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Abstract

(j, k)-projective clustering is the natural gen-
eralization of the family of k-clustering and
j-subspace clustering problems. Given a set
of points P in Rd, the goal is to find k flats of
dimension j, i.e., affine subspaces, that best
fit P under a given distance measure. In this
paper, we propose the first algorithm that
returns an L∞ coreset of size polynomial in
d. Moreover, we give the first strong coreset
construction for general M -estimator regres-
sion. Specifically, we show that our construc-
tion provides efficient coreset constructions
for Cauchy, Welsch, Huber, Geman-McClure,
Tukey, L1 − L2, and Fair regression, as well
as general concave and power-bounded loss
functions. Finally, we provide experimental
results based on real-world datasets, showing
the efficacy of our approach.

1 INTRODUCTION

Coresets are often used in machine learning, data sci-
ences, and statistics as a pre-processing dimensionality
reduction technique to represent a large dataset with
a significantly smaller amount of memory, thereby im-
proving the efficiency of downstream algorithms in
both running time and working space. Intuitively, a
coreset C of a set P of n points in Rd is a smaller
number of weighted representatives of P that can be
used to approximate the cost of any query from a set
of a given queries. Hence rather than optimizing some
predetermined objective on P , it suffices to optimize
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the objective on C, which has significantly smaller di-
mension than P . In this paper, we present coresets for
projective clustering.

Projective clustering is an important family of clus-
tering problems for applications in unsupervised
learning (Procopiuc, 2010), data mining (Aggarwal
et al., 1999; Aggarwal and Yu, 2000), computa-
tional biology (Procopiuc, 2010), database manage-
ment (Chakrabarti and Mehrotra, 2000), and computer
vision (Procopiuc et al., 2002). Given a set P of n
points in Rd, a parameter z for the exponent of the
distance, and a parameter k for the number of flats of
dimension j, the (j, k)-projective clustering problem is
to find a set F of k j-flats that minimizes the sum of
the distances of P from F , i.e., minF

∑
p∈P dist(p,F)z,

where dist(p,F)z denotes the z-th power of the Eu-
clidean distance from p to the closest point in any
flat in F . We abuse notation by defining the projec-
tive clustering problem to be minF maxp∈P dist(p,F)
for z = ∞. Projective clustering includes many well-
studied problems such as the k-median clustering prob-
lem for z = 1, j = 0, k ∈ Z+, the k-means clustering
problem for z = 2, j = 0, k ∈ Z+, the k-line clustering
problem for z ≥ 0, j = 1, k ∈ Z+, the subspace approxi-
mation problem for z ≥ 0, j ∈ Z+, k = 1, the minimum
enclosing ball problem for z = ∞, j = 0, k = 1, the
k-center clustering problem for z =∞, j = 0, k ∈ Z+,
the minimum enclosing cylinder problem for z = ∞,
j = 1, k = 1, and the k-cylinder problem for z = ∞,
j = 1, k ∈ Z+.

1.1 Related Work

Finding the optimal set C for projective clustering is
known to be NP-hard Aloise et al. (2009) and even
finding a set with objective value that is within a
factor of 1.0013 of the optimal value is NP-hard Lee
et al. (2017). Procopiuc et al. (2002) implemented
a heuristics-based Monte Carlo algorithm for projec-
tive clustering while Har-Peled and Varadarajan (2002)
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introduced a dimensionality reduction technique to de-
crease the size of each input point, which distorts the
cost of the optimal projective clustering. Similarly, Ker-
ber and Raghvendra (2015) used random projections to
embed the input points into a lower dimensional space.
However, none of these approaches reduces the overall
number of input points, whose often causes the main
bottleneck for implementing approximation algorithms
for projective clustering in big data applications.

Badoiu et al. (2002) first introduced coresets for the k-
center and k-median clustering problems in Euclidean
space. Their coresets constructions gave (1 + ε)-
approximations and sampled a number of points with
exponential dependency in both 1

ε and k. Their
work also inspired a number of coresets for specific
projective clustering problems; coresets have subse-
quently been extensively studied in k-median or k-
means clustering (Badoiu et al., 2002; Har-Peled and
Mazumdar, 2004; Frahling and Sohler, 2005, 2008;
Chen, 2009; Feldman and Schulman, 2012; Braverman
et al., 2019; Huang and Vishnoi, 2020), subspace ap-
proximation (Deshpande et al., 2006; Deshpande and
Varadarajan, 2007; Feldman and Langberg, 2011; Feld-
man et al., 2010; Clarkson and Woodruff, 2015; Sohler
and Woodruff, 2018; Feldman et al., 2020; Tukan et al.,
2021b), and a number of other geometric problems
and applications (Agarwal et al., 2006; Feldman et al.,
2006; Clarkson, 2008; Dasgupta et al., 2008; Acker-
mann and Blömer, 2009; Phillips and Tai, 2018; Huang
et al., 2018; Assadi et al., 2019; Munteanu et al., 2018;
Braverman et al., 2020; Mussay et al., 2020; Tukan et al.,
2020, 2021a; Jubran et al., 2020; Maalouf et al., 2021).
However, these coreset constructions were catered to-
ward specific problems rather than the general (j, k)-
projective clustering problem.

Feldman and Langberg (2011) introduced a framework
for constructing coresets by sampling each input point
with probability proportional to its sensitivity, which
informally quantifies the importance of the point with
respect to the predetermined objective function. Feld-
man and Langberg (2011) also performed dimensional-
ity reduction for (j, k)-projective clustering by taking
the union of two sets S and proj(P,B), where P is the
input data set of size n. Although the set S can have
size poly(j, k, d), the set proj(P,B) still has size n, so
their resulting output can actually have larger size than
the original input. The main point is that proj(P,B)
lies in a low-dimensional space, so their approach should
be viewed as a dimensionality reduction technique to
decrease the ambient dimension d whereas our coreset
construction decreases the input size n. (Clarkson and
Woodruff, 2015) suggested approximation algorithms
based on matrix sketches for (1, j)-projective clustering
problems with respect to family of M -estimator func-

tions, and (Clarkson et al., 2019) provided tighter result
with respect to the (1, j)-projective clustering problems
with respect to the Tukey loss function. (Varadarajan
and Xiao, 2012c) proved upper bounds for the total
sensitivity of the input points for a number of shape
fitting problems, including the k-median, k-means, and
k-line clustering problems, as well as an L1 coreset for
the integer (j, k)-projective clustering problem. On the
other hand, (Har-Peled, 2004) showed that L∞ core-
sets for the projective clustering problem does not exist
even for j = k = 2 when the input set consists of points
from Rd. When the input is restricted to integer coor-
dinates, (Edwards and Varadarajan, 2005) constructed
an L∞ coreset that gives a (1 + ε)-approximation for
(j, k)-projective clustering. However, their construction
uses a subset of points with size exponential in both k
and d, which often prevents practical implementations.
Hence, a natural open question is whether there exist
L∞ coreset constructions for integer (j, k)-projective
clustering with size polynomial in d.

1.2 Our Contributions

We give the first L∞ coreset construction for the integer
(j, k)-projective clustering problem with size polyno-
mial in d, resolving the natural open question from
Edwards and Varadarajan (2005). Specifically, we give
an L∞ ξ-coreset C, so that for any choice F of k flats
with dimension j, the maximum connection cost of C
to F is at most ξ times the maximum connection cost
of P . Previously, even in the case of k = 1 and con-
stant j, the best known L∞ coreset construction had
size exp(d) (Edwards and Varadarajan, 2005). We first
introduce an L∞ coreset construction for the (j, 1)-
projective clustering problem using Carathéodory’s
theorem; see Figure 1. We then use our L∞ coreset
for (j, 1)-projective clustering as a base case to recur-
sively build a coreset Dk for (j, k)-projective clustering
from coresets for (j, k − 1)-projective clustering on the
partitions of the input points that have geometrically
increasing distances from the affine subspace spanned
by the points chosen in the previous steps. We use
properties from Edwards and Varadarajan (2005); Feld-
man et al. (2020) to bound the number of partitions
determined by the distances from the input points to
each of the affine subspaces, which bounds our coreset
size for an input with aspect ratio ∆, i.e., the ratio of
the largest and smallest coordinate magnitudes.

Theorem 1.1 (Small L∞ coreset for (j, k)-projective
clustering). There exists an L∞ constant-factor ap-
proximation coreset for the (j, k)-projective clustering
problem with size (8j3 log(d∆))O(jk).

Our main technical contribution is the novel L∞ coreset
construction for the (j, 1)-projective clustering prob-
lem that relies on Carathéodory’s theorem, which we
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crucially use to form the base case in our recursive
argument. We then build upon our novel coreset con-
struction by adding a polynomial number of points to
the coreset over each step in the inductive argument.
By comparison, even the base case for the previous
best coreset (Edwards and Varadarajan, 2005) uses ex-
ponential space by essentially constructing an epsilon

net with
(

1
ε

)O(d)
points.

