth. However, we empirically find
and verify some counterintuitive phenomena that: (a) Connecting
the SAMs to all the blocks may not always bring the largest
performance boost, and connecting to partial blocks would be
even better; (b) Adding the SAMs to a CNN may not always
bring a performance boost, and instead it may even harm the
performance of the original CNN backbone.

Therefore, we articulate and demonstrate the Lottery Ticket
Hypothesis for Self-attention Networks: a full self-attention
network contains a subnetwork with sparse self-attention con-
nections that can (1) accelerate inference, (2) reduce extra
parameter increment, and (3) maintain accuracy. In addition
to the empirical evidence, this hypothesis is also supported by
our theoretical evidence. Furthermore, we propose a simple
yet effective reinforcement-learning-based method to search the
ticket, i.e., the connection scheme that satisfies the three above-
mentioned conditions. Extensive experiments on widely-used
benchmark datasets and popular self-attention networks show the
effectiveness of our method. Besides, our experiments illustrate
that our searched ticket has the capacity of transferring to some
vision tasks, e.g., crowd counting and segmentation.

Index Terms—Self-attention, Lottery Ticket Hypothesis, Rein-
forcement Learning, Neural Architecture Search.

I. INTRODUCTION

RECENTLY, various plug-and-play self-attention mod-

ules (SAMs) which enhance instance specificity by the

interior network information [1] are proposed to boost the

generalization of convolutional neural networks (CNNs) [2]–

[7]. The SAM is usually plugged into every block of a CNN,

e.g., the residual block of ResNet [8]. We display the structure

of a ResNet in Fig. 1 (a) and a full self-attention network
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Fig. 1. (a) Original ResNet; (b) Full-SA network. A network is called
a Full-SA network if the SAM is individually defined for each block. The
SAM can be divided into three steps [5]: (1) Extraction: the plug-in module
extracts internal features of a network by computing their statistics, like mean,
variance; (2) Processing: the SAM utilizes the extracted features to adaptively
generate a mask via a trainable module; (3) Recalibration: the mask is used
to calibrate the feature maps by element-wise multiplication or addition.

(Full-SA) whose each block connects to an individual SAM

as in Fig. 1 (b). As illustrated in Fig. 1, the implementation

of SAMs incorporates three steps: extraction, processing, and

recalibration. These operations and trainable components in

SAMs require extra computational cost and parameters, result-

ing in slow inference and cumbersome network [9]. This limits

self-attention usability on industrial applications that need a

real-time response or small memory consumption, such as

robotics, self-driving car, and mobile device. Therefore, other

than only improving the capacity of the SAM, previous works

also focus on the light-weight SAM design, e.g., reducing the

parameters of an individual SAM [4], [10].

However, the extra cost of the lightweight SAM is still non-

negligible for a deep network [4], [9]. The main reason lies in

the conventional paradigm where the SAMs are individually

plugged into every block of a CNN for granted [2], [3].

The additional inference time and the number of parameters

increase with the growth of the network depth, which creates

a bottleneck when applying SAMs to a deep network. On

the other hand, the network compression algorithms, such as

network pruning [11]–[13] and neural architecture search [14],

[15], effectively reduce the network size by removing the

redundant components while maintaining the accuracy of

the slimmed network. Note that these techniques inherently

alternate the connections between different ingredients (e.g.,

neurons, layers, or weights) in the CNN. This inspires us to

pay more attention to the connections between the SAMs and

the CNN backbone instead of the individual SAM design. If

the number of connections is lessened, the computation and

parameter cost will be reduced obviously. Based on these

motivations, we articulate the Lottery Ticket Hypothesis for

Self-attention Networks (LTH4SA):

A full self-attention (Full-SA) network contains a sub-

network with sparse self-attention connections that can (1)
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accelerate inference, (2) reduce extra parameter increment,

and (3) maintain accuracy.

Every SAM connects or disconnects to the block, and

we call the set of these connection states for a CNN as a

connection scheme (see Section II-B). A connection scheme is

called a ticket if the self-attention subnetwork with this scheme

satisfies the three above-mentioned conditions of LTH4SA. In

Section III, for the first time we both empirically and formally

investigate the existence of LTH4SA. Our main observations

are: (1) Empirically, there exist some self-attention subnet-

works with sparse connection schemes achieving even better

accuracy than the full self-attention network, which is also

supported by our theoretical evidence where the large network

can be approximated by its subnetwork; (2) The additional

statistical analysis of the connection scheme shows that no

specific block of the CNN dominates the accuracy when con-

necting SAM to the block. These observations indicate the key

to obtaining a ticket is how to combine different connections

of block and the SAMs. Certainly, finding the combination of

the blocks and the SAMs to be a ticket is equivalent to solving

a searching problem, and the corresponding algorithm should

satisfy the following requirements based on the definition of

LTH4SA and our empirical observations: (1) The searched

connection scheme should be sparse and accurate enough to

be a ticket; (2) The algorithm itself should have sufficient

capacity to cover diverse connection schemes. Therefore,

we propose a simple yet effective reinforcement-learning-

based (RL-based) baseline method to search for a ticket given

that the RL-based method can naturally handle multi-targets

searching problems, and the rewards are designed exactly

based on the requirements mentioned above. We call our

proposed baseline method Efficient Attention Network (EAN).

In Section II, we will briefly review the formulation of self-

attention networks. Our proposed method for searching a

ticket is introduced in Section IV and extensive experiments

on widely-used benchmark datasets and popular self-attention

networks are shown in Section V. The property of EANs will

be discussed in Section VI. Finally, we discuss the related

works in Section VII. We summarize our contribution as

follows:

1) We empirically find some counterintuitive phenomena:

(a) Connecting the SAMs to all the blocks may not

bring the largest performance boost; (b) Some connection

schemes are harmful.

2) We propose a lottery ticket hypothesis for self-attention

networks and provide both numerical and theoretical

evidence for the existence of the ticket. Besides, we

propose an effective searching method as a baseline to

obtain a ticket and avoid harmful connection schemes.

II. PRELIMINARIES

In this section, we first briefly review ResNet [8] and the

Full-SA network and then introduce the connection scheme.

A. ResNet and the Full Self-attention (Full-SA) Network

ResNet. The structure of a ResNet is shown in Fig. 1 (a). In

general, the ResNet has several stages, and each stage, whose

feature maps have the same size, is a collection of consecutive

blocks. Suppose a ResNet has m blocks. Let x` be the input

of the `th block and f`(·) be the residual mapping, then the

output x`+1 of the `th block is defined as

x`+1 = x` + f`(x`). (1)

Full Self-attention (Full-SA) Network. A network is called

a Full-SA network if the SAM is individually defined for each

block as Fig. 1 (b). Note that the term “full” refers to a scenario

when all blocks in a network connect to the SAMs. Many

popular SAMs adopt this way to connect with the ResNet

backbone [2], [3]. We denote the SAM in the `th block as

M(·;W`), where W` are the parameters. Then the attention

will be formulated as M(f`(x`);W`) which consists of the

extraction and processing operations introduced in Fig. 1. In

the recalibration step, the attention is applied to the residual

output f`(x`), i.e.,

x`+1 = x` +M(f`(x`);W`)� f`(x`), (2)

where ` = 1, ...,m and � is the element-wise multiplication.

Eq.(2) indicates that the computational cost and the number

of parameters grow with the increasing number of blocks m.

B. Connection Scheme

Suppose that a ResNet has m blocks. A sequence a =
(a1, a2, · · · , am) denotes a connection scheme, where ai = 1
if the ith block is connected to a SAM, otherwise it equals 0.

