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Effect of impact kinematic filters on brain
strain responses 1n contact sports

Nan Lin, Gregory Tierney, Songbai Ji

Abstract—Objective: Impact kinematics are widely employed to
investigate mechanisms of traumatic brain injury (TBI). However,
they are susceptible to noise and artefacts; thus, require data
filtering. Few studies have focused on how data filtering affects
brain strain most relevant to TBI. Here, we report that impact-
induced brain strains are much less sensitive to data filtering than
kinematics based on three filtering methods: CFC180, lowpass
200Hz, and a new method called Head Exposure to Acceleration
Database in Sport (HEADSport). Methods: Using mouthguard-
measured head impacts in elite rugby (N=5694), average
Euclidean distances between the three filtered angular velocity
profiles and their unfiltered counterparts are used to identify three
groups of impacts with large variations: 90-95%, 9599t and >99t"
percentile. From each group, 20 impacts are randomly selected for
simulation using the anisotropic Worcester Head Injury Model
(WHIM) V1.0. Results and Conclusion: HEADSport and CFC180
are the most and least effective, respectively, in suppressing
“unphysical artefacts' shown as sharp spikes with a rather short
impulse duration (e.g., <3 ms) in angular velocity. However,
maximum principal strain (MPS), especially that in the corpus
callosum, is much less sensitive to data filtering compared to
kinematic peaks (e.g., reduction of 3% vs. 47% and 90% for peak
angular velocity and acceleration with HEADSport for impacts of
>99%h percentile). Significance: These findings confirm that the
brain acts as a low-pass filter, itself, to suppress high frequency
noise in impact kinematics. Therefore, brain strain can serve as a
common metric for TBI biomechanical studies to maximize
relevance to the injury, as it is not sensitive to kinematic filters.

Index Terms—Angular velocity, brain strain, deep learning,
impact kinematics, traumatic brain injury

I. INTRODUCTION

MPACT kinematics such as linear and angular acceleration

and angular velocity have been extensively employed to
characterize the severity of head impact and the risk of
traumatic brain injury (TBI). In part, this is because these
physical quantities can be directly measured and that they are
related to tissue mechanical responses believed to cause the
injury. Over the years, a wide range of instrumented sensors
have become available to measure head impact kinematics [1],
[2], [3]. To reconstruct head impacts on dummies in the
laboratory, accelerometers and gyroscopes are instrumented at
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the head center of gravity to record linear acceleration and
angular velocity and acceleration [4], [5]. They serve as the
ground-truth to validate measurement accuracy of other impact
sensors such as sensor-embedded helmets [6], in-ear sensors
[7], headband for non-helmeted sports [8], skin patches [9], and
instrumented mouthguard (iMG) [9], [10], [11], [12]. Once
validated, these sensors are then instrumented on live humans
to record impact kinematics on the field [1], [2], [7], [8], [10],
[12], [13], [14], [15], [16]. They provide valuable real-world
impact data to study the biomechanics of TBI, including mild
TBI (mTBI) often referred to as “concussion” [1], [17].

However, noise and artefacts are common in impact
kinematic measurement. As a result, signal filters are usually
applied [4], [10], [11], [12], [18], [19], [20], [21], [22]. The
typical approach to assessing the quality of data filtering is to
compare with lab-reconstructed dummy headform impact data
often regarded as the “gold standard” [18]. Most studies focus
on comparing peak linear acceleration (PLA), peak angular
velocity (PAV), and peak angular acceleration (PAA)
magnitudes of the filtered data relative to those from lab-
reconstructed or video analyzed counterparts [10], [11], [12],
[20], [21].

It is important to identify the best cut-off frequency so that to
minimize difference relative to signal from the gold-standard.
To this end, Rowson and co-workers calculated angular
acceleration from angular rate sensors and applied Channel
Frequency Class (CFC) filters recommended by the Society of
Automotive Engineers (SAE) J211 with different cut-off
frequencies [21]. The study determined that the CFC 155 filter
as the most optimal as it minimizes the root mean squared error
(RMSE) relative to the 3-2-2-2 array accelerometers
(normalized average error of 0.27% + 5.2%). In comparison,
Wu and colleagues compared the attenuation of filtered peak
kinematics and associated injury metrics to those from high-
bandwidth data to determine the best cut-off frequency [13]. It
was found to be 90 Hz to maintain a 10% attenuation of PAV
for helmeted dummy head impacts [12].