We then give the first L∞ coresets for a number of
M -estimator regression problems. Although the frame-
work of Theorem 1.1 immediately gives coreset con-
structions for Cauchy, Welsch, Huber, Geman-McClure,
Tukey, L1 − L2, and Fair regression, we instead apply
sharper versions of the proof of Theorem 1.1 to the
respective parameters induced by each of the loss func-
tions to obtain even more efficient coreset constructions.
Our constructions give strong coresets so that with high
probability, the data structure simultaneously succeeds
for all queries. We then apply the framework of Theo-
rem 1.1 to give L∞ coresets for any non-decreasing con-
cave loss function Ψ with Ψ(0) = 0. We generalize this
approach to give L∞ coresets for any non-decreasing
concave loss function Ψ with Ψ(y)/Ψ(x) ≤ (y/x)z for a
fixed constant z > 0, for all 0 ≤ x ≤ y. Note that this
property essentially states that the loss function Ψ(x)
is bounded by some power function xz. We summarize
these results in Table 1.

We also use Theorem 1.1 along with the well-known sen-
sitivity sampling technique to obtain an L2 coreset for
integer (j, k)-projective clustering with approximation
(1 + ε).

Theorem 1.2 (Small L2 coreset for (j, k)-projective
clustering). There exists an L2 coreset with approxima-
tion guarantee (1+ε) for the (j, k)-projective clustering
problem with size O

(
(8j3 log(d∆))O(jk) log n

)
.

Experiments. Finally, we complement our theoret-
ical results with empirical evaluations on synthetic
and real world datasets for regression and clustering
problems. We first consider projective clustering on
a bike sharing dataset and a 3D spatial network from
the UCI machine learning repository (Dua and Graff,
2017). We then generate a synthetic dataset in the two-
dimensional Euclidean plane. Since previous coreset
constructions with theoretical guarantees are impracti-
cal for implementations, we compare our algorithms to
a baseline produced by uniform sampling. Our experi-
ments demonstrate that our algorithms have superior
performance both across various ranges of j and k for
the (j, k)-projective clustering problem as well as across
various regression problems, e.g., Cauchy, Huber loss
functions.

1.3 Preliminaries

For a positive integer n, we write [n] := {1, . . . , n}. We
use bold font variables to denote vectors and matrices.
For a vector x ∈ Rd, we have the Euclidean norm

‖x‖2 =
√∑d

i=1 x
2
i . We use log to denote the base two

logarithm. We use the notation ◦ to denote vertical
concatenation, so that if u and v are row vectors with
dimension d, then u ◦ v is the matrix with dimension
2× d whose first row is u and second row is v. Recall
that for c ∈ Rd and a symmetric positive definite matrix
G ∈ Rd×d, we define the ellipsoid E(G, c) to be the
set E(G, c) :=

{
x ∈ Rd | (x− c)>G(x− c) ≤ 1

}
.

Theorem 1.3 (John-Löwner ellipsoid). (John, 2014)
For a set L ⊆ Rd of points with nonempty interior,
there exists an ellipsoid E(G, c), where G ∈ Rd×d is a
positive definite matrix and c ∈ Rd, of minimal volume
such that 1

d (E(G, c)− c) + c ⊆ conv(L) ⊆ E(G, c).

The following defines an approximated solution to prob-
lem of finding the Löwner ellipsoid.

Definition 1.4 (α-rounding). (Todd and Yıldırım,
2007) Let L ⊆ Rd be a finite set such that span(L) = Rd
and let α ≥ 1. Then an ellipsoid E(G, c) is called an α-
rounding of conv(L) if 1

α (E(G, c)−c)+c ⊆ conv(L) ⊆
E(G, c).

Note that if α in the above definition is d (or equiv.√
d), the corresponding ellipsoid is the Löwner ellipsoid.

In order to define a distance to any affine subspace, we
first need the following ingredients.

Definition 1.5 (Orthogonal matrices). Let d > j ≥ 1
be integers. We say X ∈ Rd×j is an orthogonal matrix
if X>X = Ij. We use Vj ⊆ Rd×j to denote the set of
all d× j orthogonal matrices.

Definition 1.6 (j-dimensional subspace). Let d >
j ≥ 1 be integers and let v ∈ Rd. Let X ∈ Vj and
Y ∈ Vd−j such that Y>X = 0(d−j)×j and X>Y =
0j×(d−j). Let H(X,v) := {XX>p+v |p ∈ Rd} denote
the j-dimensional affine subspace H that is spanned
by the column space of X and offset by v. Let Hj :=
{H(X,v) |X ∈ Vj ,v ∈ Rd} denote the set of all j-affine
subspaces in Rd.

We use dist(H(X,v),p) := ‖(p − v)>Y‖2 to denote
the distance between any point p ∈ Rd and the j-
dimensional affine subspace H(X,v), where here Y ∈
Rd×(d−j) such that Y>X = 0(d−j)×j .

We now define the term query space which will aid us
in simplifying the proofs as well as the corresponding
theorems.

Definition 1.7 (query space). Let 1 ≤ j < d < n be
positive integers and let P ⊆ Rd be a set of n points
such that span(P ) = Rd. Then for the union of all
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Fig. 1: Overview of our approach (see Algorithm 1). Images from left to right: Steps 1 and 2: An
approximated ellipsoid E is computed satisfying the conditions of Theorem 1.3 (red ellipsoid), where the ellipsoid
E′ (in orange) is a dilation of E by a factor of α = d with respect to the center c of E (orange star). Step 3: The
vertices of E′ (orange ellipsoid) are computed and then dilated such that their convex hull (cyan outline) will
contain conv(P ) (black outline). Step 4: A Caratheodory set of d+ 1 points from P is computed for each vertex
point of E′ (green convex hull). Finally, each point on conv(P ) (black outline) can be represented by a convex
combination of a point on the convex hull of the vertices of E′ and their dilated points (cyan outline).

Table 1: M -estimator loss functions that can be captured by our coreset construction; d here denotes the dimension
of the input data P ; all lemmata below can be found at Section B of the supplementary material.

Loss Function Ψ Formulation multiplicative error
(`∞-coreset)

Reference

Cauchy
(
λ2/2

)
log
(
1 + (x/λ)2

)
8(d+ 1)3 Lemma B.1

Welsch λ2

2

(
1− e−( xλ )

2)
8(d+ 1)3 Lemma B.3

Huber

{
x2/2 If |x| ≤ λ
λ|x| − λ2/2 otherwise

16(d+ 1)3 Lemma B.4

Geman-McClure x2/
(
2 + 2x2

)
8(d+ 1)3 Lemma B.5

Concave d2Ψ
dx2 ≤ 0 4(d+ 1)1.5 Lemma B.7

Tukey

λ2

6

(
1−

(
1− x2

λ2

)3
)

if |x| ≤ λ
λ2

6 otherwise
8(d+ 1)3 Lemma B.8

L1 − L2 2
(√

1 + x2/2− 1
)

8(d+ 1)3 Lemma B.9

Fair λ|x| − λ2 ln (1 + |x|/λ) 8(d+ 1)3 Lemma B.10
Power Bounded ΨPow(y)/ΨPow(x) ≤ (y/x)z for all

0 ≤ x ≤ y
4z(d+ 1)1.5z Lemma 3.2

j-affine subspaces Hj, the tuple (P,Hj , dist) is called
a query space.

Following the previous definition, we now can define
the notion of L∞ coreset and L2 coreset.

Definition 1.8 (L∞ coreset). Let j ∈ [d − 1], ε ∈
(0, 1), and (P,Hj , dist) be a query space. Then a
set C ⊆ P is called an L∞ ε-coreset with respect
to the query space (P,Hj , dist) if for every X ∈
Vj and v ∈ Rd, maxp∈P dist(H(X,v),p) ≤ (1 +
ε) maxp∈C dist(H(X,v),p).

Definition 1.9 (L2 coreset). Let j ∈ [d−1], ε ∈ (0, 1),
and (P,Hj , dist) be a query space. Then a set C ⊆ P
with a weight function w : C → R is called an L2 ε-
coreset with respect to the query space (P,Hj , dist) if for
every X ∈ Vj and v ∈ Rd,

∑
p∈P dist(H(X,v),p)2 ≤

(1 + ε)
∑

p∈C w(p) dist(H(X,v),p)2.

Finally, we define a coreset for the k j-cylinders prob-
lem, followed by the Carathéodory’s theorem which will
be used in our proofs and algorithms in computing the
L∞ coreset for the (k, j)-projective clustering problem.

Definition 1.10. A closed j-cylinder of radius r is a
set of points in Rd whose distance to a certain j-flat is
at most r. A set D is an L∞ C-coreset of P ⊆ Rd for
the (j, k)-projective clustering problem if D is a subset
of P such that there exists a union of k j-cylinders of
radius Cr that covers P for each union of k j-cylinders
of radius r that covers D.