A subnetwork specified by a scheme a can be formulated by:

x`+1 = x` +
(

a` ·M(f`(x`);W`) + (1− a`) · 1
)

� f`(x`),

(3)

where 1 denotes an all-one vector and ` is from 1 to m. In

particular, it becomes a Full-SA network if a is an all-one

vector, or an original ResNet if a is a zero vector.

III. LOTTERY TICKET HYPOTHESIS FOR SELF-ATTENTION

In this section, we first study the existence of LTH4SA from

empirical and theoretical perspectives. Then we investigate

which block we should connect the SAMs to such that the

corresponding connection scheme can achieve good accuracy.

A. Empirical evidence of LTH4SA Existence

We empirically validate the proposed LTH4SA by inves-

tigating the accuracy of the self-attention subnetwork under

different connection schemes.

Specifically, we conduct classification on CIFAR100 using

SAMs with the shallow and deep network backbones, i.e.,

ResNet38 and ResNet164, under different SAM connection

ratios, i.e., the ratio of the number of connections to the

number of blocks. Squeeze-and-Excitation SAM [2] is used

in our experiments. We traverse all the connection schemes

for ResNet38. However, as ResNet164 contains 54 blocks,

there are 254 different connection schemes. Traversal of all

schemes is infeasible, and hence we randomly sample 100

connection schemes under each ratio. For simplicity and clear

clarification, we choose the connection ratio 0.2, 0.4, 0.6, 0.8
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Fig. 2. Violin plot of accuracy, number of parameters, and inference time increment under different connection ratios. Three bars of each vertical line from
the top to the bottom represent maximum, mean, and minimum, respectively. The light color shows the distribution. The black dotted line is the performance
of the Full-SA network while the red line is the performance of the original CNN. The network with accuracy higher than the black dotted line is a ticket.

to present the empirical results given that they are sufficient to

cover different sparsity levels. Fig. 2 displays the distribution

of accuracy, the number of parameters, and inference time

increment under different connection ratios. From Fig. 2, we

observe that:

1) For different SAM connection ratios, there exist self-

attention subnetworks with higher accuracy than the full

self-attention network, even when the connections are

very sparse, e.g., the connection ratio is 0.2.

2) For different SAM connection ratios, there exist self-

attention subnetworks with lower accuracy than the orig-

inal CNN, which means some connection schemes are

harmful.

3) Under the same connection ratio, the parameter and

inference time of different connection schemes vary con-

siderably.

Observation 1 shows the existence of the subnetwork with

sparse connections yet good accuracy, which empirically illus-

trates the potential of finding some connection schemes that

satisfy LTH4SA. Moreover, Observation 2 and Observation 3

reveal that even though there exist some connection schemes

that satisfy the three conditions of LTH4SA, it is still necessary

to carefully design methods to find tickets as the sparse

connection scheme may harm the accuracy of the network

and incur larger parameters and computational cost.

B. Theoretical Evidence of LTH4SA Existence

In Section III-A, the empirical evidence of the existence

of LTH4SA has been demonstrated. Now we provide some

theoretical evidence of the existence as well. The hidden

neuron can be considered as a SAM as they apply internal

information from the previous layer to the following network

outputs. Hence, we can consider a more general scenario that

given a network, there exists a subnetwork that approximates

the original network and can be obtained by removing the

hidden neurons from the original network.

We first consider a 1-hidden-layer feed-forward network and

the network follows the initialization as [16].

Theorem 1. A 1-hidden-layer feed-forward NN is defined as

NN(x) = W 2σ(W 1x), where input x ∈ Rd with ‖x‖2 ≤ 1,

W 1 is of size m × d, W 2 is of size 1 × m and σ is ReLU

activation. W 1
i,j is initialized i.i.d. by the Gaussian distribution

N (0, ( 1√
m
)
2
), and W 2

1,j is initialized by the uniform distribu-

tion Uniform{1,−1}. Let P(d−1, ε) be P{χ2(d−1) ≥ ε2},
where χ2(d− 1) is a chi-square variable with d− 1 degree of

freedom. Then for any ε, δ > 0, when the number of hidden

neurons m > ln(δ)
ln(P(d−1,ε)) , then there exists the row j of W 1

such that when we set the row j to be zero, i.e., BjW
1 with

Bj = diag{1, · · · , 1, 0, 1, · · · , 1} (the jth entry is 0), we have

‖W 2σ(W 1x)−W 2σ(BjW
1x)‖2 < ε,

with probability higher than 1− δ.

The proof for Thm. 1 is in Appendix. Thm. 1 shows that

when the width of the network is sufficiently large, we can

find a subnetwork that approximates the original network with

high probability. Next, we consider a more general and modern

network structure, i.e., the ResNet [8] with ReLU.
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Theorem 2. Let T (x) be a Lipschitz continuous and Lebesgue

integrable function in d-dimensional compact set K. And

Rfull(x, θfull) is a ReLU ResNet structure with parameters θfull.

Let ε0 > 0 be a constant. Suppose that there exists θ0full such

that
∫

K
|Rfull(x, θ

0
full)− T |dx ≤ ε0

2 . If the width of each layer

in Rfull(x, θfull) is larger than d and the depth of Rfull(x, θfull)
is larger than a constant that depends on ε0, then for any

ε ∈ (ε0, 1), there exists a subnetwork Rsub(x) of Rfull(x, θfull)
such that

∫

K

|Rfull(x, θ
0
full)−Rsub(x)|dx ≤ ε. (4)

The proof for Thm. 2 is in Appendix. In industrial applica-

tions, it is not necessary for the discrepancy between the output

of two networks to be arbitrarily small if they have comparable

performance. In practice, the discrepancy is acceptable if it

reaches some certain levels, such as ε0 = 10−5 or 10−10.

When a sufficiently small discrepancy ε0 is given, Thm. 2 can

guarantee that a large-size network contains a subnetwork that

has similar performance.

C. Which block should we connect the SAMs to?

By studying the statistical characteristics of tickets and

some harmful connection schemes, in this part, we investigate

which block we should connect the SAMs to such that the

corresponding connection scheme can achieve good accuracy.

We consider a statistics called connection score which

characterizes the frequency of the connections of a scheme

set. Given a network with m blocks and a set of N connection

schemes with each scheme ai = (ai1, ai2, ..., aim), aij ∈
{0, 1}, i = 1, ..., N, j = 1, ...,m, we define the connection

score of a scheme set as follows,
(

1

N

N
∑

i=1

ai1,
1

N

N
∑

i=1

ai2, ...,
1

N

N
∑

i=1

aim

)

. (5)

This statistic can characterize the importance of each block

based on their frequency of connecting with the SAM. If the

connection score of a block is large, the connection between

this block and the SAM appears in large portion among N
connection schemes.

We consider two sets of connection schemes, i.e., the ticket

set and the bad scheme set, for ResNet38 as presented in

Fig. 3. The ticket set stands for the set of schemes that satisfy

the LTH4SA, while the bad scheme set stands for a set of

schemes whose accuracy is lower than the original network.

From Fig. 3, we can observe that the connection score of

each block is almost the same for both the ticket set and bad

scheme set. Besides, for each set, we use univariate linear

regression to fit these scores, and use slope to characterize

their trends. We can see that the slopes of two scheme set are

close to zero. These observations indicate no specific block of

the network will dominate the accuracy, and each block can

be connected to the SAMs with almost equal frequency in a

ticket.

Since no specific block dominates the accuracy, it is not easy

to define a metric to identify the importance for the connection

Fig. 3. The comparison of the connection scores of the ticket set or the bad
scheme set with ResNet38.

