
Journal of Machine Learning Research 25 (2024) 1-67 Submitted 6/22; Revised 12/23; Published 1/24

Deep Nonparametric Estimation of Operators between

Infinite Dimensional Spaces

Hao Liu1 haoliu@hkbu.edu.hk

Haizhao Yang2∗ hzyang@umd.edu

Minshuo Chen3 minshuochen@princeton.edu

Tuo Zhao4 tourzhao@gatech.edu

Wenjing Liao5∗ wliao60@gatech.edu

∗ Co-corresponding author
1 Department of Mathematics, Hong Kong Baptist University, Hong Kong
2 Department of Mathematics and Department of Computer Science, University of Maryland College

Park, USA
3 Department of Electrical and Computer Engineering, Princeton University, USA
4 School of Industrial and Systems Engineering, Georgia Institute of Technology, USA
5 School of Mathematics, Georgia Institute of Technology, USA

Editor: Maxim Raginsky

Abstract

Learning operators between infinitely dimensional spaces is an important learning task

arising in machine learning, imaging science, mathematical modeling and simulations, etc.

This paper studies the nonparametric estimation of Lipschitz operators using deep neural

networks. Non-asymptotic upper bounds are derived for the generalization error of the

empirical risk minimizer over a properly chosen network class. Under the assumption

that the target operator exhibits a low dimensional structure, our error bounds decay as

the training sample size increases, with an attractive fast rate depending on the intrinsic

dimension in our estimation. Our assumptions cover most scenarios in real applications

and our results give rise to fast rates by exploiting low dimensional structures of data in

operator estimation. We also investigate the influence of network structures (e.g., network

width, depth, and sparsity) on the generalization error of the neural network estimator and

propose a general suggestion on the choice of network structures to maximize the learning

efficiency quantitatively.

Keywords: Deep neural networks, Nonparametric estimation, Operator learning, Gen-

eralization error analysis

1. Introduction

Learning nonlinear operators from a Hilbert space to another via nonparametric estimation

has been an important topic with broad applications. For example, in reduced-order mod-

c©2024 Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao and Wenjing Liao.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided

at http://jmlr.org/papers/v25/22-0719.html.



Liu, Yang, Chen, Zhao and Liao

eling, a data-driven approach desires to map a full model trajectory to a reduced model

trajectory or vice versa (Peherstorfer and Willcox, 2016). In solving parametric partial dif-

ferential equations (PDEs), it is desired to learn a map from the parametric function space

to the PDE solution space (Khoo et al., 2021; Li et al., 2020; Lu et al., 2021). In forward and

inverse scattering problems (Khoo and Ying, 2019; Wei and Chen, 2019), it is interesting

to learn an operator mapping the observed data function space to the parametric function

space that models the underlying PDE. In density functional theory, it is desired to learn a

nonlinear operator mapping a potential function to a density function (Fan et al., 2019a).

In phase retrieval (Deng et al., 2020), an operator from the observed data function space

to the reconstructed image function space is learned. Other image processing problems,

e.g., image super-resolution (Qiao et al., 2021), image denoising (Tian et al., 2020), image

inpainting (Qin et al., 2021), are similar to the deep learning-based phase retrieval, where

an operator from a function space to another function space is learned.

As a powerful tool of nonparametric estimation, deep learning (Goodfellow et al., 2016)

has made astonishing breakthroughs in various applications, including computer vision

(Krizhevsky et al., 2012), natural language processing (Graves et al., 2013), speech recog-

nition (Hinton et al., 2012), healthcare (Miotto et al., 2017), as well as nonlinear operator

learning (Khoo et al., 2021; Zhu and Zabaras, 2018; Fan et al., 2019a,b; Khoo and Ying,

2019; Chen and Chen, 1995; Lu et al., 2021; Lanthaler et al., 2022; Bhattacharya et al.,

2021; Li et al., 2020; Nelsen and Stuart, 2020; Kovachki et al., 2023; Zhang et al., 2023b,a).

A typical method for operator learning is to first discretize the function spaces and represent

each function by a vector using sampling. Then deep neural networks are applied to learn

the map between these vector spaces (Khoo et al., 2021; Zhu and Zabaras, 2018; Fan et al.,

2019a,b; Khoo and Ying, 2019). Such methods are mesh dependent: if a different discretiza-

tion scheme is used, the network needs to be trained again. Though empirical successes have

been demonstrated in learning nonlinear operators by this approach in many applications,

it is computationally expensive to train these algorithms and the training procedure has

to be repeated when the dimension of vector spaces is changed. Another approach based

on the theory of approximating operators by neural networks (Chen and Chen, 1995) can

alleviate this issue to a certain extent by avoiding the discretization of the output Hilbert

space of the operator. This approach was first proposed in Chen and Chen (1995) with

two-layer neural networks and recently revisited with deeper neural networks in Lu et al.

(2021) with successful applications (Lin et al., 2021; Cai et al., 2021). However, the meth-

ods in Chen and Chen (1995); Lu et al. (2021); Lin et al. (2021); Cai et al. (2021) are still

mesh-dependent due to the requirement of a fixed number of sample points for the input

function of the operator. More recently, a discretization-invariant (mesh-independent) op-

erator learning framework was proposed in Anandkumar et al. (2020); Bhattacharya et al.

(2021); Li et al. (2020); Nelsen and Stuart (2020); Kovachki et al. (2023) by taking the ad-

vantage of graph kernel networks, principal component analysis (PCA), and kernel integral

2



Deep Nonparametric Estimation of Infinite Dimensional Operators

operators, etc. With discretization-invariant approaches, the training procedure does not

need to be performed again when the discretization scheme changes. The approximation

ability of this neural operator learning framework is studied in Kovachki et al. (2023). For

any given approximation error ε, the existence of a neural operator is proved to achieve

the ε approximation error (Kovachki et al., 2023), while the scale of network size is not

specified.

Although operator learning via deep learning-based nonparametric estimation has been

successful in many applications, its statistical learning theory is still in its infancy, espe-

cially when the operator is from an infinite dimensional space to another. The successes

of deep neural networks are largely due to their universal approximation power (Cybenko,

1989; Hornik, 1991), showing the existence of a neural network with a proper size fulfilling

the approximation task for certain function classes. Quantitative function approximation

theories, provably better than traditional tools, have been extensively studied with various

network architectures and activation functions, e.g., for continuous functions (Yarotsky,

2017; Shen et al., 2020, 2021a,b, to appear; Yarotsky, 2021), for functions with certain

smoothness (Yarotsky, 2018; Yarotsky and Zhevnerchuk, 2020; Lu et al., 2021; Suzuki,

2018), and for functions with integral representations (Barron, 1993; E et al., 2019, 2021;

Siegel and Xu, 2021). In theory, deep neural networks can approximate certain high di-

mensional functions with a fast rate that is independent of the input dimension (Barron,

1993; E et al., 2019, 2021; Siegel and Xu, 2021; Shen et al., 2021a,b; Yarotsky and Zhevn-

erchuk, 2020; Shen et al., 2021c; Chen and Chen, 1995; Chen et al., 2022, 2020; Liu et al.,

2021; Jiao et al., 2021; Cloninger and Klock, 2020; Shaham et al., 2018; Schmidt-Hieber,

2019; Du et al., 2021; Nakada and Imaizumi, 2020b; Liu et al., 2022, 2024). However, in

the context of operator approximation, deep learning theory is very limited. Probably the

first result is the universal approximation theorem for operators in Chen and Chen (1995).

More recently, theories on local approximation of operators by deep neural networks were

studied in Mhaskar (2022). Quantitative approximation results for operators between infi-

nite dimensional spaces were given in Bhattacharya et al. (2021); Lanthaler et al. (2022);

Kovachki et al. (2021) based on the function approximation theory in Yarotsky (2017).

Note that the function approximation results in Yarotsky (2017) does not give the flexi-

bility to choose arbitrary width and depth of neural networks. In this paper, we provide

a new operator approximation theory based on nearly optimal function approximation re-

sults where the width and depth of the network can be chosen flexibly. In comparison with

Lanthaler et al. (2022), the flexibility of choosing arbitrary width and depth provides an

explicit guideline to balance the approximation error and the statistical variance to achieve

a better generalization error in operator learning.

We also establish a novel statistical theory for deep nonparametric estimation of Lip-

schitz operators between infinite dimensional Hilbert spaces. The core question to be an-

swered is: how the generalization error scales when the number of training samples increases

3



Liu, Yang, Chen, Zhao and Liao

and whether the scaling is dimension-independent without the curse of dimensionality. In

literature, the statistical theory for function regression via neural networks has been a pop-

ular research topic (Hamers and Kohler, 2006; Kohler and Krzyżak, 2005; Jacot et al., 2018;

Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Cao and Gu, 2019; Chen et al., 2022; Kohler

et al., 2020; Nakada and Imaizumi, 2020a; Farrell et al., 2021; Liu et al., 2021; Jiao et al.,

2021). These works have proved that deep nonparametric regression can achieve the opti-

mal minimax rate of regression established in Stone (1982); Györfi et al. (2002). When the

target function has low complexity or the function domain is a low dimensional set, deep

neural networks can achieve a fast rate depending on the intrinsic dimension (Chen et al.,

2019, 2022, 2020; Liu et al., 2021; Shen et al., 2020; Jiao et al., 2021; Cloninger and Klock,

2020; Shaham et al., 2018; Schmidt-Hieber, 2019; Du et al., 2021; Nakada and Imaizumi,

2020b). In more sophisticated cases when a mathematical modeling problem is transferred

to a special regression problem, e.g., solving high dimensional PDEs and identifying the

governing equation of spatial-temporal data, the generalization analysis of deep learning

has been proposed in Berner et al. (2018); Shin et al. (2020); Luo and Yang (2020); Mishra

and Molinaro (2020); Lu et al. (2021); Lu and Lu (2021); Duan et al. (2021); Gu et al.

(2021). All these results focus on the regression problem when the target function is a map-

ping from a finite dimensional space to a finite dimensional space. Therefore, these results

cannot be applied to mappings from an infinite dimensional space to another. To our best

knowledge, the only work on the generalization error analysis of deep operator learning

in Hilbert spaces is Lanthaler et al. (2022) for the algorithm in Lu et al. (2021), which is

not completely discretization-invariant. The generalization error in Lanthaler et al. (2022)

is a posteriori depending on the properties of neural networks fitting the target operator.

Recently, the posterior rates on learning linear operators by Bayesian inversion have been

studied in de Hoop et al. (2021).

In this paper, we establish a priori generalization error for a discretization-invariant

operator learning algorithm for operators between Hilbert spaces. As we shall see later,

our theory can be applied to operator learning from a finite dimensional vector space to

another as a special case. Therefore, the theoretical result in this paper can facilitate the

understanding of many operator learning algorithms by neural networks in the literature.

Our contributions are summarized as follows:

1. We derive an upper bound on the generalization error for a general framework of learn-

ing operators between infinite dimensional spaces by deep neural networks. The frame-

work considered here first encodes the input and output space into finite-dimensional

spaces by some encoders and decoders. Then a transformation between the dimension

reduced spaces is learned using deep neural networks. Our upper bound is derived

for two network architectures: one has constraints on the number of nonzero weight

parameters and parameter magnitude; The other network architecture does not have

such constraints and allows one to flexibly choose the depth and width. Our upper

4



Deep Nonparametric Estimation of Infinite Dimensional Operators

bound consists of two parts: the error of learning the transformation by deep neural

networks, and the dimension reduction error with encoders and decoders.

2. Our analysis is general and can be applied for a wide range of popular choices of

encoders and decoders in the numerical implementation, such as those derived from

Legendre polynomials, trigonometric bases, and principal component analysis. The

generalization error is given for each of these examples.

3. We discuss two scenarios to further exploit the additional low-dimensional structures

of data in operator estimation motivated by practical considerations and classical

numerical methods. The first scenario is when encoded vectors in the input space are

on a low-dimensional manifold. In this scenario, we show that the generalization error

converges as the training sample increases with a fast rate depending on the intrinsic

dimension of the manifold. The second scenario is when the operator itself has low

complexity: the composition of the operator with a certain encoder and decoder is

a multi-index model. In this scenario, we show that the convergence rate of the

generalization error depends on the intrinsic dimension of the composed operator.

We organize this paper as follows. In Section 2, we introduce our notations and the

learning framework considered in this paper. Our main results with general encoders and

decoders are presented in Section 3. We discuss the applications of our main results to

specific encoders and decoders derived from certain function basis and PCA in Section 4

and 5, respectively. To further exploit additional low-dimensional structures of data, we

discuss the application of our results to two scenarios in Section 6. The proofs of all results

are given in Section 7. We conclude this paper in Section 8.

2. A general framework

In this section, we introduce the framework considered in this paper for learning operators

between infinite dimensional spaces.

2.1 Preliminaries

We first briefly introduce some definitions and notations on a Hilbert space, encoders,

decoders, and feedforward neural networks used in this paper. A Hilbert space is a Banach

space equipped with an inner product. It is separable if it admits a countable orthonormal

basis. Let H be a separable Hilbert space. An encoder for H is an operator EH : H → R
d,

where d is a positive integer representing the encoding dimension. The associated decoder

is an operator DH : Rd → H. The composition ΠH = DH ◦ EH : H → H is a projection.

For any u ∈ H, we define the projection error as ‖ΠH(u)− u‖H.
In this paper, we consider the ReLU Feedforward Neural Network (FNN) in the form of

f(x) = WL · ReLU (WL−1 · · ·ReLU(W1x+ b1) + · · ·+ bL−1) + bL, (1)

5



Liu, Yang, Chen, Zhao and Liao

where Wl’s are weight matrices, bl’s are biases, and ReLU(a) = max{a, 0} is the rectified

linear unit activation (ReLU) applied element-wise.

We consider two classes of network architectures whose inputs are in a compact domain

of a vector space and whose outputs are vectors in R
d. The dimension of the input and

output spaces are to be specified later. The first class is defined as

FNN(d, L, p,K, κ,M)

= {Γ = [f1, f2, ..., fd]
> : for each k = 1, ..., d,

fk(x) is in the form of (1) with L layers, width bounded by p,

‖fk‖∞ ≤ M, ‖Wl‖∞,∞ ≤ κ, ‖bl‖∞ ≤ κ,
L∑

l=1

‖Wl‖0 + ‖bl‖0 ≤ K}, (2)

where ‖f‖∞ = supx |f(x)|, ‖W‖∞,∞ = maxi,j |Wi,j |, ‖b‖∞ = maxi |bi| for any function

f , matrix W , and vector b with ‖ · ‖0 denoting the number of nonzero elements of its

argument. The function class given by this first network architecture has an upper bound

on all weight parameters (the magnitude of all weight parameters are upper bounded by κ)

and a cardinality constraint (the total number of nonzero parameters are no more than K).

Each element of the output is upper bounded by M . This constraint on the output is often

enforced by clipping the output in the testing procedure. Such a clipping can be realized

with a two-layer network, which is fixed during training. This clipping step is common in

nonparametric regression (Györfi et al., 2002).

In the second class of network architecture, we drop the magnitude and cardinality con-

straints for practical concerns on training. The second network architecture is parameterized

by L, p,M only:

FNN(d, L, p,M) = {Γ =[f1, f2, ..., fd]
> : for each k = 1, ..., d,

fk(x) is in the form of (1) with L layers, width bounded by p,

‖fk‖∞ ≤ M}. (3)

All theoretical results in this paper can be applied to both network architectures.

Notations: We use bold lowercase letters to denote vectors, and normal font letters to

denote scalars. The notation 0 represents a zero vector. For a d dimensional vector k =

[k1, · · · , kd]>, we denote |k| =∑d
i=1 ki. The vector norms are defined as ‖k‖∞ = maxi |ki|

and ‖k‖2 =
√∑d

i=1 k
2
i . For any scalar s, we denote dse as the smallest integer that is no

less than s. We use N to denote the set of positive integers and N0 = N∪{0}. For a function

f : Ω → R in a Hilbert space H, we define the function norms as ‖f‖∞ = supx∈Ω |f(x)|
and ‖f‖H =

√
〈f, f〉H, where 〈·, ·〉H denotes the inner product of H. For an operator

A : H → H, we denote its operator norm by ‖A‖op and its Hilbert-Schmidt norm by

‖A‖HS. More notations used in this paper is summarized in Table 1.

6



Deep Nonparametric Estimation of Infinite Dimensional Operators

2.2 Problem setup and a learning framework

Let X and Y be two separable Hilbert spaces and Ψ : X → Y be an unknown operator.

Our goal is to learn the operator Ψ from a finite number of samples S = {ui, vi}2ni=1 in the

following setting.

Setting 1 Let X ,Y be two separable Hilbert spaces and γ be a probability measure on X .

Let S = {ui, vi}2ni=1 be the given data where ui’s are i.i.d. samples from γ and the vi’s are

generated according to model:

vi = Ψ(ui) + ε̃i, (4)

where the ε̃i’s are i.i.d. samples from a probability measure µ on Y, independently of ui’s.

We denote the probability measure of v by ζ.

The pushforward measure of γ under Ψ is denoted by Ψ#γ, such that for any Ω ⊂ Y,

Ψ#γ(Ω) = γ ({u : Ψ(u) ∈ Ω}) .

Without additional assumptions, the estimation error of Ψ based on a finite number

of samples may not converge to zero since Ψ is an operator between infinite-dimensional

spaces. In this paper, we exploit the low-dimensional structures in this estimation problem

arising from practical applications, and prove a nonparametric estimation error of Ψ by

deep neural networks.

Our learning framework follows the idea of model reduction in Bhattacharya et al.

(2021). It consists of encoding and decoding in both the X and Y spaces, and deep learning

of a transformation between the encoded vectors for the elements in X and Y. We first

encode the elements in X and Y to finite dimensional vectors by an encoding operator. For

fixed positive integers dX and dY , let EX : X → R
dX and DX : RdX → X be the encoder

and decoder of X , and EY : Y → R
dY and DY : RdY → Y be the encoder and decoder of Y

such that

DX ◦ EX ≈ I and DY ◦ EY ≈ I.

The empirical counterparts of encoders and decoders are denoted by En
X , D

n
X , E

n
Y and Dn

Y ,

and we call them empirical encoders and decoders.

The simplest encoder in a function space is the discretization operator. When X is a

function space containing functions defined on a compact subset of RD, we can discretize

the domain with a fixed grid, and take the encoder as the sampling operator on this grid.

However, the discretization operator may not reveal the low-dimensional structures in the

functions of interest, and therefore may not effectively reduce the dimension.

A popular choice of encoders in applications is the basis encoder, such as the Fourier

transform with trigonometric basis, or PCA with data-driven basis, etc. Given an orthonor-

mal basis of X and a positive integer dX , the basis encoder maps an element in X to dX

7



Liu, Yang, Chen, Zhao and Liao

coefficients associated with a fixed set of dX bases. For any coefficient vector a ∈ R
dX ,

the decoder DX (a) gives rise to a linear combination of these dX bases weighted by a. See

Section 4 for the details about the basis encoder. The trigonometric basis and orthogo-

nal polynomials are commonly used bases in applications. These bases are a priori given,

independently of the training data. In this case, the basis encoder can be viewed as a deter-

ministic operator, which is given independently of the training data. The empirical encoder

and decoder are the same as the oracle encoder and decoder: En
X = EX and Dn

X = DX .

PCA (Pearson, 1901; Hotelling, 1933, 1992) is an effective dimension reduction tech-

nique, when ui’s exhibit a low-dimensional linear structure. The PCA encoder encodes an

element in X to the dX coefficients associated with the top dX eigenbasis of a trace opera-

tor. The PCA decoder gives a linear combination of the eigenbasis weighted by the given

coefficient vector. In practice, one needs to estimate this trace operator from the training

data and obtain an empirical estimation of EX and DX , which are denoted by En
X and Dn

X ,

respectively. The PCA encoder is data-driven, and we expect En
X ≈ EX , Dn

X ≈ DX when

the sample size n is sufficiently large. The encoding and decoding operator in Y can be

defined analogously.

The operator DX ◦ EX is the projection operator associated with the encoder EX and

decoder DX . We have the following projections and their empirical counterparts:

ΠX ,dX = DX ◦ EX , Πn
X ,dX

= Dn
X ◦ En

X ,

ΠY,dY = DY ◦ EY , Πn
Y,dY

= Dn
Y ◦ En

Y .