Theorem 1.11 (Carathéodory’s theorem).
(Carathéodory, 1907; Steinitz, 1913) For any A ⊂ Rd
and p ∈ conv(A), there exists m ≤ d + 1 points
p1, . . . ,pm ∈ A such that p ∈ conv({p1, . . . ,pm}).
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2 L∞ CORESETS FOR
PROJECTIVE CLUSTERING

First, we note that Har-Peled (2004) showed that L∞
coresets do not exist when the input set is n points
from Rd. However in this paper, we consider the in-
teger projective clustering problem, e.g. Edwards and
Varadarajan (2005), where the input points lie on a
polynomial grid.

We first give an L∞ coreset for the (j, 1)-projective
clustering problem in Section 2.1. We then use our L∞
coreset for the (j, 1)-projective clustering to inductively
build an L∞ coreset for the (j, k)-projective clustering
problem. For brevity purposes, proofs of the technical
results have been omitted from this manuscript; we
refer the reader to the supplementary material for the
proofs.

2.1 L∞ Coreset for (j, 1)-Projective
Clustering

We first give an overview for our algorithm that pro-
duces a constant factor approximation coreset for the
(j, 1)-projective clustering problem. We again empha-
size that our coreset for the (j, 1)-projective clustering
problem serves as our main technical contribution be-
cause we use Carathéodory’s theorem to explicitly find
a polynomial number of points to add to our core-
set. We can then use a natural inductive argument to
recursively add a polynomial number of points to cre-
ate a coreset for the integer (j, k)-projective clustering
problem. By contrast, even the base case for the only
existing coreset for the integer (j, k)-projective cluster-
ing problem already contains an exponential number
of points (Edwards and Varadarajan, 2005).

The algorithm takes as input a set P ⊆ Rd of n points,
which are promised to lie on a flat of dimension j, and
computes a subset C ⊆ P , which satisfies Theorem 2.2.
The algorithm appears in full detail in Algorithm 1 and
first initializes C to be an empty set. Our algorithm
computes H(W,u) to be the j-dimensional flat that
contains P and sets Q to be the set of points obtained
by projecting P onto the column space of W. The
algorithm then defines E(G, c) to be the John-Löwner
ellipsoid containing the convex hull of Q and S to be
the set of vertices defined the axes of symmetry and the
center of the scaled ellipsoid 1

j (E(G, c)− c) + c, which
can be explicitly and efficiently computed, and note
that |S| ≤ 2j. From Carathéodory’s theorem, we can
express each point in S∪{c} as a linear combination of
j+1 points from Q. We thus define K to be the O

(
j2
)

points of Q needed to represent all points in S ∪ {c}
and set C = µ(K), where µ is the inverse mapping
from Q to P . We first prove the following structural

Algorithm 1: Coreset for (j, 1)-Projective Cluster-
ing

Input: P ⊆ Rd of n points that lie on a flat of
dimension j

Output: Coreset of size O
(
j2
)

1 C ← ∅
2 Let H(W,u) := a j-dimensional flat containing P

3 Q :=
{
W>p |p ∈ P

}
4 Let µ be function that maps each point q ∈ Q to

its original point in P
5 Let E(G, c) := the John-Löwner ellipsoid of the

convex hull of Q
6 S := the vertices of the scaled ellipsoid

1
j (E(G, c)− c) + c

7 for each s ∈ S ∪ {c} do
8 Ks := be at most j + 1 points from Q whose

convex hull contains s
9 C := C ∪ µ (Ks)

10 return C

property that follows from Carathéodory’s theorem.

Lemma 2.1. Let d, `,m ≥ 1 be integers. Let p ∈ Rd
and A ⊆ Rd be a set of m points with p ∈ conv(A) so
that there exists α : A→ [0, 1] such that

∑
q∈A α(q) = 1

and
∑

q∈A α(q) ·q = p. Then for every Y ∈ Rd×` and

v ∈ R`, ‖p>Y − v‖2 ≤ maxq∈A ‖q>Y − v‖2.

We use Lemma 2.1 to show that Algorithm 1 gives a
coreset for the (j, 1)-projective clustering problem as
summarized below. In addition, we show that our `∞-
coreset is also applicable towards the (j, z)-clustering
where j denotes the dimensionality of the subspace, and
z denotes the power of the distance function. For in-
stance, z ∈ [1, 2) is used for obtaining robust clustering,
which is useful against outliers.

Theorem 2.2. Let j ∈ [d − 1], z ≥ 1, and let
(P,Hj , dist) be a query space, where P lies in a
j-dimensional flat. Let C ⊆ P be the output of
Algorithm 1. Then |C| = O

(
j2
)

and for every
H(X,v) ∈ Hj, we have maxp∈P dist(p, H(X,v))z ≤
2z+1j1.5z maxq∈C dist(q, H(X,v))z.

2.2 L∞ Coreset for (j, k)-Projective
Clustering

Our coreset construction is recursive. Generally speak-
ing, we construct a coreset Dk for (j, k)-projective
clustering from a coreset Dk−1 for (j, k − 1)-projective
clustering. For the base case, we show how to construct
a coreset D1 for (j, 1)-projective clustering in Theo-
rem 2.2. Now for k ≥ 2, given a coreset Dk−1 ⊂ P
for (j, k − 1)-projective clustering, the construction
of Dk has j + 1 levels and the i-th level will specify
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i + 1 points v0, . . . ,vi and a corresponding point set
P [v0, . . . ,vi] ⊂ P . We first add Dk−1 into Dk and
separately initialize Level 0 with v0 being each point
of Dk−1 and define P [v0] = P . Crucially, each of the
j+ 1 levels only adds to the coreset a number of points
that is polynomial in j ≤ d − 1 at each level due to
the base case using our new coreset for (j, 1)-projective
clustering based on Carathéodory’s theorem. Hence,
the total number of points is polynomial in d but expo-
nential in j. By contrast, existing coreset constructions
of Edwards and Varadarajan (2005) use partitions that
must be analyzed over d levels due to their lack of an
efficient coreset for their base case; thus their size is
exponential in d.

Level 0: Given any choice of v0 from Dk−1, we define
P [v0] := P ⊂ [∆]d, we have dist(p,v0) ∈ [1,∆

√
d]

for every p ∈ P [v0]. We can partition P [v0] into
` = O (log(d∆)) sets K0,0,K0,1, . . . ,K0,` such that
K0,0 = {v0} and K0,i = {p ∈ P [v0] : 2i−1 ≤
dist(p,v0) ≤ 2i} for i ≥ 1. Intuitively, this can be
seen as partitioning the points of P into sets with
exponentially increasing distance from v0. For each
K0,i, we construct an L∞-coreset D0,i of K0,i for the
(j, k − 1)-projective clustering problem and add D0,i

into Dk. We then separately select v1 to be any point
in D0,i across all i ∈ [`] and set P [v0, v1] = ∪ix=0K0,x.

Level t, for t ∈ [1, j]: Given v0, . . . ,vt and
P [v0, . . . ,vt], let At denote the affine subspace spanned
by v0, . . . ,vt. We recall the following structural prop-
erties about the convex hull of affine subspaces.

Lemma 2.3 ((Edwards and Varadarajan, 2005),
Lemma 45 in (Feldman et al., 2020)). Let ∆ ≥ 2, k be
a positive integer, and j ≤ d− 1 be a positive integer.
Let Qj,k be the family of all sets of k affine subspaces
of Rd with dimension j. Let A ∈ {−∆, . . . ,∆}n×d.
Then for every H ∈ Hj , we have either dist(H,A) = 0
or dist(H,A) ≥ 1

(d∆)cj , for some universal constant
c > 0.

By Lemma 2.3, we have that for every p ∈
P [v0, . . . ,vt], that dist(p, At) is either 0 or in the range
[1/(d∆)cj , 2∆

√
d]. Thus we can once again partition

P [v0, . . . ,vt] into O (j log(d∆)) subsets Kt,0, . . . ,Kt,`

such that Kt,0 = P [v0, . . . ,vt] ∩At and for each inte-
ger i ∈ [`], Kt,i := {p ∈ P [v0, . . . ,vt] : 2i−1cj/∆

j ≤
dist(p, At) < 2icj/∆

j}. For each Kt,i, we construct an
L∞-coreset Dt,i of Kt,i for (j, k − 1)-projective clus-
tering and add Dt,i to Dk. We then separately select
vt+1 to be any point in Dt,i across all i ∈ [`] and set
P [v0, . . . ,vt+1] = ∪ix=0Kt,x. We remark that we termi-
nate at level j + 1. Finally, in what follows, we give a
bound on the size of our L∞ coreset.

Lemma 2.4 (Coreset size). Let f(k) = |Dk| denote
the size of the coreset Dk formed at level k for (j, k)-

projective clustering. Then f(k) =
(
8j3 log(d∆)

)O(jk)
.