Algorithm 1 Searching a ticket of LTH4SA

Input: Training set Dtrain; validation set Dval; a Full-SA atten-

tion network Ω(x|1); the pre-training step K; the searching

step T ; the probability of retaining connection β.

Output: The trained controller χθ(q0).

1: . Pre-train the supernet

2: for t from 1 to K do

3: a ∼ [Bernoulli(β)]m

4: train Ω(x|a) with Dtrain

5: end for

6: . Policy-gradient-based search

7: for t from 1 to T do

8: pθ ← χθ(q0)
9: a ∼ pθ

10: Calculate the rewards gspa,gval,grnd (see Appendix)

11: Update the trainable parameters.

12: end for

13: return χθ(q0)

of each block as the network pruning algorithms do [17], [18].

Hence, it is necessary to design an effective search method

to find the tickets from the thousands of possible connection

schemes.

IV. PROPOSED BASELINE METHOD

In this section, we introduce the proposed method which

consists of two parts. First, we pre-train a supernet as the

search space. The supernet assembles different candidate

network architectures into a single network by weight shar-

ing [19]. Each candidate architecture corresponds to a subnet-

work and in our problem, each connection scheme corresponds

to a specific subnetwork sampled from the supernet. Second,

we use a policy-gradient-based method to search for an opti-

mal connection scheme from the supernet. The basic workflow

of our method is shown in Alg.1.

A. Problem Description

According to LTH4SA, our goal is (1) to find a connection

scheme a, which is sparse enough for less computational cost

and parameters, from 2m possibilities; (2) to ensure that the

subnetwork specified by the scheme can maintain the accuracy

as the Full-SA network.

To determine the optimal architecture from the pool of

candidates, it is costly to evaluate all the candidates’ per-

formances after training from scratch, since even training a
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candidate individually from scratch will require a large number

of computation times (e.g., tens of hours), not to mention

traversing such an extensive pool. In many related works on

Neural Architecture Search (NAS), the validation accuracy of

the candidates sampled from a supernet can be served as a

satisfactory performance proxy [15], [20], [21] to approxi-

mately estimate those candidates’ stand-alone1 performance,

which can effectively reduce the extensive computational

cost correspondingly. Thus similarly, to efficiently obtain the

optimal connection scheme, we propose to train the supernet

as the search space. We follow the DropAct [22] training

strategy to train the supernet. Then we consider the validation

performance of the sampled subnetworks from the supernet

as the proxy for their stand-alone performance. We consider a

supernet Ω(x|a) with m blocks and input x. Ω(x|a) has the

same components as a Full-SA network, but its connections

between blocks and SAMs are specified by a.

B. Pre-training the Supernet

Given a dataset, we split all training samples into the train-

ing set Dtrain and the validation set Dval. To train the supernet,

we activate or deactivate the SAM in each block of it randomly

during optimization. Specifically, we first initialize a supernet

Ω(x|a(0)), where a(0) = (1, · · · , 1). At the iteration t, we ran-

domly draw a connection scheme a(t) = (at1, · · · , atm), where

ati is sampled from a Bernoulli distribution Bernoulli(β).
Then we train subnetwork Ω(x|a(t)) with the scheme a(t)

from the supernet on Dtrain via weight sharing. More detail

of training the supernet is provided in Appendix.

C. Training Controller with Policy Gradient

We introduce the steps to search for the optimal connection

scheme. Concretely, we use a controller to generate connection

schemes and update the controller by policy gradient.

We use a fully connected network as the controller χθ(q0)
to produce the connection schemes, where θ are the learnable

parameters, and q0 is a constant vector 0. The output of

χθ(q0) is pθ, where pθ = (p1θ, p
2
θ, ..., p

m
θ ) and piθ represents

the probability of connecting the SAM to the ith block. A

realization of a is sampled from the controller output, i.e.,

a ∼ pθ. The probability associated with the scheme a is

p̂θ = (p̂1θ, p̂
2
θ, ..., p̂

m
θ ), where p̂iθ = (1− ai)(1− piθ) + aip

i
θ.

We denote G(a) as a reward for a. The parameter set θ
within the controller can be updated via policy gradient with

learning rate η, i.e.,

Rθ = G(a) ·
m
∑

i=1

log p̂iθ, θ ← θ + η · ∇Rθ. (6)

In this way, the controller tends to output the probability that

results in a large reward G. Therefore, designing a reasonable

G can help us search for a good structure.

To find a ticket, we should incorporate the accuracy and

connection ratio into the reward G. We use the validation

accuracy gval of the subnetwork Ω(x|a) sampled from the

supernet as a reward, which depicts the performance of its

1Train the subnetworks from scratch

structure. Besides, we complement a sparsity reward gspa

to encourage the controller to generate the schemes with

fewer connections between SAMs and backbone. Finally, to

encourage the controller to explore more potentially useful

connection schemes, we add the Random Network Distilla-

tion (RND) curiosity bonus grnd in our reward [23]. Therefore,

G(a) = λ1 · gspa +λ2 · gval +λ3 · grnd, where λ1, λ2, λ3 are the

coefficient for each bonus. The detailed definition of gspa, gval,
and grnd can be found in Appendix.

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our

method in finding the ticket. First, we show that our method

can outperform some popular NAS and pruning algorithms.

Next, to further reduce the number of parameters for various

types of SAMs, we search the ticket from another self-

attention framework proposed in [5]. Finally, we conduct a

comprehensive comparison with various searching methods.

A. Datasets and Settings

On CIFAR100 [24] and ImageNet2012 [25] datasets, we

conduct classification using ResNet [8] backbone with differ-

ent SAMs, including Squeeze-and-Excitation (SE) [2], Spatial

Group-wise Enhance (SGE) [4] and Dense-Implicit-Attention

(DIA) [5] modules. The description of these SAMs is in

Appendix. Since the networks with SAMs have extra compu-

tational cost compared with the original backbone inevitably,

we formulate the relative inference time increment to represent

the relative speed of different self-attention networks, i.e.,

It(CNN with SAMs)− It(Original CNN)

It(Original CNN)
× 100%, (7)

where It(·) denotes the inference time of the network. The

inference time is measured by forwarding the data of batch

size 50 for 1000 times.

CIFAR100. CIFAR100 consists of 50k training images and

10k test images of size 32 by 32. In our implementation, we

choose 10k images from the training images as a validation

set (100 images for each class, 100 classes in total), and the

remainder images as a sub-training set. Regarding the exper-

imental settings of ResNet164 [8] backbone with different

SAMs, the supernet is trained for 150 epochs, and the search

step T is set to be 1000.

ImageNet2012. ImageNet2012 comprises 1.28 million

training images. We split 100k images (100 from each class

and 1000 classes in total) as the validation set and the

remainder as the sub-training set. The testing set includes 50k

images. Besides, the random cropping of 224 by 224 is used.

Regarding the experimental settings of ResNet50 [8] backbone

with different SAMs, the supernet is trained for 40 epochs, and

the search step T is set to be 300.

B. Searching Tickets from the Full-SA Network

In this part, we compare our search method with some

popular NAS and pruning algorithms, e.g., Genetic Algorithm

(GA) [14], ENAS [26] and DARTS [27], `1 pruning, and
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TABLE I
COMPARISON OF RELATIVE INFERENCE TIME INCREMENT (DENOTED BY INFERE. (%) AS IN EQ.(7)), THE NUMBER OF PARAMETERS (#P (M)), AND

TEST ACCURACY (ACC.) ON CIFAR100. HERE THE CONNECTION SCHEMES ARE SEARCHED WITH SE MODULE ON RESNET38 AND RESNET164, USING

DIFFERENT SEARCHING METHODS. “TICKET?” PRESENTS WHETHER THE FOUND CONNECTION SCHEME IS A TICKET OR BELONGS TO TOP 5% HIGH

ACCURACY. WE TRAIN A SUPERNET WITH THE PROBABILITY β OF RETAINING CONNECTION AS IN ALG. 1.