After the empirical encoders En
X , E

n
Y and decoders Dn

X , D
n
Y are computed, our objective

is to learn a transformation Γ : RdX → R
dY such that

Dn
Y ◦ Γ ◦ En

X ≈ Ψ. (5)

We learn Γ using a two-stage algorithm. Given the training data S = {ui, vi}2ni=1, we

split the data into two subsets S1 = {ui, vi}ni=1 and S2 = {ui, vi}2ni=n+1
1, where S1 is used to

compute the encoders and decoders and S2 is used to learn the transformation Γ between

the encoded vectors. Our two-stage algorithm follows

Stage 1: Compute the empirical encoders and decoders En
X , D

n
X , E

n
Y , D

n
Y based on S1. In

the case of deterministic encoders, we skip Stage 1 and let En
X = EX , Dn

X = DX , En
Y =

EY , Dn
Y = DY .

Stage 2: Learn Γ with S2 by solving the following optimization problem

ΓNN ∈ argmin
Γ∈FNN

1

n

2n∑

i=n+1

‖Γ ◦ En
X (ui)− En

Y(vi)‖22 (6)

for some FNN class with a proper choice of parameters.

1. The data can be split unevenly as well.

8



Deep Nonparametric Estimation of Infinite Dimensional Operators

Notation Description Notation Description

X Input space Y Output space

Ψ : X → Y An unknown operator S = {ui, vi}
2n
i=1 Given data set

γ A probability measure on X Ψ#γ
Push forward measure of γ

under Ψ

µ
The probability measure of

noise ε̃
ζ

The probability measure of

v = Ψ(u) + ε̃

EX , DX Encoder and decoder of X EY , DY Encoder and decoder of Y

En
X , Dn

X

Empirical estimations of

EX , DX from noisy data
En

Y , D
n
Y

Empirical estimations of

EY , DY from noisy data

dX Encoding dimension of X dY Encoding dimension of Y

ΠX ,dX Projection DX ◦ EX ΠY,dY Projection DY ◦ EY

Πn
X ,dX

Empirical projection Dn
X ◦ En

X Πn
Y,dY

Empirical projection Dn
Y ◦ En

Y

‖ΠX ,dX (u)− u‖X Encoding error for u in X ‖ΠY,dY (v)− v‖Y Encoding error for v in Y

FNN Neural network class ΓNN Neural network estimator in (6)

Table 1: Notations used in this paper.

Our estimator of Ψ, a neural operator, is given as

ΨNN := Dn
Y ◦ ΓNN ◦ En

X ,

and the mean squared generalization error is defined as

ESEu∼γ‖ΨNN(u)−Ψ(u)‖2Y . (7)

In (6), the transformation ΓNN is learned by minimizing the mean squared error in the

encoded space RdY . In literature (Bhattacharya et al., 2021), another loss that are popularly

adopted is the following one

ΓNN ∈ argmin
Γ∈FNN

1

n

2n∑

i=n+1

‖Dn
Y ◦ Γ ◦ En

X (ui)− vi‖2Y , (8)

in which the transformation ΓNN is learned by minimizing the mean squared error in the

output space Y. In this paper, we will derive upper bounds of the generalization error with

the loss defined in (6). An upper bound of the generalization error with the loss (8) can be

derived with similar techniques.

3. Main results

The main results of this paper provide statistical guarantees on the mean squared general-

ization error for the estimation of Lipchitz operators.

9



Liu, Yang, Chen, Zhao and Liao

3.1 Assumptions

We first make some assumptions on the measure γ and the operator Ψ.

Assumption 1 (Compactly supported measure) The probability distribution γ is sup-

ported on a compact set ΩX ⊂ X . There exists RX > 0 such that, for any u ∈ ΩX , we

have

‖u‖X ≤ RX .

Assumption 2 (Lipschitz operator) There exists LΨ > 0 such that

‖Ψ(u1)−Ψ(u2)‖Y ≤ LΨ‖u1 − u2‖X , for any u1, u2 ∈ ΩX .

Assumption 1 and 2 assume that γ is compactly supported and Ψ is Lipschitz continuous.

We denote the image of ΩX under the transformation Ψ as

ΩY = {v ∈ Y : v = Ψ(u) for some u ∈ ΩX }.

Assumption 1 and 2 imply that ΩY is bounded: there exists a constant RY > 0 depending

on RX and LΨ such that for any v ∈ ΩY , we have ‖v‖Y ≤ RY .

We next make some natural assumptions on the empirical encoders and decoders:

Assumption 3 (Lipchitz encoders and decoders) The empirical encoders and decoders

En
X , D

n
X , E

n
Y , D

n
Y satisfy:

En
X (0X ) = 0, Dn

X (0) = 0X , En
Y(0Y) = 0, Dn

Y(0) = 0Y ,

where 0 denotes the zero vector, 0X is the zero function in X and 0Y is the zero function

in Y.

They are also Lipschitz: there exist LEn
X
, LDn

X
, LEn

Y
, LDn

Y
> 0 such that, for any u1, u2 ∈

X and any a1,a2 ∈ R
dX , we have

‖En
X (u1)− En

X (u2)‖2 ≤ LEn
X
‖u1 − u2‖X , ‖Dn

X (a1)−Dn
X (a2)‖X ≤ LDn

X
‖a1 − a2‖2,

and for any v1, v2 ∈ Y and any a1,a2 ∈ R
dY , we have

‖En
Y(v1)− En

Y(v2)‖2 ≤ LEn
Y
‖v1 − v2‖Y , ‖Dn

Y(a1)−Dn
Y(a2)‖Y ≤ LDn

Y
‖a1 − a2‖2.

Remark 1 Assumption 3 is made on empirical encoders and decoders. The basis encoders

and PCA encoders, which are most commonly used, satisfy Assumption 3 with the Lipchitz

constants LEn
X
= LDn

X
= LEn

Y
= LDn

Y
= 1, independently of the training data (see Lemma 6

and Lemma 12).

10



Deep Nonparametric Estimation of Infinite Dimensional Operators

Assumption 3 implies that En
X (u) and En

Y(v) are bounded for any u ∈ ΩX and v ∈ ΩY .

For any u ∈ ΩX , we have ‖En
X (u)‖2 ≤ ‖En

X (u)−En
X (0)‖2 + ‖En

X (0)‖2 ≤ LEn
X
RX . Similarly,

for any v ∈ ΩY , we have ‖En
Y(v)‖2 ≤ LEn

Y
RY .

Remark 2 The condition

En
X (0X ) = 0, Dn

X (0) = 0X , En
Y(0Y) = 0, Dn

Y(0) = 0Y ,

in Assumption 3 is only used to make sure En
X (u) and En

Y(v) are bounded. One can replace

0 by any finite vector.

Assumption 4 (Noise) The random noise ε̃ satisfies

(i) ε̃ is independent of u.

(ii) E[ε̃] = 0.

(iii) There exists σ̃ > 0 such that ‖ε̃‖Y ≤ σ̃.

Assumption 4(i)-(iii) are natural assumptions on noise. Assumption 4(i) is about the

independence of the input and the noise, which is commonly used in nonparametric re-

gression. Assumption 4(iii) together with Assumption 3 imply that the perturbation of the

encoded vectors are bounded: ‖En
Y(Ψ(u)+ ε̃)−En

Y(Ψ(u))‖∞ ≤ LEn
Y
σ̃. We denote σ = LEn

Y
σ̃

such that

‖En
Y(Ψ(u) + ε̃)− En

Y(Ψ(u))‖∞ ≤ σ for any u and ε̃. (9)

Assumption 5 (Noise and encoder) For any noise satisfying Assumption 4 and any

given S1, the conditional expectation satisfies

Eε̃

[
En

Y(Ψ(u) + ε̃)− En
Y(Ψ(u))|S1

]
= 0, for any u ∈ ΩX ,

where En
Y is the empirical encoder computed with S1.

Assumption 5 requires that, if we condition on S1 based on which the empirical encoder

En
Y is computed, the perturbation on the encoded vector resulted from noise has zero ex-

pectation. Assumption 5 is guaranteed for all linear encoders as long as Assumption 4(ii)

holds:

Eε̃

[
En

Y(Ψ(u) + ε̃)− En
Y(Ψ(u))|S1

]
= Eε̃

[
En

Y(ε̃)|S1

]
= 0.

Basis encoders, including the PCA encoder, are linear encoders, so they all satisfy Assump-

tion 5.

11



Liu, Yang, Chen, Zhao and Liao

3.2 Generalization error with general encoders and decoders

Our main result is an upper bound of the generalization error in (7) with general encoders

and decoders. Our results can be applied to both network architectures defined in (2) and

(3). Our first theorem gives an upper bound of the generalization error with the network

architecture defined in (2).

Theorem 3 In Setting 1, suppose Assumption 1 – 5 hold. Let ΓNN be the minimizer of (6)

with the network architecture F(dY , L, p,K, κ,M) in (2), where

L = O(log n+ log dY), p = O

(
d
− dX

2+dX
Y n

dX
2+dX

)
, K = O

(
d
− dX

2+dX
Y n

dX
2+dX log n

)
,

M =
√

dYLEn
Y
RY , κ = max

{
1,
√
dYLEn

Y
RY ,

√
dXLEn

X
RX , LEn

Y
LDn

X
LΨ

}
.

(10)

Then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C1(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log3 n+ C2(σ̃

2 +R2
Y)d

2
Y(log dY)n

−1

+ C3ESEu∼γ‖Πn
X ,dX

(u)− u‖2X + 2ESEw∼Ψ#γ‖Πn
Y,dY

(w)− w‖2Y , (11)

where C1, C2 are constants depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LDn

Y
, LΨ and C3 =

16L2
Dn

Y
L2
En

Y
L2
Ψ.

Our second theorem gives an upper bound of the generalization error with the network

architecture defined in (3).

Theorem 4 In Setting 1, suppose Assumption 1 – 5 hold. Let ΓNN be the minimizer of (6)

with the network architecture F(dY , L, p,M) in (3) with

L = O(L̃), p = O (p̃) ,M =
√

dYLEn
Y
RY , (12)

where L̃, p̃ > 0 are positive integers satisfying

L̃p̃ =

⌈
d
− dX

4+2dX
Y n

dX
4+2dX

⌉
. (13)

Then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ C3ESEu∼γ‖Πn

X ,dX
(u)− u‖2X

+ 2ESEw∼Ψ#γ‖Πn
Y,dY

(w)− w‖2Y , (14)

where C4 is a constant depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LΨ and C3 = 16L2

Dn
Y
L2
En

Y
L2
Ψ

is the same one in Theorem 3.

12



Deep Nonparametric Estimation of Infinite Dimensional Operators

Remark 5 In Assumption 2, the operator Ψ is assumed to be Lipscthiz. We can relax this

assumption to Hölder continuous operators. Specifically, for 0 < α ≤ 1, we assume that

there exists LΨ,α > 0 such that

‖Ψ(u1)−Ψ(u2)‖Y ≤ LΨ,α‖u1 − u2‖αX , for any u1, u2 ∈ ΩX .

Under the Hölder assumption, we can prove a similar result with the same technique. Specif-

ically, for Theorem 3, we can show that if we set

L = O(log n+ log dY), p = O

(
d
− dX

2α+dX
Y n

dX
2α+dX

)
, K = O

(
d
− dX

2α+dX
Y n

dX
2α+dX log n

)
,

M =
√
dYLEn

Y
RY , κ = max

{
1,
√

dYLEn
Y
RY ,

√
dXLEn

X
RX , LEn

Y
LDn

X
LΨ

}
.

Then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C ′
1(σ̃

2 +R2
Y)d

4α+dX
2α+dX
Y n

− 2α
2α+dX log3 n+ C ′

2(σ̃
2 +R2

Y)d
2
Y(log dY)n

−1

+ C ′
3ESEu∼γ‖Πn

X ,dX
(u)− u‖2αX + 2ESEw∼Ψ#γ‖Πn

Y,dY
(w)− w‖2Y ,

where C ′
1, C

′
2 are constants depending on α, dX , RX , RY , LEn

X
, LEn

Y
, LDn

X
, LDn

Y
, LΨ and C ′

3 =

16L2
Dn

Y
L2
En

Y
L2
Ψ.

For Theorem 4, we can show that if we choose L̃, p̃ > 0 satisfying

L̃p̃ =

⌈
d
− dX

4α+2dX
Y n

dX
4α+2dX

⌉
,

then

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C ′
4(σ̃

2 +R2
Y)d

4α+dX
2α+dX
Y n

− 2
2+dX log2 n+ C ′

3ESEu∼γ‖Πn
X ,dX

(u)− u‖2αX
+ 2ESEw∼Ψ#γ‖Πn

Y,dY
(w)− w‖2Y ,

where C ′
4 is a constant depending on α, dX , RX , RY , LEn

X
, LEn

Y
, LDn

X
, LΨ and C ′

3 = 16L2
Dn

Y
L2
En

Y
L2
Ψ.

Theorem 3 is proved in Section 7.2 and Theorem 4 is proved in Section 7.3. Theorem

3 and 4 consider ΓNN being the minimizer of (6). Using the same proof technique, one can

derive a similar upper bound for ΓNN being the minimizer of (8), up to a constant factor

depending on LEn
X
, LEn

Y
, LDn

X
and LDn

Y
. In the rest of this paper, we only consider the loss

function in (6).

In the proof of Theorem 3 and 4, the generalization error is decomposed into a bias

term and a variance term. The bias term is bounded using the network approximation

13



Liu, Yang, Chen, Zhao and Liao

error, and the variance term is bounded using the covering number of the network class,

which is closely related with the Rademacher complexity. An alternative argument using

local Rademacher complexity Bartlett et al. (2005); Koltchinskii (2006) leads to the same

upper bound. Note that a vanilla Rademacher complexity argument will result in a slower

convergence rate.

In Theorem 4, we have chosen the optimal L̃p̃ to balance the bias and variance term. For

readers who are interested in the generalization error with arbitrary network depth L and

width p, please see our proof in Section 7.3. The constants in both theorems only depend

on the settings of the problem, and the choices of encoders and decoders. They do not

depend on properties of ΓNN. With proper choices of encoders and decoders, such as PCA,

our framework is discretization-invariant, see Section 4 and 5 for some popular choices of

encoders and decoders.

For a general framework of operator learning using deep neural networks, Theorem 3

and 4 unveils how the generalization error of scales with the number of samples, if the

network architecture is properly set. For both network architectures, the upper bound in

(11) and (14) consists of a network estimation error and the projection errors in the X and

Y space.

• The first two terms in (11) and the first term in (14) represent the network esti-

mation error for the transformation Γ : RdX → R
dY which maps the encoded vector

En
X (u) for u in X to the encoded vector En

Y(Φ(u)) for Φ(u) in Y. This error decays

exponentially as the sample size n increases with an exponent depending on the di-

mension dX of the encoded space. The dimension dX appears in the exponent and

dY appears as a constant factor. This is because that the transformation Γ has dY
outputs and each output is a function from R

X to R. Therefore the rate is only cursed

by the input dimension dX . Note that the minimax rate for learning a C1 function in

R
d is n− 2

2+d (Györfi et al., 2002). Thus for the network estimation error, our rate is

optimal up to a logarithmic factor.

• The last two terms in (11) and (14) are projection errors in the X and Y space,

respectively. If the measure γ is concentrated near a dX -dimensional subspace in X ,

both projection errors can be made small if the encoder and decoder are properly

chosen as the projection onto this dX -dimensional subspace (see Section 6).

DeepONet (Lu et al., 2021) is another popular framework for learning operators by

neural networks. DeepONet uses a subnetwork (the trunk net) to learn a set of functions,

and the operator is represented as a linear combination of the trunk nets where the weights

are computed by another subnetwork (the branch net). The main differences between

DeepONet and the framework studied in this paper are: (i) In DeepONet, the output

is given by the dot product between trunk nets and branch nets, while our framework

uses standard feedforward neural networks on latent features. (ii) DeepONet uses a basis

14



Deep Nonparametric Estimation of Infinite Dimensional Operators

decoder for the output space where the bases are given by the trunk nets. The trunk

nets are trained together with the branch nets. In our framework, we consider general

encoder/decoder, and neural networks are trained to learn the latent transformation. The

encoder/decoder and the neural networks are trained separately. The generalization error

of DeepONet is analyzed in Lanthaler et al. (2022), with different assumptions from ours.

Lanthaler et al. (2021) assumes a Lipscthiz property of the network with respect to the

network weight parameters in Lanthaler et al. (2022, Assumption 5.3). This assumption is

used to simplify the variance estimation. This assumption is difficult to validate in practical

applications, and may not be satisfied. As shown in the proof of Chen et al. (2022, Lemma

5.3 in Appendix C3), without additional conditions, the Lipschitz constant of the network

with respect to the network weight parameters scales like pL where p is the width and L is

the depth of the network. In our setting, we do not make any assumption on the network’s

Lipschitz property with respect to the weight parameters. Instead we use Chen et al. (2022,

Lemma 5.3) to bound the network covering number, and further bound the variance in

nonparametric estimation. Note that our Lipschitz assumption in Assumption 3 is with

respect to the input, and therefore can be easily validated for the linear encoder/decoder.

We next compare the difference between the network architectures in Theorem 3 and

Theorem 4. Denote the network architecture in Theorem 3 and Theorem 4 by F1 and F2,

respectively. The architecture F1 has the depth and width scaling properly with respect

to each other, and an upper bound on all weight parameters and a cardinality constraint.

The cardinality constraint is nonconvex and therefore not practical for training this neural

network. The architecture F2 has more flexibility in the choice of depth and width as long

as (13) is satisfied. The cardinality constraint is removed for practical concerns. When we

set L̃ = O(log n), p̃ = O(n
dX

4+2dX log−1 n) in F2, both networks have a depth of O(log n),

while the width of F1 is the square of that of F2, i.e., F1 is wider than F2. The comparison

between F1 and F2 is summarized in Table 2.

F1 in (2) F2 in (3)

General comparison

Network architecture

with a given n

Fixed L and p depending

on n

One has the flexibility to choose L and p

as long as (13) depending on n is satisfied

Constraints on cardinality Yes No

Constraints on the

magnitude of weight parameters
Yes No

Set L̃ = O(log n), p̃ = O(n
dX

4+2dX log−1 n) in F2

Depth L O(log n) O(log n)

Width p O

(
d
−

dX
2+dX

Y n
dX

2+dX

)
O

(
d
−

dX
4+2dX

Y n
dX

4+2dX

)

Table 2: Comparison of the network architectures in Theorem 3 and 4.

15



Liu, Yang, Chen, Zhao and Liao

In the rest of this paper, we focus on the network architecture in Theorem 4 and discuss

its applications in various scenarios. Theorem 3 can also be applied in each case with a

similar upper bound.

4. Generalization error with basis encoders and decoders

In this section, we discuss the application of Theorem 4 when the encoder is chosen to be

a deterministic basis encoder with a given orthonormal basis of the Hilbert space. Popular

choices of orthonormal bases include orthogonal polynomials (e.g., Legendre polynomials

(Szeg, 1939; Chkifa et al., 2015; Cohen and DeVore, 2015)) and trigonometric functions

(Orszag, 1971; Chen and Shen, 1998; Li et al., 2016).

4.1 Basis encoders and decoders

Let H be a separable Hilbert space equipped with an inner product 〈·, ·〉H, and {φk}∞k=1

be an orthonormal basis of H such that 〈φk1 , φk2〉H = 0 whenever k1 6= k2 and ‖φk‖H =

1 for any k. For any u ∈ H, we have

u =
∞∑

k=1

〈u, φk〉Hφk. (15)

For a fixed positive integer d representing the encoding dimension, we define the encoder of

H as

EH,d(u) = [〈u, φ1〉H, ..., 〈u, φd〉H]> ∈ R
d, for any u ∈ H, (16)

which gives rise to the coefficients associated with a fixed set of d basis functions in the

decomposition (15). The decoder DH,d is defined as

DH,d(a) =

d∑

k=1

akφk, for any a ∈ R
d. (17)

The basis encoder and decoder naturally satisfy the Lipchitz property with a Lipschitz

constant 1 (see a proof of Lemma 6 in Appendix B).

Lemma 6 The encoder EH,d and decoder DH,d defined in (16) and (17) satisfy

‖EH,d(u)− EH,d(ũ)‖2 ≤ ‖u− ũ‖H, (18)

‖DH,d(a)−DH,d(ã)‖H = ‖a− ã‖2, (19)

for any u, ũ ∈ H and a, ã ∈ R
d.

Remark 7 All encoders in the form of (16) are linear operators and therefore satisfy As-

sumption 5 as long as Assumption 4(ii) holds.