Other studies have also used brain strain to validate filters
with lab-reconstructed reference through a finite element (FE)
model of the human brain [4], [18], [22]. A physics-based brain
model translates impact kinematics into detailed brain strain
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and other mechanical responses. It is considered to have strong
potential to improve injury prediction and interpret kinematic
exposure over global head kinematics, alone [17].

For example, Jones and colleagues investigated the
feasibility of transforming current iMG system from lab tests
for on-field impact measurements [18]. The study compared the
90" percentile peak maximum principal strain (MPS) of the
whole brain obtained from filtered and unfiltered data. To
validated the most commonly used iMG for American football
head impacts, Liu and co-workers evaluated fidelity of filters
using 95" percentile peak MPS of the whole brain and that of
the corpus callosum, 95" percentile fiber strain in the corpus
callosum, as well as several strain-related injury metrics [22].
Wu and co-workers found that the attenuation of both kinematic
peaks and brain tissue responses such as strain, strain rate, Brain
Injury Criteria (BrIC) and cumulative strain damage measure
(CSDM) decreased when the cut-off frequency in various CFC
filters increased compared to unfiltered data [13]. Work by Post
et al. [23] investigated mean PLA and PAA, as well as mean
MPS differences relative to the unfiltered data using various
CFC filters as recommended by SAE J211 [24]. The results
similarly showed that when using low-pass filters of 300 Hz or
higher cut-off frequency, there were little effects on brain strain
even when some difference in PLA and PAA could occur.

Nevertheless, impact kinematic filters are not consistently
applied, where the cut-off frequency ranges from 100 Hz to 300
Hz, or no filter used [22], [23], [25], [26]. One study reports that
PAA difference relative to the unfiltered data could range from
46% to 154% for the same signal subjecting to different filters
[23]. This would lead to difficulty in assessing sensor fidelity
and challenges in comparing different TBI studies for
consistent findings. Given the variability in the underlying
signal, a recent study suggests the need for an individualized
filter based on characteristics of impact kinematic profiles
instead of applying a fixed filter for all impacts [27].

To this end, a filtering method called Head Exposure to
Acceleration Database in Sport (HEADSport) was developed
based on the power spectral density (PSD) characteristics of
reconstructed dummy head impacts and those measured on the
field using the Prevent Biometrics iMGs (Minneapolis, MN)
[28]. An appropriate filter frequency class was selected
according to the impact kinematic PSD characteristics. Briefly,
the 95" percentile of maximum PSD values from laboratory
reconstructed impact signals, Fmax, is used as a threshold. An
on-field impact is considered to have artefacts, if the maximum
95" percentile PSD exceeds Fmax. Further, frequency
component above the first local PSD minima is also considered
as unwanted high-frequency noise. In general, the cut-off
frequency for each impact is selected as the minimum
frequency among Fmax, the 95% percentile and the first local
minima (if applicable) of the PSD.

The HEADSport method was compared with two other
commonly used filters, the Butterworth-200Hz low-pass (-6dB)
filter used in Prevent Biometrics iMG and the CFC180 filter (-
3dB lowpass, cut-off frequency of 300 Hz) that has the highest
cut-off frequency in a commercially available iMG system [11].
Results showed that the HEADSport method yielded the

highest signal to noise ratio (SNR). It has also been shown to
be especially effective in suppressing “unphysical artefact”
presented as a sharp spike in the angular velocity profile due to,
e.g., mouthguard movement resulting from poor fitting, biting
and direct impact to the mouthguard [28]. The sharp spike with
an impulse duration <3 ms is unlikely to occur to a human head
in contact sports, where an impulse duration of 10-100 ms is
more typical according to reported dummy [20], [29], [30],
[31], [32], [33] and on-field impacts [13], [33]. This is also
consistent with the observation that angular acceleration
impulse duration is typically greater than 10 ms for sports-
related head impacts [34]. The artefact suppression is achieved
by applying CFC filters with the lower cut-off frequency
determined by its PSD, which also results in lower kinematic
magnitudes relative to those from the CFC180 or 200 Hz filters
[28].