ResNet38 ResNet164

β Method Acc. #P (M) Infere. (%) Top5%? Ticket? β Method Acc. #P (M) Infere. (%) Ticket?

0.2

ENAS 64.94 0.43 0.00 % %

0.2

ENAS 74.29 1.73 0.00 %

DARTS 66.07 0.44 13.04 % % DARTS 74.42 1.74 8.43 %

GA 65.25 0.47 32.88 % % GA 76.07 1.80 15.64 !

`1 66.06 0.45 6.37 % % `1 74.50 1.81 8.92 %

GM 66.39 0.45 6.45 % % GM 75.09 1.81 8.24 %

EAN 66.78 0.45 23.21 % ! EAN 76.53 1.85 25.84 !

0.5

ENAS 65.09 0.45 26.55 % %

0.5

ENAS 75.33 1.81 18.13 %

DARTS 66.06 0.44 20.02 % % DARTS 73.44 1.85 21.97 %

GA 65.57 0.44 19.82 % % GA 75.75 1.76 15.21 %

`1 65.86 0.47 20.00 % % `1 73.79 1.90 23.23 %

GM 66.27 0.46 19.50 % % GM 75.37 1.90 22.04 %

EAN 66.90 0.45 26.52 ! ! EAN 76.21 1.82 22.41 !

0.8

ENAS 66.77 0.47 38.98 % %

0.8

ENAS 75.80 1.93 43.56 %

DARTS 66.67 0.46 29.55 % % DARTS 75.42 1.90 34.42 %

GA 66.21 0.46 33.61 % % GA 75.10 1.78 13.91 %

`1 66.32 0.47 29.60 % % `1 76.27 1.92 34.66 !

GM 66.61 0.47 29.60 % % GM 75.55 1.92 34.29 %

EAN 67.06 0.46 19.98 ! ! EAN 75.80 1.82 20.64 !

Original CNN 64.94 0.43 0.00 - - Original CNN 74.29 1.73 0.00 -

Geometric Median (GM) pruning [18]. Table I displays the

experiments conducted on CIFAR100 with Full-SA networks

including ResNet38 and ResNet164 using SE for different

searching methods under different supernets.

From Table I, our method outperforms the heuristic method

GA. Different from DARTS that searches schemes by mini-

mizing the validation loss, the RL-based method (e.g., ENAS

and our baseline method) can directly consider the validation

accuracy as a reward although the accuracy or sparsity con-

straint is not differentiable. However, ENAS does not learn

an effective scheme from the reward because of its controller

architecture as discussed in Section V-D.

Since the pruning algorithms (`1 and GM) are based on intu-

itive design [28] to measure the importance of the connection

individually and ignore the combination of the connections of

a network as mentioned in Section III-C, they may fail to find

the reasonable connection scheme and obtain unstable results

in some cases.

C. Searching Tickets from Full-Share Network

We demonstrate that our search method can also be applied

to other self-attention frameworks, such as sharing mecha-

nism [5], which shares a SAM with the same set of parameters

to different blocks in the same stage. We call a network as Full-

Share network if each block in the same stage of this network

connects to a shared SAM. The shared SAM significantly

reduces the trainable parameters compared with the Full-SA

network.

Fig. 4. The network structures of (a) EAN and (b) Share-EAN.

The connection scheme found by our method from a Full-

Share network is called Share-EAN, as illustrated in Fig. 4

(b). We show the test accuracy, the number of parameters,

and relative inference time increment on CIFAR100 and

ImageNet2012 of Share-EAN in Table II, searching from the

supernet trained with retaining ratio β = 0.5.

From Table II, we can observe that most results of Share-

EAN satisfy the three conditions of LTH4SA. Since both

Share-EAN and the Full-Share network use sharing mecha-

nism [5] to implement the SAM over the original ResNet,

they both have fewer parameters increment than the Full-

SA network. Besides, Share-EANs achieve faster inference

speed among the Full-Share network and the Full-SA network.

Furthermore, the accuracy of Share-EANs is on par or even

surpass that of the Full-Share networks.
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TABLE II
COMPARISON OF THE RELATIVE INFERENCE TIME INCREMENT (SEE EQ.(7)), THE NUMBER OF PARAMETERS, AND TEST ACCURACY BETWEEN VARIOUS

SAMS ON CIFAR100 AND IMAGENET2012. “ORIGINAL CNN” STANDS FOR RESNET164 BACKBONE IN CIFAR100 AND RESNET50 BACKBONE IN

IMAGENET. THE SAM IN DIA IS A RNN SO DIA NETWORK DOES NOT HAVE FULL-SA STRUCTURE.

Dataset Model

Test Accuracy (%) Parameters (M) Relative Inference Time Increment (%)

Full-SA Full-Share Share-EAN Full-SA Full-Share Share-EAN Full-SA Full-Share Share-EAN

C
IF

A
R

1
0

0 Original CNN 74.29 - - 1.727 - - 0.00 - -
SE [2] 75.80 76.09 76.93 1.929 1.739 1.739 43.56 41.66 18.81 (↓ 22.85)
SGE [4] 75.75 76.17 76.36 1.728 1.727 1.727 93.60 93.41 50.49 (↓ 42.92)
DIA [5] - 77.26 77.12 - 1.946 1.946 - 121.11 65.46 (↓ 55.65)

Im
ag

eN
et Original CNN 76.01 - - 25.584 - - 0.00 - -

SE [2] 77.01 77.35 77.40 28.115 26.284 26.284 25.94 25.92 10.35 (↓ 15.57)
SGE [4] 77.20 77.51 77.62 25.586 25.584 25.584 40.60 40.50 19.66 (↓ 20.84)
DIA [5] - 77.24 77.56 - 28.385 28.385 - 27.26 16.58 (↓ 10.68)

TABLE III
COMPARISON OF THE ACCURACY AND RELATIVE INFERENCE TIME INCREMENT OF THE SEARCHED NETWORK FOR DIFFERENT METHODS.

Method Acc. Time Increment (%) Method Acc. Time Increment (%)

Share-EAN 76.93 18.81 (↓22.85) HSP (101010..) 75.02 21.29 (↓20.37)
DARTS 75.41 28.02 (↓13.64) HSP (010101..) 74.87 21.29 (↓20.37)

GA 76.09 20.87 (↓20.79) HSP (100100..) 75.29 14.50 (↓27.16)
ENAS 76.08 28.05 (↓13.61) HSP (010010..) 74.01 14.50 (↓27.16)

D. Comprehensive Comparison with Searching Methods

In this part, we compare our method (EAN) with heuris-

tic selection policy (HSP), Genetic Algorithm (GA) [14],

ENAS [26] and DARTS [27] for the Full-Share network.

HSP is a heuristic policy that makes SAM connection every

N layers. For example, when N = 2, the schemes can be

10101 · · · or 01010 · · · . Table III displays the experiments

conducted on CIFAR100 with ResNet164 and SE module

for different searching methods. From Table III, our method

achieve better results of the Full-Share network compared with

other methods, which is consistent with the results of the Full-

SA network in Section V-B. Besides, the heuristic design of

the connection scheme like HSP does not give a scheme for

good accuracy, and hence it is necessary for a careful search

algorithm as mentioned in III-C.