16



Deep Nonparametric Estimation of Infinite Dimensional Operators

4.2 Generalization error with basis encoders

We next consider the generalization error when the elements in X and Y are encoded by

basis encoders with the encoding dimension dX and dY , respectively. Substituting the

Lipschitz constants of all encoders and decoders by 1 in Theorem 4, we obtain the following

corollary:

Corollary 8 In Setting 1, suppose Assumption 1 – 4 hold. Let ΓNN be the minimizer of

(6) with the network architecture F(dY , L, p,M) in (3) with

L = O(L̃), p = O (p̃) ,M =
√
dYRY , (20)

where L̃, p̃ > 0 are positive integers satisfying (13). Then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ 16L2

ΨESEu∼γ‖Πn
X ,dX

(u)− u‖2X
+ 2ESEw∼Ψ#γ‖Πn

Y,dY
(w)− w‖2Y , (21)

where C4 is a constant depending on dX , RX , RY , LΨ.

Popular choices of orthonormal bases are orthogonal polynomials and trigonometric

functions. We next provide an upper bound on the generalization error when Legendre

polynomials or trigonometric functions are used for encoding and decoding. In the rest of

this section, we assume X = Y = L2([−1, 1]D) with the inner product

〈u1, u2〉 =
∫

[−1,1]D
u1(x)u2(x)dx, (22)

where u2(x) denotes the complex conjugate of u2(x).

4.3 Legendre polynomials

On the interval [−1, 1], one-dimensional Legendre polynomials {P̃k}∞k=0 are defined recur-

sively as





P̃0(x) = 1,

P̃1(x) = x,

P̃k+1(x) =
1

k+1

[
(2k + 1)xP̃k(x)− kP̃k−1(x)

]
.

The Legendre polynomials satisfy

∫ 1

−1
P̃k(x)P̃l(x)dx =

2

2k + 1
δkl,

17



Liu, Yang, Chen, Zhao and Liao

where δkl is the Kronecker delta which equals to 1 if k = l and equals to 0 otherwise. We

define the normalized Legendre polynomials as

Pk(x) =

√
2k + 1

2
P̃k(x).

In the Hilbert space L2([−1, 1]D), the D-variate normalized Legendre polynomials are de-

fined as

φL
k
=

D∏

j=1

Pkj (xj),

where k = [k1 · · · kD]
>. The orthonormal basis of Legendre polynomials in L2([−1, 1]D) is

{φL
k
}
k∈ND

0
.

The encoder with Legendre polynomials can be naturally defined as the expansion co-

efficients associated with low-order polynomials. Specifically, when X = L2([0, 1]D), we fix

a positive integer rX representing the highest degree of the polynomials in each dimension

and consider the following set of low-order polynomials

ΦL,rX := {φL
k
: ‖k‖∞ ≤ rX }.

The encoder EX and decoder DX can be defined according to (16) and (17) using the basis

functions in ΦL,rX . In the space Y = L2([0, 1]D), the encoder EY and decoder DY can be

defined similarly with basis functions in ΦL,rY for some positive integer rY .

When Legendre polynomials are used for encoding, the encoding error is guaranteed for

regular functions, such as Hölder functions.

Definition 9 (Hölder space) Let k ≥ 0 be an integer and 0 < α ≤ 1. A function f :

[−1, 1]D → R belongs to the Hölder space Ck,α([−1, 1]D) if

‖f‖Ck,α := max
|k|≤k

sup
x∈[−1,1]D

|∂kf(x)|+ max
|k|=k

sup
x1 6=x2∈[−1,1]D

|∂kf(x1)− ∂kf(x2)|
‖x1 − x2‖α2

< ∞,

where ∂kf = ∂|k|f

∂x
k1
1 ∂x

k2
2 ···∂xkD

D

.

For a given k and α, any functions in Ck,α([−1, 1]D) has continuous partial derivatives

up to order k. In particular, C0,1([−1, 1]D) consists of all Lipschitz functions defined on

[−1, 1]D.

We assume that the probability measure γ in X and the pushforward measure Ψ#γ in

Y are supported on subsets of the Hölder space.

18



Deep Nonparametric Estimation of Infinite Dimensional Operators

Assumption 6 (Hölder input and output) Let X = Y = L2([−1, 1]D) with the inner

product (22). For some integer k > 0 and 0 < α ≤ 1, the support of the probability measure

γ and the pushforward measure Ψ#γ satisfies

ΩX ⊂ Ck,α([−1, 1]D), ΩY ⊂ Ck,α([−1, 1]D).

There exist CH,X > 0 and CH,Y > 0 such that, for any u ∈ ΩX and v ∈ ΩY

‖u‖Ck,α < CH,X , ‖v‖Ck,α < CH,Y .

When Legendre polynomials are used to encode Hölder functions, the generalization

error for the operator is given as below:

Corollary 10 In Setting 1, suppose Assumption 1–6 hold. Denote s = k + α. Fix positive

integers dX and dY such that d
1/D
X and d

1/D
Y are integers. Suppose the encoders and decoders

are chosen as in (16) and (17) with basis functions ΦL,d
1/D
X and ΦL,d

1/D
Y in X and Y, respec-

tively. Let ΓNN be the minimizer of (6) or (8) with the network architecture F(dY , L, p,M)

in (3) where L, p,M are set as in (20). We have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ C5L

2
Ψd

− 2s
D

X + C6d
− 2s

D
Y .

where C4 depends on dX , RX , RY , LΨ, and C5, C6 depend on D,CH,X , CH,Y , LΨ.

Corollary 10 is proved in Section 7.4. In Corollary 10, the last two terms represent the

projection errors in X and Y, respectively. When D is large, both terms decay slowly as dX
and dY increase. These two error terms remain the same if we choose the encoders given

by finite element bases in traditional numerical PDE methods. For example, we consider

learning a PDE solver where the operator Ψ represents a map from the initial condition to

the PDE solution at a certain time. Assumption 6 assumes that the initial condition and

the PDE solution are Hölder functions. Suppose we discretize the domain and represent

the solution by finite element basis such that the diameter of all finite elements is no larger

than h for some 0 < h < 1. Let W k,2([−1, 1]D) denote the Sobolev space. We say a set

of basis functions are k–order if they are in W k,2([−1, 1]D). If the finite element method

with k–th order basis functions is used to approximate the PDE solution, under appropriate

assumptions and for any positive integer k, the squared approximation error is O(h2k) (Ern

and Guermond, 2004, Corollary 1.109). In this case, the total number of basis functions

is O(h−D). Taking such a finite element approximation as our encoder for ΩX , we have

dX = O(h−D) and the resulting squared projection error is of O(d
− 2k

D
X ). In particular,

if sparse grids (Bungartz and Griebel, 2004) are used to construct basis functions, the

approximation errors for the encoder and decoder can be further reduced.

19



Liu, Yang, Chen, Zhao and Liao

In the setting of Corollary 10, we only assume the global smoothness of input and output

functions. The global approximation encoder by Legendre polynomials (or trigonometric

functions in the following subsection) leads to a slow rate of convergence: In Corollary

10, if we choose dX = (log n)
1
2 and when n ≥ exp

(
max

{
100,

(
7
2 + s

2D

)6})
, the squared

generalization error decays in the order of (log n)−
s
D (see a derivation in Appendix A).

However, in practice, when we solve PDEs, the initial conditions and PDE solutions

often exhibit low-dimensional structures. For example, the initial conditions and PDE

solutions often lie on a low-dimensional subspace or manifold, or the solver itself has low

complexity (see Section 6 and Haasdonk (2017); Rozza (2014) for details). Therefore, one

can use a few bases (small dX and dY) to achieve a small projection error, leading to a fast

rate of convergence in the generalization error.

Although using Legendre bases as encoders and decoders requires a uniform sampling of

functions, when nonuniform samples are given, one can always use interpolations to generate

uniform data and then compute the Legendre coefficients. With this strategy, the whole

process is still discretization invariant.

4.4 Trigonometric functions

Trigonometric functions and the Fourier transform have been widely used in various ap-

plications where the computation is converted from the spacial domain to the frequency

domain. Let {Tk(x)}∞k=1 be one-dimensional trigonometric functions defined on [−1, 1] such

that





T1 = 1/2,

T2k = sin(kπx) for k > 1,

T2k+1 = cos(kπx) for k > 1.

(23)

In the Hilbert space L2([−1, 1]D), the trigonometric basis is given as {φT,k}k∈ND with

φT
k
(x) =

D∏

j=1

Tkj (xj). (24)

When X = L2([0, 1]D), we fix a positive integer rX and define the set of low-frequency basis

ΦT,rX = {φT
k
: ‖k‖∞ ≤ rX }.

We set the encoder EX and decoder DX in X according to (16) and (17) using the basis

functions in ΦT,rX . Similarly, we set the encoder EY and decoder DY in Y using the basis

functions in ΦT,rY for some positive integer rY .

Let P be the set of periodic functions on [−1, 1]D. We assume that the input and output

functions are periodic Hölder functions.

20



Deep Nonparametric Estimation of Infinite Dimensional Operators

Assumption 7 Let X = Y = L2([−1, 1]D) with the inner product (22). For some integer

k > 0 and 0 < s ≤ 1, the support of the probability measure γ and the pushforward measure

Ψ#γ satisfies

ΩX ⊂ P ∩ Ck,α([−1, 1]D), ΩY ⊂ P ∩ Ck,α([−1, 1]D).

There exist CHP ,X > 0 and CHP ,Y > 0 such that for any u ∈ ΩX and v ∈ ΩY

‖u‖Ck,α < CHP ,X , ‖v‖Ck,α < CHP ,Y .

When trigonometric functions are used to encode periodic Hölder functions, the gener-

alization error for the operator is given as below:

Corollary 11 Consider Setting 1. Suppose Assumption 1–5 and 7 hold. Denote s = k+α.

Fix positive integers dX and dY such that d
1/D
X and d

1/D
Y are integers. Suppose the encoders

and decoders are chosen as in (16) and (17) with basis functions ΦT,d
1/D
X and ΦT,d

1/D
Y for X

and Y, respectively. Let ΓNN be the minimizer of (6) or (8) with the network architecture

F(dY , L, p,M) in (3) where L, p,M are set as in (20). We have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ C7L

2
Ψd

− 2s
D

X + C8d
− 2s

D
Y .

where C4 depends on dX , RX , RY , LΨ, and C7, C8 depend on D,CHP ,X , CHP ,Y , LΨ.

Corollary 11 is proved in Section 7.5. When using trigonometric functions as encoders

and decoders, one can apply Fourier transform when uniform samplings are given and non-

uniform Fourier transform when the given samples are non-uniform. The overall framework

is discretization invariant. The generalization error with trigonometric basis encoder in

Corollary 11 is similar to the error with Legendre polynomials in Corollary 10. If only the

global smoothness of input and output functions is assumed, the generalization error decays

at a low rate. A faster rate can be achieved if we exploit the low-dimensional structures of

the input and output functions.

5. Generalization error for PCA encoders and decoders

When the given data are concentrated near a low-dimensional subspace, PCA is an effective

tool for dimension reduction. In this section, we consider the PCA encoder, where the

orthonormal basis is estimated from the training data.

5.1 PCA encoders and decoders

Let ρ be a probability measure on a separable Hilbert space H. Define the covariance

operator with respect to ρ as

Gρ = Eu∼ρ[u⊗ u], (25)

21



Liu, Yang, Chen, Zhao and Liao

where ⊗ denotes the outer product (f ⊗ g)(h) = 〈g, h〉Hf for any f, g, h ∈ H, and 〈·, ·〉H
denotes the inner product in H. Let {λk}∞k=1 be the eigenvalues of Gρ in a non-increasing

order, and φk be the eigenfunction associated with λk. For any u ∈ H, we have

u =

∞∑

j=1

〈u, φj〉Hφj .

For a fixed positive integer d, the eigenfunctions {φk}dk=1 associated with the top d

eigenvalues are called the first d principal components. Fixing d, we define the encoder

operator EH,d : H → R
d as

EH,d(u) = [〈u, φ1〉, 〈u, φ2〉, ..., 〈u, φd〉]> , for any u ∈ H, (26)

which gives rise to the coefficients of u associated with the first d principal components.

The decoder DH,d : Rd → H is defined as

DH,d(a) =
d∑

j=1

ajφj , for any a = [a1, ..., ad]
> ∈ R

d. (27)

Given n i.i.d samples {ui}ni=1 from ρ, the empirical covariance operator is

Gn
ρ =

1

n

n∑

i=1

ui ⊗ ui. (28)

Let {λn
k}∞k=1 be the eigenvalues of G

n
ρ in a non-increasing order, and φn

k be the eigenfunction

associated with λn
k . We define the empirical encoder En

H,d : H → R
d as

En
H,d(u) = [〈u, φn

1 〉, 〈u, φn
2 〉, ..., 〈u, φn

d 〉]> for any u ∈ H. (29)

The empirical decoder is

Dn
H,d(a) =

d∑

j=1

ajφ
n
j for any a ∈ R

d. (30)

The PCA encoders and decoders EH,d, DH,d, E
n
H,d, D

n
H,d are Lipchitz operators with a

Lipchitz constant 1.

Lemma 12 Let H be a separable Hilbert space and ρ be a probability measure on H. For

any integer d > 0, let EH,d and DH,d be the PCA encoder and decoder and En
H,d and Dn

H,d

be their empirical counterparts. Then we have

‖En
H,d(u)− En

H,d(ũ)‖2 ≤ ‖u− ũ‖H, for any u, ũ ∈ H,

‖Dn
H,d(a)−Dn

H,d(ã)‖H = ‖a− ã‖2, for any a, ã ∈ R
d.

Lemma 12 can be proved in the same way as Lemma 6. The proof is omitted here.

22



Deep Nonparametric Estimation of Infinite Dimensional Operators

5.2 Generalization error with PCA encoders and decoders

In this subsection, we choose PCA encoders and decoders for X and Y. For the X space,

we define the covariance operator and its empirical counterpart as

Gγ = Eu∼γu⊗ u and Gn
γ =

1

n

n∑

i=1

ui ⊗ ui.

Let {φγ,k}dXk=1 and {φn
γ,k}dXk=1 be the first dX principle components ofGγ andGn

γ , respectively.

The PCA encoder and its empirical counterpart are given as

EX (u) = [〈u, φγ,1〉, 〈u, φγ,2〉, ..., 〈u, φγ,dX 〉]> , DX (a) =
dX∑

j=1

ajφγ,j , (31)

En
X (u) =

[
〈u, φn

γ,1〉, 〈u, φn
γ,2〉, ..., 〈u, φn

γ,dX
〉
]>

, Dn
X (a) =

dX∑

j=1

ajφ
n
γ,j (32)

for any u ∈ X and a ∈ R
dX .

For the Y space, the ideal covariance operator in the noiseless case is defined based on

the pushforward measure Ψ#γ. In the noisy case, the samples {vi}ni=1 are random copies

of Ψ(u) + ε̃. Denote the probability measure of v by ζ. The ideal and empirical covariance

operators are defined as

GΨ#γ = Ew∼Ψ#γw ⊗ w and Gn
ζ =

1

n

n∑

i=1

vi ⊗ vi.

Notice that Gn
ζ is the empirical counterpart of Gζ , which is different from GΨ#γ in the noisy

case.

Let {φΨ#γ,k}dYk=1 and {φn
ζ,k}

dY
k=1 be the first dY principle components of GΨ#γ and Gn

ζ ,

respectively. We choose the PCA encoder:

EY(w) =
[
〈w, φΨ#γ,1〉, 〈w, φΨ#γ,2〉, ..., 〈w, φΨ#γ,dY 〉

]>
, DX (a) =

dY∑

j=1

ajφΨ#γ,j , (33)

En
Y(w) =

[
〈w, φn

ζ,1〉, 〈u, φn
ζ,2〉, ..., 〈u, φn

ζ,dY
〉
]>

, Dn
Y(a) =

dY∑

j=1

ajφ
n
ζ,j (34)

for any w ∈ Y and a ∈ R
dY .

The following theorem gives a bound on the generalization error of operator estimation

with PCA encoders:

Theorem 13 In Setting 1, suppose Assumption 1–2 and 4 hold. Consider the PCA en-

coders and decoders defined in (31)–(34). Let {λk}∞k=1 be the eigenvalues of the covariance

23



Liu, Yang, Chen, Zhao and Liao

operator GΨ#γ in nonincreasing order. Let ΓNN be the minimizer of (6) with the network

architecture F(dY , L, p,M) in (3), where L, p,M are set as in (20). We have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ 8

(
4R2

XL
2
Ψ

√
dX + (RY + σ̃)2

√
dY
)
n− 1

2

+ 16σ̃2

(
σ̃

λdY − λdY+1

)2

(RY + σ̃)2 + 20σ̃2

+ 16L2
ΨEu∼γ‖ΠX ,dX (u)− u‖22 + 16Ew∼Ψ#γ‖ΠY,dY (w)− w‖2Y (35)

where C4 is a constant depending on dX , RX , RY , LΨ.

Theorem 13 is proved in Section 7.6. Since PCA is discretization invariant, our framework

with PCA encoders and decoders enjoys the same desirable property. PCA is effective

when the input and output samples are concentrated near low-dimensional subspaces. In

this case, an orthonormal basis of the subspace is estimated from the samples. Since the

PCA encoder and decoder are data-driven, we expect the corresponding projection errors

are smaller than those by Legendre polynomials or trigonometric functions.

In the generalization error in Theorem 13, the error 16σ̃2
(

σ̃
λdY

−λdY+1

)2
(RY+ σ̃)2+20σ̃2

does not decay as n increases. This is because PCA extracts the principal components from

noisy data but does not denoise the data set without additional assumptions on noise. If

the noise does not perturb the space spanned by the first dY principal eigenfunctions of

GΨ#γ , the constant terms can be dropped as the following corollary.

Corollary 14 Under the conditions of Theorem 13, if the eigenspace spanned by the first

dY principal eigenfunctions of Gµ coincides with that of GΨ#γ, then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤C4(σ̃
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ 8

(
4R2

XL
2
Ψ

√
dX + (RY + σ̃)2

√
dY
)
n− 1

2

+ 16L2
ΨEu∼γ‖ΠX ,dX (u)− u‖22 + 16Ew∼Ψ#γ‖ΠY,dY (w)− w‖2Y . (36)

Corollary 14 is proved in Section 7.7.

6. Exploit additional low-dimensional structures

Section 4 and Section 5 are suitable for the case where the input and output samples

are concentrated near a low-dimensional subspace. While in practice, the low-dimensional

subspace is not a priori known. In order to capture such a subspace, we need to choose a

large encoding dimension so that the low-dimensional subspace is enclosed by the encoded

space, which guarantees a small projection error. However, the network estimation error

24



Deep Nonparametric Estimation of Infinite Dimensional Operators

(see Section 3.2 for the definition) has an exponential dependence on dX . The error decays

slowly when dX is large.

Additionally, the given data may be located on a low-dimensional manifold enclosed by

the encoded space, or the operator Ψ may have low complexity. In this section, we will

exploit such additional low-dimensional structures. We will show that, even though dX
and dY are chosen to be large in order to guarantee small projection errors, the exponent

in the network estimation error only depends on the intrinsic dimension of the additional

low-dimensional structures of data, instead of dX . Specifically, we consider two scenarios :

(1) when the collection of encoded vectors EX (ΩX ) is on a low-dimensional manifold and

(2) when the operator Ψ only depends on a few directions in the encoded space.

6.1 When encoded vectors lie on a low-dimensional manifold

We first consider the case when the given data exhibit a nonlinear low-dimensional structure:

For a given encoder EX : X → R
dX , the encoded vectors {EX (u) : u is randomly sampled from γ}

lie on a d0-dimensional manifold with d0 � dX . This scenario is observed in many appli-

cations. For example, the solutions of most PDEs are in an infinite-dimensional function

space. After uniform discretization, the solutions are encoded to vectors in a very high di-

mensional space. For many PDEs, it is commonly observed that the solutions actually lie on

a low-dimensional manifold enclosed by the discretized high-dimensional space. Therefore

the solution manifold can be well-approximated using much fewer bases than those used

in the discretization. This observation leads to the success of the reduced basis method

(Haasdonk, 2017; Rozza, 2014). Another concrete example is described as follows:

Example 1 Let X = L2([−1, 1]) and d0, dX be positive integers such that d0 < dX . Let

{Tk}∞k=1 be the trigonometric functions defined in (23) and {gk}dXk=d0+1 be some real valued

functions. Suppose the probability measure γ is supported on

ΩX =

{
u : u =

dX∑

k=1

akTk with ak ∈ R for k = 1, . . . , d0, and ak = gk(a1, ..., ad0) for k = d0 + 1, . . . , dX

}
.