To prove that our construction yields an L∞ constant-
factor approximation coreset for the integer (j, k)-
projective clustering problem, we use a structural prop-
erty about the convex hull of affine subspaces. In-
formally, the property says that if v0, . . . ,vd ∈ Rd
are d + 1 affinely independent vectors that induce
a sequence of affine subspaces A0, . . . ,Ad, then un-
der certain assumptions, the convex hull formed by
v0, . . . ,vd contains a translation of a scaled hyperrect-
angle formed by a sequence u0, . . . ,ud of vectors formed
by the orthogonal projection away from A0, . . . ,Ad.
For more details, see Section A.4 in the supplementary
material. Using this structural property, we achieve
an L∞ constant-factor approximation coreset for the
integer (j, k)-projective clustering problem with size
(8j3 log(d∆))O(jk):

Lemma 2.5. There exists a universal constant ξ > 0
such that Dk is a ξ-coreset for the (j, k)-projective
clustering problem.

Theorem 1.1 then follows from Lemma 2.5 and
Lemma 2.4 and the observation that j ≤ d− 1. Thus
our coresets have size polynomial in d, resolving the
natural open question from Edwards and Varadarajan
(2005).

Algorithm 2: Coreset for (j, k)-Projective Cluster-
ing

Input: P ⊆ Rd of n points, an integer j ∈ [d− 1],
an integer k ≥ 1, an accuracy parameter
ε ∈ (0, 1) and a failure probability
δ ∈ (0, 1).

Output: A weighted set (C, u)
1 P1 := P , i := 1, C := ∅
2 while |Pi| ≥ 1 do
3 Si := an L∞-coreset for (j, k)-projective

clustering
4 for every p ∈ Si do
5 s(p) := 1

i · |Si|
// |Si| = O

(
j1.5(j log(d∆))O(jk)

)
6 Pi+1 := Pi \ Si, i := i+ 1

7 t :=
∑

p∈P s(p)

// t = O
(
j1.5(j log(d∆))O(jk) log n

)
8 m := ct

ε2

(
djk log t

δ

)
9 for m iterations do

10 Sample a point p ∈ P with probability s(p)
t

11 C := C ∪ {p}, u(p) := t
m·s(p)

12 return (C, u)
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3 APPLICATIONS

In this section, we show that our framework gives an
L∞ coreset for subspace clustering, as well as a large
class of M -estimators. To the best of our knowledge,
our constructions are the first coresets with size poly-
nomial in d for these M -estimators. Namely, our algo-
rithm achieves approximate regression for the Cauchy,
Welsch, Huber, Geman-McClure, Tukey, L1 − L2, Fair
loss functions, as well as general loss functions that are
concave or power-bounded; see Table 1.

Beyond traditional projective clustering. First,
we present that our L∞-coreset algorithm is applicable
for a family of non-decreasing log-log Lipschitz function.

Theorem 3.1 (L∞ coreset for log-log Lipschitz loss
functions). Let j ∈ [d− 1], z ≥ 1, and let (P,Hj , dist)
be a query space, where P lies in a j-dimensional flat.
Let f : [0,∞) → [0,∞) such that both (1) f is a
monotonically non-decreasing function, i.e., for every
x, y ∈ [0,∞) with x ≤ y, it holds that f(x) ≤ f(y)
and (2) f is log-log Lipschitz, i.e., there exists ρ ≥ 1
for every b ≥ 1 such that f(bx) ≤ bρf(x). Let C
be the output of a call to L∞ − Coreset(P ). Then
for every H ∈ Hj, maxp∈P f(dist(p,H(X,v))z) ≤
(2z+1j1.5z)ρ maxp∈C f(dist(p,H(X,v))z).

Although the above theorem is applicable to large fam-
ily of functions, it may not yield tight bounds for each
of the loss functions in Table 1. Thus we first prove
the following lemma, which guarantees an coreset for
power-bounded loss functions ΨPow(x).

Lemma 3.2 (L∞ coreset for regression with pow-
er-bounded loss function). Let P ⊆ Rd be a set of
n points, b : P → R, λ ∈ R, and let z > 0 be a fixed
constant. Let ΨPow denote any non-decreasing loss
function with ΨPow(0) = 0 and ΨPow(y)/ΨPow(x) ≤
(y/x)z for all 0 ≤ x ≤ y. Let P ′ = {p ◦ b(p) |p ∈ P},
where ◦ denotes vertical concatenation. Let C ′ be
the output of a call to L∞ − Coreset(P ′, d) and
let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then
for every w ∈ Rd, maxp∈P ΨPow

(
|p>w − b(p)|

)
≤

4z(d+ 1)1.5z ·maxq∈C ΨPow

(
|q>w − b(q)|

)
.

Since power-bounded loss functions satisfy the condi-
tions of Theorem 3.1, then we can immediately apply
Theorem 3.1 to obtain a base case for z = 1. Lemma 3.2
then follows by the definition of power-bounded loss
functions for general z.

It turns out that many of the loss functions of interest in
Table 1 are power-bounded loss functions with specific
parameters, so we can apply Theorem 3.1 in the same
way as the proof of Lemma 3.2 to obtain the guarantees
for Cauchy regression, Huber regression, and Gem-
McClure regression. However, in certain cases, we
can prove structural properties bounding the growth

of these loss functions to obtain guarantees that are
sharper than those provided by Theorem 3.1. We
prove such structural properties at Section B of the
supplementary material to handle Welsch regression,
regression with concave loss functions, Tukey regression,
L1 − L2 regression, and Fair regression.

L∞-coreset to L2-coreset for integer (j, k)-
projective clustering. To construct an ε-coreset,
we use our L∞ coreset along with the framework of
sensitivity sampling, in which points are sampled ac-
cording to their sensitivity, a quantity that roughly
captures how important or unique each point is. We
give the coreset construction in Algorithm 2 using a
standard reduction from an L2 coreset to an L∞ core-
set based on sensitivity sampling as summarized below.

Theorem 3.3. With constant probability, Algorithm 2
outputs an L2 (1 + ε)-coreset for (j, k)-projective clus-
tering of P .

Time complexity of our methods. The running
time of Algorithm 2, we need to handle two cases –
(1) k = 1, and (2) k > 1. Observe that the time needed
for constructing our L2-coreset for (k, j)-projective clus-
tering where k = 1 and any j ≥ 2 is bounded by
O
(
n
(
n+ j4 log n

))
time. Specifically speaking, the

time depends heavily on the time that Algorithm 1.
Algorithm 1 depends heavily on the computation of
the Löwner ellipsoid and on applying Carathéodory’s
theorem. The time needed to compute the Löwner el-
lipsoid of a given set of point Q ⊆ Rj such that |Q| = n
is bounded by O

(
nj3 log n

)
Todd and Yıldırım (2007).

As for constructing the Caratheodory set, recently pro-
vided an algorithm for computing such set in time
O
(
nj + j4 log n

)
. Combining these two methods with

the observation that Algorithm 2 has O
(
n
j2

)
calls to

Algorithm 1, results in the upper bound above.

As for k ≥ 2, following our analyzed steps needed to
construct an L∞-coreset for the (k, j)-projective clus-
tering problem and its variants, the running time is

bounded from above by O
(
nj4 (log ∆)

j2k
)

. Hence, Al-

gorithm 2 requires O
(
n2j4 (log ∆)

j2k
)

to construct an

L2-coreset for the (k, j)-projective clustering problem.

We note that our algorithm can be boosted theoret-
ically speaking via the use of the merge-and-reduce
tree Feldman (2020), resulting in an algorithm that are
near-linear in n rather than quadratic in n.

We further note that, our assumption on P being con-
tained in some j-dimensional affine subspace can be
dropped as follows.

Remark 3.4. So far, P was assumed to lie on j-
dimensional subspaces, however, one can remove this
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assumption by using Theorem 7 of Varadarajan and
Xiao (2012a).

Subspace clustering. We first recall that subspace
clustering is a variant of projective clustering where
k = 1 and j ∈ [d− 1].

M-estimator regression. We present various robust
(1, d − 1)-projective clustering problems for which a
strong ε-coreset can be generated using our algorithms.
We are given a set P of n points in Rd and a function
b : P → R, and our goal is to optimize the minimiza-
tion problem minw∈Rd

∑
p∈P Ψ

(
|p>w − b(p)|

)
, where

Ψ is any loss function. In particular, the choice of
Ψ encompasses many robust regression loss functions
that have been designed to reduce the effect of out-
liers across various optimization problems. We show
that Algorithm 1 achieves an L∞-coreset with accuracy
1− 1

poly(d) for a variety of loss functions; See Section B

in the supplementary material.

4 EXPERIMENTS

In this section, we evaluate our coreset against uniform
sampling on synthetic and real-world datasets, with
respect to the projective clustering problem and its
variants.

Software/Hardware. Our algorithms were imple-
mented Tukan et al. (2022) in Python 3.6 (Van Rossum
and Drake, 2009) using “Numpy” (Oliphant, 2006),
“Scipy” (Virtanen et al., 2020). Tests were performed
on 2.59GHz i7-6500U (2 cores total) machine with
16GB RAM.

Datasets. The following datasets used for our experi-
ments were mostly from UCI machine learning repos-
itory (Dua and Graff, 2017): (i) Synthetic – 20, 000
points in the two dimensional Euclidean space where
19, 990 points lie on the x-axis while the remaining 10
points are generated away from the x-axis. (ii) Bike
Sharing Dataset Data Set (Dua and Graff, 2017)
– consists of 17389 samples, and 17 features of which
only 15 were used for the sake of our comparisons.
(iii) Physicochemical Properties of Protein Ter-
tiary Structure Data Set (Dua and Graff, 2017) –
45, 730 samples, each consisting of 10 features.