In this study, we extend the comparisons of HEADSport with
the same two other filters in terms of brain strain responses,
including MPS of the whole brain and that of the corpus
callosum deep in the brain, as well as their spatial distributions.
Previous studies investigating filter effectiveness in terms of
brain strains have largely focused on the peak MPS of the whole
brain [4], [18], [23], with one exception comparing MPS and
white matter fiber strain of the corpus callosum [22] through a
deep learning neural network model [35]. The attention on brain
strain deep in the parenchyma due to kinematic variations has
emerged [36], [37], [38]. Because of the brain’s viscoelasticity,
deformation attenuation is expected when displacement travels
from the brain-skull interface to the deep region. Nevertheless,
the significance of impact kinematic filtering on the attenuation
and the resulting deep region brain strain has not been studied.
Thus, findings from this study may provide improved insight
into the causal relationship between impact kinematics and
brain strain. This would inform how best to maximize the utility
of impact-induced brain strains for studying the biomechanical
basis of TBI in the future.

II. MATERIALS AND METHODS

The HEADSport was developed based on N=5694 on-field
head impacts measured by mouthguard (Prevent Biometrics;
Minneapolis, MN) in elite rugby (all video-verified) and 72 lab
reconstructed head impacts with various impact locations and
linear acceleration magnitudes based on on-field measurements
[28]. Each participant provided written consent. Ethical
approval for impact data collection was given by the
University's Research Ethics Committee (UREC), University of
Ulster (#REC-21-0061).

Each impact had a linear acceleration profile and an angular
velocity profile along the three anatomical axes prescribed at
the head center of gravity. Both accelerometer and gyroscope
signals have a bandwidth well in excess of 400 Hz. The
measured kinematic profiles were filtered using either 200Hz,
CFC180, or HEADSport, respectively [28]. Given that linear
kinematics common in contact sports generate little brain strain,
here we used angular kinematics, alone, for analysis [17]. All
filtered or unfiltered impact kinematic profiles had a duration
of 50 ms and were sampled at a frequency of 3.2 kHz. Angular
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acceleration was then calculated via a forward differentiation
method based on the angular velocity profile.

A. Euclidean distance to identify impacts _for model
simulation

Due to the high computational cost in impact simulation to
generate brain strain (typically hours for each impact [17]), it
was not feasible to simulate all the measured impacts using a
conventional finite element brain model (requiring
approximately six weeks to simulate and post-process just the
10% of the cases selected if run sequentially; see later for
details). Thus, we limited our investigations to impacts with
larger differences between filtered and unfiltered kinematic
profiles. Both the peak magnitude and the shape of kinematic
profile significantly affects brain strains [36], [39]. Intuitively,
therefore, piece-wise Euclidean distance [40], [41] was used to
quantify kinematic profile differences as this metric considers
differences at every time point. Since brain strains are primarily
induced by head rotation in contact sports and that brain strain
is most relevant to angular velocity [36], [42], only the angular
velocity profiles around the three anatomical axes were used for
calculation.

The two-dimension profile matrix of data size of 160 x 3 (for
a duration of 50 ms at a sampling frequency of 3.2 kHz) for
each filtered and unfiltered impact was first reformatted into a
one-dimensional vector (m X n = 480 x 1). It was then
normalized relative to the largest component magnitude of the
unfiltered data (i.e., max(x;), where i ranges from 1 to 480) to
allow comparison across head impacts of different magnitudes
[43]. Piece-wised Euclidean distance between each filtered and
the unfiltered profile, E (x, y), is then defined as below:

E(x,y) = 27" — yi)? (1)

where m is the length of the reformatted kinematics data (i.e.,
480), x and y are i" element in the normalized filtered and
unfiltered impact profile, respectively. The resulting Euclidean
distances corresponding to the three filters were finally
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Fig. 1. Euclidean distance between filtered and the unfiltered impact angular
velocity profiles for the three filtering methods (a—c) and the average
Euclidean distance across filters (d). A closer view of the distribution larger
than the 90th percentile of the entire dataset is shown in (e).
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Fig. 2. Example angular velocity profiles of the three groups based on the
average Euclidean distance: (top) between 90™ to 95" percentiles; (middle)
between 95 to 99™ percentiles; and (bottom) above the 99™ percentile. Both
200Hz and HEADSport are effective in suppressing the artefact shown as a
sharp spike in angular velocity profiles.

averaged (see Fig. 1 for distribution) to characterize the degree
of variation between filtered and unfiltered data.