The support set ΩX has an intrinsic dimension d0. If we choose the basis encoder EX :

X → R
dX using the trigonometric functions {Tk}dXk=1, then the encoded vectors {EX (u) :

u is randomly sampled fromγ} lie on a d0-dimensional manifold embedded in R
dX . Figure

1 shows this manifold when dX = 3, d0 = 2 and g3 = a21 + a2.

This nonlinear low-dimensional structure of data can be described as follows:

Assumption 8 Let d0, dX be positive integers such that d0 < dX . In Setting 1, there exists

an encoder EX : X → R
dX such that the encoded vectors {EX (u) : u is randomly sampled from γ}

is on a d0-dimensional compact smooth Riemannian manifold M isometrically embedded in

R
dX . The reach of M (Federer, 1959; Niyogi et al., 2008) is τ > 0.

25



Liu, Yang, Chen, Zhao and Liao

Figure 1: An illustration of Example 1 with

dX = 3, d0 = 2 and g3 = a21 + a2.

Under Assumption 8 and Setting 1, the

output Ψ(u) is perturbed by noise, while

the input u is clean and its encoded vector

is located on M. Such a setting is com-

mon in practice when a series of experi-

ments is conducted to simulate a scientific

phenomenon. In experiments, one designs

the inputs and takes measurements of the

outputs. Usually, the inputs are generated

according to some physical laws that lead

to low-dimensional structures. Due to the

limitations of sensors and equipment, the

measured outputs are perturbed by noise.

Approximation and statistical estimation theories of deep neural networks for functions

on a low-dimensional manifold have been studied in Chen et al. (2019, 2022, 2020); Liu

et al. (2021); Shen et al. (2020); Jiao et al. (2021); Cloninger and Klock (2020); Shaham

et al. (2018); Schmidt-Hieber (2019); Du et al. (2021); Nakada and Imaizumi (2020b). In

this subsection, we show that deep neural networks can automatically adapt to nonlinear

low-dimensional structures of data, and give rise to a sample complexity depending on the

intrinsic dimension d0. The following theorem gives a generalization error in this scenario.

Theorem 15 In Setting 1, suppose Assumption 1–5 and 8 hold, and the encoder EX in

Assumption 8 is given. Let ΓNN be the minimizer of (6) with the network architecture

F(dY , L, p,M) in (3) with

L = O(L̃), p = O (dX p̃) ,M =
√

dYLEn
Y
RY , (37)

where L̃, p̃ > 0 are positive integers satisfying

L̃p̃ =

⌈
d
− d0

4+2d0
Y n

d0
4+2d0

⌉
. (38)

Then we have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤ C5(σ̃
2 +R2

Y)d
4+d0
2+d0
Y d2Xn

− 2
2+d0 log2 n

+ C3ESEu∼γ‖ΠX ,dX (u)− u‖2X + 2ESEw∼Ψ#γ‖Πn
Y,dY

(w)− w‖2Y , (39)

where C5 dpends on d0, log dX , RX , RY , LEn
X
, LEn

Y
, LDX

, LDn
Y
, LΨ, τ , the surface area of M,

and C3 = 16L2
Dn

Y
L2
En

Y
L2
Ψ.

26



Deep Nonparametric Estimation of Infinite Dimensional Operators

Theorem 15 is proved in Section 7.8. The convergence rate in Theorem 15 has an exponential

dependence on d0, instead of dX . Theorem 15 shows that when the encoded vectors are

located on a low-dimensional manifold, deep neural networks are adaptive to such nonlinear

geometric structures of data.

6.2 When the operator Ψ has low complexity

In our framework, learning Ψ is converted to learning the transformation Γ : RdX → R
dY ,

as defined in (5). The second scenario we consider in this subsection is that, even though

the ui’s and vi’s are in infinite-dimensional spaces, the operator Ψ has low complexity: its

corresponding transformation Γ can be approximated by some low-dimensional functions

that only depend on few directions in R
dX . For example, consider solving a linear PDE

with constant coefficients by the Fourier spectral method. In this case, the operator Ψ is

the PDE solver that maps initial conditions to solutions at certain time. By taking the

Fourier transform on both sides of the PDE, solving the PDEs is converted to solving a

series of independent ODEs, each of which controls the evolution of a Fourier coefficient

of the solution (Shen et al., 2011, Chapter 2). The operator Ψ can be fully characterized

by a system of one-dimensional ODEs. We next adapt this setting to our framework in

order to learn Ψ. We use trigonometric functions as our encoders and decoders: the initial

conditions and solutions are approximated by the first dX = dY terms of their Fourier

series expansion. Then learning Ψ reduces to learning dY one-dimensional functions, each of

which corresponds to an ODE of a Fourier coefficient, instead of learning dY dX -dimensional

functions.

In this subsection, we show that we can get a faster rate by exploiting the low complexity

of Ψ. We first make an assumption on Ψ:

Assumption 9 Let 0 < d0 ≤ dX be integers. Assume there exist EX , DX , EY , DY such

that for any u ∈ ΩX , we have

ΠY,dY ◦Ψ(u) = DY ◦ g ◦ EX (u) (40)

with g : RdX → R
dY in the form:

g(a) =
[
g1(V

>
1 a) · · · gdY (V

>
dY
a)
]>

, (41)

for some unknown matrix Vk ∈ R
dX×d0, and some unknown real valued function gk : Rd0 →

R where k = 1, ..., dY .

In statistics, the functions gk’s in Assumption 9 are known as single-index models for

d0 = 1, and are known as multi-index models for d0 > 1. For any given u ∼ γ, we decompose

Ψ(u) into two parts: the first part is its projection to the set of encoded vectors EY(ΩY);

the second part is the rest orthogonal to the first part. Assumption 9 assumes that the

27



Liu, Yang, Chen, Zhao and Liao

operator mapping u to the first part follows a multi-index model. When dY is large enough,

the second part has a small magnitude and is included in the projection error. In the

following example, we give a simple illustration when the second part vanishes.

Example 2 Let X = L2([−1, 1]), ΩX ⊂ X be a compact set in P ∩ X and 0 < d0 < dX
be integers. Let {Tk}∞k=1 be trigonometric functions defined in (23). Any u ∈ ΩX can

be written as u =
∑∞

k=1 akTk for some ak’s. Denote au =
[
a1 · · · adX

]>
. Suppose the

operator we want to learn has the following form

Ψ(u) =

dY∑

k=1

gk(V
>
k au)Tk, (42)

with Vk ∈ R
dX×d0 and gk : Rd0 → R for k = 1, ..., dY . We set EX , DX as the basis encoder

and decoder using the basis functions {Tk}dXk=1, and EY , DY as encoder and decoder derived

using basis {Tk}dYk=1. In this example, ΠY,dY ◦Ψ(u) = Ψ(u) for any u ∼ γ. Then learning Ψ

reduces to learning the gk’s and the Vk’s. An illustration of the estimator is shown in Figure

2. In neural networks, the V ′
ks can be realized by a single layer. Therefore, our major task

is to learn good approximations of the g′ks. Note that each gk is a d0-dimensional function.

By exploiting such low complexity of the operator, we can convert the learning task from

learning dY dX -dimensional functions to learning dY d0-dimensional functions.

Input Output

Figure 2: An illustration of Example 2, where the g̃k’s represent network approximations

of the gk’s in (42).

With Assumption 9, the following theorem gives a faster rate on the generalization error:

Theorem 16 In Setting 1, suppose Assumption 1–5 and 9 hold. Assume that the encoders

and decoders EX , DX , EY , DY in Assumption 9 are given. Let ΓNN be the minimizer of (6)

with the network architecture F(dY , L, p,M) in (3), where

L = O(L̃), p = O (p̃) ,M =
√
dYLEn

Y
RY (43)

28



Deep Nonparametric Estimation of Infinite Dimensional Operators

and L̃, p̃ > 0 are integers and satisfy (38).

We have

ESEu∼γ‖Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)‖2Y

≤C6(σ̃
2 +R2

Y)d
4+d0
2+d0
Y max

{
n
− 2

2+d0 , dXn
− 4+d0

4+2d0

}
log2 n

+ C3ESEu∼γ‖ΠX ,dX (u)− u‖2X + 2ESEw∼Ψ#γ‖ΠY,dY (w)− w‖2Y , (44)

where C6 depends on d0, log dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LDn

Y
, LΨ, and C3 = 16L2

Dn
Y
L2
En

Y
L2
Ψ.

Theorem 16 is proved in Section 7.9. In Assumption 9, each Vk is a linear transformation

that can be realized by a singly layer. In our network construction, the first layer is used

to learn these transformations and the rest is used to learn the functions gk’s.

In Assumption 9, the function g is a vector-valued function whose elements are multi-

index models. Our result in Theorem 16 can be easily extended to the case when g is a

composition of several multi-index models. Specifically, for some m > 0, consider g in the

following form

g = gm ◦ gm−1 ◦ · · · ◦ g2 ◦ g1, (45)

where gk : Rdk−1 → R
dk is in the form of

gk(a) =
[
gk,1(V

>
k,1a) · · · gdk(V

>
k,dk−1

a)
]>

, (46)

for some unknown matrix Vk,j ∈ R
dk−1×d̃k , unknown function gk,j : R

d̃k → R and dk, d̃k > 0

being integers. Here dk is the dimension of gk, and d̃k is the dimension of Vk,ja. Replace g

in Assumption 9 by the one defined above. The upper bound in Theorem 16 also holds up

to a factor depending on maxk dk and maxk d̃k.

7. Proof of main results

In this section, we give proofs to our main theorems and corollaries.

7.1 Preliminaries

In this section, we define several quantities that will be used in the proof. We first define

two types of covering number of function classes. The first type is independent of data and

will be used to prove Theorem 3.

Definition 17 (Cover) Let F be a class of functions. A set of functions S is a δ-cover of

F with respect to a norm ‖ · ‖ if for any f ∈ F , one has

inf
f∗∈S

‖f − f∗‖ ≤ δ.

29



Liu, Yang, Chen, Zhao and Liao

Definition 18 (Covering number, Definition 2.1.5 of (Van Der Vaart et al., 1996))

Let F be a class of functions. For any δ > 0, the covering number of F is defined as

N (δ,F , ‖ · ‖) = min{|Sf | : Sf is a δ-cover of F},

where |Sf | denotes the cardinality of Sf .

Definition 17 and 18 depend on the norm ‖ · ‖. In the following, we choose ‖ · ‖ as a

sample dependent norm and define the so-called uniform covering number. We first define

the cover with respect to samples:

Definition 19 (Cover with respect to samples) Let F be a class of functions from R
d1

to R
d2. Given a set of samples X = {xk}mk=1 ⊂ R

d1, for any δ > 0, a function set Sf (X) is

a δ-cover of F with respect to X if for any f ∈ F , there exists f∗ ∈ Sf (X) such that

‖f(xk)− f∗(xk)‖∞ ≤ δ, ∀1 ≤ k ≤ m.

Definition 19 is a special case of Definition 17 in which the norm ‖ · ‖ is chosen as the `∞

norm of the collection of its argument’s values over samples X. Based on Definition 19, we

define the uniform covering number as follows:

Definition 20 (Uniform covering number, Section 10.2 of Anthony and Bartlett (1999))

Let F be a class of functions from R
d to R. For any set of samples X = {xk}mk=1 ⊂ R

d,

denote

F|X = {(f(x1), ..., f(xm)) : f ∈ F} .

For any δ > 0, the uniform covering number of F with m samples is defined as

N (δ,F ,m) = max
X⊂Rd,|X|=m

min
Sf (X)

{|Sf (X)| : Sf (X) is a δ-cover of F with respect to X}.

(47)

This covering number is used to prove Theorem 4.

7.2 Proof of Theorem 3

To prove Theorem 3, we first decompose the squared L2 error ESEu∼γ‖Dn
Y ◦ΓNN ◦En

X (u)−
Ψ(u)‖2Y into a network estimation error and a projection error. The network estimation

error can be further decomposed into a bias term and a variance term. The bias term

heavily depends on the approximation error of the network class (2). The variance term is

upper bounded in terms of the covering number of the network class.

Proof of Theorem 3. We first decompose the squared L2 error as

ESEu∼γ

[∥∥Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)
∥∥2
Y

]

30



Deep Nonparametric Estimation of Infinite Dimensional Operators

≤ 2ESEu∼γ

[∥∥Dn
Y ◦ ΓNN ◦ En

X (u)−Dn
Y ◦ En

Y ◦Ψ(u)
∥∥2
Y

]

︸ ︷︷ ︸
I

+2ESEu∼γ

[∥∥Dn
Y ◦ En

Y ◦Ψ(u)−Ψ(u)
∥∥2
Y

]

︸ ︷︷ ︸
II

.

(48)

Here I is the network estimation error in the Y space, II is the empirical projection error,

which can be rewritten as

II = 2ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]
. (49)

In the remaining of this subsection, we derive an upper bound of I. Note that I can be

bounded as

I =2ESEu∼γ

[∥∥Dn
Y ◦ ΓNN ◦ En

X (u)−Dn
Y ◦ En

Y ◦Ψ(u)
∥∥2
Y

]

≤2L2
Dn

Y
ESEu∼γ

[∥∥ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]
. (50)

If the training samples in S1 are fixed, we have the following conditioned on S1:

ES2
Eu∼γ

[∥∥ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]

=2ES2

[
1

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)
∥∥2
2

]

︸ ︷︷ ︸
T1

+ ES2
Eu∼γ

[∥∥ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]
− ES2

[
2

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)
∥∥2
2

]

︸ ︷︷ ︸
T2

.

(51)

In the decomposition of (51), the term T1 consists of the bias of using neural network to

approximate the transformation Γ and the projection error of Πn
X ,dX

in the X space. The

term T2 captures the variance. We next derive bounds for T1 and T2 respectively.

Upper bound of T1. The term T1 is the expected mean squared error of the learned

transformation ΓNN with respect to S2. We will derive an upper bound using the network

approximation error and network architecture’s covering number. The network approxi-

mation error is the bias. We use network architecture’s covering number to bound the

stochastic error.

Define the transformation Γn
d : RdX → R

dY

Γn
d = En

Y ◦Ψ ◦Dn
X , (52)

which maps the encoded vector En
X (u) in X to the encoded vector En

Y(v) in Y. The trans-

formation Γn
d is the target transformation to be estimated by ΓNN. It is straightforward to

show that Γn
d is a Lipschitz transformation (see a proof of Lemma 21 in Appendix C).

31



Liu, Yang, Chen, Zhao and Liao

Lemma 21 Assume Assumption 2 and 3. Γn
d is Lipschitz with a Lipschitz constant LEn

Y
LDn

X
LΨ.

Denote

εi = En
Y(vi)− En

Y(Ψ(ui)). (53)

According to Assumption 3 and Assumption 4(iii)–(iv), we have

E[εi] = 0, and ‖εi‖∞ < σ.

We decompose T1 as

T1 =2ES2

[
1

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)
∥∥2
2

]

=2ES2

[
1

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)− εi + εi

∥∥2
2

]

=2ES2

[
1

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)− εi

∥∥2
2

]

+ 4ES2

[
1

n

2n∑

i=n+1

〈
ΓNN ◦ En

X (ui)− En
Y ◦Ψ(ui)− εi, εi

〉
]
+ 2ES2

[
1

n

2n∑

i=n+1

‖εi‖22

]

=2ES2

[
1

n

2n∑

i=n+1

∥∥ΓNN ◦ En
X (ui)− En

Y(vi)
∥∥2
2

]

+ 4ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]
− 2ES2

[
1

n

2n∑

i=n+1

‖εi‖22

]

=2ES2

[
inf

Γ∈FNN

1

n

2n∑

i=n+1

∥∥Γ ◦ En
X (ui)− En

Y(vi)
∥∥2
2

]

+ 4ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]
− 2ES2

[
1

n

2n∑

i=n+1

‖εi‖22

]

by the definition of ΓNN in (6)

≤2 inf
Γ∈FNN

ES2

[
1

n

2n∑

i=n+1

∥∥Γ ◦ En
X (ui)− En

Y(vi)
∥∥2
2

]
+ 4ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]

− 2ES2

[
1

n

2n∑

i=n+1

‖εi‖22

]

=2 inf
Γ∈FNN

ES2

[
1

n

2n∑

i=n+1

[
‖Γ ◦ En

X (ui)− En
Y ◦Ψ(ui)− εi‖22 − ‖εi‖22

]
]

+ 4ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]

32



Deep Nonparametric Estimation of Infinite Dimensional Operators

=2 inf
Γ∈FNN

Eu∼γ

[∥∥Γ ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]
+ 4ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]
.

(54)

In (54), the first term is the neural network approximation error, and the second term is

the stochastic error from noise. To derive an upper bound of the first term, we use the

following lemma which shows that for any function f in the Sobolev space W k,∞, when the

network architecture is properly set, FNN can approximate f with arbitrary accuracy:

Lemma 22 (Theorem 1 of (Yarotsky, 2017)) Let k ≥ 0 be a positive integer . There

exists an FNN architecture FNN(1, L, p,K, κ,M) capable of approximating any function in

W k,∞ ([−B,B]d
)
, i.e., for any given ε ∈ (0, 1) and if f ∈ W k,∞ ([−B,B]d

)
, the network

architecture gives rise to a function f̃ satisfying
∥∥∥f̃ − f

∥∥∥
∞

≤ ε.

The hyperparameters in FNN are chosen as

L = O

(
log

1

ε

)
, p = O

(
ε−

d
k

)
, K = O

(
ε−

d
k log

1

ε

)
, κ = max {1, B,R} , M = R.

The constant hidden in O(·) depends on k, α, d,B,R.

Remark 23 Lemma 22 is a variant of (Yarotsky, 2017, Theorem 1). In (Yarotsky, 2017,

Theorem 1), it is required that the input is in [0, 1]D. For any input in [−B,B]D, one can

always rescale and shift the input to [0, 1]D and apply (Yarotsky, 2017, Theorem 1). Such

a transformation only affect the Sobolev norm of the target function and the upper bound

of weight parameters of FNN. The statement of Lemma 22 has already incorporated such a

transformation.

Since Γn
d is Lipschitz by Lemma 21, according to Lemma 22 with k = 1, for any ε1 > 0,

there is a network architecture FNN(dY , L, p,K, κ,M), such that for any Γn
d defined in (52),

there exists a Γ̃n
d ∈ FNN(dY , L, p,K, κ,M) with

∥∥∥Γ̃n
d − Γn

d

∥∥∥
∞

≤ ε1.

Such a network architecture has

L = O(log ε1), p = O
(
ε−dX
1

)
, K = O

(
ε−dX
1 log ε1

)
,

κ = max
{
1,
√

dYLEn
Y
RY ,

√
dXLEn

X
RX , LEn

Y
LDn

X
LΨ

}
, M =

√
dYLEn

Y
RY .

(55)

We bound the first term in (54) as

inf
Γ∈FNN

Eu∼γ

[∥∥Γ ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]

33



Liu, Yang, Chen, Zhao and Liao

≤Eu∼γ

[∥∥∥Γ̃n
d ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥∥
2

2

]

≤2Eu∼γ

[∥∥∥Γ̃n
d ◦ En

X (u)− Γd ◦ En
X (u)

∥∥∥
2

2

]
+ 2Eu∼γ

[∥∥Γn
d ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥2
2

]

≤2dYε21 + 2Eu∼γ

[∥∥Γn
d ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥2
2

]

=2dYε21 + 2Eu∼γ

[∥∥En
Y ◦Ψ ◦Dn

X ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]
by the definition of Γd in (52)

≤2dYε21 + 2L2
En

Y
L2
ΨEu∼γ

[
‖Dn

X ◦ En
X (u)− u‖2X

]

=2dYε21 + 2L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (56)

An upper bound of the second term in (54) is provided by the following lemma (see a

proof in Appendix D):

Lemma 24 Under the conditions of Theorem 3, for any δ ∈ (0, 1), we have

ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]

≤2
√

2dYσ
(√

ES2
‖ΓNN ◦ En

X (ui)− Γn
d ◦ En

X (ui)‖2n +
√

dYδ
)√

logN (δ,FNN, ‖ · ‖∞) + 2

n
+ dYσδ.