Evaluation against uniform sampling. Through-
out the experiments, we have chosen 10 sample sizes,
starting from 100 till 1, 000 for projective clustering
problems and from 1, 000 till 10, 000 for regression prob-
lems; see Figure 3. At each sample size, we generate two
coresets, where the first is using uniform sampling and
the latter is using Algorithm 2. When handling projec-
tive clustering problems, for each coreset (S, v), we have
computed a suboptimal solution H̃ ∈ Hj using an EM-

like algorithm (Expectation Maximization) where the
number of steps for convergence was 6 while the number
of different initializations was set to 1, 000. E.g., in Fig-
ure 2c, the goal was to find an suboptimal solution H̃
for the problem minH∈Hj

∑
p∈S v(p)dist (p,H (X, v))

2
.

As for regression related problems, we have computed
the suboptimal solution using Scipy’s (Virtanen et al.,
2020) own optimization sub-library which can handle
such problem instances, where similarly to the projec-
tive clustering settings, we have ran the solver for 100
iterations (at max) while having at max 15, 000 different
initializations for the solver. The approximation error

ε is set to be the ratio
∑
p∈P f

(
dist

(
p, H̃ (X, v)

))
to
(

minH∈Hj
∑
p∈P f (dist (p,H(X, v)))

)
− 1. Finally,

the results were averaged across 22 trials, while the
shaded regions correspond to the standard deviation.

Choice of baseline. We remark that uniform sam-
pling was selected as the baseline for our algorithm
because the only existing coreset construction with
theoretical guarantees for the integer (j, k)-projective
clustering problem is that of Edwards and Varadarajan
(2005). However, their construction is known to be
impractical due to the large coreset size. In fact, even
the base case requires a number of points that is expo-
nential in d; thus we could not implement the coreset
construction of Edwards and Varadarajan (2005). In
practice uniform sampling is used due to the observa-
tion that real-world data is often not “worst-case” data.
Thus it is a natural choice to compare the performance
of our algorithm to that of uniform sampling across a
number of real-world datasets, even though it is clear
that we can generate synthetic data for which uniform
sampling can perform arbitrarily badly due to its lack
of provable guarantees, while our coreset constructions
still maintains its theoretical guarantees.

Discussion. First note that our coresets are generally
more accurate than uniform sampling across the experi-
ments, sometimes outperforming uniform sampling by a
factor of ≈ 10000, e.g., (2, 2)-projective clustering with
the Tukey loss function in Figure 2e. Moreover, there
exist data distributions in which uniform sampling
provably performs arbitrarily worse than our coreset
construction. For example, consider choosing k = 2
centers across n points when n−1 points are located at
the origin and a single point is located at the position
N on the x-axis. Then the optimal clustering has cost
zero by choosing a center at the origin and a center
at N , but uniform sampling will not find the point
at N without Ω(N) samples and thus incur cost N .
Since our coreset finds a multiplicative approximation
to the optimal solution, it will also achieve a clustering
with cost zero, which is arbitrarily better than N , sam-
pling only polylog(n) points. On the other hand, in
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Table 2: Summary of our results: Our coreset construction was applied on various application of projective
clustering, of which were robust regression as well as robust subspace clustering

Problem type Loss function k j Dataset Figure
Regression Huber 1 d− 1 (i) 2a
Regression Cauchy 1 d− 1 (i) 2b

(2, 2)-projective clustering L2
2 2 2 (ii) 2c

Robust (2, 2)-projective clustering Cauchy 2 2 (ii) 2d
Robust (2, 2)-projective clustering Tukey 2 2 (iii) 2e
Robust (2, 2)-projective clustering Welsch 2 2 (iii) 2f
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Fig. 2: Our experimental results: evaluating the efficacy of our coreset against uniform sampling.

some of the figures, e.g., Figure 2e, as we increase the
sample size, the approximation error that corresponds
to our coreset might increase at some sample sizes.
This phenomenon is associated with the probabilistic
nature of our coreset, as our coreset is a result of a
sensitivity sampling technique. This problem can be
easily resolved via increasing the number of trials (the
number of trials was chosen to be 22). The same holds
for uniform sampling.

Although our coreset is generally better in terms of
approximation error than uniform sampling, however
the running time of our implementation is slow. We
strongly believe that our algorithm can achieve faster
results using the merge-and-reduce tree on the expense
of an increase in the approximation error. For addi-
tional results, see Section C at the appendix.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have provided an L∞ and L2 core-
sets for (k, j)-projective clustering problems and its
variants, e.g., M -estimators. Our approach leveraged
an elegant combination between Löwner ellipsoid and
Carathéodory’s theorem. This in term sheds light on
the use of constant-approximation coresets (our L∞
coreset) as a stepping stone towards L2 coresets with
ε approximation. We believe that there is room for
future work with respect to constructing L∞-coresets
with smaller sizes for constant factor approximation.
Finally, the lower bound on the size of constant factor
coresets for the (j, k)-projective clustering problem is
still unknown. We hope our work presents an important
step in resolving the complexity of this problem.
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New Coresets for Projective Clustering and Applications

A PROOF OF THE TECHNICAL RESULTS

A.1 Proof of Lemma 2.1

Proof. Since we can write p as the convex combination of points q ∈ A with weight α(q), we have

‖p>Y − v‖2 = ‖

∑
q∈A

α(q)q>Y

− v‖2.

Moreover, we have
∑

q∈A α(q) = 1, so we can decompose v into

‖p>Y − v‖2 = ‖
∑
q∈A

α(q)
(
q>Y − v

)
‖2.

By triangle inequality,

‖p>Y − v‖2 ≤
∑
q∈A

α(q)‖q>Y − v‖2 ≤ max
q∈A
‖q>Y − v‖2.

A.2 Proof of Theorem 2.2

Proof. To show the first part of the claim, note that since the ellipsoid E(G, c) has at most 2j vertices and
each vertex point of the ellipsoid can be represented a convex combination fo at most j + 1 points from Q by
Carathéodory’s theorem, then the number of points in C is at most 2(j + 1)2, so that |C| = O

(
j2
)
.

To show the second part of the claim, we first set H(W,u) to be the j-flat containing P and Y ∈ Hd−j so that
Y>X = 0(d−j)×j and X>Y = 0j×(d−j). Notice that each p ∈ P satisfies

dist(p,H(X,v))z = ‖(p− v)>Y‖z2 = ‖(p− u + u− v)>Y‖z2.

Since p lies in the affine flat H(W,u), then we have

dist(p,H(X,v))z = ‖
(
WW>(p− u) + u− v

)>
Y‖z2. (1)

We now rely on properties of Carathéodory’s Theorem and the John-Löwner ellipsoid to bound (1).

First note that

‖
(
WW>(p− u) + u− v

)>
Y‖z2 =

‖
(
WW>p−WW>u + u− v

)>
Y‖z2.

Recall that for each p ∈ P , there exists q ∈ Q such that q = W>p and

‖
(
WW>(p− u) + u− v

)>
Y‖z2 =

‖
(
Wq−WW>u + u− v

)>
Y‖z2.

Since S is the set of vertices of E(G, c), we have by the definition of the John-Löwner ellipsoid that

1

j
(E(G, c)− c) + c ⊆ conv(Q) ⊆ E(G, c).



New Coresets for Projective Clustering and Applications

Thus S ⊆ conv(S) ⊆ conv(Q) and by Carathéodory’s theorem, for each s ∈ S, there exists a set Ks of at most
j + 1 points such that s ∈ conv(Ks). By Lemma 2.1,

‖sW>Y‖z2 ≤ max
q∈Ks

‖q>W>Y‖z2.

We also have
1√
j
· E(G, c)− c

j
+ c ⊆ conv(S) ⊆ E(G, c)− c

j
+ c.

Therefore,

conv(S) ⊆ conv(Q) ⊆ E(G, c) ⊆ j1.5(conv(S)− c) + c. (2)

Thus for every q ∈ Q, there exists s ∈ conv(S) and γ ∈ [0, 1] such that

q = γs + (1− γ)(j1.5(s− c) + c).

For a = u>WW>Y − u>Y − v>Y, we then have

‖q>W>Y + a‖z2 = ‖(γs + (1− γ)(j1.5(s− c) + c)W>Y + a‖z2.
Since z ≥ 1, then ‖ · ‖z2 is a convex function. Thus by Jensen’s inequality,

‖q>W>Y + a‖z2 ≤ γ‖sW>Y + a‖z2+

(1− γ)‖j1.5s>W>Y + (1− j1.5)c>W>Y + a‖z2.

Since a = j1.5a + (1− j1.5)a, then

‖j1.5s>W>Y + (1− j1.5)c>W>Y + a‖z2 ≤
2zj1.5z‖s>W>Y + a‖z2 + 2z(j1.5 − 1)z‖c>W>Y + a‖z2.

