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Abstract—Objective: Impact kinematics are widely employed to 

investigate mechanisms of traumatic brain injury (TBI). However, 
they are susceptible to noise and artefacts; thus, require data 
filtering. Few studies have focused on how data filtering affects 
brain strain most relevant to TBI. Here, we report that impact-
induced brain strains are much less sensitive to data filtering than 
kinematics based on three filtering methods: CFC180, lowpass 
200Hz, and a new method called Head Exposure to Acceleration 
Database in Sport (HEADSport). Methods: Using mouthguard-
measured head impacts in elite rugby (N=5694), average 
Euclidean distances between the three filtered angular velocity 
profiles and their unfiltered counterparts are used to identify three 
groups of impacts with large variations: 90–95th, 95–99th, and >99th 
percentile. From each group, 20 impacts are randomly selected for 
simulation using the anisotropic Worcester Head Injury Model 
(WHIM) V1.0. Results and Conclusion: HEADSport and CFC180 
are the most and least effective, respectively, in suppressing 
“unphysical artefacts" shown as sharp spikes with a rather short 
impulse duration (e.g., <3 ms) in angular velocity. However, 
maximum principal strain (MPS), especially that in the corpus 
callosum, is much less sensitive to data filtering compared to 
kinematic peaks (e.g., reduction of 3% vs. 47% and 90% for peak 
angular velocity and acceleration with HEADSport for impacts of 
>99th percentile). Significance: These findings confirm that the 
brain acts as a low-pass filter, itself, to suppress high frequency 
noise in impact kinematics. Therefore, brain strain can serve as a 
common metric for TBI biomechanical studies to maximize 
relevance to the injury, as it is not sensitive to kinematic filters.  
 
Index Terms—Angular velocity, brain strain, deep learning, 

impact kinematics, traumatic brain injury 
 

I. INTRODUCTION 
MPACT kinematics such as linear and angular acceleration 
and angular velocity have been extensively employed to 

characterize the severity of head impact and the risk of 
traumatic brain injury (TBI). In part, this is because these 
physical quantities can be directly measured and that they are 
related to tissue mechanical responses believed to cause the 
injury. Over the years, a wide range of instrumented sensors 
have become available to measure head impact kinematics [1], 
[2], [3]. To reconstruct head impacts on dummies in the 
laboratory, accelerometers and gyroscopes are instrumented at 
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the head center of gravity to record linear acceleration and 
angular velocity and acceleration [4], [5]. They serve as the 
ground-truth to validate measurement accuracy of other impact 
sensors such as sensor-embedded helmets [6], in-ear sensors 
[7], headband for non-helmeted sports [8], skin patches [9], and 
instrumented mouthguard (iMG) [9], [10], [11], [12]. Once 
validated, these sensors are then instrumented on live humans 
to record impact kinematics on the field [1], [2], [7], [8], [10], 
[12], [13], [14], [15], [16]. They provide valuable real-world 
impact data to study the biomechanics of TBI, including mild 
TBI (mTBI) often referred to as “concussion” [1], [17].  
However, noise and artefacts are common in impact 

kinematic measurement. As a result, signal filters are usually 
applied  [4], [10], [11], [12], [18], [19], [20], [21], [22]. The 
typical approach to assessing the quality of data filtering is to 
compare with lab-reconstructed dummy headform impact data 
often regarded as the “gold standard” [18]. Most studies focus 
on comparing peak linear acceleration (PLA), peak angular 
velocity (PAV), and peak angular acceleration (PAA) 
magnitudes of the filtered data relative to those from lab-
reconstructed or video analyzed counterparts [10], [11], [12], 
[20], [21].  
It is important to identify the best cut-off frequency so that to 

minimize difference relative to signal from the gold-standard. 
To this end, Rowson and co-workers calculated angular 
acceleration from angular rate sensors and applied Channel 
Frequency Class (CFC) filters recommended by the Society of 
Automotive Engineers (SAE) J211 with different cut-off 
frequencies [21]. The study determined that the CFC 155 filter 
as the most optimal as it minimizes the root mean squared error 
(RMSE) relative to the 3-2-2-2 array accelerometers 
(normalized average error of 0.27% ± 5.2%). In comparison, 
Wu and colleagues compared the attenuation of filtered peak 
kinematics and associated injury metrics to those from high-
bandwidth data to determine the best cut-off frequency [13]. It 
was found to be 90 Hz to maintain a 10% attenuation of PAV 
for helmeted dummy head impacts [12].  
Other studies have also used brain strain to validate filters 