(57)

Let FNN be the network architecture specified in (55). Substituting (56) and (57) into

(54), we have

T1 =2ES2

[∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)
∥∥2
n

]

≤4dYε21 + 8
√

2dYσ
(√

ES2

∥∥ΓNN ◦ En
X (ui)− Γn

d ◦ En
X (ui)

∥∥2
n
+
√

dYδ
)√

logN (δ,FNN, ‖ · ‖∞) + 2

n

+ 4dYσδ + 4L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (58)

Denote

ρ =

√
ES2

[∥∥ΓNN ◦ En
X (ui)− En

Y ◦Ψ(ui)
∥∥2
n

]
,

a = 2dYε21 + 2dYσδ + 2L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
+ 4

√
2dYσδ

√
logN (δ,FNN, ‖ · ‖∞) + 2

n
,

b = 2
√
2dYσ

√
logN (δ,FNN, ‖ · ‖∞) + 2

n
.

Inequality (58) can be rewritten as

ρ2 ≤ a+ 2bρ,

34



Deep Nonparametric Estimation of Infinite Dimensional Operators

from which we deduce that

(ρ− b)2 ≤ a+ b2 ⇒ ρ2 ≤ 2a+ 4b2.

Therefore,

T1 =2ρ2 ≤ 8dYε21 + 64dYσ2 logN (δ,FNN, ‖ · ‖∞) + 2

n
+ 16

√
2dYσδ

√
logN (δ,FNN, ‖ · ‖∞) + 2

n

+ 8dYσδ + 8L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (59)

Upper bound of T2. The term T2 is the difference between the population risk and the

empirical risk of the network estimator ΓNN, while there is a factor 2 ahead of the empirical

risk. Utilizing a covering of FNN(dY , L, p,K, κ,M) and Bernstein-type inequalities, we

establish a fast convergence of T2. The upper bound is presented in the following lemma

(see a proof in Appendix E).

Lemma 25 Under the conditions of Theorem 3, we have

T2 ≤
35dYL2

En
Y
R2

EY

n
logN

(
δ

4dYLEn
Y
RY

,FNN, ‖ · ‖∞
)

+ 6δ. (60)

Substituting (59) and (60) into (50) gives rise to

I ≤2L2
Dn

Y
ES1

Eu∼γ

[∥∥ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]

=2L2
Dn

Y
ES1

[T1] + 2L2
Dn

Y
ES1

[T2]

≤16dYL2
Dn

Y
ε21 + 128dYσ2L2

Dn
Y

logN (δ,FNN, ‖ · ‖∞) + 2

n

+ 32
√
2dYσL2

Dn
Y
δ

√
logN (δ,FNN, ‖ · ‖∞) + 2

n

+ 16dYσL2
Dn

Y
δ + 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ‖Πn

X ,dX
(u)− u‖2X

+
70dYL2

Dn
Y
L2
En

Y
R2

Y
n

logN
(

δ

4dYLEn
Y
RY

,FNN, ‖ · ‖∞
)

+ 12L2
Dn

Y
δ

≤16dYL2
Dn

Y
ε21 +

128dYσ2L2
Dn

Y
+ 70dYL2

Dn
Y
L2
En

Y
R2

Y
n

logN
(

δ

4dYLEn
Y
RY

,FNN, ‖ · ‖∞
)

+ 64dYσL2
Dn

Y
δ

√
logN (δ,FNN, ‖ · ‖∞)

n
+ (16dYσ + 12)L2

Dn
Y
δ

+ 16L2
Dn

Y
L2
En

Y
L2
ΨEu∼γ‖Πn

X ,dX
(u)− u‖2X , (61)

when δ < 1. The covering number of FNN(dY , L, p,K, κ,M) can be bounded in terms of its

parameters, which is summarized in the following lemma:

35



Liu, Yang, Chen, Zhao and Liao

Lemma 26 (Lemma 6 of Chen et al. (2022) ) Let FNN(dY , L, p,K, κ,M) be a class of

network: [−B,B]dX → [−M,M ]dY . For any δ > 0, the δ-covering number of FNN(L, p,K, κ,M)

is bounded by

N (δ,FNN(dY , L, p,K, κ,M), ‖ · ‖∞) ≤
(
2L2(pB + 2)κLpL+1

δ

)dYK

. (62)

Combining (55) and (62) gives

logN (δ,FNN(dY , L, p,K, κ,M), ‖ · ‖∞) ≤ C7dY
(
ε−dX
1 log3 ε−1

1 + log δ + log dY
)
, (63)

where C7 is a constant depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
and LΨ. Substituting (63)

into (61) yields

I ≤16dYL2
Dn

Y
ε21 + C7d

2
YL

2
Dn

Y

128σ2 + 70L2
En

Y
R2

Y
n

(
ε−dX
1 log3 ε−1

1 + log δ + log dY
)

+ 64dYσL2
Dn

Y
δ

√√√√C7dY
(
ε−dX
1 log3 ε−1

1 + log δ + log dY
)

n

+ (16dYσ + 12)L2
Dn

Y
δ + 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (64)

Setting

ε1 = d
1

2+dX
Y n

− 1
2+dX , δ = n−1,

we get an upper bound of I

I ≤C1(σ
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log3 n+ C2(σ

2 +R2
Y)d

2
Y(log dY)n

−1

+ 16L2
Dn

Y
L2
En

Y
L2
ΨES1

Eu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
2

]
(65)

for some constants C1, C2 depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LΨ. The constants

C1, C2 are the same ones as in Theorem 3. The resulting network architecture F(dY , L, p,K, κ,M)

has

L = O(log n+ log dY), p = O

(
d
− dX

2+dX
Y n

dX
2+dX

)
, K = O

(
d
− dX

2+dX
Y n

dX
2+dX log n

)
,

κ = max
{
1,
√

dYLEn
Y
RY ,

√
dXLEn

X
RX ,

√
dXLEn

X
LEn

Y
LDn

X
LΨRX

}
, M =

√
dYLEn

Y
RY .

(66)

Combining the bounds of I and II. Putting (64) and (49) together gives rise to

ESEu∼γ

[∥∥Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)
∥∥2
Y

]

≤I + II

36



Deep Nonparametric Estimation of Infinite Dimensional Operators

≤C1(σ
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log3 n+ C2(σ

2 +R2
Y)d

2
Y(log dY)n

−1

+ 16L2
Dn

Y
L2
En

Y
L2
ΨES1

Eu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
2

]
+ 2ES1

Ev∗∼Ψ#γ

[∥∥∥Πn
Y,dY

(v∗)− v∗
∥∥∥
2

Y

]
,

(67)

where C1, C2 are constants depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LΨ. Substituting

σ = LEn
Y
σ̃, the theorem is proved.

7.3 Proof of Theorem 4

Proof of Theorem 4. The main framework of the proof of Theorem 4 is the same as that

of Theorem 3, except special attentions need to be paid on bounding T1 and T2 in (51):

• For T1, we establish a new result on the approximation error of deep neural networks

with architecture FNN(dY , L, p,M).

• For T2, we derive an upper bound using the uniform covering numbers. The moti-

vation to use FNN(dY , L, p,M) is that it removes parameter upper bound, which is

appealing to practical training. However, removing parameter upper bound leads to

technical issues in bounding T2. We address these issues using the uniform covering

numbers thanks to the boundedness of network outputs inspired by Jiao et al. (2021).

The first part of our proof is the same as that of Theorem 3 up to (51), which is omitted

here. In the following, we bound T1 and T2 in order.

Upper bound of T1. The upper bound of T1 can be derived similarly as that in Section

7.2, except we make two changes:

• Replace Lemma 22 by the following one

Lemma 27 (Theorem 1.1 of Shen et al. (2020)) Let 0 < α ≤ 1 be a real num-

ber. There exists a FNN architecture FNN(1, L, p,M) with dY = 1 such that for any

integers L̃, p̃ > 0 and f ∈ C0,α([−B,B]d) with ‖f‖C0,α ≤ R, such an architecture gives

rise to an FNN f̃ with ∥∥∥f̃ − f
∥∥∥
∞

≤ CL̃− 2α
d p̃−

2α
d

for some constant C depending on α, d,B,R. This architecture has

L = O(L̃), p = O (p̃) , M = R.

The constant hidden in O(·) depends on α, d,B,R.

According to Lemma 27 with α = 1, for any ε1 > 0, there is a network architec-

ture FNN(dY , L, p,M), such that for any Γn
NN defined in (52), there exists a Γ̃n

d ∈
FNN(dY , L, p,M) with

∥∥∥Γ̃n
d − Γn

d

∥∥∥
∞

≤ ε1.

37



Liu, Yang, Chen, Zhao and Liao

Such a network architecture has

L = O(L̃), p = O (p̃) ,M =
√
dYLEn

Y
RY , (68)

where L̃, p̃ > 0 are integers satisfying L̃p̃ =
⌈
ε
−dX /2
1

⌉
. The constant hidden in O(·)

depends on dX , LEn
Y
, LDn

X
, LΨ, B and M .

• Replace Lemma 24 by

Lemma 28 Under the conditions of Theorem 4, for any δ ∈ (0, 1), we have

ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]

≤2
√

2dYσ
(√

ES2
‖ΓNN ◦ En

X (ui)− Γn
d ◦ En

X (ui)‖2n +
√

dYδ
)√

logN (δ,FNN, n) + 2

n
+ dYσδ.

(69)

Lemma 28 can be proved similarly as Lemma 24. We need to replace the δ-cover F∗ =

{Γ∗
j}

N (δ,FNN,‖·‖∞)
j=1 by a δ-cover of FNN with respect to S2: F∗ = {Γ∗

j}
N (δ,FNN,n)
j=1 , where

N (δ,FNN, n) is the uniform covering number. Here the cover F∗ depends on the sam-

ples {En
X (ui)}2ni=n+1. Then there exists Γ∗ ∈ F∗ satisfying ‖Γ∗ ◦ En

X (ui)− ΓNN ◦ En
X (ui)‖∞ ≤

δ for any n+ 1 ≤ i ≤ 2n. The proof is omitted here.

Following the rest of the proof for T1 in Section 7.2, we can derive that

T1 ≤8dYε21 + 64dYσ2 logN (δ,FNN, n) + 2

n
+ 16

√
2dYσδ

√
logN (δ,FNN, n) + 2

n

+ 8dYσδ + 8L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (70)

The network architecture of FNN(dY , L, p,M) is specified in (68).

Upper bound of T2. Using the covering number defined in Definition 20, we have the

following bound of T2.

Lemma 29 Under the conditions of Theorem 4, we have

T2 ≤
35dYR2

Y
n

logN
(

δ

4dYLEn
Y
RY

,FNN, 2n

)
+ 6δ. (71)

Lemma 29 is proved in Appendix F using techniques similar to those in the proof of Lemma

25. Substituting (70) and (71) into (50) gives rise to

I ≤2L2
DY

ES1
Eu∼γ

[∥∥ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥2
2

]

=2L2
Dn

Y
ES1

[T1] + 2L2
Dn

Y
ES1

[T2]

38



Deep Nonparametric Estimation of Infinite Dimensional Operators

≤16dYL2
Dn

Y
ε21 + 128dYσ2L2

Dn
Y

logN (δ,FNN, n) + 2

n
+ 32

√
2dYσL2

Dn
Y
δ

√
logN (δ,FNN, n) + 2

n

+ 16dYσL2
Dn

Y
δ + 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
(72)

+
70dYL2

Dn
Y
L2
En

Y
R2

Y
n

logN
(

δ

4dYLEn
Y
RY

,FNN, 2n

)
+ 12L2

Dn
Y
δ

≤16dYL2
Dn

Y
ε21 +

128dYσ2L2
Dn

Y
+ 70dYL2

Dn
Y
L2
En

Y
R2

Y
3n

logN
(

δ

4dYLEn
Y
RY

,FNN, 2n

)

+ 64dYσL2
Dn

Y
δ

√
logN (δ,FNN, n)

n

+ (16dYσ + 12)L2
Dn

Y
δ + 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (73)

The covering number in (73) can be bounded using the pseudo-dimension of the network

class:

Lemma 30 (Theorem 12.2 of Anthony and Bartlett (1999)) Let F be a class of func-

tions from some domain Ω to [−M,M ]. Denote the pseudo-dimension of F by Pdim(F ).

For any δ > 0, we have

N (δ, F,m) ≤
(

2eMm

δPdim(F )

)Pdim(F )

for m > Pdim(F ).

The next lemma shows that the pseudo-dimension of FNN(1, L, p,M) can be bounded using

its parameters:

Lemma 31 (Theorem 7 of Bartlett et al. (2019)) For any network architecture FNN

with L layers and U parameters, there exists a universal constant C such that

Pdim(FNN) ≤ CLU log(U).

Now conciser the network architecture FNN(1, L, p,M), the number of parameters is bounded

by U = Lp2. Combing Lemma 30 and 31, we have

logN
(

δ

4dYLEn
Y
RY

,FNN(dY , L, p,M), 2n

)
≤ C8dYp2L2 log

(
p2L

) (
logM + log δ−1 + log n

)

(74)

when 2n > C9p
2L2 log(p2L) for some universal constant C8, C9 . Substituting (68) into (74)

gives rise to

logN
(

δ

4dYLEn
Y
RY

,FNN, 2n

)
≤ C8dYε

−dX
1 log

(
ε−1
1

) (
log δ−1 + log n

)
. (75)

39



Liu, Yang, Chen, Zhao and Liao

Substituting (75) into (73) yields

I ≤16dYL2
Dn

Y
ε21 + C8d

2
YL

2
Dn

Y

128σ2 + 70L2
En

Y
R2

Y
n

ε−dX
1 log

(
ε−1
1

) (
log δ−1 + log n

)

+ 64dYσL2
Dn

Y
δ

√
C8dYε

−dX
1 log

(
ε−1
1

)
(log δ−1 + log n)

n

+ (16dYσ + 12)L2
Dn

Y
δ + 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
. (76)

Setting

ε1 = d
1

2+dX
Y n

− 1
2+dX , δ = n−1,

we have

I ≤C4(σ
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n+ 16L2

Dn
Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
, (77)

where C4 is a constant depending on dX , RX , RY , LEn
X
, LEn

Y
, LDn

X
, LΨ, the same constant in

Theorem 4. The resulting network architecture F(L, p,M) has

L = O(L̃), p = O (p̃) ,M =
√

dYLEn
Y
RY , (78)

where L̃p̃ = d
− dX

4+2dX
Y n

dX
4+2dX . Now we check the condition in Lemma 30. Under the choice

of L and p above, we have

L2p2 log(p2L) = O

(
n

2dX
4+2dX log n

)
< 2n

when n is large enough. The condition is satisfied.

Combining the bounds of I and II. Putting (77) and (49) together gives rise to

ESEu∼γ

[∥∥Dn
Y ◦ ΓNN ◦ En

X (u)−Ψ(u)
∥∥2
Y

]

≤I + II

≤C4(σ
2 +R2

Y)d
4+dX
2+dX
Y n

− 2
2+dX log2 n

+ 16L2
Dn

Y
L2
En

Y
L2
ΨEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
+ 2ES1

Ev∗∼Ψ#γ

[∥∥∥Πn
Y,dY

(v∗)− v∗
∥∥∥
2

Y

]
. (79)

Substituting σ = LEn
Y
σ̃ finishes the proof.

7.4 Proof of Corollary 10

Proof of Corollary 10. We only need to derive upper bounds of

Eu∼γ

[
‖ΠX ,dX (u)− u‖22

]
and Ev∼Ψ#γ

[∥∥ΠY,dY (v)− v
∥∥2
Y

]
.

Then Corollary 10 is a direct result of Corollary 8. Our proof relies on the following lemma

which gives an approximation error of Legendre polynomials for Hölder functions:

40



Deep Nonparametric Estimation of Infinite Dimensional Operators

Lemma 32 (Theorem 4.5(ii) of Schultz (1969)) Let k ≥ 0 be an integer and α > 0.

For any f ∈ Ck,α([0, 1]D) with ‖f‖Ck,α < ∞, there exists f̃ ∈ span(ΦL,r) such that

∥∥∥f − f̃
∥∥∥
∞

≤ C

rk+α
,

where C is a constant depending on D and ‖f‖Ck,α.

We first derive an upper bound of Eu∼γ

[
‖ΠX ,dX (u)− u‖22

]
. For any u ∈ ΩX , according to

Lemma 32, there exists ũ ∈ span(ΦL,rX ) such that

‖u− ũ‖∞ ≤ C10r
−s
X ,

where s = k + α, C10 is a constant depending on D and CHP ,X . We deduce that

‖ΠX ,dX (u)− u‖2X = min
ū∈span(ΦL,rX )

‖ū− u‖2X

≤‖ũ− u‖2X
≤
∫

[−1,1]D
|ũ− u|2dx

≤2DC10r
−2s
X

=2DC10d
− 2s

D
X ,

where in the last equality dX = rDX is used. Therefore

Eu∼γ

[
‖ΠX ,dX (u)− u‖22

]
≤ C5d

− 2s
D

X ,

where C5 is a constant depending on D and CHP ,X . Similarly, one can show

Ev∼Ψ#γ

[∥∥ΠY,dY (v)− v
∥∥2
Y

]
≤ C6d

− 2s
D

Y ,

where C6 is a constant depending on D and CH,Y . The theorem is proved.

7.5 Proof of Corollary 11

Proof of Corollary 11. Our proof relies on the following lemma which gives an approxi-

mation error of trigonometric bases for periodic Hölder functions.

Lemma 33 (Theorem 4.3(ii) of Schultz (1969)) Let k ≥ 0 be an integer and 0 < α ≤
1. For any f ∈ P ∩ Ck,α

(
[0, 1]D

)
with ‖f‖Ck,α < ∞, there exists f̃ ∈ span(ΦT,r) such that

∥∥∥f − f̃
∥∥∥
∞

≤ C

rs
,

where C is a constant depending on D and ‖f‖Ck,α.

Corollary 11 can be proved by following the proof of Corollary 11 in which Lemma 32 is

replaced by Lemma 33.

41



Liu, Yang, Chen, Zhao and Liao

7.6 Proof of Theorem 13

Proof of Theorem 13. Lemma 12 implies that En
X , D

n
X , E

n
Y , D

n
Y are Lipschitz with a

Lipschitz constant 1. Therefore Corollary 8 can be applied. We only need to bound

ESEu∼γ

[∥∥∥Πn
X ,dX

(u)− u
∥∥∥
2

X

]
and ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]
in (21). We use the fol-

lowing lemma:

Lemma 34 (Theorem 3.4 of Bhattacharya et al. (2021)) Let H be a separable Hilbert

space and ρ be a probabillity measure defined on it. Define the covariance operator Gρ =

Eu∼ρu⊗u and its empirical estimation from n samples by Gn
ρ = 1

n

∑n
i=1 ui⊗ui where {ui}ni=1

are i.i.d. samples sampled from ρ. For some integer d > 0, let ΠH,d and Πn
H,d be the pro-

jectors that project any u ∈ H to the space spanned by the eigenfunctions corresponding to

the largest d eigenvalues of Gρ and Gn
ρ , respectively. We have

E{uk}nk=1
∼ρEu∼ρ

[∥∥Πn
H,d(u)− u

∥∥2
H

]
≤
√

Cd

n
+ Eu∼ρ

[
‖ΠH,d(u)− u‖2H

]

with C = E{ui}ni=1∼ρ

[
‖Gn −G‖2HS

]
, where ‖ · ‖HS is the Hilbert-Schmidt norm.

We first bound ESEu∼γ

[∥∥∥Πn
X ,dX

(u)− u
∥∥∥
2

X

]
. For any u ∼ γ, we have ‖u‖X ≤ RX .

Therefore

Eu∼γ

[
‖Gn

X −GX ‖2HS

]
≤ 4Eu∼γ

[
‖u‖4X

]
≤ 4R4

X

and Lemma 34 gives

ESEu∼γ

[∥∥Πn
X ,dX

(u)− u
∥∥2
X

]
≤
√

4R4
XdX
n

+ Eu∼γ

[
‖ΠX ,dX (u)− u‖2X

]
. (80)

An upper bound of ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]
is given by the following lemma (see

a proof in Appendix G):

Lemma 35 Under the conditions of Theorem 13, we have

ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]
≤4

√
(RY + σ̃)4dY

n
+ 8

(
σ̃

λdY − λdY+1

)2

σ̃2(RY + σ̃)2

+ 10σ̃2 + 8Ew∼Ψ#γ

[∥∥ΠY,dY (w)− w
∥∥2
Y

]
. (81)

7.7 Proof of Corollary 14

Proof of Corollary 14. We only need to show that the eigenspace spanned by the

first dY principal eigenfunctions of GΨ#γ is the same as that of Gζ . Then Corollary

42



Deep Nonparametric Estimation of Infinite Dimensional Operators

14 can be proved by following the proof of Theorem 13 in which the upper bound of

ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]
can be derived in the same manner as that of ESEu∼γ

[∥∥∥Πn
X ,dX

(u)− u
∥∥∥
2

X

]
.