B. Selection of impacts

To limit the number of impacts for model simulation, impacts
with average Euclidean distances above the 90" percentile were
selected for impact simulation. For a more systematic
investigation, these impacts were further divided into three
groups with the average Euclidean distances between the 90™
and 95%, 95™ and 99", and above the 99" percentile. They had
284, 228, and 57 impact cases, respectively (Fig. 1). For each
group, 20 cases were then randomly selected (sample profiles
for each group are shown in Fig. 2). Next, the filtered and
unfiltered angular velocity profiles for each impact were
simulated using the anisotropic Worcester Head Injury Model
(WHIM) V1.0 [44]. This brain model adopts hyper-viscoelastic
material properties for the brain and further incorporates white
matter anisotropy based on whole-brain tractography. The
model has been extensively validated against relative brain-
skull displacement and marker-based strain in cadaveric
impacts, as well as full-field strain under in vivo head rotations
relevant to acute brain injury and subconcussion, respectively
[45]. Tt achieves an average peak strain magnitude ratio
(simulation vs. experiment) of 0.94 £+ 0.30 based on marker-
based strains in 12 cadaveric impacts. A ratio of 1.00 + 0.00
would indicate an identical peak response relative to
experiment (albeit errors in experimental data, themselves,
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should not be ignored [46]).

For each impact, 4 simulations (three filtered profiles plus an
unfiltered profile) were conducted, leading to N=240 (20 x 3 x
4) simulations in total. After each simulation, voxelized MPS at
an isotropic spatial resolution of 4 mm® were obtained [47].
Voxelized MPS effectively applies a median filter to mitigate
concerns on numerical artefacts typically associated with the
100" percentile peak MPS [48].

C. Data analysis

The filtered and unfiltered angular velocity profiles were
compared in terms of PAV and PAA resultant magnitudes.
Their resulting strains were also compared using peak MPS of
the whole brain and that of the corpus callosum. Percentage
differences from the filtered impacts relative to those from the
unfiltered impacts were reported. For MPS of the whole brain,
we also reported the magnitude and distribution differences in
terms of linear regression slope, &, and Pearson correlation
coefficient, r. Briefly, the brain MPS of a filtered impact was
considered sufficiently similar to that from the unfiltered
counterpart when both & and » were within 0.1 relative to 1.0
(when the two were identical [48], [49], [50]).

Not all data samples passed the normality test. Therefore,
non-parametric Mann-Whiteney U tests were conducted for
group average comparisons. Linear regression models were
also fit to investigate the strength of statistical association. For
all statistical tests, significance level was defined at the p-value
of 0.05. All head impacts were simulated using the anisotropic
WHIM V1.0 [45] in Abaqus/Explicit (Version 2018; Dassault
Systémes, France). Each impact simulation of 50 ms required
~20 mins (double precision with 15 CPUs; Intel Xeon E5-2698
with 256 GB memory). All data analyses were conducted in
MATLAB (R2022b; MathWorks, Natick, MA).

III. RESULTS

Percentage differences of PAV, PAA, peak MPS of the
whole brain and that of the corpus callosum from the three
filtering methods relative to those from the unfiltered
counterparts are reported in Figs. 3, 4, 5, and 6, respectively.
For nearly all impacts, data filtering decreased response values
relative to their counterparts from the unfiltered impacts,
regardless of the response variable or filter used. This was
especially true for PAA, as all filtered data had a substantial
decrease (e.g., up to 98% for cases with the average Euclidean
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Fig. 3. Histogram number of impacts from the selected 20 cases in the three
groups (from left to right) as a function of PAV percentage differences relative
to those from the unfiltered data for the three filtering methods. The range of
the right-most histogram bar is 0—-10 %, and all relative differences are below
10% (same for Figs 4-6).
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Fig. 4. Histogram number of impacts from the selected 20 cases in the three
groups as a function of PAA percentage differences relative to those from the
unfiltered data for the three filtering methods.
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Fig. 5. Histogram number of impacts from the selected 20 cases in the three

groups as a function of percentage differences of peak MPS of the whole brain
relative to those from the unfiltered data for the three filtering methods.
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Fig. 6. Histogram number of impacts from the selected 20 cases in the three
groups as a function of percentage differences of peak MPS of the corpus
callosum relative to those from the unfiltered data for the three filtering
methods.

distance above the 99" percentile). For both PAV and PAA, the
effect from HEADSport was the most evident as it led to the
greatest reduction, especially PAA.