with lab-reconstructed reference through a finite element (FE) 
model of the human brain  [4], [18], [22]. A physics-based brain 
model translates impact kinematics into detailed brain strain 
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and other mechanical responses. It is considered to have strong 
potential to improve injury prediction and interpret kinematic 
exposure over global head kinematics, alone [17]. 
For example, Jones and colleagues investigated the 

feasibility of transforming current iMG system from lab tests 
for on-field impact measurements [18]. The study compared the 
90th percentile peak maximum principal strain (MPS) of the 
whole brain obtained from filtered and unfiltered data. To 
validated the most commonly used iMG for American football 
head impacts, Liu and co-workers evaluated fidelity of filters 
using 95th percentile peak MPS of the whole brain and that of 
the corpus callosum, 95th percentile fiber strain in the corpus 
callosum, as well as several strain-related injury metrics [22]. 
Wu and co-workers found that the attenuation of both kinematic 
peaks and brain tissue responses such as strain, strain rate, Brain 
Injury Criteria (BrIC) and cumulative strain damage measure 
(CSDM) decreased when the cut-off frequency in various CFC 
filters increased compared to unfiltered data [13]. Work by Post 
et al. [23] investigated mean PLA and PAA, as well as mean 
MPS differences relative to the unfiltered data using various 
CFC filters as recommended by SAE J211 [24]. The results 
similarly showed that when using low-pass filters of 300 Hz or 
higher cut-off frequency, there were little effects on brain strain 
even when some difference in PLA and PAA could occur.  
Nevertheless, impact kinematic filters are not consistently 

applied, where the cut-off frequency ranges from 100 Hz to 300 
Hz, or no filter used [22], [23], [25], [26]. One study reports that 
PAA difference relative to the unfiltered data could range from 
46% to 154% for the same signal subjecting to different filters 
[23]. This would lead to difficulty in assessing sensor fidelity 
and challenges in comparing different TBI studies for 
consistent findings. Given the variability in the underlying 
signal, a recent study suggests the need for an individualized 
filter based on characteristics of impact kinematic profiles 
instead of applying a fixed filter for all impacts [27].  
To this end, a filtering method called Head Exposure to 

Acceleration Database in Sport (HEADSport) was developed 
based on the power spectral density (PSD) characteristics of 
reconstructed dummy head impacts and those measured on the 
field using the Prevent Biometrics iMGs (Minneapolis, MN) 
[28]. An appropriate filter frequency class was selected 
according to the impact kinematic PSD characteristics. Briefly, 
the 95th percentile of maximum PSD values from laboratory 
reconstructed impact signals, Fmax, is used as a threshold. An 
on-field impact is considered to have artefacts, if the maximum 
95th percentile PSD exceeds Fmax. Further, frequency 
component above the first local PSD minima is also considered 
as unwanted high-frequency noise. In general, the cut-off 
frequency for each impact is selected as the minimum 
frequency among Fmax, the 95th percentile and the first local 
minima (if applicable) of the PSD. 
The HEADSport method was compared with two other 

commonly used filters, the Butterworth-200Hz low-pass (-6dB) 
filter used in Prevent Biometrics iMG and the CFC180 filter (-
3dB lowpass, cut-off frequency of 300 Hz) that has the highest 
cut-off frequency in a commercially available iMG system [11]. 
Results showed that the HEADSport method yielded the 

highest signal to noise ratio (SNR). It has also been shown to 
be especially effective in suppressing “unphysical artefact” 
presented as a sharp spike in the angular velocity profile due to, 
e.g., mouthguard movement resulting from poor fitting, biting 
and direct impact to the mouthguard [28]. The sharp spike with 
an impulse duration <3 ms is unlikely to occur to a human head 
in contact sports, where an impulse duration of 10–100 ms is 
more typical according to reported dummy [20], [29], [30], 
[31], [32], [33] and on-field impacts [13], [33]. This is also 
consistent with the observation that angular acceleration 
impulse duration is typically greater than 10 ms for sports-
related head impacts [34]. The artefact suppression is achieved 
by applying CFC filters with the lower cut-off frequency 
determined by its PSD, which also results in lower kinematic 
magnitudes relative to those from the CFC180 or 200 Hz filters 
[28].  
In this study, we extend the comparisons of HEADSport with 