Denote the eigenvalues of GΨ#γ in non-increasing order by {λΨ#γ,k}∞k=1. Denote the

eigenspace spanned by the first dY principal eigenfunctions of GΨ#γ by K, and its compli-

ment by K>. Similarly, we define Kζ and K>
ζ for Gζ . From our assumption, K is also the

eigenspace spanned by the first dY eigenfunctions of Gµ. We denote the eigenvalues of Gµ

in non-increasing order by {λµ,k}∞k=1. We are going to show that K = Kζ . From (100), we

have Gζ = GΨ#γ +Gµ. Note that for any φ ∈ K and φ̃ ∈ K> with unit length, we have

〈Gζφ, φ〉Y =〈GΨ#γφ, φ〉Y + 〈Gµφ, φ〉Y
≥λΨ#,dY + λµ,dY+1

≥λΨ#,dY+1 + λµ,dY+1

≥〈GΨ#γφ̃, φ̃〉Y + 〈Gµφ̃, φ̃〉Y
=〈Gζ φ̃, φ̃〉Y .

Since both K and Kζ have dimension dY , we have K = Kζ . The proof is finished.

7.8 Proof of Theorem 15

Proof of Theorem 15. Theorem 15 can be proved by following the proof of Theorem 4

with the following changes:

• Replace En
X by EX .

• Under Assumption 2 and 8, our target function EY ◦ Ψ ◦DX is a Lipschitz function

on M. We replace Lemma 27 by the following one (see a proof in Appendix H):

Lemma 36 Suppose Assumption 8 holds. Assume for any a ∈ M, ‖a‖∞ ≤ B for

some B > 0. There exists a FNN architecture FNN(1, L, p,M) such that for any

integers L̃, p̃ > 0 and f ∈ C0,1(M) with ‖f‖C0,1 ≤ R, such an architecture gives rise

to a FNN f̃ with ∥∥∥f̃ − f
∥∥∥
∞

≤ CL̃
− 2

d0 p̃
− 2

d0

for some constant C depending on d0, B,R, τ and the surface area of M. This archi-

tecture has

L = O
(
L̃
)
, p = O (dX p̃) , M = R. (82)

The constant hidden in O(·) depends on d0, B,R, τ and the surface area of M.

43



Liu, Yang, Chen, Zhao and Liao

7.9 Proof of Theorem 16

Proof of Theorem 16 Theorem 16 can be proved similarly as Theorem 15 while special

attention needs to be paid on bounding logN (δ,FNN(dY , L, p,M), n). Note that the total

number of parameters of FNN(dY , L, p,M) is bounded by U = Lp+ dX p. Combing Lemma

30 and 31, we have

logN
(

δ

4dYLEn
Y
RY

,FNN(dY , L, p,M), 2n

)

≤C11dY(p2L2 + dX pL) log
(
p2L+ dXLp

) (
logM + log δ−1 + log n

)
, (83)

where C11 is a universal constant. According to (68), one has Lp = O
(
ε
−dX /2
1 log2

(
ε−1
))

.

Using this relation and substituting the choice of L, p in (68) to (83) gives rise to

logN
(

δ

4dYLEn
Y
RY

,FNN(dY , L, p1, p2,M), 2n

)

≤C11dY
(
ε−dX
1 + dX ε

−dX /2
1

)
log
(
ε−1
1

) (
log δ−1 + log n

)
. (84)

The proof can be finished by following the rest of the proof of Theorem 15.

8. Conclusion and discussion

We study the generalization error of a general framework on learning operators between

infinite-dimensional spaces by two types of deep neural networks. With properly chosen en-

coders and decoders, our framework is discretization invariant. Our upper bound consists

of a network estimation error and a projections error, and holds for general encoders and

decoders under mild assumptions. The application of our results on some popular encoders

and decoders are discussed, such as those using Legendre polynomials, trigonometric func-

tions, and PCA. We also consider two scenarios where additional low dimensional structures

of data can be exploited. The two scenarios are: (1) the input data can be encoded to vec-

tors on a low dimensional manifold; (2) the operator has low complexity. In both scenarios,

we show that the generalization error converges at a fast rate depending on the intrinsic

dimension. Our results show that deep neural networks are adaptive to low dimensional

structures of data in operator estimation. In general, our results provide a theoretical jus-

tification on the successes of deep neural networks for learning operators between infinite

dimensional spaces.

As mentioned in Section 3.2, our network estimation error in Theorem 3 and 4 is optimal

up to a logarithmic factor with respect to the sample size n for a fixed dX . While our bound

has a factor d
4+dX
2+dX
Y , this term results from selecting the value of ε1 by balancing the two

terms dYε21 and d2Yε
−dX
1 /n, as in (64). It is an open question about whether our bound

is minimax optimal with respect to dY . In general, deriving a minimax rate for operator

44



Deep Nonparametric Estimation of Infinite Dimensional Operators

learning by deep neural networks is intrinsically challenging due to its infinite-dimensional

nature. In Lanthaler and Stuart (2023), the curse of dimensionality is revealed for learning

functionals by deep neural networks. To achieve an ε approximation error of Cr functionals,

the network size of PCANet, DeepONet, NOMAD and FNO is lower bounded in the order of

exp(cε−1/(α+1+δ)r) (Lanthaler and Stuart, 2023, Theorem 2.15 and Proposition 2.22), with

α, δ specified in Lanthaler and Stuart (2023). We will leave the investigation of minimax

rates as our future work.

Acknowledgments

Hao Liu was partially supported by National Natural Science Foundation of China 12201530,

HKRGC ECS 22302123 and HKBU 179356. Haizhao Yang was partially supported by

the US National Science Foundation under awards DMS-2244988, DMS-2206333, and the

Office of Naval Research Award N00014-23-1-2007. Tuo Zhao was partially supported by

the US National Science Foundation under DMS-2012652. Wenjing Liao was partially

supported by the US National Science Foundation under DMS-2012652, DMS-2145167 and

U.S. Department of Energy under DE-SC0024348.

45



Liu, Yang, Chen, Zhao and Liao

Appendix

Appendix A. The derivation for the error bound in Corollary 10 when

dX = dY = log
1
2 n

From Corollary 10, we need to balance the two terms d
4+dX
2+dX
Y n

− 2
2+dX log6 n and d

− 2s
D

X . By

setting dX = dY = log
1
2 n, the first term decays faster than the second term as n increases.

We want to find a lower bound of n, denoted by n0, so that when n > n0, the error is

dominated by the second term. Note that n0 should satisfy

d
4+dX
2+dX
Y n

− 2
2+dX log6 n ≤ d

− 2s
D

X . (85)

Since

d
4+dX
2+dX
Y n

− 2
2+dX log6 n ≤ d2Yn

− 2
2+dX log6 n ≤ d

− 2s
D

X ,

in the following, we consider solving

d2Yn
− 2

2+dX log6 n ≤ d
− 2s

D
X .

Substituting the expression of dX and dY , we deduce

n
− 2

2+log1/2 n log7 n ≤ log−
s
D n ⇒ − 2

2 + log
1
/
2
n
log n+ 7 log log n ≤ − s

D
log log n.

Denote a = log n. We have

2

2 + a1/2
a ≥

(
7 +

s

D

)
log a. (86)

A sufficient condition of (86) is

2

a1/2
a ≥

(
7 +

s

D

)
log a ⇒ a ≥ 1

4

(
7 +

s

D

)2
log2 a. (87)

Note that log a < a1/3 for a > 100. Therefore, it is sufficient to solve

a ≥ 1

4

(
7 +

s

D

)2
a

2
3 ⇒ a ≥

(
7

2
+

s

2D

)6

.

Substituting a by log n, one has

n ≥ exp

(
max

{
100,

(
7

2
+

s

2D

)6
})

.

46



Deep Nonparametric Estimation of Infinite Dimensional Operators

Appendix B. Proof of Lemma 6

Proof of Lemma 6. We first prove (18):

‖EH,d(u)− EH,d(ũ)‖22 =
∥∥∥[〈u− ũ, φ1〉H, ..., 〈u− ũ, φd〉H]>

∥∥∥
2

2

=
d∑

k=1

|〈u− ũ, φk〉H|2

≤
∞∑

k=1

|〈u− ũ, φk〉H|2

= ‖u− ũ‖2H.

For (19), we have

‖DH,d(a)−DH,d(ã)‖2H =

∥∥∥∥∥

d∑

k=1

(ak − ãk)φk

∥∥∥∥∥

2

H
= ‖a− ã‖22 ,

since {φk}dk=1 is an orthonormal set.

Appendix C. Proof of Lemma 21

Proof of Lemma 21. Let a, ã ∈ R
dX . We have

‖Γn
d (a)− Γn

d (ã)‖2 =
∥∥En

Y ◦Ψ ◦Dn
X (a)− En

Y ◦Ψ ◦Dn
X (ã)

∥∥
2

≤LEn
Y
‖Ψ ◦Dn

X (a)−Ψ ◦Dn
X (ã)‖2

≤LEn
Y
LΨ ‖Dn

X (a)−Dn
X (ã)‖Y

≤LEn
Y
LDn

X
LΨ‖a− ã‖2.

Appendix D. Proof of Lemma 24

Proof of Lemma 24. We prove Lemma 24 using the covering number of FNN. Let F∗ ={
Γ∗
j

}N (δ,FNN,‖·‖∞)

j=1
be a δ-cover of FNN, where N (δ,FNN, ‖ · ‖∞) is the covering number.

Then there exists Γ∗ ∈ F∗ satisfying ‖Γ∗ − ΓNN‖∞ ≤ δ, where ΓNN is our estimator in (6).

Denote ‖Γ ◦ En
X ‖2n = 1

n

∑2n
i=n+1 ‖Γ ◦ En

X (ui)‖22. We have

ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui), εi〉

]

=ES2

[
1

n

2n∑

i=n+1

〈ΓNN ◦ En
X (ui)− Γ∗ ◦ En

X (ui) + Γ∗ ◦ En
X (ui)− Γn

d ◦ En
X (ui), εi〉

]

47



Liu, Yang, Chen, Zhao and Liao

≤ES2

[
1

n

2n∑

i=n+1

〈Γ∗ ◦ En
X (ui)− Γn

d ◦ En
X (ui), εi〉

]
+ ES2

[
1

n

2n∑

i=n+1

‖ΓNN ◦ En
X (ui)− Γ∗ ◦ En

X (ui)‖2‖εi‖2

]

≤ES2

[
‖Γ∗ ◦ En

X − Γn
d ◦ En

X ‖n√
n

∑2n
i=n+1 〈Γ∗ ◦ En

X (ui)− Γn
d ◦ En

X (ui), εi〉√
n
∥∥Γ∗ ◦ En

X − Γn
d ◦ En

X
∥∥
n

]
+ dYσδ

≤
√
2ES2

[
‖ΓNN ◦ En

X − Γn
d ◦ En

X ‖n +
√

dYδ√
n

∣∣∣∣∣

∑2n
i=n+1 〈Γ∗ ◦ En

X (ui)− Γn
d ◦ En

X (ui), εi〉√
n
∥∥Γ∗ ◦ En

X − Γn
d ◦ En

X
∥∥
n

∣∣∣∣∣

]
+ dYσδ,

(88)

where the first inequality follows from Cauchy–Schwarz inequality, the third inequality holds

since

‖Γ∗ ◦ En
X − Γn

d ◦ En
X ‖n

=

√√√√ 1

n

2n∑

i=n+1

∥∥Γ∗ ◦ En
X (ui)− ΓNN ◦ En

X (ui) + ΓNN ◦ En
X (ui)− Γn

d ◦ En
X (ui)

∥∥2
2

≤

√√√√ 2

n

2n∑

i=n+1

∥∥Γ∗ ◦ En
X (ui)− ΓNN ◦ En

X (ui)
∥∥2
2
+
∥∥ΓNN ◦ En

X (ui)− Γn
d ◦ En

X (ui)
∥∥2
2

≤

√√√√ 2

n

2n∑

i=n+1

dYδ2 +
∥∥ΓNN ◦ En

X (ui)− Γn
d ◦ En

X (ui)
∥∥2
2

≤
√
2 ‖ΓNN ◦ En

X − Γn
d ◦ En

X ‖n +
√
2dYδ.

Recall that
{
Γ∗
j

}N (δ,FNN,‖·‖∞)

j=1
is a δ-cover of FNN. Denote zj =

∑2n
i=n+1〈Γ∗

j◦En
X (ui)−Γn

d◦En
X (ui),εi〉√

n‖Γ∗
j◦En

X−Γn
d◦En

X‖n

.

The expectation term in (88) can be bounded as

ES2

[
‖ΓNN ◦ En

X − Γn
d ◦ En

X ‖n +
√
dYδ√

n

∣∣∣∣∣

∑2n
i=n+1 〈Γ∗ ◦ En

X (ui)− Γn
d ◦ En

X (ui), εi〉√
n
∥∥Γ∗ ◦ En

X − Γn
d ◦ En

X
∥∥
n

∣∣∣∣∣

]

≤ES2

[
‖ΓNN ◦ En

X − Γn
d ◦ En

X ‖n +
√
dYδ√

n
max

j
|zj |
]

≤
√

ES2

[(∥∥ΓNN ◦ En
X − Γn

d ◦ En
X
∥∥
n
+
√
dYδ

)2]
ES2

[
1

n
max

j
|zj |2

]

≤
(√

ES2

[(∥∥ΓNN ◦ En
X − Γn

d ◦ En
X
∥∥
n

)2]
+
√

dYδ

)√
1

n
ES2

[
max

j
|zj |2

]
, (89)

where the second inequality comes from Cauchy–Schwarz inequality, the third inequality

comes from the inequality
√
a+ b2 ≤ √

a+ b for a, b ≥ 0.

Since εi ∈ [−σ, σ]dY , each component of εi is a sub-Gaussian variable with parameter σ.

Therefore for given un+1, ..., u2n, each zj is a sub-gaussian variable with parameter
√
dYσ.

48



Deep Nonparametric Estimation of Infinite Dimensional Operators

The last term is the maximum of a collection of squared sub-Gaussian variables and is

bounded as

ES2

[
max

j
|zj |2|un+1, ..., u2n

]
=
1

t
log exp

(
tES2

[
max

j
|zj |2|un+1, ..., u2n

])

≤1

t
logES2

[
exp

(
tmax

j
|zj |2|un+1, ..., u2n

)]

≤1

t
logES2



∑

j

exp
(
t|zj |2|un+1, ..., u2n

)



≤1

t
logN (δ,FNN, ‖ · ‖∞) +

1

t
logES2

[
exp

(
t|z1|2|un+1, ..., u2n

)]
.

Since z1 is sub-Gaussian with parameter σ2, we have

ES2

[
exp

(
t|z1|2|un+1, ..., u2n

)]
=1 +

∞∑

k=1

tkES2

[
z2k1 |un+1, ..., u2n

]

k!

=1 +

∞∑

k=1

tk

k!

∫ ∞

0
P

(
|z1| ≥ τ

1
2k |un+1, ..., u2n

)
dτ

≤1 + 2
∞∑

k=1

tk

k!

∫ ∞

0
exp

(
− τ1/k

2dYσ2

)
dτ

=1 +

∞∑

k=1

2k(2tdYσ2)k

k!
ΓG(k)

=1 + 2

∞∑

k=1

(2tdYσ2)k,

where ΓG represents the Gamma function. Setting t = (4dYσ2)−1 gives rise to

ES2

[
max

j
|zj |2|un+1, ..., u2n

]
≤ 4dYσ2 logN (δ,FNN, ‖ · ‖∞) + 4dYσ2 log 3

≤ 4dYσ2 logN (δ,FNN, ‖ · ‖∞) + 6dYσ2. (90)

Substituting (90), (89) into (88) finishes the proof.

Appendix E. Proof of Lemma 25

Proof of Lemma 25. Our proof follows the proof of (Chen et al., 2022, Lemma 4.2).

Denote g(u) = ‖ΓNN ◦ En
X (u)− En

Y ◦Ψ(u)‖22. We have ‖g‖∞ ≤ 4dYL2
En

Y
R2

Y . Then

T2 =ES2

[
Eu∼γ [g(u)|S1]−

2

n

2n∑

i=n+1

g(ui)

]

49



Liu, Yang, Chen, Zhao and Liao

=2ES2

[
1

2
Eu∼γ [g(u)|S1]−

1

n

2n∑

i=n+1

g(ui)

]

=2ES2

[
Eu∼γ [g(u)|S1]−

1

n

2n∑

i=n+1

g(ui)−
1

2
Eu∼γ [g(u)|S1]

]
. (91)

A lower bound of 1
2Eu∼γ [g(u)|S1] can be derived as

Eu∼γ [g(u)|S1] = Eu∼γ

[
4dYL2

En
Y
R2

Y
4dYL2

En
Y
R2

Y
g(u)|S1

]
≥ 1

4dYL2
En

Y
R2

Y
Eu∼γ

[
g2(u)|S1

]
. (92)

Substituting (92) into (91) gives

T2 ≤ 2ES2

[
Eu∼γ [g(u)|S1]−

1

n

2n∑

i=n+1

g(ui)−
1

8dYL2
En

Y
R2

Y
Eu∼γ

[
g2(u)|S1

]
]
.

Define the set

R =
{
g(u) = ‖Γ ◦ En

X (u)− En
Y ◦Ψ(u)‖22 : Γ ∈ FNN

}
.

Denote S ′
2 = {u′i}2ni=n+1 as an independent copy of S2. We rewrite T2 as

T2 ≤2ES2

[
sup
g∈R

(
ES′

2

[
1

n

2n∑

i=n+1

g(u′i)

]
− 1

n

2n∑

i=n+1

g(ui)−
1

8dYL2
En

Y
R2

Y

(
ES′

2

[
1

n

2n∑

i=n+1

g2(u′i)

]))]

≤2ES2

[
sup
g∈R

(
ES′

2

[
1

n

2n∑

i=n+1

(g(u′i)− g(ui))

]
− 1

16dYL2
En

Y
R2

Y
ES2,S′

2

[
1

n

2n∑

i=n+1

(g2(ui) + g2(u′i))

])]

≤2ES2,S′
2

[
sup
g∈R

(
1

n

2n∑

i=n+1

(
(g(ui)− g(ūi))−

1

16dYL2
En

Y
R2

Y
ES2,S′

2

[
g2(ui) + g2(u′i)

]
))]

.

(93)

Let R∗ = {g∗i }
N (δ,R,‖·‖∞)
i=1 be a δ-cover of R. Then for any g ∈ R, there exists g∗ ∈ R∗

such that ‖g − g∗‖∞ ≤ δ.

We next bound (93) using g∗’s. For the first term in (93), we have

g(ui)− g(u′i) =g(ui)− g∗(ui) + g∗(ui)− g∗(u′i) + g∗(u′i)− g(u′i)

= (g(ui)− g∗(ui)) +
(
g∗(ui)− g∗(u′i)

)
+
(
g∗(u′i)− g(u′i)

)

≤
(
g∗(ui)− g∗(u′i)

)
+ 2δ. (94)

We lower bound g2(ui) + g2(u′i) as

g2(ui) + g2(u′i) =
(
g2(ui)− (g∗)2(ui)

)
+
(
(g∗)2(ui) + (g∗)2(u′i)

)
−
(
(g∗)2(u′i)− g2(u′i)

)

≥(g∗)2(ui) + (g∗)2(u′i)− |g(ui)− g∗(ui)| |g(ui) + g∗(ui)|

50



Deep Nonparametric Estimation of Infinite Dimensional Operators

−
∣∣g∗(u′i)− g(u′i)

∣∣ ∣∣g∗(u′i) + g(u′i)
∣∣

≥(g∗)2(ui) + (g∗)2(u′i)− 16dYL2
En

Y
R2

Yδ. (95)

Substituting (94) and (95) into (93) gives rise to

T2

≤2ES2,S′
2

[
sup

g∗∈R∗

(
1

n

2n∑

i=n+1

(
(g∗(ui)− g∗(u′i))−

1

16dYL2
En

Y
R2

Y
ES2,S′

2

[
(g∗)2(ui) + (g∗)2(u′i)

]
))]

+ 6δ

=2ES2,S′
2

[
max

j

(
1

n

2n∑

i=n+1

(
(g∗j (ui)− g∗j (u

′
i))−

1

16dYL2
En

Y
R2

Y
ES2,S′

2

[
(g∗j )

2(u) + (g∗j )
2(u′i)

]
))]

+ 6δ.