The controller of ENAS tends to converge to some periodic-

alike schemes at a fast speed. In this case, it will conduct

much less exploration of the potential efficient structures. We

show the list of connection schemes by ENAS (an example)

in Table V. The majority of the schemes searched by ENAS

are “111...111” (Full-Share network) or “000...000” (Original

network), which shows that it can not strike the balance

between the performance and inference time. In Table IV, the

minority of the periodic-alike schemes searched by ENAS are

shown, e.g., “001” in ENAS (a). Such schemes may result

from the input mode of ENAS, i.e., for a connection scheme

a = (a1, a2, ..., am), the value of component al depends

on al−1, al−2, ..., a1. This strong sequential correlations let

the sequential information dominate in the RNN controller

instead of the policy rewards. Compared with the periodic-

alike connection schemes searched by ENAS, Share-EAN

demonstrates better performance.

Besides, our experiment indicates that ENAS explores a

much smaller number of candidate schemes. We quantify the

convergence of the controller using p̄ = 1
m

∑m
i=1 p̂

i
θ, which

Fig. 5. Comparison of the convergence speed between ENAS and EAN. The
controller tends to generate a deterministic scheme when p̄ is close to 1.

is the mean of the probability p̂ associated with the scheme.

When p̄ is close to 1, the controller tends to generate a deter-

ministic scheme. Fig. 5 and Table V show the curve of p̄ with

the growth of searching iterations, where p̄ of ENAS shows

the significant tendency for convergence in 20 iterations and

converges very fast within 100 iterations. Generally speaking,

methods in NAS [26], [29] require hundreds or thousands of

iterations for convergence.

VI. ANALYSIS

In this section, we demonstrate that the found self-attention

subnetwork has the capacity of capturing the discriminative

features as the full network and transferring to the downstream

tasks. Besides, we compare the training time and the searching

time to show that our search time is acceptable.

A. Capturing Discriminative Features

To study the ability of Share-EAN in capturing and ex-

ploiting features of a given target, we apply Grad-CAM [30]
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TABLE IV
THE CONNECTION SCHEMES SEARCHED BY ENAS [26] OR OUR METHOD. THE EXPERIMENT IS CONDUCTED ON CIFAR100 WITH SE MODULE AND

RESNET164 BACKBONE.

Method Stage1 Stage2 Stage3 Test Accuracy (%)

ENAS (a) 001001001001001001 001001001001001001 001001001001001001 75.80
ENAS (b) 100100101100100100 101101100100101101 100100101101100100 75.11
ENAS (c) 110110110110110110 110110110110110110 110110110110110110 76.08

Our method (a) 001100100101110101 001100000111001111 101100000111110001 76.93
Our method (b) 001100000001010111 011100001000010111 101000100110000000 76.71

TABLE V
THE CONNECTION SCHEME SEARCHED BY ENAS. p̄ IS THE AVERAGE OF

THE PROBABILITY ASSOCIATED WITH THE SCHEME. THE CONTROLLER

TENDS TO GENERATE A DETERMINISTIC SCHEME IF p̄ IS CLOSE TO 1. THE

EXPERIMENT IS CONDUCTED ON CIFAR100 WITH RESNET164 AND SE
MODULES.

Iteration Connection Scheme Sparse p̄

0 000110000001111101110010000001000110111110110110010011 0.52 0.50
5 100100111101010011110001110101011111011100110001000011 0.44 0.51
10 100001001011110110001000110011011101110111110111000011 0.44 0.50
15 111001000110011110111000111001011011111011011110111001 0.37 0.57
20 111111001111111111000111001111001011101100111111110111 0.26 0.67
25 101111111111111100111111110000010001101111111100111111 0.26 0.64
30 011110011111111111111110001111111111111001111111101111 0.17 0.85
35 111111110001111111111011111111111111111111111111111111 0.07 0.91
40 101111111111111111111111111111111111111111111111111111 0.02 0.96
45 111111111111111110111111111111111111111111111111111111 0.02 0.98
50 011111111111111111111000111111111111111111111111111111 0.07 0.98
55 111111111110011111111111111111111111111111111111111111 0.04 0.98
60 111111111111111111111111111111111111111111111111111111 0.00 0.98
65 111111111111111111111111111111111111111111111111111111 0.00 0.99
70 111111111111111110011111111111111111111111111111111111 0.04 0.96
75 011111111111111111111111111111111111111111111111111111 0.02 0.99
80 111111111111111111111111111111111111111111111111111111 0.00 1.00
85 111111111111111111111111111111111111111111111111111111 0.00 1.00
90 111111111111111111111111111111111111111111111111111111 0.00 1.00
95 111111111111111111111111111111111111111111111111111111 0.00 0.98

100 111111111111111111111111111111111111111111111111111111 0.00 0.99
105 111111111111111111111111111111111111111111111111111111 0.00 1.00
110 111111111111111111111111111111111111111111111111111111 0.00 1.00
115 111111111111111111111111111111111111111111111111111111 0.00 1.00
120 111111111111111111111111111111111111111111111111111111 0.00 1.00
125 111111111111111111111111111111111111111111111111111111 0.00 1.00
130 111111111111111111111111111111111111111111111111111111 0.00 1.00
135 111111111111111111111111111111111111111111111111111111 0.00 0.99

to compare the regions where different models localize with

respect to their target prediction. Grad-CAM is a technique

to generate the heatmap highlighting network attention by the

gradient related to the given target. Fig. 6 shows the visualiza-

tion results and the softmax scores for the target with original

ResNet50, Full-Share, and Share-EAN on the validation set

of ImageNet2012. SE module is used in this part. The red

region indicates an essential place for a network to obtain a

target score while the blue region is the opposite. The results

show that Share-EAN can extract similar features as Full-

Share, and in some cases, Share-EAN can even capture much

more details of the target associating with higher confidence

for its prediction. This implies that the searched connection

scheme may have a more vital ability to emphasize the more

discriminative features for each class than the two baselines

(original ResNet and Full-Share). Therefore it is reasonable

to bring additional improvement on the final classification

performance with Share-EAN in that the discrimination is

crucial for the classification task, which is also validated from

ImageNet test results in Table II.

B. Comparison of Training Time and Search Time

For NAS, we not only need to care about whether the search

method can find a neural network structure that satisfies certain

conditions but also need to focus on its computational cost.

Taking the experiments (β = 0.5) in Table I as example, we

measure the time of these experiments in Table VI. The time

for training ResNet38 and ResNet164 from scratch is 1.61h,

4.46h on a single GPU 1080Ti while our RL-based method

requires only 25.4%, 21.3% of the train time for searching

from the supernet, respectively. The search time is acceptable

and worthwhile as the found ticket may be applied to the

downstream tasks that will be discussed in the next part.

TABLE VI
THE TRAINING TIME OF OUR BASELINE METHOD. “TRAIN TIME”

DENOTES THE TIME OF TRAINING A NEURAL NETWORK FROM SCRATCH.
“SEARCH TIME” DENOTES THE TIME OF OUR RL SEARCH.

“SEARCH/TRAIN” REPRESENTS THE RATIO OF SEARCH TIME TO THE

TRAIN TIME. ALL EXPERIMENTS ARE CONDUCTED ON A SINGLE GPU.