the same two other filters in terms of brain strain responses, 
including MPS of the whole brain and that of the corpus 
callosum deep in the brain, as well as their spatial distributions. 
Previous studies investigating filter effectiveness in terms of 
brain strains have largely focused on the peak MPS of the whole 
brain [4], [18], [23], with one exception comparing MPS and 
white matter fiber strain of the corpus callosum [22] through a 
deep learning neural network model [35]. The attention on brain 
strain deep in the parenchyma due to kinematic variations has 
emerged [36], [37], [38]. Because of the brain’s viscoelasticity, 
deformation attenuation is expected when displacement travels 
from the brain-skull interface to the deep region. Nevertheless, 
the significance of impact kinematic filtering on the attenuation 
and the resulting deep region brain strain has not been studied. 
Thus, findings from this study may provide improved insight 
into the causal relationship between impact kinematics and 
brain strain. This would inform how best to maximize the utility 
of impact-induced brain strains for studying the biomechanical 
basis of TBI in the future.  

II. MATERIALS AND METHODS 
The HEADSport was developed based on N=5694 on-field 

head impacts measured by mouthguard (Prevent Biometrics; 
Minneapolis, MN) in elite rugby (all video-verified) and 72 lab 
reconstructed head impacts with various impact locations and 
linear acceleration magnitudes based on on-field measurements 
[28]. Each participant provided written consent. Ethical 
approval for impact data collection was given by the 
University's Research Ethics Committee (UREC), University of 
Ulster (#REC-21-0061). 
Each impact had a linear acceleration profile and an angular 

velocity profile along the three anatomical axes prescribed at 
the head center of gravity. Both accelerometer and gyroscope 
signals have a bandwidth well in excess of 400 Hz. The 
measured kinematic profiles were filtered using either 200Hz, 
CFC180, or HEADSport, respectively [28]. Given that linear 
kinematics common in contact sports generate little brain strain, 
here we used angular kinematics, alone, for analysis [17]. All 
filtered or unfiltered impact kinematic profiles had a duration 
of 50 ms and were sampled at a frequency of 3.2 kHz. Angular 
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acceleration was then calculated via a forward differentiation 
method based on the angular velocity profile.  

A. Euclidean distance to identify impacts for model 
simulation 
Due to the high computational cost in impact simulation to 

generate brain strain (typically hours for each impact [17]), it 
was not feasible to simulate all the measured impacts using a 
conventional finite element brain model (requiring 
approximately six weeks to simulate and post-process just the 
10% of the cases selected if run sequentially; see later for 
details). Thus, we limited our investigations to impacts with 
larger differences between filtered and unfiltered kinematic 
profiles. Both the peak magnitude and the shape of kinematic 
profile significantly affects brain strains [36], [39]. Intuitively, 
therefore, piece-wise Euclidean distance [40], [41] was used to 
quantify kinematic profile differences as this metric considers 
differences at every time point. Since brain strains are primarily 
induced by head rotation in contact sports and that brain strain 
is most relevant to angular velocity [36], [42], only the angular 
velocity profiles around the three anatomical axes were used for 
calculation.  
The two-dimension profile matrix of data size of 160 × 3 (for 

a duration of 50 ms at a sampling frequency of 3.2 kHz) for 
each filtered and unfiltered impact was first reformatted into a 
one-dimensional vector (m × n = 480 × 1). It was then 
normalized relative to the largest component magnitude of the 
unfiltered data (i.e., 𝑚𝑎𝑥(𝑥!), where i ranges from 1 to 480) to 
allow comparison across head impacts of different magnitudes 
[43]. Piece-wised Euclidean distance between each filtered and 
the unfiltered profile, 𝐸(𝑥, 𝑦), is then defined as below: 

𝐸(𝑥, 𝑦) = 	+∑ (𝑥! −	𝑦!)"#
!                                                     (1) 

where m is the length of the reformatted kinematics data (i.e., 
480), x and y are ith element in the normalized filtered and 
unfiltered impact profile, respectively. The resulting Euclidean 
distances corresponding to the three filters were finally 

averaged (see Fig. 1 for distribution) to characterize the degree 
of variation between filtered and unfiltered data. 