Denote hj = (ui, u
′
i, ξi) = (g∗j (ui)− g∗j (u

′
i)). We have

ES2,S′
2
[hj(ui, u

′
i)] = 0,

Var[hj(ui, u
′
i)] = E

[
h2j (ui, u

′
i)
]

= ES2,S′
2

[
(g∗j (ui)− g∗j (u

′
i))

2
]

≤ 2ES2,S′
2

[
(g∗j )

2(ui) + (g∗j )
2(u′i)

]
.

Thus T2 can be bounded as

T2 ≤ T̃2 + 6δ

with T̃2 = 2ES2,S′
2

[
max

j

(
1

n

2n∑

i=n+1

(
hj(ui, u

′
i)−

1

32dYL2
En

Y
R2

Y
Var[hj(ui, u

′
i)]

))]
.

Note that ‖hj‖∞ ≤ 4dYL2
En

Y
R2

Y . We next derive the moment generating function of hj . For

any 0 < t < 3
4dYL2

En
Y
R2

Y
, we have

ES2,S′
2

[
exp(thj(ui, u

′
i))
]
=ES2,S′

2

[
1 + thj(ui, u

′
i) +

∞∑

k=2

tkhkj (ui, u
′
i)

k!

]

≤ES2,S′
2

[
1 + thj(ui, u

′
i) +

∞∑

k=2

(4dYL2
En

Y
R2

Y)
k−2tkh2j (ui, u

′
i)

2× 3k−2

]

=ES2,S′
2

[
1 + thj(ui, u

′
i) +

t2h2j (ui, u
′
i)

2

∞∑

k=2

(4dYL2
En

Y
R2

Y)
k−2tk−2

3k−2

]

=ES2,S′
2

[
1 + thj(ui, u

′
i) +

t2h2j (ui, u
′
i)

2

1

1− 4dYL2
En

Y
R2

Yt/3

]

=1 + t2Var[hj(ui, u
′
i)]

1

2− 8dYL2
En

Y
R2

Yt/3

51



Liu, Yang, Chen, Zhao and Liao

≤ exp

(
Var[hj(ui, u

′
i)]

3t2

6− 8dYL2
En

Y
R2

Yt

)
, (96)

where the last inequality comes from 1 + x ≤ exp(x) for x ≥ 0.

Then for 0 < t/n < 3
4dYL2

En
Y
R2

Y
, we have

exp

(
tT̃2

2

)

=exp

(
tES2,S′

2

[
max

j

(
1

n

2n∑

i=n+1

hj(ui, u
′
i)−

1

32dYL2
En

Y
R2

Y

1

n

2n∑

i=n+1

Var[hj(ui, u
′
i)]

)])

≤ES2,S′
2

[
exp

(
tmax

j

(
1

n

2n∑

i=n+1

hj(ui, u
′
i)−

1

32dYL2
En

Y
R2

Y

1

n

2n∑

i=n+1

Var[hj(ui, u
′
i)]

))]

≤ES2,S′
2



∑

j

exp

(
t

n

2n∑

i=n+1

hj(ui, u
′
i)−

t

32dYL2
En

Y
R2

Y

1

n

2n∑

i=n+1

Var[hj(ui, u
′
i)]

)


≤



∑

j

exp

(
2n∑

i=n+1

Var[hj(ui, u
′
i)]

3t2/n2

6− 8dYL2
En

Y
R2

Yt/n
− 1

32dYL2
En

Y
R2

Y

t

n
Var[hj(ui, u

′
i)]

)


=



∑

j

exp

(
2n∑

i=n+1

t

n
Var[hj(ui, u

′
i)]

(
3t/n

6− 8dYL2
En

Y
R2

Yt/n
− 1

32dYL2
En

Y
R2

Y

))
 , (97)

where the first inequality follows from Jensen’s inequality and the third inequality uses (96).

Setting
3t/n

6− 8dYL2
En

Y
R2

Yt/n
− 1

32dYL2
En

Y
R2

Y
= 0

gives t = 3n
52dYL2

En
Y
R2

Y
< 3n

4dYL2
En
Y
R2

Y
. Substituting our choice of t into (97) gives

tT̃2

2
≤ log

∑

j

exp(0).

Therefore

T̃2 ≤
2

t
logN (δ,R, ‖ · ‖∞) =

104dYL2
En

Y
R2

Y
3n

logN (δ,R, ‖ · ‖∞)

and

T2 ≤
104dYL2

En
Y
R2

Y
3n

logN (δ,R, ‖ · ‖∞) + 6δ ≤
35dYL2

En
Y
R2

Y
n

logN (δ,R, ‖ · ‖∞) + 6δ.

We next derive a relation between the covering number of FNN and R. For any g, g̃ ∈ R,

we have

g(u) =
∥∥Γ ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥2
2
, g̃(u) =

∥∥∥Γ̃ ◦ En
X (u)− En

Y ◦Ψ(u)
∥∥∥
2

2

52



Deep Nonparametric Estimation of Infinite Dimensional Operators

for some Γ, Γ̃ ∈ FNN. We have

‖g − g̃‖∞ =sup
u

∣∣∣∣
∥∥Γ ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥2
2
−
∥∥∥Γ̃ ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥∥
2

2

∣∣∣∣

=sup
u

∣∣∣
〈
Γ ◦ En

X (u)− Γ̃ ◦ En
X (u),Γ ◦ En

X (u) + Γ̃ ◦ En
X (u)− 2En

Y ◦Ψ(u)
〉∣∣∣

≤ sup
u

∥∥∥Γ ◦ En
X (u)− Γ̃ ◦ En

X (u)
∥∥∥
2

∥∥∥Γ ◦ En
X (u) + Γ̃ ◦ En

X (u)− 2En
Y ◦Ψ(u)

∥∥∥
2

≤4dYLEn
Y
RY
∥∥∥Γ− Γ̃

∥∥∥
∞
.

As a result, we have

N (δ,R, ‖ · ‖∞) ≤ N
(

δ

4dYLEn
Y
RY

,FNN, ‖ · ‖∞
)
.

and Lemma 25 is proved.

Appendix F. Proof of Lemma 29

Lemma 29 can be proved similarly to Lemma 25. Denote g(u) =
∥∥ΓNN ◦ En

X (u)− En
Y ◦Ψ(u)

∥∥2
2

and let S ′
2 = {u′i}2ni=n+1 be an independent copy of S2. Following the proof of Lemma 25 up

to (93) and replacing Eu∼γ [g(u)|S1] by ES′
2

[
1
n

∑2n
i=n+1 g(u

′
i)
]
, we can derive

T2 ≤ 2ES2,S′
2

[
sup
g∈R

(
1

n

2n∑

i=n+1

(g(ui)− g(u′i))−
1

16dYL2
En

Y
R2

Y

1

n

2n∑

i=n+1

(
g2(ui) + g2(u′i)

)
)]

.

(98)

Let R∗ = {g∗i }
N (δ,R,2n)
i=1 be a δ-cover of R with respect to the data set S̃ = {ui}ni=1 ∪

{u′i}ni=1. Then for any g ∈ R, there exists g∗ ∈ R∗ such that |g(u)− g∗(u)| ≤ δ, ∀u ∈ S̃.
Lemma 29 can be proved by following the rest proof of Lemma 25.

Appendix G. Proof of Lemma 35

The proof of Lemma 35 replies on the perturbation theory of operators on separable Hilbert

spaces, which is stated in the following lemma:

Lemma 37 (Proposition 2.1 of Giulini (2017)) Let A, Ã be two compact self-adjoint

nonnegative operators on the separable real Hilbert space H. Denote the eigenvalues of A

and Ã in non-increasing order by {λ1, λ2, ...} and {λ̃1, λ̃2, ...}, respectively. For some integer

d > 0, let ΠH,d and Π̃H,d be the projectors that project any u ∈ H to the space spanned by

the eigenfunctions corresponding to the largest d eigenvalues of A and Ã, respectively. We

have

∥∥∥ΠH,d − Π̃H,d

∥∥∥
HS

≤
√
2
∥∥∥A− Ã

∥∥∥
HS

max
{
λd − λd+1, λ̃d − λ̃d+1

} . (99)

53



Liu, Yang, Chen, Zhao and Liao

Proof of Lemma 35. Denote w = Ψ(u). Recall that ζ is the probability measure of

v = Ψ(u) + ε̃. We have

Gζ = E{vi}ni=1∼ζ

[
Gn

ζ

]
=Ev∼ζ [v ⊗ v]

=Ew∼Ψ#γ,ε̃∼µ [(w + ε̃)⊗ (w + ε̃)]

=Ew∼Ψ#γ [w ⊗ w] + Eε̃∼µ [ε̃⊗ ε̃]

=GΨ#γ +Gµ, (100)

where the third equality holds since w and ε̃ are independent and Eε̃ = 0. Recall that

ΠY,dY (resp. Πn
Y,dY

) projects any w ∈ Y to the space spanned by the first dY principal

eigenfunctions of GΨ#γ (resp. Gn
ζ ). We denote by Π̃Y,dY as the projection that projects any

w ∈ Y to the space spanned by the first dY principal eigenfunctions of Gζ . Relation (100)

implies that

E{vi}ni=1∼ζ

[
Πn

Y,dY

]
= Π̃Y,dY .

We have

Ev∼ζ

[∥∥∥Gn
ζ − E{vi}ni=1∼ζ

[
Gn

ζ

]∥∥∥
2

HS

]
≤ 4Ev∼ζ

[
‖v‖4Y

]
≤ 4(RY + σ̃)4.

We deduce that

ESEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w)− w
∥∥∥
2

Y

]

=ESEε̃∼µEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w + ε̃)− (w + ε̃)−
[
Πn

Y,dY
(ε̃)− ε̃

]∥∥∥
2

Y

]

≤2ESEε̃∼µEw∼Ψ#γ

[∥∥∥Πn
Y,dY

(w + ε̃)− (w + ε̃)
∥∥∥
2

Y

]
+ 2ESEε̃∼µ

[∥∥∥
[
Πn

Y,dY
(ε̃)− ε̃

]∥∥∥
2

Y

]

≤2ESEv∼ζ

[∥∥∥Πn
Y,dY

(v)− v
∥∥∥
2

Y

]
+ 2Eε̃∼µ

[
‖ε̃‖2Y

]

≤2

√
4(RY + σ̃)4dY

n
+ 2Ev∼ζ

[∥∥∥Π̃Y,dY (v)− v
∥∥∥
2

Y

]
+ 2σ̃2, (101)

where the last inequality comes from Lemma 34 and Π̃Y,dY = Ev∼ζ [v⊗v] = E{vi}ni=1∼ζ

[
Πn

Y,dY

]
.

We bound the second term on the right-hand side as

Ev∼ζ

[∥∥∥Π̃Y,dY (v)− v
∥∥∥
2

Y

]

≤2Ev∼ζ

[∥∥∥Π̃Y,dY (v)−ΠY,dY (v)
∥∥∥
2

Y

]
+ 2Ev∼ζ

[∥∥ΠY,dY (v)− v
∥∥2
Y

]

≤2Ev∼ζ

[∥∥∥
(
Π̃Y,dY −ΠY,dY

)
(v)
∥∥∥
2

Y

]
+ 2Eε̃∼µEw∼Ψ#γ

[∥∥ΠY,dY (w + ε̃)− (w + ε̃)
∥∥2
Y

]

≤2Ev∼ζ

[∥∥∥Π̃Y,dY −ΠY,dY

∥∥∥
2

op
‖v‖2Y

]
+ 4Ew∼Ψ#γ

[∥∥ΠY,dY (w)− w
∥∥2
Y

]
+ 4Eε̃∼µ

[∥∥ΠY,dY (ε̃)− ε̃
∥∥2
Y

]

54



Deep Nonparametric Estimation of Infinite Dimensional Operators

≤2Ev∼ζ

[∥∥∥Π̃Y,dY −ΠY,dY

∥∥∥
2

HS
‖v‖2Y

]
+ 4Ew∼Ψ#γ

[∥∥ΠY,dY (w)− w
∥∥2
Y

]
+ 4Eε̃∼µ

[∥∥ΠY,dY (ε̃)− ε̃
∥∥2
Y

]

≤2

( √
2‖Gµ‖HS

λdY − λdY+1

)2

(RY + σ̃)2 + 4Ew∼Ψ#γ

[∥∥ΠY,dY (w)− w
∥∥2
Y

]
+ 4σ̃2

≤4

(
σ̃

λdY − λdY+1

)2

σ̃2(RY + σ̃)2 + 4Ew∼Ψ#γ

[∥∥ΠY,dY (w)− w
∥∥2
Y

]
+ 4σ̃2, (102)

where the fourth inequality follows from Lemma 37.

Substituting (102) into (101) gives rise to (81).

Appendix H. Proof of Lemma 36

Proof of Lemma 36. Our proof relies on concepts related to functions on manifolds,

such as charts, atlas, the partition of unity, and functions on manifolds. We refer the

readers to (Tu, 2011; Lee, 2006; Chen et al., 2022; Liu et al., 2021) for details. Following

(Chen and Chen, 1995, Proof of Theorem 1), we first construct an atlas of M in which all

projections projects any point on M to a tangent space of M. These projections are linear

functions that can be realized by a subnetwork. Then the function f is decomposed using a

partition of unity subordinates to the atlas we constructed. For each chart (U, φ), we use a

subnetwork to approximate an indicator function that determines whether the input x ∈ M
belongs to U . Another subnetwork is used to approximate f(x) ◦ φ−1 on its tangent space.

Finally, we multiply both subnetworks together and sum over all chats. The multiplication

is approximated by another subnetwork. We prove Lemma 36 in four steps.

Step 1. In the first step, we show that there exists an atlas of M, denoted by {Uk, φk}CM
k=1,

such that φk’s are linear projections. Denote Br(c) as the Euclidean ball in R
dX centered

at c with radius r. For any given r > 0, since M is compact, there exists a set of points

{ck}CM
k=1 such that M ∈ ∪kBr(ck). For each Br(ck), denote Ui = M∩ Br(ck). By setting

r < τ/2, we have that Ui is diffeomorphic to a ball in R
d0 (Niyogi et al., 2008). The minimal

number of balls is upper bounded by

CM ≤
⌈
Area(M)Td/r

d
⌉
,

where Area(M) is the area of M and Td is the thickness of Uk’s (see Chapter 2 of (Conway

and Sloane, 2013)).

We next define φk’s. For each ck, let {vk
j }d0j=1 be an orthonormal basis of the tangent

space of M at ck. Define the matrix Vk = [vk
1 , ...,v

k
d ]. We set

φk(x) = V >
k (x− ck).

Note that φk is a linear function which can be realized by a single layer. Then {(Uk, φk)}CM
k=1

form an atlas of M.

55



Liu, Yang, Chen, Zhao and Liao

Step 2. In the second step, we design a subnetwork that determines the chart that the

input x belongs to. To determine whether x ∈ Uk, it is equivalent to check whether the

squared distance between x and ck is less than r2. It can be done by 1[0,r2] ◦ d2k(x) where
1[0,r2](a) is an indicator function that outputs 1 if a ∈ [0, r2], and outputs 0 otherwise. Here

d2k(x) is the squared distance function defined as

d2k(x) = ‖x− ck‖22 =
dX∑

j=1

(xj − ck,j)
2,

where the notations x = [x1, ..., xdX ]
> and ck = [ck,1, ..., ck,dX ] are used.

We next approximate both functions by neural networks. To approximate d2k, the key is-

sue is to approximate the square function by neural networks, for which we use the following

lemma:

Lemma 38 (Lemma 4.2 of Lu et al. (2021)) For any B > 0 and integers L, p > 0,

there exists a network ×̃ in FNN(1, L, 9p + 1, B2) with dY = 1 such that for any x, y ∈
[−B,B], we have

|×̃(x, y)− xy| ≤ 24B2p−L.

According to Lemma 38, we approximate d2k(x) by

d̃2k(x) =

dX∑

j=1

×̃(xj − ck,j , xj − ck,j),

where ×̃ ∈ FNN(1, 4sL1, 9p1+1, B2). The approximation error is ‖d̃k−dk‖∞ ≤ 24dXB2p−4sL1

1 .

For 1[0,r]2 , we use the following function to approximate it

1̃∆(a) =





1 a ≤ r2 −∆+ 24dXB2p−4sL1

1 ,

− 1

∆−48dXB2p
−4sL1
1

a+
r2−24dXB2p

−4sL1
1

∆−48dXB2p
−4sL1
1

a ∈
[
r2 −∆+ 24dXB2p−4sL1

1 , r2 − 24dXB2p−4sL1

1

]
,

0 a ≥ r2 − 24dXB2p−4sL1

1 ,

where ∆ ≥ 24dXB2p−4sL1

1 will be chosen later. We approximate 1̃∆ ◦d2k(x) by 1̃∆ ◦ d̃2k(x) in
which the parameter ∆ is the ’width’ of the error region: when x /∈ Uk, we have d2k(x) ≥ r2

and 1̃∆ ◦ d̃2k(x) = 0; when x ∈ Uk and d2k(x) ≤ r2 −∆, we have 1̃∆ ◦ d̃2k(x) = 1.

We then realize 1̃∆(a) by a subnetwork. Denoting m0 =
1

∆−48dXB2p
−4sL1
1

,m1 = r2−∆+

24dXB2p−4sL1

1 ,m2 = r2 − 24dXB2p−4sL1

1 , we rewrite 1̃∆(a) as

1̃∆(a) = −m0(min{max{a,m1},m2}) +m2m0.

The function above can be realized by a network with one hidden layer:

1̃∆(a) = −m0 (m2 − ReLU [m2 − (ReLU(a−m1) +m1)]) +m2m0.

56



Deep Nonparametric Estimation of Infinite Dimensional Operators

Step 3. In this step, we decompose f using a partition of unity of M and approximate

each component by a subnetwork. Let {hk}CM
k=1 be a partition of unity of M such that hk

is supported on Uk. We decompose f as

f =

CM∑

k=1

hkf.

Note that for each k, hkf is a function defined on M supported on Uk, and (hkf) ◦ φ−1
k is

a function defined in R
d0 and supported on [−2B, 2B]d0 . The following lemma shows that

hkf is in the same space as f :

Lemma 39 Suppose Assumption 8 holds. Let {Uk, φk}CM
k=1 be defined in Step 1. For each

k, we have hkf ∈ C0,1(M) and ‖hkf‖C0,1(M) is bounded by a constant depending on d0, hk, f

and φk.

Lemma 39 can be proved by following the proof of (Chen et al., 2022, Lemma 2). The

proof is omitted here. According to Lemma 39 and since φk is a linear projection, we have

(hkf) ◦ φ−1
k ∈ C0,1([−2B, 2B]d0). Lemma 27 implies that there exists a neural network

f̃k ∈ FNN(1, L2, p2,M) with

L2 = O(L̃2), p2 = O (p̃2) , M = R

for any L̃2, p̃2 > 0 such that

‖f̃k − (hkf) ◦ φ−1
k ‖∞ ≤ C1L̃

− 2
d0

2 p̃
− 2

d0
2

for some constant C1 depending on d0, B,R.

Step 4. We then assemble all subnetworks constructed in the previous steps and approx-

imate f by

f̃ =

CM∑

k=1

×̃
(
f̃k ◦ φk, 1̃k ◦ d̃2k

)
. (103)

In (103), according to Lemma 38, we set ×̃ ∈ FNN(1, 4L3, 9p3 + 1,M) as an approximation

of × with M = R and error 24R2p−4L3

3 . The following lemma gives an upper bound of the

approximation error of f̃ (see a proof in Appendix I):

Lemma 40 The error of f̃ can be decomposed as

‖f̃ − f‖∞ ≤
CM∑

k=1

Ak,1 +Ak,2 +Ak,3

with

Ak,1 =
∥∥∥×̃(f̃ ◦ φ−1

k , 1̃∆ ◦ d̃2k)− (f̃ ◦ φ−1
k )× (1̃∆ ◦ d̃2k)

∥∥∥
∞

≤ 24R2p−2
3 L−2

3 ,

57



Liu, Yang, Chen, Zhao and Liao

Ak,2 =
∥∥∥(f̃ ◦ φ−1

k )× (1̃∆ ◦ d̃2k)− [(hkf) ◦ φ−1
k ]× (1̃∆ ◦ d̃2k)

∥∥∥
∞

≤ C12L̃
− 2

d0
2 p̃

− 2
d0

2 ,

Ak,3 =
∥∥∥[(hkf) ◦ φ−1

k ]× (1̃∆ ◦ d̃2k)− [(hkf) ◦ φ−1
k ]× 1[0,r2]

∥∥∥
∞

≤ C13(π + 1)

r(1− r/τ)
∆,

for some constant C12 depending on d0, τ, B,R, and C13 depending on R.