GPU Model Train Time Search Time Search/Train

1080Ti ResNet38 1.61 hrs 0.41 hrs 25.40%
1080Ti ResNet164 4.46 hrs 0.94 hrs 21.30%

C. Transferring Connection Schemes

In this part, we study the transferability of the network

architecture searched by our baseline method. Specifically, we

conduct experiments on transferring the optimal architecture

from image classification to crowd counting task [31]–[34] and

segmentation [35]. The model trained with classification is typ-

ically used to initialize the model for downstream tasks [36],

[37]. If the found network have the transferability, we will have

the advantages as follows: (I) We do not need to spend extra

time searching for a ticket for the new task; (II) The model

for the new task inherits a good representation ability of the

pretrained model; (III) The model with fewer SAMs has less

forward and back-propagation cost compared with Full-SAM.

In this case, the computational cost of our RL-based search

shown in Table VI is acceptable.

Crowd counting. Crowd counting aims to estimate the

density map and predict the total number of people for

a given image, whose efficiency is also crucial for many

real-world applications, e.g., video surveillance and crowd

analysis. However, most state-of-the-art works still rely on

the heavy pre-trained backbone networks [38] for obtaining

satisfactory performance on such dense regression problems.
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TABLE VII
COMPARISON OF PERFORMANCE BETWEEN DIFFERENT PRE-TRAINED MODELS ON CROWD COUNTING. SMALLER MAE/MSE IS BETTER.

Dataset Model

MAE/MSE (↓) Relative Inference Time Increment (%)

Full-SA Full-Share Share-EAN Full-SA Full-Share Share-EAN

SHHB
SE [2] 9.5/15.93 8.9/14.6 8.6/14.7 19.19 19.19 6.16 (↓ 13.03)
DIA [5] - 9.1/14.9 8.2/13.9 - 16.93 8.71 (↓ 8.22)

SHHA

SGE [4] 93.9/144.5 91.6/143.1 88.4/140.0 58.98 58.85 30.55 (↓ 28.30)
SE [2] 89.9/140.2 89.9/140.2 79.4/127.7 49.50 49.00 21.07 (↓ 27.93)
DIA [5] - 92.5/130.4 90.3/141.6 - 51.75 29.43 (↓ 22.32)

Fig. 6. Grad-CAM visualization of different networks. The red region
indicates an essential place for a network to obtain a target score (P) while
the blue one is the opposite.

The experiments show that the Share-EAN trained on Ima-

geNet serves as an efficient backbone network and can extract

the representative features for crowd counting. We evaluate

the transferring performance on the commonly-used Shang-

hai Tech dataset [31], which includes two parts. Shanghai

Tech part A (SHHA) has 482 images with 241,677 people

counting, and Shanghai Tech part B (SHHB) contains 716

images with 88,488 people counting. Following the previous

works, SHHA and SHHB are split into train/validation/test

set with 270/30/182 and 360/40/316 images, respectively. The

performance on the test set is reported using the standard Mean

Square Error (MSE) and Mean Absolute Error (MAE), as

shown in Table VII. Our Share-EANs outperform the baseline

(Full-SA and Full-Share) while reducing the inference time

increment by up to 28% compared with the baseline.

Semantic segmentation. We verify the transferability of

the Share-EAN on semantic segmentation task in Pascal VOC

2012 [39] dataset. Table VIII shows the performance com-

parison of the backbone with different types of SAM, e.g.,

DIA and SE. Again, our results indicate that the Share-EAN

can maintain the performance of the Full-Share network and

significantly reduce the time increment compared with the

Full-Share network, which shows Share-EAN has the capacity

of transferring to segmentation.

TABLE VIII
PERFORMANCE AND RELATIVE INFERENCE TIME INCREMENT

COMPARISON ON PASCAL VOC 2012 VALIDATION SET.

Model mIoU/mAcc/allAcc (%) Time Increment (%)

Original ResNet 69.39 / 78.87 / 92.97 -
Full-Share-SE 73.03 / 82.13 / 93.74 48.16
Share-EAN-SE 73.68 / 83.08 / 93.79 16.43 (↓ 31.73)
Full-Share-DIA 74.02 / 83.11 / 93.92 64.86
Share-EAN-DIA 73.91 / 82.93 / 93.92 7.68 (↓ 57.18)

VII. RELATED WORKS

Lottery Tickets Hypothesis (LTH). The Lottery Ticket

Hypothesis [40] conjectures that: every random initialized

and dense NN contains a subnetwork that can be trained in

isolation with the original initialization to achieve comparable

performance to the original NN. This original LTH attracts

many researchers to rethink the training of the overparameter-

ized model, leading to variants of LTH under different learning

paradigms and machine learning fields [41]–[43]

On the other hand, Malach et al. [44] try to prove a LTH

variants [41] by showing that given a target NN of depth l
and width d, any random initialized network with depth 2l and

width O
(

d5l2/ε2
)

contains subnetworks that can approximate

the target network with ε error. Following works [45], [46]

further reduce the width to O(d log(dl/ε)) for the random

initialized network.

Neural Architecture Search (NAS). Designing a satisfac-

tory neural architecture automatically, also known as neural

architecture search, is of significant interest for academics

and industries. Such a problem may always be formulated

as searching for the optimal combination of different net-

work granularities. The early NAS works require expensive

computational costs for scratch-training a massive number of

architecture candidates [29], [47]. To alleviate the searching

cost, the recent advances of one-shot approaches for NAS

bring up the concept of supernet based on the weight-sharing

heuristic. Supernet serves as the search space embodiment of

the candidate architectures, and it is trained by optimizing dif-

ferent sub-networks from the sampling paths, e.g., SPOS [15],

GreedyNAS [20].
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Self-Attention Mechanism. The self-attention mechanism is

widely used in CNNs for computer vision [1], [2], [4]–[7].

Squeeze-Excitation (SE) module [2] leverages global average

pooling to extract the channel-wise statistics and learns the

non-mutually-exclusive relationship between channels. Spatial

Group-wise Enhance (SGE) module [4] learns to recalibrate

features by saliency factors learned from different groups of

the feature maps. Dense-Implicit-Attention (DIA) module [5]

captures the layer-wise feature interrelation with a recurrent

neural network (RNN).

VIII. CONCLUSION

Lottery Ticket Hypothesis for Self-attention Networks is

proposed in this paper, which is supported by numerical and

theoretical evidence. Then, to find a ticket, we propose an

effective connection scheme searching method based on policy

gradient as a baseline to find a ticket. The self-attention

network found by our method can maintain accuracy, reduce

parameters and accelerate the inference speed. Besides, we

illustrate that the found network has the capacity of capturing

the informative features and transferring to other computer

vision tasks.

APPENDIX

PROOF OF THEOREM 1

Theorem 1. A 1-hidden-layer feed-forward NN is defined

as NN(x) = W 2σ(W 1x), where input x ∈ R
d×1 with

‖x‖2 ≤ 1, W 1 is of size m × d, W 2 is of size 1 × m
and σ is ReLU activation. W 1

i,j is initialized i.i.d. by the

Gaussian distribution N (0, ( 1√
m
)
2
), and W 2

1,j is initialized by

the uniform distribution Uniform{1,−1}. Let P(d−1, ε) be

P{χ2(d− 1) ≥ ε2}, where χ2(d− 1) is a chi-square variable

with d − 1 degree of freedom. Then for any ε, δ > 0, when

the number of hidden neurons m > ln(δ)
ln(P(d−1,ε)) , then there

exists the row j of W 1 such that when we set the row j to be

zero, i.e., BjW
1 with Bj = diag{1, · · · , 1, 0, 1, · · · , 1} (the

jth entry is 0), we have

‖W 2σ(W 1x)−W 2σ(BjW
1x)‖ < ε,

with probability higher than 1− δ.