However, in terms of MPS, the significance of different
filters was substantially reduced. For example, for MPS of the
whole brain, the filters had some substantial effect (e.g.,
reduction > when the average Euclidean distance was greater
than the 99" percentile (Fig. 5), and the reduction was mostly
within 20% for other two groups of impacts (except a few for
HEADSport when the impacts were between 95" and 99"
percentile). For MPS in the corpus callosum, only HEADSport
had some reduction for impacts above the 95" percentile in
average Euclidean distance (Fig. 6).

The removal of the artefact had a significant effect on peak
kinematic magnitudes. These cases were mostly categorized as
“above 99" percentile”. For this category, the median relative
PAV and PAA difference of HEADSport are 47% and 90%,
compared to 19%/51% and 30%/77% for CFC180 and 200Hz,
respectively. However, when considering peak MPS of the
whole brain and in the corpus callosum, the relative differences
were much reduced (p < 0.05). The median differences were
9%, 3% and 4% for peak whole brain MPS of HEADSport,
CFC180, and 200Hz, compared to 3%, 0.1% and 0.5% for those
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Fig. 7. Range of k (top) and r (bottom) for peak MPS magnitude and
distribution for the three filtered impacts relative to the unfiltered raw data
across the three impact groups. When both & and r are above 0.9 (dash-lines),
the peak MPS responses are considered sufficiently similar to the counterpart
from the unfiltered data.

in the corpus callosum.

To understand how MPS across the brain varied due to the
use of filters, Fig. 7 reports boxplots of £ and r for the three
filters and the three impact groups. For most impacts with an
average Euclidean distance below the 95" percentile, little
effect from filters existed. For those above the 99" percentile,
200Hz and HEADSport had much more significant effect than
CFC180. This was consistent with reports in Figs. 5 and 6.

Figs. 8 and 9 provide examples of MPS distributions
resulting from filtered impacts and those from unfiltered data
for two impacts. The MPS magnitude and distribution from
filtered data were similar relative to the simulated result from
the unfiltered impact for case 1 (Fig. 8; impact profiles in Fig.
2 top; average Euclidian distance 90%-95" percentile).
However, they were significantly different for case 2 when
using 200Hz and HEADSport as the filter (Fig. 9; impact
profiles in Fig. 2 bottom; average Euclidian distance >99"
percentile). Nonetheless, the MPS magnitude and distribution
in the corpus callosum remained more similar in magnitude and
pattern for both cases.
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Fig. 8. An example impact case where MPS magnitude and distribution for the
whole brain (left panel) and the corpus callosum (right panel) from filtered
data are rather similar to those from the unfiltered data. Strains are shown in a
voxelized format. Data in parentheses indicate & and r values.
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Fig. 9. An example case where larger differences in MPS magnitude and
distribution for the whole brain exist (left panel), especially for 200Hz and
HEADSport. However, their MPS magnitude and distribution in the corpus
callosum (right panel) remain more similar.

IV. DiscusSION

A. Effect of filters on brain strains

Filter design of head impact kinematics in contact sports has
been extensively studied. Nonetheless, a well-accepted and
universally applicable filter or filtering method does not yet
exist. A filtering method called Head Exposure to Acceleration
Database in Sport (HEADSport) was recently developed based
on the frequency characteristics of lab-reconstructed and
measured head impact kinematics [28]. It has the potential to
be more universally applicable because an appropriate
individualized filter is selected for the impact under scrutiny
according to the noise level and occurrence of artefact based on
the power spectrum density (PSD) characteristics. Based on a
subset of measured on-field head impacts in elite rugby, we
found that both HEADSport and 200Hz, especially the former,
were effective in suppressing artefacts that are often presented
as a "sharp spike” of a rather short temporal duration (e.g., <3
ms) in the head angular velocity profiles (e.g., Fig. 2 bottom).
These “spikes” do not seem physically realistic for a head
impact of a live human, as they often come from unexpected
movement such as biting and hitting directly to the mouthguard
unrelated to head impact [28].