B. Selection of impacts 
To limit the number of impacts for model simulation, impacts 

with average Euclidean distances above the 90th percentile were 
selected for impact simulation. For a more systematic 
investigation, these impacts were further divided into three 
groups with the average Euclidean distances between the 90th 
and 95th, 95th and 99th, and above the 99th percentile. They had 
284, 228, and 57 impact cases, respectively (Fig. 1). For each 
group, 20 cases were then randomly selected (sample profiles 
for each group are shown in Fig. 2). Next, the filtered and 
unfiltered angular velocity profiles for each impact were 
simulated using the anisotropic Worcester Head Injury Model 
(WHIM) V1.0 [44]. This brain model adopts hyper-viscoelastic 
material properties for the brain and further incorporates white 
matter anisotropy based on whole-brain tractography. The 
model has been extensively validated against relative brain-
skull displacement and marker-based strain in cadaveric 
impacts, as well as full-field strain under in vivo head rotations 
relevant to acute brain injury and subconcussion, respectively 
[45]. It achieves an average peak strain magnitude ratio 
(simulation vs. experiment) of 0.94 ± 0.30 based on marker-
based strains in 12 cadaveric impacts. A ratio of 1.00 ± 0.00 
would indicate an identical peak response relative to 
experiment (albeit errors in experimental data, themselves, 

 
 
Fig. 1. Euclidean distance between filtered and the unfiltered impact angular 
velocity profiles for the three filtering methods (a–c) and the average 
Euclidean distance across filters (d). A closer view of the distribution larger 
than the 90th percentile of the entire dataset is shown in (e). 
  

 

 
Fig. 2. Example angular velocity profiles of the three groups based on the 
average Euclidean distance: (top) between 90th to 95th percentiles; (middle) 
between 95th to 99th percentiles; and (bottom) above the 99th percentile. Both 
200Hz and HEADSport are effective in suppressing the artefact shown as a 
sharp spike in angular velocity profiles. 
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should not be ignored [46]).  
For each impact, 4 simulations (three filtered profiles plus an 

unfiltered profile) were conducted, leading to N=240 (20 × 3 × 
4) simulations in total. After each simulation, voxelized MPS at 
an isotropic spatial resolution of 4 mm3 were obtained [47]. 
Voxelized MPS effectively applies a median filter to mitigate 
concerns on numerical artefacts typically associated with the 
100th percentile peak MPS [48]. 

C. Data analysis  
The filtered and unfiltered angular velocity profiles were 

compared in terms of PAV and PAA resultant magnitudes. 
Their resulting strains were also compared using peak MPS of 
the whole brain and that of the corpus callosum. Percentage 
differences from the filtered impacts relative to those from the 
unfiltered impacts were reported. For MPS of the whole brain, 
we also reported the magnitude and distribution differences in 
terms of linear regression slope, k, and Pearson correlation 
coefficient, r. Briefly, the brain MPS of a filtered impact was 
considered sufficiently similar to that from the unfiltered 
counterpart when both k and r were within 0.1 relative to 1.0 
(when the two were identical [48], [49], [50]).  
Not all data samples passed the normality test. Therefore, 

non-parametric Mann-Whiteney U tests were conducted for 
group average comparisons. Linear regression models were 
also fit to investigate the strength of statistical association. For 
all statistical tests, significance level was defined at the p-value 
of 0.05. All head impacts were simulated using the anisotropic 
WHIM V1.0 [45] in Abaqus/Explicit (Version 2018; Dassault 
Systèmes, France). Each impact simulation of 50 ms required 
~20 mins (double precision with 15 CPUs; Intel Xeon E5-2698 
with 256 GB memory). All data analyses were conducted in 
MATLAB (R2022b; MathWorks, Natick, MA). 

III. RESULTS 
Percentage differences of PAV, PAA, peak MPS of the 

whole brain and that of the corpus callosum from the three 
filtering methods relative to those from the unfiltered 
counterparts are reported in Figs. 3, 4, 5, and 6, respectively. 
For nearly all impacts, data filtering decreased response values 
relative to their counterparts from the unfiltered impacts, 
regardless of the response variable or filter used. This was 
especially true for PAA, as all filtered data had a substantial 
decrease (e.g., up to 98% for cases with the average Euclidean 

distance above the 99th percentile). For both PAV and PAA, the 
effect from HEADSport was the most evident as it led to the 
greatest reduction, especially PAA.  
However, in terms of MPS, the significance of different 