Proof. Since W 2
1,j ∼ Uniform{−1, 1}, we have ‖W2‖2 =√

m. We denote the row s of W 1 as W 1
s:. Let’s consider the

following probability,

P{@s : ‖W 1
s:‖2 <

ε√
m
} = P{∪ms=1‖W 1

s:‖2 ≥
ε√
m
}

=

m
∏

s=1

P{‖W 1
s:‖2 ≥

ε√
m
}

=

m
∏

s=1

P{ 1
m
χ2(d− 1) ≥ ε2

m
}

= P(d− 1, ε)m.

Let P(d − 1, ε)m < ε, and then we have m > ln(δ)
ln(P(d−1,ε)) .

Therefore, when m > ln(δ)
ln(P(d−1,ε)) , with probability greater

than 1− δ, there exists j such that ‖W 1
j:‖2 < ε√

m
.

Let G = diag{W 1x ≥ 0}, where the s-th diagonal compo-

nent of G is 1 if W 1
s:x ≥ 0 else 0. Then σ(W 1x) = GW 1x

and σ(BjW
1x) = GBjW

1x. Finally, we obtain

‖W 2σ(W 1x)−W 2σ(BjW
1x)‖2

=‖W 2GW 1x−W 2GBjW
1x‖2

≤‖W 2‖2‖G‖2‖W 1 −BjW
1‖2‖x‖2

≤√m× 1× ‖W 1
j:‖2 × 1 ≤ ε,

with probability greater than 1− δ.

APPENDIX

PROOF OF THEOREM 2

Theorem 2. Let T (x) be a Lipschitz continuous and

Lebesgue integrable function in d-dimensional compact set K.

And Rfull(x, θfull) is a ReLU ResNet structure with parameters

θfull. Let ε0 > 0 be a fixed constant. Suppose that there exists

θ0full such that
∫

K
|Rfull(x, θ

0
full) − T |dx ≤ ε0

2 . If the width

of each layer in Rfull(x, θfull) is larger than d and the depth

of Rfull(x, θfull) is larger than a constant that depends on ε0,

then for any ε ∈ (ε0, 1), there exists a subnetwork Rsub(x) of

Rfull(x, θfull) such that
∫

K

|Rfull(x, θ
0
full)−Rsub(x)|dx ≤ ε. (8)

Lemma 1. [48] For any d ∈ N, the family of ResNet with

one-neuron hidden layers and ReLU activation function can

universally approximate any Lebesgue integrable function f .

In other words, for any ε > 0, there is a ResNet R with finitely

many layers and width not larger than d such that
∫

Rd

|f(x)−R(x)|dx ≤ ε. (9)

Proof. See [48].

We use the notation dep(·) to denote the depth of a network.

Lemma 2. (Extension strategy) Let T be a Lebesgue inte-

grable d-dimensional function. For an ε > 0, a ReLU ResNet

g(x, θ0g) with parameters θ0g satisfies
∫

Rd

∣

∣g
(

x, θ0g
)

− T
∣

∣ dx ≤
ε, then there exists f(x, θ0f ) with dep(f) > dep(g) such that

∫

Rd

∣

∣f
(

x, θ0f
)

− T
∣

∣ dx ≤ ε. (10)

Here f(x, θ0f ) is obtained by adding some layers to the last

layer of g(x, θ0g).

Fig. 7. The structure f(x, θ0
f
) and g(x, θ0g).

Proof. As shown in Fig. 7, we can expand g by adding

some skip connection layers to its last layer. And then we set

all the values of the parameters of the extra layers to zeros.
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Through the skip connections, we have g(x, θ0g) = f(x, θ0f )
and dep(g) < dep(f). Therefore,
∫

Rd

∣

∣f
(

x, θ0f
)

− T
∣

∣ dx =

∫

Rd

∣

∣g
(

x, θ0g
)

− T
∣

∣ dx ≤ ε. (11)

Lemma 3. Let f be the Lebesgue integrable function defined

on d-dimensional compact set K ⊂ Rd. ∀ε > 0, according

to Lemma 1, there is a ResNet R(x) with finitely many layers

and width not larger than d such that
∫

K
|f(x)−R(x)|dx ≤ ε.

Then the depth of R(x) is O(1/rd), where r satisfies ωK(r) ≤
ε/Vol(K) with ωK(r) defined by

ωK(r) = max
x,y∈K,||x−y||≤r

|f(x)− f(y)|. (12)

Proof. Refer to [48].

Now, we prove Theorem 2 through the lemmas above.

Proof. First, T (x) is a Lipschitz continuous function, so

|T (x)− T (y)| ≤ L|x− y|, (13)

for x, y ∈ K, where L is a constant. Then we have

ωK(r) = max
x,y∈K,||x−y||≤r

|T (x)− T (y)|

≤ max
x,y∈K,||x−y||≤r

L|x− y| Since Eq.(13)

≤ Lr.

Let ωK(r) ≤ Lr = ε/Vol(K), and then we have

r =
ε

Vol(K) · L. (14)

When r = ε/(Vol(K) · L), then for any ε ∈ (ε0, 1),

O(1/rd) = O((
L

ε
)d) < O((

L

ε0
)d) = C(

L

ε0
)d, (15)

where C is a constant. Therefore, according to Lemma 3, ∀ε ∈
(ε0, 1), there exist a ResNet Rshort(x) with width not greater

than d and the depth of at most C( L
ε0
)d such that

∫

K
|T (x)−

Rshort(x)|dx ≤ ε/2. When the depth of Rfull(x, θfull) is greater

than C( L
ε0
)d, we can use Lemma 2 (extension strategy) to

construct a function Rlong(x) such that

dep(Rlong) = dep(Rfull), (16)

and the width of Rlong is not greater than d. Also, for any

x ∈ K, Rlong(x) = Rshort(x). So we have
∫

K

|T (x)−Rlong(x)|dx =

∫

K

|T (x)−Rshort(x)|dx ≤ ε/2.

(17)

Then
∫

K

|Rfull(x, θ
0
full)−Rlong(x)|dx ≤

∫

K

|T (x)−Rlong(x)|dx
(18)

+

∫

K

|Rfull(x, θ
0
full)− T (x)|dx

(19)

≤ ε/2 + ε0/2 ≤ ε (20)

Note that dep(Rlong) = dep(Rfull). Also, Rlong is a ResNet

with width not larger than d while the width of Rfull is greater

than d. Therefore, Rlong is a subnetwork of Rfull and satisfies

the inequality (20).

APPENDIX

DIFFERENT TYPES OF SAMS

In this part, we review the SAMs used in our paper, i.e.,

SE [2], SGE [4] and DIA [5]. We follow some notations of

Section II. Let x` be the input of the `th block, f`(·) be

the residual mapping, and M(·;W`) be the SAM in the `th

block with the parameters W`. The attention is formulated as

M(f`(x`);W`). We denote f`(x`) as X(`) of size C×H×W ,

where C,H and W denote channel, height and width, respec-

tively. For simplicity, we denote X`
chw = X`[c, h, w] as the

value of pixel (h,w) at the channel c and X`
c = X`[c, :, :] as

the tensor at the channel c.
SE Module. SE module utilizes average pooling to extract

the features and processes the extracted features by a one-

hidden-layer fully connected network.