The removal of the artefacts had a significant effect on peak
kinematic magnitudes, especially for impacts with the average
Euclidian distance between filtered and unfiltered angular
velocity profile above the 99" percentile (Fig. 2). For these
impacts, the median relative difference for PAV and PAA were
47% and 90% for HEADSport, compared to 19%/51% and
30%/77% for CFC180 and 200Hz, respectively (Figs. 3 and 4).
However, when considering peak MPS of the whole brain and
that in the corpus callosum, the relative differences were much
reduced. For example, the median difference for the two strains
were of 9% and 3% for HEADSport, and they were 3% and
0.1% for CFC180 and 4% and 0.5% for 200Hz, respectively
(Fig. 5 and 6).

These results are similar to a previous study applied to
impacts in ice-hockey (e.g., average difference in PAA of 113%
vs. 6.4% for MPS of the whole brain when applying a CFC filter
to puck-to-head impacts with a cut-off frequency of 300 Hz)
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[23]. Notably, the latter study employed a different brain injury
model called the University College Dublin Brain Trauma
Model (UCDBTM). To a certain degree, this suggests some
consistent responses across brain injury models.

In general, relative differences for MPS of either the whole
brain or those in the corpus callosum were statistically smaller
than those of PAV and PAA across the impact analyzed (Figs.
3-5; p<0.05). Across all impacts selected for analysis, larger
strain differences were strongly associated with larger
differences in PAV according to a linear regression model
(p<0.05), as expected. For example, across the three impact
categories from the 90"-95™ percentile to >99" percentile in
average Euclidean distance, median peak MPS difference
increased from <0.3% to 5%, but median PAV relative
difference increased from 3% to 30%.

Similar MPS distributions (i.e., both k£ and r deviated from a
value of 1.0 by no more than 0.1 [48], [50]) were obtained for
nearly all impacts when using CFC180 and 200Hz filters,
regardless of the impact category. For HEADSport, however,
similar MPS distributions relative to the unfiltered data only
happened for impacts within 90"-95" percentile differences,
and much larger differences were found for impacts above 99
percentile (Fig. 7). Across the three filters, CFC180 consistently
produced MPS distributions closest to the unfiltered data.

It should be noted that this study focused on impacts that
differed the most (i.e., above 90" percentile) relative to the
unfiltered data according to piece-wise Euclidean distance.
Given that similar strains were obtained for nearly all impacts
with the Euclidean distance between the 90" and 95"
percentiles, regardless of the filters used (Figs. 8 and 9), it is
expected that even closer brain strains will occur for the vast
majority of impacts that had a smaller Euclidean distance (i.e.,
<90™ percentile). Even for HEADSport, larger differences in
brain strain (k or  over 0.1 far away from 1.0 [48], [50]) were
observed only in impacts with the average Euclidean distance
above 95" percentile (e.g., 1 out of 20 cases between 95" and
99t percentile and 60% of cases >99"" percentile).

Based on these observations, it was clear that relative
differences in terms of brain strains were much reduced
compared to relative differences in PAV and PAA kinematics
when applying filters to the angular velocity profiles. For the
vast majority of impacts, there was little difference in brain
strain when applying the three selected filters, unless significant
artefacts occurred that appeared as sharp spikes in angular
velocity profiles. For impacts with apparent artefacts, both
HEADSport and 200Hz, and especially the former, were
effective in suppressing the artefacts.

These findings suggest that the brain acts as a low-pass filter,
itself, when subjecting to an external head impact, especially
for brain strain in the deep region. A recent study reports that
the temporal history of both MPS of the whole brain and fiber
strain of the corpus callosum are “smoothed” relative to the
input resultant angular velocity, with a cross-correlation of 0.83
and —0.52 between the two strain measures and the resultant
angular velocity profile [38]. This leads to limited effect on
brain strain when applying an initial low-pass filter to the
impact kinematics serving as input.