filters was substantially reduced. For example, for MPS of the 
whole brain, the filters had some substantial effect (e.g., 
reduction > when the average Euclidean distance was greater 
than the 99th percentile (Fig. 5), and the reduction was mostly 
within 20% for other two groups of impacts (except a few for 
HEADSport when the impacts were between 95th and 99th 
percentile). For MPS in the corpus callosum, only HEADSport 
had some reduction for impacts above the 95th percentile in 
average Euclidean distance (Fig. 6). 
The removal of the artefact had a significant effect on peak 

kinematic magnitudes. These cases were mostly categorized as 
“above 99th percentile”. For this category, the median relative 
PAV and PAA difference of HEADSport are 47% and 90%, 
compared to 19%/51% and 30%/77% for CFC180 and 200Hz, 
respectively. However, when considering peak MPS of the 
whole brain and in the corpus callosum, the relative differences 
were much reduced (p < 0.05). The median differences were 
9%, 3% and 4% for peak whole brain MPS of HEADSport, 
CFC180, and 200Hz, compared to 3%, 0.1% and 0.5% for those 

 
Fig. 3. Histogram number of impacts from the selected 20 cases in the three 
groups (from left to right) as a function of PAV percentage differences relative 
to those from the unfiltered data for the three filtering methods. The range of 
the right-most histogram bar is 0–10 %, and all relative differences are below 
10% (same for Figs 4–6). 
  

 
Fig. 4. Histogram number of impacts from the selected 20 cases in the three 
groups as a function of PAA percentage differences relative to those from the 
unfiltered data for the three filtering methods. 
  

 
Fig. 5. Histogram number of impacts from the selected 20 cases in the three 
groups as a function of percentage differences of peak MPS of the whole brain 
relative to those from the unfiltered data for the three filtering methods. 
  

 
Fig. 6. Histogram number of impacts from the selected 20 cases in the three 
groups as a function of percentage differences of peak MPS of the corpus 
callosum relative to those from the unfiltered data for the three filtering 
methods. 
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in the corpus callosum.  
To understand how MPS across the brain varied due to the 

use of filters, Fig. 7 reports boxplots of k and r for the three 
filters and the three impact groups. For most impacts with an 
average Euclidean distance below the 95th percentile, little 
effect from filters existed. For those above the 99th percentile, 
200Hz and HEADSport had much more significant effect than 
CFC180. This was consistent with reports in Figs. 5 and 6. 
Figs. 8 and 9 provide examples of MPS distributions 

resulting from filtered impacts and those from unfiltered data 
for two impacts. The MPS magnitude and distribution from 
filtered data were similar relative to the simulated result from 
the unfiltered impact for case 1 (Fig. 8; impact profiles in Fig. 
2 top; average Euclidian distance 90th–95th percentile). 
However, they were significantly different for case 2 when 
using 200Hz and HEADSport as the filter (Fig. 9; impact 
profiles in Fig. 2 bottom; average Euclidian distance >99th 
percentile). Nonetheless, the MPS magnitude and distribution 
in the corpus callosum remained more similar in magnitude and 
pattern for both cases.  

IV. DISCUSSION 

A. Effect of filters on brain strains 
Filter design of head impact kinematics in contact sports has 

been extensively studied. Nonetheless, a well-accepted and 
universally applicable filter or filtering method does not yet 
exist. A filtering method called Head Exposure to Acceleration 
Database in Sport (HEADSport) was recently developed based 
on the frequency characteristics of lab-reconstructed and 
measured head impact kinematics  [28]. It has the potential to 
be more universally applicable because an appropriate 
individualized filter is selected for the impact under scrutiny 
according to the noise level and occurrence of artefact based on 
the power spectrum density (PSD) characteristics. Based on a 
subset of measured on-field head impacts in elite rugby, we 
found that both HEADSport and 200Hz, especially the former, 
were effective in suppressing artefacts that are often presented 
as a "sharp spike” of a rather short temporal duration (e.g., <3 
ms) in the head angular velocity profiles (e.g., Fig. 2 bottom). 
These “spikes” do not seem physically realistic for a head 
impact of a live human, as they often come from unexpected 
movement such as biting and hitting directly to the mouthguard 
unrelated to head impact [28].  
The removal of the artefacts had a significant effect on peak 

kinematic magnitudes, especially for impacts with the average 
Euclidian distance between filtered and unfiltered angular 
velocity profile above the 99th percentile (Fig. 2). For these 
impacts, the median relative difference for PAV and PAA were 
47% and 90% for HEADSport, compared to 19%/51% and 
30%/77% for CFC180 and 200Hz, respectively (Figs. 3 and 4). 
However, when considering peak MPS of the whole brain and 
that in the corpus callosum, the relative differences were much 
reduced. For example, the median difference for the two strains 
were of 9% and 3% for HEADSport, and they were 3% and 
0.1% for CFC180 and 4% and 0.5% for 200Hz, respectively 
(Fig. 5 and 6).  
These results are similar to a previous study applied to 

impacts in ice-hockey (e.g., average difference in PAA of 113% 
vs. 6.4% for MPS of the whole brain when applying a CFC filter 
to puck-to-head impacts with a cut-off frequency of 300 Hz) 