Since c ∈ conv(S) by (2), then

‖c>W>Y + a‖z2 ≤ max
s∈conv(S)

‖s>W>Y + a‖z2.

Since j1.5z + (j1.5 − 1)z ≤ 2j1.5z, then we have that for every q ∈ Q,

‖q>W>Y + a‖z2 ≤ 2z+1j1.5z max
s∈S
‖s>W>Y + a‖z2.

Thus we have for every s ∈ S,

‖s>W>Y + a‖z2 ≤ max
q∈K
‖q>W>Y + a‖z2

≤ max
p∈C
‖p>WW>Y + a‖z2

Because a = u>WW>Y − u>Y − v>Y, we have

dist(p, H(X,v))z

≤ 2z+1j1.5z max
p∈C
‖p>WW>Y + a‖z2

= 2z+1j1.5z max
p∈C
‖(WW>(p− u))>Y + u>Y − v>Y‖z2.

Since (p− u) ∈ P and P lies within H(W,u), then

dist(p, H(X,v))z

≤ 2z+1j1.5z max
p∈C
‖p>Y − u>Y + u>Y − v>Y‖z2

= max
p∈C
‖p>Y − v>Y‖z2

= 2z+1j1.5z max
p∈C

dist(p, H(X,v))z.
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A.3 Proof of Lemma 2.4

Proof. By Theorem 2.2, we have that f(1) ≤ 2(j + 1)2 ≤ 8j2. Our construction has j + 1 levels and each
level partitions the data set into O (j log(d∆)) sets. For each of the sets, we construct an L∞-coreset for
(k − 1, j)-projective clustering and

each of the points in the union of the coresets to be used in the point set P [v0, . . . ,vk+1] for the next level. Thus
we have

f(k) ≤ (O (j log(d∆)) · f(k − 1))j+1,

so that by induction, f(k) ≤ (8j3 log(d∆))O(jk).

A.4 Proof of Lemma 2.5

We first require the following structural property about the convex hull of affine subspaces.

Lemma A.1 (Lemma 1 in (Edwards and Varadarajan, 2005)). Let v0, . . . ,vd ∈ Rd be d+ 1 affinely independent
vectors and for each 0 ≤ i ≤ d, let Ai be the affine subspace spanned by v0, . . . ,vi. Let wi be the projection of vi
onto Ai and let ui = vi −wi. Suppose we have dist(vj , Ai) ≤ 2‖ui‖2 for every 0 ≤ i ≤ d and j ≥ i. Then there
exists an absolute constant cd that only depends on d, so that the simplex conv(v0, . . . ,vd) contains a translation
of the hyperrectangle {cd(α1u1 + . . .+ αdud : αi ∈ [0, 1]}.

Thus we achieve an L∞ constant-factor approximation coreset for the integer (j, k)-projective clustering problem
with size (8j3 log(d∆))O(jk):

Proof. Suppose Dk is covered by the k cylinders S1, . . . , Sk. Then we would like to show that P is covered by a
constant-factor C-expansion of S1, . . . , Sk. Here a x-expansion of a cylinder S is the set {xp|p ∈ S}. We first induct
on k and then j, noting that the base case k = 1 is already handled by Theorem 2.2. We then fix k ≥ 2 and induct
on j, first considering stage 0, where we have some v0 and we define K0,i = {p ∈ P [v0] : 2i−1 ≤ dist(p,v0) ≤ 2i}
for i ∈ [`], where ` = O (log(d∆)). We then set D0,i to be the corresponding coreset for K0,i for the (k − 1, j)-
projective clustering problem. Let a denote the largest positive integer such that Sk ∩D0,a 6= ∅, so that by the
definition of a, we have that ∪`x=a+1D0,x is covered by S1, . . . , Sk−1. Since D0,x is a coreset for the (k − 1, j)-
projective clustering problem, then ∪`x=a+1K0,x is covered by a C-expansion of S1, . . . , Sk−1. For any point v1

in Sk ∩D0,a, we enter stage 1 with v0,v1 and so it remains to prove that a C-expansion of S1, . . . , Sk covers
P [v0,v1] = ∪ax=0K0,x.

For the inductive step, suppose we have fixed v0, . . . ,vt and for each i ∈ [0, t], let Ai denote the affine subspace

spanned by v0, . . . ,vi, that is Ai =

{
i∑
l=0

αlvl

∣∣∣∣∀l ∈ [i]αi ∈ R,
i∑
l=0

αl = 1

}
. Let wi denote the projection of vi on

Ai and set ui = vi −wi. Then for every p ∈ P [v0, . . . ,vi] ∩Ai, we have

dist(p, Ai) ≤ 2 dist(vi, Ai).

Thus for p ∈ P [v0, . . . ,vt] ∩At, we have that p is contained in the hyperrectangle

M := v0 + {α1u1 + . . .+ αtut : αi ∈ [−2, 2]}.

By Lemma A.1, there exists a constant ct such that conv(v0, . . . ,vt) contains a translation of the hyperrectangle

M1 := {ct(α1u1 + . . .+ αtut) : αi ∈ [0, 1]}.

Since Sk covers v0, . . . ,vt, then M1 ⊂ Sk. Moreover, we have that for an absolute constant ξ, M ⊂ ξ · M1.
Thus, a ξ-expansion of Sk covers P [v0, . . . ,vt] ∩At.
Let b denote the largest positive integer such that Sk ∩ Dt,b 6= ∅, so that by the definition of b, we have
that ∪`x=b+1Dt,x is covered by S1, . . . , Sk−1. Since Dt,x is a coreset for the (k − 1, j)-projective clustering

problem, then ∪`x=b+1Kt,x is covered by a ξ-expansion of S1, . . . , Sk−1. For any point vt+1 in Sk ∩ Dt,b, we
enter stage t + 1 with v0, . . . ,vt+1 and so then by induction, it holds that a ξ-expansion of S1, . . . , Sk covers
P [v0, . . . ,vt+1] = ∪bx=0Kt,x.
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A.5 Proof of Theorem 3.1

Proof. Let H(X,v) ∈ Hj . Then by Theorem 2.2, we have that

max
p∈P

dist(p,H(X,v))z ≤ 2z+1j1.5z max
q∈C

dist(q,H(X,v))z.

Since f is a monotonically non-decreasing function, then

max
p∈P

f(dist(p,H(X,v))z)

= f

(
max
p∈P

dist(p,H(X,v))z
)

≤ f
(

2z+1j1.5z max
q∈C

dist(q,H(X,v))z
)
.

Since f is log-log Lipschitz, then

f

(
2z+1j1.5z max

q∈C
dist(q,H(X,v))z

)
≤ (2z+1j1.5z)ρf

(
max
q∈C

dist(q,H(X,v))z
)

≤ (2z+1j1.5z)ρ max
q∈C

f (dist(q,H(X,v))z) .

Hence, we have

max
p∈P

f(dist(p,H(X,v))z) ≤ (2z+1j1.5z)ρ max
p∈C

f(dist(p,H(X,v))z)

as desired.

A.6 Proof of Theorem 3.3

Proof. The coreset size follows the bound of Feldman et al. (2020) once the sensitivity and the shattering
dimension upper bound are given to us. We actually follow the way of Lemma 3.1 of Varadarajan and Xiao
(2012b) to give the sensitivity upper bound s(p). The shattering dimension upper bound Õ(djk) follows Corollary
34 of Feldman et al. (2020)

B APPLICATIONS

In what follows, we will show that `∞-coreset can serve a family of functions including (but not bounded to)
M -estimators.

B.1 L∞ Coreset for Regression with Power-Bounded Loss Function – Proof of Lemma 3.2

Proof. Because the claim is trivially true for w = 0d, then it suffices to consider nonzero w ∈ Rd. Let Y ∈ Hd−1

such that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the vertical

concatenation of p with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By setting C to

be the output of Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z

Thus for z = 1, we have for every p ∈ P ,

|(p′)>w′| ≤ 4(d+ 1)1.5 max
q∈C
|(q′)>w′|.
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Since ΨPow is monotonically non-decreasing, then ΨPow(|p>x−b(p)) increases as |p>x−b(p)| increases. Moreover,
we have ΨPow(y)/ΨPow(x) ≤ (y/x)z for all 0 ≤ x ≤ y. Therefore,

max
p∈P

ΨPow

(
|p>w − b(p)|

)
≤ max

q∈C
ΨPow

(
4(d+ 1)1.5|q>w − b(q)|

)
≤ 4z(d+ 1)1.5z max

q∈C
ΨPow

(
|q>w − b(q)|

)
.

B.2 L∞ Coreset for Cauchy Regression

Lemma B.1. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨCau denote the Cauchy loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨCau

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨCau

(
|q>w − b(q)|

)
.

Proof. We first observe that the claim is trivially true for w = 0d. Thus it suffices to consider nonzero w ∈ Rd.