B. Implications

Both PAV and PAA have been extensively employed to
quantify head impact severity [1], [11], [S1]. However, they
could be sensitive to noise-reduction data filters that would lead
to unwanted inconsistencies across studies [23]. Our findings
suggest that impact-induced brain strain, particularly those in
the deep brain such as in the corpus callosum, is much less
sensitive to kinematic filters. Conceivably, therefore, brain
strains can be used in place of PAV or PAA to quantify impact
severity. They may be better positioned to serve as a common
metric for comparison, which is anticipated to maximize
relevance to the injury in cross-sectional and longitudinal TBI
biomechanical studies, as well as across study sites.

However, a deep learning surrogate model is necessary to
translate impacts into brain strains on a large-scale, as it would
dramatically reduce the computational cost associated with
direct model simulations while retaining a high accuracy.
Several current deep learning models employ angular velocity
and acceleration profiles at a temporal resolution of 1 ms as the
input [35], [48], [50], [52]. The recorded head impacts are
typically sampled at a higher sampling rate [11] (e.g., 3.2 kHz
in this study). To use these deep learning models without re-
training, impact profile down-sampling is necessary to match
with the required input. This is analogous to applying a low-
pass, median filter. Based on findings from this study, these
deep learning models would remain valid without re-training
when using down-sampled kinematic profiles as input.
However, for other deep learning models that use peak values
of PAV/PAA directly as input [53], this may not be feasible
because their values could be significantly altered due to the
down-sampling that would invalidate the predictions,
especially when the signal has apparent “artefacts”.

C. Limitation

This study has a few limitations. First, while HEADSport is
effective in suppressing artefacts in angular velocity profiles
[28], a ground-truth, nevertheless, does not exist for on-field
impacts. Video-reconstructed impacts [54] may provide
additional verification of the filter effectiveness for
measurement of real-world head impact. Second, the number of
filters considered was also limited to those analyzed in the
previous study [28]. Third, we have focused on brain strain for
analysis but not strain rate [55], as there is no well-accepted
experimental data appropriate for strain rate validation at this
stage [46].

Nevertheless, additional results on brain strain rate are
reported in the Appendix. Briefly, we found that the relative
differences in peak strain rate of the whole brain were larger
than those for peak MPS of the whole brain in general (e.g.,
median difference of 71% vs. 9% for HEADSport for impacts
with the average Euclidean distance above the 99" percentile).
However, relative differences in peak strain rate in the corpus
callosum were also smaller than those of the whole brain (e.g.,
median difference of 60% vs. 71% for HEADSport for impacts
in the same category), which was similar to peak MPS.
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V. CONCLUSION

For the three filtering methods studied here, we find that
HEADSport and 200Hz, especially the former, are effective in
suppressing unphysical artefacts in impact angular velocity
profiles (e.g., sharp spikes). Nevertheless, for the majority of
head impacts where no such artefacts are present, there are little
differences among the three filtering methods or relative to the
unfiltered data in terms of peak angular velocity magnitudes. In
comparison, peak angular acceleration magnitudes could vary
substantially. These findings suggest potential data
inconsistencies across different TBI biomechanical studies,
especially when using peak angular accelerations, if different
signal filters are used. However, differences among filters and
the unfiltered impacts are much reduced in their resulting brain
strains, especially for strain in the deep brain such as in the
corpus callosum.

There is consensus that brain strain is better positioned than
impact kinematics as an injury metric for TBI biomechanics.
This study finds that brain strain is not sensitive to kinematic
filters due to the brain’s viscoelastic nature. This makes brain
strain predictions consistent regardless of the kinematic filters
used. Therefore, brain strain as a common injury metric is
anticipated to maximize relevance to the injury. Nevertheless, a
deep learning brain injury model is necessary to rapidly
translate impacts into brain strains on a large-scale while
retaining a high accuracy relative to direct model simulation.
This is consistent with recent consensus in the TBI
biomechanics community to promote the use of advanced data
science techniques, including deep learning, into future TBI
studies [17]. However, caution is warranted as brain strains
from different “validated” injury models may differ even when
simulating the same head impact [56]. Therefore, brain strains
from different models may not be compared directly.
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