 
 
Fig. 8. An example impact case where MPS magnitude and distribution for the 
whole brain (left panel) and the corpus callosum (right panel) from filtered 
data are rather similar to those from the unfiltered data. Strains are shown in a 
voxelized format. Data in parentheses indicate k and r values. 
  

 
Fig. 9.  An example case where larger differences in MPS magnitude and 
distribution for the whole brain exist (left panel), especially for 200Hz and 
HEADSport. However, their MPS magnitude and distribution in the corpus 
callosum (right panel) remain more similar. 
  

 
Fig. 7. Range of k (top) and r (bottom) for peak MPS magnitude and 
distribution for the three filtered impacts relative to the unfiltered raw data 
across the three impact groups. When both k and r are above 0.9 (dash-lines), 
the peak MPS responses are considered sufficiently similar to the counterpart 
from the unfiltered data. 
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[23]. Notably, the latter study employed a different brain injury 
model called the University College Dublin Brain Trauma 
Model (UCDBTM). To a certain degree, this suggests some 
consistent responses across brain injury models.  
In general, relative differences for MPS of either the whole 

brain or those in the corpus callosum were statistically smaller 
than those of PAV and PAA across the impact analyzed (Figs. 
3–5; p<0.05). Across all impacts selected for analysis, larger 
strain differences were strongly associated with larger 
differences in PAV according to a linear regression model 
(p<0.05), as expected. For example, across the three impact 
categories from the 90th-95th percentile to >99th percentile in 
average Euclidean distance, median peak MPS difference 
increased from <0.3% to 5%, but median PAV relative 
difference increased from 3% to 30%.  
Similar MPS distributions (i.e., both k and r deviated from a 

value of 1.0 by no more than 0.1 [48], [50]) were obtained for 
nearly all impacts when using CFC180 and 200Hz filters, 
regardless of the impact category. For HEADSport, however, 
similar MPS distributions relative to the unfiltered data only 
happened for impacts within 90th-95th percentile differences, 
and much larger differences were found for impacts above 99th 
percentile (Fig. 7). Across the three filters, CFC180 consistently 
produced MPS distributions closest to the unfiltered data.  
It should be noted that this study focused on impacts that 

differed the most (i.e., above 90th percentile) relative to the 
unfiltered data according to piece-wise Euclidean distance. 
Given that similar strains were obtained for nearly all impacts 
with the Euclidean distance between the 90th and 95th 
percentiles, regardless of the filters used (Figs. 8 and 9), it is 
expected that even closer brain strains will occur for the vast 
majority of impacts that had a smaller Euclidean distance (i.e., 
<90th percentile). Even for HEADSport, larger differences in 
brain strain (k or r over 0.1 far away from 1.0 [48], [50]) were 
observed only in impacts with the average Euclidean distance 
above 95th percentile (e.g., 1 out of 20 cases between 95th and 
99th percentile and 60% of cases >99th percentile).  
Based on these observations, it was clear that relative 

differences in terms of brain strains were much reduced 
compared to relative differences in PAV and PAA kinematics 
when applying filters to the angular velocity profiles. For the 
vast majority of impacts, there was little difference in brain 
strain when applying the three selected filters, unless significant 
artefacts occurred that appeared as sharp spikes in angular 
velocity profiles. For impacts with apparent artefacts, both 
HEADSport and 200Hz, and especially the former, were 
effective in suppressing the artefacts.  
These findings suggest that the brain acts as a low-pass filter, 

itself, when subjecting to an external head impact, especially 
for brain strain in the deep region. A recent study reports that 
the temporal history of both MPS of the whole brain and fiber 
strain of the corpus callosum are “smoothed” relative to the 
input resultant angular velocity, with a cross-correlation of 0.83 
and –0.52 between the two strain measures and the resultant 
angular velocity profile [38]. This leads to limited effect on 
brain strain when applying an initial low-pass filter to the 
impact kinematics serving as input.  