Let Y ∈ Hd−1 such that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the

vertical concatenation of p with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By

running Coreset on P ′ = {p′ |p ∈ P} to obtain a coreset C, then we have by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

The Cauchy loss function is monotonically increasing, so that ΨCau(|p>x − b(p)|) increases as |p>x − b(p)|
increases. Thus for every p ∈ P ,

ΨCau(|p>w − b(p)|)
= ΨCau

(∣∣(p′)>w′
∣∣)

=
λ2

2
log

1 +

(∣∣(p′)>w′
∣∣

λ

)2


≤ max
q∈C

λ2

2
log

1 + 8(d+ 1)3

(∣∣(q′)>w′
∣∣

λ

)2
 ,

where the inequality follows from the L∞-coreset property above and the monotonicity of the Cauchy loss function.
Thus by Bernoulli’s inequality, we have

ΨCau(|p>w − b(p)|)

≤ max
q∈C

8(d+ 1)3 · λ
2

2
log

1 +

(∣∣(q′)>w′
∣∣

λ

)2


= 8(d+ 1)3 max
q∈C

ΨCau

(∣∣(q′)>w′
∣∣)

= 8(d+ 1)3 max
q∈C

ΨCau

(
q>w − b(q)

)
.
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B.3 L∞ Coreset for Welsch Regression

First, we will present the following as a stepping stone towards bounding the approximation error that our
L∞-coreset achieves in the context of Welsch regression problem.

Lemma B.2. Let a ≥ 1 be a positive real number. Then for every x ∈ R,

1− e−a2x2 ≤ a2(1− e−x2

).

Proof. Since e−x
2

decreases as x2 increases, then a2e−x
2 − e−a2x2

is a monotonically non-increasing function that
achieves its maximum at x = 0. In particular, the value of a2e−x

2 − e−a2x2

at x = 0 is a2 − 1, so that

a2e−x
2 − e−a2x2 ≤ a2 − 1.

Thus from rearranging the terms, we have that

1− e−a2x2 ≤ a2(1− e−x2

).

Lemma B.3. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨWel denote the Welsch loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨWel

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨWel

(
|q>w − b(q)|

)
.

Proof. We observe that the claim is trivially true for w = 0d, so that it suffices to consider nonzero w ∈ Rd.

Let Y ∈ Hd−1, so that w>Y = 0d−1 and Y>w = 0d, and for each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote

the vertical concatenation of p with b(p). Let w′ denote the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By

Theorem 3.1, we have that the output C of Coreset on P ′ = {p′ |p ∈ P} satisfies

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

The Welsch loss function is monotonically increasing, so that ΨWel(|p>x − b(p)|) increases as |p>x − b(p)|
increases. Hence, for every p ∈ P ,

ΨWel(|p>w − b(p)|)
= ΨWel

(∣∣(p′)>w′
∣∣)

=
λ2

2

1− e
−
( |(p′)>w′|

λ

)2


≤ max
q∈C

λ2

2

1− e
−
(

8(d+1)3|(q′)>w′|
λ

)2
 ,

where the inequality results from the L∞-coreset property above and the monotonicity of the Welsch loss function.
By Lemma B.2,

ΨWel(|p>w − b(p)|)
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≤ max
q∈C

8(d+ 1)3 · λ
2

2

1− e
−
( |(q′)>w′|

λ

)2


= 8(d+ 1)3 max
q∈C

ΨWel

(∣∣(q′)>w′
∣∣)

= 8(d+ 1)3 max
q∈C

ΨWel

(
|q>w − b(q)|

)
.

B.4 L∞ coreset for Huber regression

Lemma B.4. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨHub denote the Huber loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨHub

(
|p>w − b(p)|

)
≤ 16(d+ 1)3 ·maxq∈C ΨHub

(
|q>w − b(q)|

)
.

Proof. The claim is trivially true for w = 0d; it remains to consider nonzero w ∈ Rd. Let Y ∈ Hd−1, so that
w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , we use p′ to denote the vertical concatenation of p with b(p),

p′ := p ◦ b(p) =

[
p
b(p)

]
. Similarly, we use w′ to denote the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By

Theorem 3.1, we have that the output C of Coreset on P ′ = {p′ |p ∈ P} satisfies

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2. (3)

We now consider casework for whether |(p′)>w′| ≤ λ or |(p′)>w′| > λ.

If |(p′)>w′| ≤ λ, then we immediately have from (3) and the fact that C ⊆ P that

ΨHub

(
|(p′)>w′|

)
≤ 8(d+ 1)3 max

q∈C
ΨHub

(
|(q′)>w′|

)
.

On the other hand if |(p′)>w′| > λ, we further consider casework for whether maxq∈C |(q′)>w′| ≤ λ or
maxq∈C |(q′)>w′| > λ. If maxq∈C |(q′)>w′| > λ, then we again have from (3) and the fact that C ⊆ P that

ΨHub

(
|(p′)>w′|

)
≤ 8(d+ 1)3 max

q∈C
ΨHub

(
|(q′)>w′|

)
.

Finally, if |(p′)>w′| > λ but maxq∈C |(q′)>w′| ≤ λ, then we observe that from (3) and the assumption that
|(p′)>w′| > λ, we have

λ√
8(d+ 1)1.5

≤ max
q∈C
|(q′)>w′|.

Thus if |(p′)>w′| > λ, then

ΨHub(|p>w − b(p)|)
= ΨHub

(∣∣(p′)>w′
∣∣)

= λ

(∣∣(p′)>w′
∣∣− λ

2

)
≤ λ

(∣∣(p′)>w′
∣∣)

≤
√

8λ(d+ 1)1.5

(
max
q∈C

∣∣(q′)>w′
∣∣) ,
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where the last inequality results from the L∞-coreset property in (3) above. Therefore,

ΨHub(|p>w − b(p)|)

≤ λ√
8(d+ 1)1.5

· 8(d+ 1)3

(
max
q∈C

∣∣(q′)>w′
∣∣)

≤ 8(d+ 1)3

(
max
q∈C

∣∣(q′)>w′
∣∣2)

≤ 16(d+ 1)3 max
q∈C

ΨHub(|q>w − b(q)|).

Thus in all cases, we have

max
p∈P

ΨHub

(
|p>w − b(p)|

)
≤ 16(d+ 1)3 ·max

q∈C
ΨHub

(
|q>w − b(q)|

)
.

B.5 L∞ coreset for Geman-McClure regression

Lemma B.5. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨGM denote the Geman-McClure
loss function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of
a call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨGM

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨGM

(
|q>w − b(q)|

)
.

Proof. Note that the claim is trivially true for w = 0d, so it therefore suffices to consider nonzero w ∈ Rd. Let

Y ∈ Hd−1 such that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the vertical

concatenation of p with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By setting C to

be the output of Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

The Geman-McClure loss function is monotonically increasing, so that ΨGM (|p>x−b(p)|) increases as |p>x−b(p)|
increases. Therefore,

max
p∈P

ΨGM

(
|p>w − b(p)|

)
= max

p∈P

|(p′)>w|2
2 + 2|(p′)>w|2)

≤ max
q∈C

8(d+ 1)3|(q′)>w|2
2 + 2|(q′)>w|2

= 8(d+ 1)3 max
q∈C

ΨGM

(
|q>w − b(q)|

)
,

where the inequality results from the L∞-coreset property of Theorem 3.1 and the fact that C ⊆ P .
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B.6 L∞ Coreset for Regression with Concave Loss Function

We first recall the following property of concave functions:

Lemma B.6. Let f : R→ R be a concave function with f(0) = 0. Then for any x ≤ y, we have f(x)
x ≥ f(y)

y .

Using Lemma B.6, we obtain an L∞ coreset for regression for any non-decreasing concave loss function ΨCon

satisfying ΨCon(0) = 0.

We obtain an L∞ coreset for regression for any non-decreasing concave loss function ΨCon satisfying ΨCon(0) = 0.

Lemma B.7. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨCon denote any non-decreasing
concave loss function with ΨCon(0) = 0. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let
C ′ be the output of a call to L∞−Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every
w ∈ Rd, maxp∈P ΨCon

(
|p>w − b(p)|

)
≤ 4(d+ 1)1.5 ·maxq∈C ΨCon

(
|q>w − b(q)|

)
.

Proof. The claim is trivially true for w = 0d, so it suffices to consider nonzero w ∈ Rd. Let Y ∈ Hd−1 such that

w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the vertical concatenation of p

with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By setting C to be the output of

Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 1, we have for every p ∈ P ,

|(p′)>w′| ≤ 4(d+ 1)1.5 max
q∈C
|(q′)>w′|.

Since ΨCon is monotonically non-decreasing, then ΨCon(|p>x− b(p)) increases as |p>x− b(p)| increases. Thus
by Lemma B.6,

max
p∈P

ΨCon

(
|p>w − b(p)|

)
≤ max

q∈C
ΨCon

(
4(d+ 1)1.5|q>w − b(q)|

)
≤ 4(d+ 1)1.5 max

q∈C
ΨCon

(
|q>w − b(q)|

)
.