According to Lemma 40, for any L̃, p̃ > 0, we set

• f̃k ∈ FNN(1, L2, p2,M) with L2 = O
(
L̃
)
, p2 = O (p̃),

• ×̃ ∈ FNN(1, 4L3, 9p3 + 1,M) with L3 = O
(
L̃
)
, p3 = O (p̃),

• d̃2k ∈ FNN(1, 4L1, dX (9p1+1),M) with ∆ = L̃
− 2

d0 p̃
− 2

d0 , L1 = L̃+log(12dXB2), p1 = p̃

such that

24dXB2p−4L1

1 = 24dXB2p̃−4L̃−log(48dXB2) = 24dXB2p̃− log(48dXB2)p̃−4L̃

= 24dXB2(48dXB2)− log p̃p̃−4L̃ ≤ 24dXB2(24dXB2)−1p̃−4L̃

≤ p̃−4L̃ ≤ p̃−2(L̃+1) ≤ p̃−22−2L̃ ≤ p̃−2L̃−2 < ∆,

where in the third equality, we used alog b = blog a for a, b > 0,

• 1̃∆ ∈ FNN(1, 2, 1, 1).

The total approximation error is bounded by C3L̃
− 2

d0 p̃
− 2

d0 for some C3 depending on

d0, R,B, τ and the surface area of M. The constant hidden in O(·) depends on d0, R,B, τ

and the surface area of M. The resulting network is in FNN(1, L, p,M) with L, p,M defined

in (82).

Appendix I. Proof of Lemma 40

Proof of Lemma 40. For Ak,1, since ×̃ ∈ FNN(1, 4L3, p3, R), by Lemma 38, we have

Ak,1 ≤ 24R2p−4L3

3 ≤ 24R2p
−2(L3+1)
3 ≤ 24R2p−2

3 2−2L3 ≤ 24R2p−2
3 L−2

3 .

For Ak,2, since 1̃k ◦ d̃2k ∈ [0, 1], we have

Ak,2 ≤
∥∥∥f̃ ◦ φ−1

k − (hkf) ◦ φ−1
k

∥∥∥
∞

≤
∥∥∥f̃ − (hkf)

∥∥∥
∞

≤ C12L̃
− 2

d0
2 p̃

− 2
d0

2 .

The upper bound of Ak,3 is proved in (Chen et al., 2022, Proof of Lemma 3).

58



Deep Nonparametric Estimation of Infinite Dimensional Operators

References

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki,

Zongyi Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network

for partial differential equations. In ICLR 2020 Workshop on Integration of Deep Neural

Models and Differential Equations, 2020. URL https://openreview.net/forum?id=

fg2ZFmXFO3.

Martin Anthony and P Bartlett. Neural network learning: theoretical foundations, 1999.

A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Transactions on Information Theory, 39(3):930–945, May 1993. ISSN 0018-9448.

doi: 10.1109/18.256500.

Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities.

Annals of Statistics, 2005.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-

dimension and pseudodimension bounds for piecewise linear neural networks. The Journal

of Machine Learning Research, 20(1):2285–2301, 2019.

Benedikt Bauer and Michael Kohler. On deep learning as a remedy for the curse of dimen-

sionality in nonparametric regression. The Annals of Statistics, 47(4):2261 – 2285, 2019.

doi: 10.1214/18-AOS1747. URL https://doi.org/10.1214/18-AOS1747.

Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error:

Empirical risk minimization over deep artificial neural networks overcomes the curse of

dimensionality in the numerical approximation of black-scholes partial differential equa-

tions. CoRR, abs/1809.03062, 2018. URL http://arxiv.org/abs/1809.03062.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model

reduction and neural networks for parametric PDEs. The SMAI Journal of Computational

Mathematics, 7:121–157, 2021.

Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta numerica, 13:147–269,

2004.

Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A. Zaki, and George Em Karniadakis.

DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator

approximation by neural networks. Journal of Computational Physics, 436:110296,

2021. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2021.110296. URL https:

//www.sciencedirect.com/science/article/pii/S0021999121001911.

59



Liu, Yang, Chen, Zhao and Liao

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide

and deep neural networks. CoRR, abs/1905.13210, 2019. URL http://arxiv.org/abs/

1905.13210.

Long Qing Chen and Jie Shen. Applications of semi-implicit fourier-spectral method to

phase field equations. Computer Physics Communications, 108(2-3):147–158, 1998.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approximation of

deep ReLU networks for functions on low dimensional manifolds. Advances in Neural

Information Processing Systems, 32:8174–8184, 2019.

Minshuo Chen, Hao Liu, Wenjing Liao, and Tuo Zhao. Doubly robust off-policy learning

on low-dimensional manifolds by deep neural networks. arXiv preprint arXiv:2011.01797,

2020.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression

on low-dimensional manifolds using deep ReLU networks: Function approximation and

statistical recovery. Information and Inference: A Journal of the IMA, 11(4):1203–1253,

2022.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural

networks with arbitrary activation functions and its application to dynamical systems.

IEEE Transactions on Neural Networks, 6(4):911–917, 1995.

Abdellah Chkifa, Albert Cohen, and Christoph Schwab. Breaking the curse of dimensional-

ity in sparse polynomial approximation of parametric PDEs. Journal de Mathématiques

Pures et Appliquées, 103(2):400–428, 2015.

Alexander Cloninger and Timo Klock. ReLU nets adapt to intrinsic dimensionality beyond

the target domain. arXiv e-prints, pages arXiv–2008, 2020.

Albert Cohen and Ronald DeVore. Approximation of high-dimensional parametric PDEs.

Acta Numerica, 24:1–159, 2015.

John Horton Conway and Neil James Alexander Sloane. Sphere Packings, Lattices and

Groups, volume 290. Springer Science & Business Media, 2013.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4):303–314, 1989.

Maarten V de Hoop, Nikola B Kovachki, Nicholas H Nelsen, and Andrew M Stu-

art. Convergence rates for learning linear operators from noisy data. arXiv preprint

arXiv:2108.12515, 2021.

60



Deep Nonparametric Estimation of Infinite Dimensional Operators

Mo Deng, Shuai Li, Alexandre Goy, Iksung Kang, and George Barbastathis. Learning

to synthesize: robust phase retrieval at low photon counts. Light: Science & Applica-

tions, 9(1):36, 2020. doi: 10.1038/s41377-020-0267-2. URL https://doi.org/10.1038/

s41377-020-0267-2.

Qiang Du, Yiqi Gu, Haizhao Yang, and Chao Zhou. The discovery of dynamics via linear

multistep methods and deep learning: Error estimation. arXiv preprint arXiv:2103.11488,

2021.

Chenguang Duan, Yuling Jiao, Yanming Lai, Xiliang Lu, and Zhijian Yang. Convergence

rate analysis for deep Ritz method. arxiv:2103.13330, 2021.

Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer

neural networks. Communications in Mathematical Sciences, 17(5):1407–1425, 2019.

Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function

spaces for neural network models. Constructive Approximation, 2021. doi: 10.1007/

s00365-021-09549-y. URL https://doi.org/10.1007/s00365-021-09549-y.

Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume

159. Springer, 2004.

Yuwei Fan, Jordi Feliu-Fabà, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núñez. A mul-

tiscale neural network based on hierarchical nested bases. Research in the Mathematical

Sciences, 6(2):21, 2019a. doi: 10.1007/s40687-019-0183-3. URL https://doi.org/10.

1007/s40687-019-0183-3.

Yuwei Fan, Cindy Orozco Bohorquez, and Lexing Ying. BCR-Net: A neural network

based on the nonstandard wavelet form. Journal of Computational Physics, 384:1–15,

2019b. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.02.002. URL https:

//www.sciencedirect.com/science/article/pii/S0021999119300762.

Max H. Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and

inference. Econometrica, 89(1):181–213, 2021. ISSN 0012-9682. doi: 10.3982/ecta16901.

URL http://dx.doi.org/10.3982/ECTA16901.

Herbert Federer. Curvature measures. Transactions of the American Mathematical Society,

93(3):418–491, 1959.

Ilaria Giulini. Robust PCA and pairs of projections in a Hilbert space. Electronic Journal

of Statistics, 11(2):3903–3926, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

61



Liu, Yang, Chen, Zhao and Liao

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics, speech

and signal processing, pages 6645–6649. IEEE, 2013.

Yiqi Gu, John Harlim, Senwei Liang, and Haizhao Yang. Stationary density estimation of

Itô diffusions using deep learning. arxiv:2109.03992, 2021.

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-free Theory

of Nonparametric Regression, volume 1. Springer, 2002.

Bernard Haasdonk. Reduced basis methods for parametrized PDEs–a tutorial introduction

for stationary and instationary problems. Model Reduction and Approximation: Theory

and Algorithms, 15:65, 2017.

Michael Hamers and Michael Kohler. Nonasymptotic bounds on the L2 error of neural

network regression estimates. Annals of the Institute of Statistical Mathematics, 58(1):

131–151, 2006.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, and Brian Kingsbury. Deep neural

networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine,

29, 2012.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-

works, 4(2):251–257, 1991.

Harold Hotelling. Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology, 24(6):417, 1933.

Harold Hotelling. Relations between two sets of variates. In Breakthroughs in Statistics,

pages 162–190. Springer, 1992.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence

and generalization in neural networks. CoRR, abs/1806.07572, 2018. URL http://

arxiv.org/abs/1806.07572.

Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression

on approximately low-dimensional manifolds. arXiv: Statistics Theory, 2021.

Yuehaw Khoo and Lexing Ying. SwitchNet: A neural network model for forward and inverse

scattering problems. SIAM Journal on Scientific Computing, 41(5):A3182–A3201, 2019.

doi: 10.1137/18M1222399.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with

artificial neural networks. European Journal of Applied Mathematics, 32(3):421–435, 2021.

62



Deep Nonparametric Estimation of Infinite Dimensional Operators

Michael Kohler and Adam Krzyżak. Adaptive regression estimation with multilayer feed-

forward neural networks. Nonparametric Statistics, 17(8):891–913, 2005.

Michael Kohler, Adam Krzyzak, and Sophie Langer. Estimation of a function of low local

dimensionality by deep neural networks. arxiv:1908.11140, 2020.

Vladimir Koltchinskii. Local Rademacher complexities and oracle inequalities in risk mini-

mization. Annals of Statistics, 2006.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation

and error bounds for Fourier neural operators. Journal of Machine Learning Research,

22(290):1–76, 2021.

Nikola B Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-

tacharya, Andrew M Stuart, and Anima Anandkumar. Neural operator: Learning maps

between function spaces with applications to PDEs. J. Mach. Learn. Res., 24(89):1–97,

2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural Information Processing Systems,

pages 1097–1105, 2012.

Samuel Lanthaler and Andrew M Stuart. The curse of dimensionality in operator learning.

arXiv preprint arXiv:2306.15924, 2023.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deep-

onets: A deep learning framework in infinite dimensions. Transactions of Mathematics

and Its Applications, 6(1):tnac001, 2022.

John M Lee. Riemannian Manifolds: An Introduction to Curvature, volume 176. Springer

Science & Business Media, 2006.

Dong Li, Zhonghua Qiao, and Tao Tang. Characterizing the stabilization size for semi-

implicit fourier-spectral method to phase field equations. SIAM Journal on Numerical

Analysis, 54(3):1653–1681, 2016.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya,

Andrew Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial

differential equations. In International Conference on Learning Representations, 2020.

Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis.

Operator learning for predicting multiscale bubble growth dynamics. The Journal of

Chemical Physics, 154(10):104118, 2021. doi: 10.1063/5.0041203.

63



Liu, Yang, Chen, Zhao and Liao

Hao Liu, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Besov function approximation and

binary classification on low-dimensional manifolds using convolutional residual networks.

In International Conference on Machine Learning, 2021.

Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, and Tuo Zhao. Benefits

of overparameterized convolutional residual networks: Function approximation under

smoothness constraint. arXiv preprint arXiv:2206.04569, 2022.

Hao Liu, Alex Havrilla, Rongjie Lai, and Wenjing Liao. Deep nonparametric estimation

of intrinsic data structures by chart autoencoders: Generalization error and robustness.

Applied and Computational Harmonic Analysis, 68:101602, 2024.

Jianfeng Lu and Yulong Lu. A priori generalization error analysis of two-layer neural

networks for solving high dimensional Schrödinger eigenvalue problems. arxiv:2105.01228,

2021.

Jianfeng Lu, Yulong Lu, and Min Wang. A priori generalization analysis of the deep Ritz

method for solving high dimensional elliptic equations. arxiv:2101.01708, 2021.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation

for smooth functions. SIAM Journal on Mathematical Analysis, 2021.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.

Learning nonlinear operators via deeponet based on the universal approximation the-

orem of operators. Nature Machine Intelligence, 3(3):218–229, 2021. doi: 10.1038/

s42256-021-00302-5. URL https://doi.org/10.1038/s42256-021-00302-5.

Tao Luo and Haizhao Yang. Two-layer neural networks for partial differential equations:

Optimization and generalization theory. ArXiv, abs/2006.15733, 2020.

Hrushikesh Mhaskar. Local approximation of operators. arXiv preprint arXiv:2202.06392,

2022.

Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley. Deep

learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics,

19(6):1236–1246, 2017.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics

informed neural networks (PINNs) for approximating PDEs. arxiv:2006.16144, 2020.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep

neural network with intrinsic dimensionality. Journal of Machine Learning Research, 21

(174):1–38, 2020a. URL http://jmlr.org/papers/v21/20-002.html.

64



Deep Nonparametric Estimation of Infinite Dimensional Operators

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep

neural network with intrinsic dimensionality. J. Mach. Learn. Res., 21:174–1, 2020b.

Nicholas H Nelsen and Andrew M Stuart. The random feature model for input-output maps

between banach spaces. arXiv preprint arXiv:2005.10224, 2020.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of subman-

ifolds with high confidence from random samples. Discrete & Computational Geometry,

39(1-3):419–441, 2008.

Steven A Orszag. Accurate solution of the Orr–Sommerfeld stability equation. Journal of

Fluid Mechanics, 50(4):689–703, 1971.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):

559–572, 1901.

Benjamin Peherstorfer and Karen Willcox. Data-driven operator inference for non-

intrusive projection-based model reduction. Computer Methods in Applied Mechan-

ics and Engineering, 306:196–215, 2016. ISSN 0045-7825. doi: https://doi.org/10.

1016/j.cma.2016.03.025. URL https://www.sciencedirect.com/science/article/

pii/S0045782516301104.

Chang Qiao, Di Li, Yuting Guo, Chong Liu, Tao Jiang, Qionghai Dai, and Dong Li. Eval-

uation and development of deep neural networks for image super-resolution in optical

microscopy. Nature Methods, 18(2):194–202, 2021. doi: 10.1038/s41592-020-01048-5.

URL https://doi.org/10.1038/s41592-020-01048-5.

Zhen Qin, Qingliang Zeng, Yixin Zong, and Fan Xu. Image inpainting based on deep

learning: A review. Displays, 69:102028, 2021. ISSN 0141-9382. doi: https://doi.org/10.

1016/j.displa.2021.102028. URL https://www.sciencedirect.com/science/article/

pii/S0141938221000391.

Gianluigi Rozza. Fundamentals of reduced basis method for problems governed by

parametrized PDEs and applications. In Separated Representations and PGD-based Model

Reduction, pages 153–227. Springer, 2014.

Johannes Schmidt-Hieber. Deep relu network approximation of functions on a manifold.

arXiv preprint arXiv:1908.00695, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU

activation function. The Annals of Statistics, 48(4):1875–1897, 2020.

Martin H Schultz. L∞-multivariate approximation theory. SIAM Journal on Numerical

Analysis, 6(2):161–183, 1969.

65



Liu, Yang, Chen, Zhao and Liao

Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation prop-

erties for deep neural networks. Applied and Computational Harmonic Analysis, 44(3):

537–557, 2018.

Jie Shen, Tao Tang, and Li-Lian Wang. Spectral Methods: Algorithms, Analysis and Appli-

cations, volume 41. Springer Science & Business Media, 2011.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized

by number of neurons. Communications in Computational Physics, 28(5):1768–1811,

2020. ISSN 1991-7120. doi: 10.4208/cicp.OA-2020-0149.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network with approximation error

being reciprocal of width to power of square root of depth. Neural Computation, 33

(4):1005–1036, 03 2021a. ISSN 0899-7667. doi: 10.1162/neco a 01364. URL https:

//doi.org/10.1162/neco_a_01364.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three

hidden layers are enough. Neural Networks, 141:160–173, 2021b. ISSN 0893-6080. doi:

https://doi.org/10.1016/j.neunet.2021.04.011.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation: Achieving

arbitrary accuracy with fixed number of neurons. arxiv:2107.02397, 2021c.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU

networks in terms of width and depth. Journal de Mathématiques Pures et Appliquées,

to appear.

Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence of

physics informed neural networks for linear second-order elliptic and parabolic type PDEs.

arxiv:2004.01806, 2020.

Jonathan W. Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric

entropy, and n-widths of shallow neural networks. arxiv:2101.12365, 2021.

Charles J. Stone. Optimal Global Rates of Convergence for Nonparametric Regression.

The Annals of Statistics, 10(4):1040 – 1053, 1982. doi: 10.1214/aos/1176345969. URL

https://doi.org/10.1214/aos/1176345969.

Taiji Suzuki. Adaptivity of deep ReLU network for learning in besov and mixed smooth

besov spaces: optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033,

2018.

Gabor Szeg. Orthogonal Polynomials, volume 23. American Mathematical Soc., 1939.

66



Deep Nonparametric Estimation of Infinite Dimensional Operators

Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo, and Chia-Wen Lin.

Deep learning on image denoising: An overview. Neural Networks, 131:251–275, Nov

2020. ISSN 0893-6080. doi: 10.1016/j.neunet.2020.07.025. URL http://dx.doi.org/

10.1016/j.neunet.2020.07.025.

Loring W.. Tu. An Introduction to Manifolds. Springer., 2011.

Aad W Van Der Vaart, Adrianus Willem van der Vaart, Aad van der Vaart, and Jon Well-

ner. Weak convergence and empirical processes: with applications to statistics. Springer

Science & Business Media, 1996.

Zhun Wei and Xudong Chen. Physics-inspired convolutional neural network for solving

full-wave inverse scattering problems. IEEE Transactions on Antennas and Propagation,

67(9):6138–6148, 2019.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Net-

works, 94:103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU net-

works. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Proceedings

of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learn-

ing Research, pages 639–649. PMLR, 06–09 Jul 2018.

Dmitry Yarotsky. Elementary superexpressive activations. arXiv e-prints, 2021.

Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for

deep neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

13005–13015. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/

paper/2020/file/979a3f14bae523dc5101c52120c535e9-Paper.pdf.

Zecheng Zhang, Wing Tat Leung, and Hayden Schaeffer. A discretization-invariant ex-

tension and analysis of some deep operator networks. arXiv preprint arXiv:2307.09738,

2023a.

Zecheng Zhang, Leung Wing Tat, and Hayden Schaeffer. BelNet: Basis enhanced learning,

a mesh-free neural operator. Proceedings of the Royal Society A, 479(2276):20230043,

2023b.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks

for surrogate modeling and uncertainty quantification. Journal of Computational Physics,

366:415–447, 2018. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.04.018. URL

https://www.sciencedirect.com/science/article/pii/S0021999118302341.

67


	Introduction
	A general framework
	Preliminaries
	Problem setup and a learning framework

	Main results
	Assumptions
	Generalization error with general encoders and decoders

	Generalization error with basis encoders and decoders
	Basis encoders and decoders
	Generalization error with basis encoders
	 Legendre polynomials
	Trigonometric functions

	Generalization error for PCA encoders and decoders
	PCA encoders and decoders
	Generalization error with PCA encoders and decoders

	Exploit additional low-dimensional structures
	When encoded vectors lie on a low-dimensional manifold
	When the operator  has low complexity 

	Proof of main results
	Preliminaries
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Corollary 10
	Proof of Corollary 11
	Proof of Theorem 13
	Proof of Corollary 14
	Proof of Theorem 15
	Proof of Theorem 16

	Conclusion and discussion
	The derivation for the error bound in Corollary 10 when dX=dY=log12 n
	Proof of Lemma 6
	Proof of Lemma 21
	Proof of Lemma 24
	Proof of Lemma 25
	Proof of Lemma 29
	Proof of Lemma 35
	Proof of Lemma 36
	Proof of Lemma 40