First, the SE module squeezes the information of channels

by the average pooling,

m`
c = AVG(X`

c) =
1

H ·W
H
∑

h=1

W
∑

w=1

X`
chw, (21)

where c = 1, · · · , C. Then, an one-hidden-layer fully con-

nected network FC(·;W`) with ReLU activation is used to

fuse the information of all the channels and here W` is the

parameter. The hidden layer node size is C//r, where “//” is

exact division and “r” denotes reduction rate. The reduction

rate is 16 in our experiments. Finally, a sigmoid function (i.e.,

sig(z) = 1/(1+e−z)) is applied to the processed features and

we get the attention as follows,

[δ1; · · · ; δC ] = sig(FC([m`
1; · · · ;m`

C ];W`)). (22)

DIA Module. DIA module integrates the block-wise infor-

mation by an LSTM (Long Short-Term Memory). Let m`
c be

the output of average pooling as Eq.21. Then m`
c is passed to

LSTM along with a hidden state vector h`−1 and a cell state

vector c`−1, where h0 and c0 are initialized as zero vectors.

The LSTM generates h` and c` at the `th block, i.e.,

(h`, c`) = LSTM([m`
1; · · · ;m`

C ], h`−1, c`−1;W ), (23)

where W is the trainable parameter of the LSTM. The hidden

state vector ht is used as attention to recalibrate feature maps.

The reduction ratio within LSTM introduced in [5] is 4 for

CIFAR100 or 20 for ImageNet2012.

SGE Module. SGE divides the feature maps into different

groups and then utilizes the global information from the group

to recalibrate its features. Let G be the number of groups and

then each group has C//G feature maps. Denote Y ` of size

(C//G)×H×W as a group of feature maps within X`. The

extracted feature for the group Y ` is

g`c = AVG(Y `
c ) =

1

H ·W
H
∑

h=1

W
∑

w=1

Y `
chw. (24)
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Let g be [g`1; · · · ; g`C//G]. The importance coefficient for each

pixel (h,w) is defined as

phw = g · Y [:, h, w], (25)

where · is dot product. Then phw is normalized by

p̂hw =
phw − µ

σ + ε
, (26)

where the mean µ and variance σ2 are defined by

µ =
1

HW

H
∑

h=1

W
∑

w=1

phw, σ2 =
1

HW

H
∑

h=1

W
∑

w=1

(phw − µ)2.

(27)

An additional pair of parameters (γ, β) are introduced for the

group Y ` to rescale and shift the normalized features, and

SGE modules get the attention for Y [:, h, w] as follows,

sig(γp̂hw + β). (28)

G is 4 for CIFAR100 and 64 for ImageNet2012 experiments.

APPENDIX

TRAINING DETAILS FOR SUPERNET

In Alg.1, we have presented the training strategy for su-

pernet briefly. We show this process in an intuitive way in

Fig. 8. First, for each step t, we can sample one connection

scheme from a [Bernoulli(β)]m distribution. Next, based on

this sampled connection scheme, we can obtain a subnetwork

from supernet. Then, we train this subnetwork on the training

set Dtrain.

Fig. 8. Procedure of training a supernet.

APPENDIX

TRAINING DETAILS FOR CONTROLLER

In this part, we provide the training details for the controller.

The training process is shown in Fig. 9. The reward function

of the connection scheme consists of three parts, i.e., sparsity

reward, validation reward, and curiosity bonus. Besides, we

supplement some details of Alg. 1.

Sparsity Reward gspa. One of our goals is to accelerate

the inference of the Full-SA network. To achieve it, we com-

plement a sparsity reward gspa to encourage the controller to

generate the schemes with fewer connections between SAMs

and backbone. We define gspa by

gspa = 1− ‖a‖0
m

, (29)

where ‖·‖0 is a zero norm that counts the number of non-zero

entities, and m is the number of blocks.

Validation Reward gval. Another goal is to find the schemes

with which the networks can maintain the original accuracy.

Hence, we use the validation accuracy of the subnetwork

Ω(x|a) sampled from the supernet as a reward, which depicts

the performance of its structure. The accuracy of Ω(x|a) on

Dval is denoted as gval. In fact, it is popular to use validation ac-

curacy of a candidate network as a reward signal in NAS [15],

[20], [26], [29], [47]. Furthermore, it has been empirically

proven that the validation performance of the subnetworks

sampled from a supernet can be positively correlated to their

stand-alone performance [49]. We evaluate the correlation

between the validation accuracy of subnetworks sampled from

a supernet and their stand-alone performance on CIFAR100

with ResNet and SE module over 42 samples and obtain the

Pearson coefficient is 0.71, which again confirms the strong

correlation as shown in the previous works.

Curiosity Bonus grnd. To encourage the controller to ex-

plore more potentially useful connection schemes, we add the

Random Network Distillation (RND) curiosity bonus [23] in

our reward. Two extra networks with input a are involved

in the RND process, including a target network σ1(·) and

a predictor network σ2(·;φ), where φ is the parameter set.

The parameters of σ1(·) are randomly initialized and fixed

after initialization, while σ2(·;φ) is trained with the connection

schemes collected by the controller.

The basic idea of RND is to minimize the difference

between the outputs of these two networks, which is denoted

by term σφ(·) = ‖σ1(·)− σ2(·;φ)‖22, over the seen connection

schemes. If the controller generates a new scheme a, σφ(a) is

expected to be larger because the predictor σ2(·;φ) never trains

on scheme a. Then, we denote the term ‖σ1(a)− σ2(a;φ)‖22
as grnd, which is used as curiosity bonus to reward the

controller for exploring a new scheme. Besides, in Fig. 5,

we empirically show that RND bonus mitigates the fast

convergence of early training iterations, leading to exploration

for more schemes.

To sum up, our reward G(a) becomes

G(a) = λ1 · gspa + λ2 · gval + λ3 · grnd, (30)

where λ1, λ2, λ3 are the coefficients for each reward.

Data Reuse. To improve the utilization efficiency of

sampled connection schemes and speed up the training of

the controller, we incorporate Proximal Policy Optimiza-

tion (PPO) [50] in our method. As shown in Alg. 1, after the

update of parameter θ and φ, we put the tuple (pθ, a, G(a))
into a buffer. At the later step, we retrieve some used connec-

tion schemes and update θ as follows:

κ = Ea∼pθold

[

G(a)

m
∑

i=1

p̂iθ
p̂iθold

∇θ log p̂
i
θ

]

,

θ ← θ + η · κ,
(31)
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Fig. 9. The illustration of our policy-gradient-based method to search an
optimal scheme.

where η is the earning rate and the θold denotes the θ sampled

from buffer. Note that we do not update with PPO until the

controller is updated for h times.

Finally, we give hyper-parameter settings for training a

controller on different datasets.

CIFAR100. We optimize the controller for 1000 iterations

with momentum SGD. The learning rate is set to be 5×10−2.

The time step h to apply PPO is 10.

ImageNet2012. We optimize the controller for 300 itera-

tions with momentum SGD. The learning rate is set to be

5×10−2. The time step h to apply PPO is 10.

APPENDIX

TRAINING DETAILS FOR STAND-ALONE PERFORMANCE

In this part, we introduce the parameter setting for the model

trained from scratch. In our experiments, we use cross-entropy

loss and optimize the model by SGD with momentum 0.9 and

initial learning rate 0.1. The weight decay is set to be 10−4.
The results for all search methods reported are the best out

of three candidates with the highest reward (lowest validation

loss for DARTS) in one search.

CIFAR100. When ResNet164 is used, the model is trained

for 164 epochs with the learning rate dropped by 0.1 at 81, 122

epochs. When ResNet38 is used, the model is trained for 100

epochs with the learning rate following cosine learning rate

decay. In order to mitigate the over-fitting problems faced by

the deep networks, ResNet164 is trained with random flipping

and cropping. ResNet38 is trained with random flipping.

ImageNet2012. We use the ResNet50 backbone for Ima-

geNet experiments. The network is trained for 120 epochs

with the learning rate dropped by 0.1 at every 30 epochs.
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