B. Implications 
Both PAV and PAA have been extensively employed to 

quantify head impact severity [1], [11], [51]. However, they 
could be sensitive to noise-reduction data filters that would lead 
to unwanted inconsistencies across studies [23]. Our findings 
suggest that impact-induced brain strain, particularly those in 
the deep brain such as in the corpus callosum, is much less 
sensitive to kinematic filters. Conceivably, therefore, brain 
strains can be used in place of PAV or PAA to quantify impact 
severity. They may be better positioned to serve as a common 
metric for comparison, which is anticipated to maximize 
relevance to the injury in cross-sectional and longitudinal TBI 
biomechanical studies, as well as across study sites.  
However, a deep learning surrogate model is necessary to 

translate impacts into brain strains on a large-scale, as it would 
dramatically reduce the computational cost associated with 
direct model simulations while retaining a high accuracy. 
Several current deep learning models employ angular velocity 
and acceleration profiles at a temporal resolution of 1 ms as the 
input [35], [48], [50], [52]. The recorded head impacts are 
typically sampled at a higher sampling rate [11] (e.g., 3.2 kHz 
in this study). To use these deep learning models without re-
training, impact profile down-sampling is necessary to match 
with the required input. This is analogous to applying a low-
pass, median filter. Based on findings from this study, these 
deep learning models would remain valid without re-training 
when using down-sampled kinematic profiles as input. 
However, for other deep learning models that use peak values 
of PAV/PAA directly as input [53], this may not be feasible 
because their values could be significantly altered due to the 
down-sampling that would invalidate the predictions, 
especially when the signal has apparent “artefacts”.  

C. Limitation 
This study has a few limitations. First, while HEADSport is 

effective in suppressing artefacts in angular velocity profiles  
[28], a ground-truth, nevertheless, does not exist for on-field 
impacts. Video-reconstructed impacts [54] may provide 
additional verification of the filter effectiveness for 
measurement of real-world head impact. Second, the number of 
filters considered was also limited to those analyzed in the 
previous study [28]. Third, we have focused on brain strain for 
analysis but not strain rate [55], as there is no well-accepted 
experimental data appropriate for strain rate validation at this 
stage [46].  
Nevertheless, additional results on brain strain rate are 

reported in the Appendix. Briefly, we found that the relative 
differences in peak strain rate of the whole brain were larger 
than those for peak MPS of the whole brain in general (e.g., 
median difference of 71% vs. 9% for HEADSport for impacts 
with the average Euclidean distance above the 99th percentile). 
However, relative differences in peak strain rate in the corpus 
callosum were also smaller than those of the whole brain (e.g., 
median difference of 60% vs. 71% for HEADSport for impacts 
in the same category), which was similar to peak MPS.  
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V. CONCLUSION 

For the three filtering methods studied here, we find that 
HEADSport and 200Hz, especially the former, are effective in 
suppressing unphysical artefacts in impact angular velocity 
profiles (e.g., sharp spikes). Nevertheless, for the majority of 
head impacts where no such artefacts are present, there are little 
differences among the three filtering methods or relative to the 
unfiltered data in terms of peak angular velocity magnitudes. In 
comparison, peak angular acceleration magnitudes could vary 
substantially. These findings suggest potential data 
inconsistencies across different TBI biomechanical studies, 
especially when using peak angular accelerations, if different 
signal filters are used. However, differences among filters and 
the unfiltered impacts are much reduced in their resulting brain 
strains, especially for strain in the deep brain such as in the 
corpus callosum.  

There is consensus that brain strain is better positioned than 
impact kinematics as an injury metric for TBI biomechanics. 
This study finds that brain strain is not sensitive to kinematic 
filters due to the brain’s viscoelastic nature. This makes brain 
strain predictions consistent regardless of the kinematic filters 
used. Therefore, brain strain as a common injury metric is 
anticipated to maximize relevance to the injury. Nevertheless, a 
deep learning brain injury model is necessary to rapidly 
translate impacts into brain strains on a large-scale while 
retaining a high accuracy relative to direct model simulation. 
This is consistent with recent consensus in the TBI 
biomechanics community to promote the use of advanced data 
science techniques, including deep learning, into future TBI 
studies [17]. However, caution is warranted as brain strains 
from different “validated” injury models may differ even when 
simulating the same head impact [56]. Therefore, brain strains 
from different models may not be compared directly. 
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