B.7 L∞ Coreset for Tukey Regression

Lemma B.8. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨTuk denote the Tukey loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨTuk

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨTuk

(
|q>w − b(q)|

)
.

Proof. We first observe that the claim is trivially true for w = 0d, so that it suffices to consider nonzero w ∈ Rd.

Let Y ∈ Hd−1 such that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the

vertical concatenation of p with b(p). We define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By setting C

to be the output of Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z
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≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

We first note that if |(p′)>w′|√
8(d+1)1.5

≥ λ, then we trivially have maxq∈C |(q′)>w′|2 ≥ λ2 so that

maxq∈C ΨTuk

(
|q>w − b(q)|

)
= λ2

6 ≥ ΨTuk(x) for all x. Thus, we would have

max
p∈P

ΨTuk

(
|p>w − b(p)|

)
≤ max

q∈C
ΨTuk

(
|q>w − b(q)|

)
,

as desired. Hence, we assume |(p′)>w′|√
8(d+1)1.5

< λ and consider casework for whether |(p′)>w′| ≤ λ or |(p′)>w′| > λ.

If |(p′)>w′| ≤ λ, then since the Tukey loss function is monotonically increasing, we have

ΨTuk

(
|(p′)>w′|

)
=
λ2

6

(
1−

(
1− |(p

′)>w′|2
λ2

)3
)

≤ max
q∈C

λ2

6

(
1−

(
1− 8(d+ 1)3|(q′)>w′|2

λ2

)3
)

Unfortunately, the Tukey loss function is not concave, so we cannot directly apply Lemma B.6. However, if we

define the function f(x) := λ2

6

(
1−

(
1− x

λ2

)3)
, then we have

d2f

dx2
=
x− λ2

λ4
,

which is non-positive for all x ≤ λ2. Thus by Lemma B.6, we have for all 0 ≤ x ≤ y ≤ λ2 that f(x)
x ≥ f(y)

y . Since

f(x2) = ΨTuk(x), then we have for all 0 ≤ x ≤ y ≤ λ that ΨTuk(x)
x2 ≥ ΨTuk(y)

y2 . Hence by the assumption that
|(p′)>w′|√
8(d+1)1.5

< λ,

ΨTuk

(
|(p′)>w′|

)
≤ 8(d+ 1)3 max

q∈C

λ2

6

(
1−

(
1− |(q

′)>w′|2
λ2

)3
)

≤ 8(d+ 1)3 max
q∈C

ΨTuk

(
|(q′)>w′|

)
= 8(d+ 1)3 max

q∈C
ΨTuk

(
|q>w − b(q)|

)
.

On the other hand, if |(p′)>w′| > λ, then we further consider casework on whether maxq∈C |(q′)>w′| > λ or
maxq∈C |(q′)>w′| ≤ λ. If maxq∈C |(q′)>w′| > λ, then we immediately have

ΨTuk

(
|(p′)>w′|

)
=
λ2

6
= max

q∈C
ΨTuk

(
|(q′)>w′|

)
= max

q∈C
ΨTuk

(
|q>w − b(q)|

)
.

Otherwise, suppose maxq∈C |(q′)>w′| ≤ λ. Note that |(p′)>w′|2 ≤ 8(d + 1)3 maxq∈C |(q′)>w′|2 implies
maxq∈C |(q′)>w′| > λ√

8(d+1)1.5
. Since the Tukey loss function is monotonically increasing, then

max
q∈C

ΨTuk

(
|(q′)>w′|

)
≥ ΨTuk

(
λ√

8(d+ 1)1.5

)
.
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Because maxq∈C |(q′)>w′| ≤ λ, then we can again apply the relationship ΨTuk(x)
x2 ≥ ΨTuk(y)

y2 for all 0 ≤ x ≤ y ≤ λ,
so that

max
q∈C

ΨTuk

(
|(q′)>w′|

)
≥ 1

8(d+ 1)3
ΨTuk(λ).

Hence,

ΨTuk

(
|(p′)>w′|

)
= ΨTuk(λ)

≤ 8(d+ 1)3 max
q∈C

ΨTuk

(
|(q′)>w′|

)
.

Therefore across all cases, we have

max
p∈P

ΨTuk

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·max

q∈C
ΨTuk

(
|q>w − b(q)|

)
.

B.8 L∞ Coreset for L1 − L2 Regression

Lemma B.9. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨLL denote the L1 − L2 loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨLL

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨLL

(
|q>w − b(q)|

)
.

Proof. We first observe that the claim is trivially true for w = 0d. Therefore, it suffices to consider nonzero

w ∈ Rd. Let Y ∈ Hd−1 such that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the vertical concatenation of p with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
.

By setting C to be the output of Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

The L1 − L2 loss function is monotonically increasing, so that ΨLL(|p>x − b(p)) increases as |p>x − b(p)|
increases. Therefore,

max
p∈P

ΨLL

(
|p>w − b(p)|

)
= max

p∈P
2

(√
1 +
|p>w − b(p)|2

2
− 1

)

≤ max
q∈C

2

(√
1 +

8(d+ 1)3|q>w − b(q)|2
2

− 1

)
.

Since the L1 − L2 loss function is not concave, so we cannot directly apply Lemma B.6. Fortunately, if we define
the function f(x) := 2

(√
1 + x

2 − 1
)
, then we have

d2f

dx2
= − 2

16
(
x
2 + 1

)3/2 ,
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which is non-positive for all x ≥ 0. Thus by Lemma B.6, we have for all 0 ≤ x ≤ y that f(x)
x ≥ f(y)

y . Since

f(x2) = ΨLL(x), then we have for all 0 ≤ x ≤ y that ΨLL(x)
x2 ≥ ΨLL(y)

y2 . Thus,

max
p∈P

ΨLL

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 max

q∈C
2

(√
1 +
|q>w − b(q)|2

2
− 1

)
= 8(d+ 1)3 max

q∈C
ΨLL

(
|q>w − b(q)|

)
.

B.9 L∞ Coreset for Fair Regression

Lemma B.10. Let P ⊆ Rd be a set of n points, b : P → R, λ ∈ R, and let ΨFair denote the Fair loss
function. Let P ′ = {p ◦ b(p) |p ∈ P}, where ◦ denotes vertical concatenation. Let C ′ be the output of a
call to L∞ − Coreset(P ′, d) and let C ⊆ P so that C ′ = {q ◦ b(q) |q ∈ C}. Then for every w ∈ Rd,
maxp∈P ΨFair

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 ·maxq∈C ΨFair

(
|q>w − b(q)|

)
.

Proof. Since the claim is trivially true for w = 0d, then it suffices to consider nonzero w ∈ Rd. Let Y ∈ Hd−1 such

that w>Y = 0d−1 and Y>w = 0d. For each p ∈ P , let p′ = p ◦ b(p) =

[
p
b(p)

]
denote the vertical concatenation

of p with b(p). We also define the vertical concatenation w′ = w ◦ (−1) =

[
w
−1

]
. By setting C to be the output

of Coreset on P ′ = {p′ |p ∈ P}, then by Theorem 3.1,

max
p∈P

dist(p′, H(w′, 0d+1))z

≤ 2z+1(d+ 1)1.5z max
q∈C

dist(q′, H(w′, 0d+1))z.

Thus for z = 2, we have for every p ∈ P ,

|(p′)>w′|2 ≤ 8(d+ 1)3 max
q∈C
|(q′)>w′|2.

The Fair loss function is monotonically increasing, so that ΨFair(|p>x− b(p)) increases as |p>x− b(p)| increases.
Therefore,

max
p∈P

ΨFair

(
|p>w − b(p)|

)
≤ max

q∈C
ΨFair

(√
8(d+ 1)1.5|q>w − b(q)|

)
.

The Fair loss function is not concave, so we cannot directly apply Lemma B.6. However, if we define the function

f(x) := λ
√
|x| − λ2 ln

(
1 +

√
|x|
λ

)
, then we have

d2f

dx2
= − λ

4
√
x(λ+

√
x)2

,

which is non-positive for all x ≥ 0. Thus by Lemma B.6, we have for all 0 ≤ x ≤ y that f(x)
x ≥ f(y)

y . Since

f(x2) = ΨFair(x), then we have for all 0 ≤ x ≤ y that ΨFair(x)
x2 ≥ ΨFair(y)

y2 . Thus,

max
p∈P

ΨFair

(
|p>w − b(p)|

)
≤ 8(d+ 1)3 max

q∈C
ΨFair

(
|q>w − b(q)|

)
.
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C EXPERIMENTS

In this section, we carry additional experimental results evaluating our coreset against uniform sampling on
real-world datasets, with respect to the projective clustering problem and its variants.

Table 3: Summary of our results: Our coreset construction was applied on various application of projective
clustering, of which were robust regression as well as robust subspace clustering

Problem type Loss function k j Dataset Figure
Robust (2, 2)-projective clustering L1 − L2 2 2 (iii) 3a
Robust (2, 2)-projective clustering Huber 2 3 (iii) 3b
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Fig. 3: Our experimental results: evaluating the efficacy of our coreset against uniform sampling.
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