AdaptSim: Task-Driven Simulation Adaptation
for Sim-to-Real Transfer

Allen Z. Ren', Hongkai Dai?, Benjamin Burchfiel?, Anirudha Majumdar’
!Princeton University, ?Toyota Research Institute

Abstract: Simulation parameter settings such as contact models and object geometry ap-
proximations are critical to training robust manipulation policies capable of transferring
from simulation to real-world deployment. There is often an irreducible gap between
simulation and reality: attempting to match the dynamics between simulation and reality
may be infeasible and may not lead to policies that perform well in reality for a specific
task. We propose AdaptSim, a new fask-driven adaptation framework for sim-to-real
transfer that aims to optimize task performance in target (real) environments. First, we
meta-learn an adaptation policy in simulation using reinforcement learning for adjusting
the simulation parameter distribution based on the current policy’s performance in a
target environment. We then perform iterative real-world adaptation by inferring new
simulation parameter distributions for policy training. Our extensive simulation and
hardware experiments demonstrate AdaptSim achieving 1-3x asymptotic performance
and ~2x real data efficiency when adapting to different environments, compared to
methods based on Sys-ID and directly training the task policy in target environments.'

1 Introduction

Learning robust and generalizable policies for real-world manipulation tasks typically requires a substantial
amount of training data. Since using real data exclusively can be very expensive or even infeasible, we often
resort to training mostly in simulation. This raises the question: how should we specify simulation parame-
ters to maximize performance in the real world while minimizing the amount of real-world data we require?

A popular method is to perform domain randomization | e R (caions I L.
[1, 2, 3, 4]: train a policy using a wide range of different 4 ‘
simulation parameters in the hope that the policy can thus han-
dle possible real-world variations in dynamics or observations.
However, the trained policy may achieve good average per-
formance, but perform poorly in a particular real environment.
There has been work in performing system identification
(Sys-ID) for providing a point or a distributional estimate of
parameters that best matches the robot or environment dy-
namics exhibited in real-world data. This estimation can be
performed using either a single iteration [5] or multiple ones
[6]. These adaptive domain randomization techniques allow

training policies suited to specific target environments.

L . . . Figure 1: AdaptSim iteratively improves task
While simple objects such as a box and its properties like the performance in dynamic scooping task under

inertia can be well-modeled, there is a substantial amount of ~“irreducible” sim-to-real gap.

“Irreducible” sim-to-real gap in many settings such as contact-rich manipulation tasks. Consider the task
of using a cooking spatula to dynamically scoop up small pieces of food from a table (Fig. 1). The exact
geometry of the pieces and spatula is difficult to specify, deformations such as the spatula bending against
the table are not yet maturely implemented in simulators, and contact models such as point contact have
been known to poorly approximate the complex real-world contact behavior [7] in these settings. In this

'Webpage: https://irom-lab.github.io/AdaptSim/

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

case, real environments are out-of-domain (OOD) from simulation, and performing Sys-ID of simulation
parameters might fail to train a useful policy for the real world due to this inherent irreducible gap.

Contributions. In this work we take a fask-driven approach: instead of trying to align the simulation with
real-world dynamics, we focus on finding simulation parameters such that the resulting policy optimizes
task performance. Such an approach can lead to policies that achieve high reward in the real world even
with an irreducible sim-to-real gap. We consider settings where the robot has access to a simulator between
iterations of real-world interactions, allowing it to observe real-world dynamics and adapt the simulator
accordingly with the goal of improving task performance in reality. We propose AdaptSim — a two-phase
framework where (i) an adaptation policy that updates simulation parameters is first meta-trained using
reinforcement learning in simulation, and (ii) then deployed on the real environment iteratively. Training
the adaptation policy to maximize task reward enhances the efficiency of real data usage by identifying only
task-relevant simulation parameters and helps trained policies better generalize to OOD (real) environments.
We demonstrate our approach achieving 1-3x asymptotic performance and ~2x real data efficiency in
OOD environments in three robotic tasks including two that involve contact-rich manipulation, compared
to methods based on Sys-ID and directly training the task policy in target environments.

2 Related Work

Sim-to-real transfer in robotics has been primarily addressed using Domain Randomization (DR) techniques
[1,8,9,10, 11, 12, 13] that inject noise in simulation parameters related to visuals, dynamics, and actuations.
Below we summarize techniques that better adapt to real environments.

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line
of work identifying simulation parameters that match the robot and environment dynamics in the real
environment. BayesSim [6] and follow-up work [16, 17] apply Bayesian inference to iteratively search
for a posterior distribution of the simulation parameters based on simulation and real-world trajectories.
However, these methods consider relatively well-modeled environment parameterizations such as object
mass or friction coefficient during planar contact; Sys-ID approaches can be brittle when the simulation
does not closely approximate the real world [13, 18].

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find
simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply
Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping
coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only
[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target
environments (e.g., 150 in [19]), which is very time-consuming for many tasks requiring human reset.
AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference
(e.g., 20 in our pushing experiments).

3 Problem Formulation

Environment. In simulation, we consider a space {2 that parameterizes quantities such as friction coeffi-
cients and dimensions of geometric primitives. Let £ denote a distribution of sim parameters with support
on 2. Denote a single sim environment F € (2 and a real environment £

Task Policy and Trajectory. We denote a task policy 7 €11: O — A that maps the robot’s observation o; to
action a;. Running it in an environment results in a state-action trajectory 7(m;E): [0,T] xIIx £ =S x A
with time horizon T'. The trajectory is also subject to an initial state distribution. We specify tasks for
the robot using a reward function (e.g., pushing some object to a specific location on the table), and let
R(7) €0,1] denote the normalized cumulative reward accrued by a trajectory. We let R(m;E) denote the
reward of running the task policy 7 in the environment F, in expectation over the initial state distribution.

Goal. Our eventual goal is to find a task policy that maximizes the task performance in a real environment
E,.. Instead of directly searching for the policy, we search for the best sim parameter distribution £ for
training 7 in the following bi-level optimization objective:

sup R(wg;E"), where 7z := supEES [R(m;E)], 0]
E i

2 S " Y4)
Phase 1: Meta-Learning Adaptation in Sim Phase 2: Iterative Sim-to-Real Adaptation

Sim parameter .)
distribution * Collecting adaptation

N } gt “ 54 J,Q'L‘i B} f(ili “f
* t\ ,{&
*

Simtarget ,——— - - J_ .

environment | Adaptation step \

[1 Training adaptation
1
1

\
¢ ! < policy f to maximize 4———:- 4 :
| oS reward at target Real I} K
envionment 20020 moSSssssaas
_ Sim parameter space JAR y
| Adaptation step |
{ 1
| Task policy training Evaluation at target Sim parameter :
i in sim with &, (sim ¥k or real Y) update :
§ 1
: T g ﬁ/\l ,\é\’_' f & !
i : ~ r(nz; B) Y=+ |
{ !

Figure 2: AdaptSim consists of two phases: (1) meta-training an adaptation policy in sim by maximizing task reward
on randomly sampled simulated target environments; (2) iteratively adapting simulation parameter distributions based
on real trajectories. The upper-right illustration shows that using only a few real trajectories, the task policy is adapted
to push the bottle closer to the target location (yellow cross).

the optimal task policy for £. Performing the outer level of (1) requires interactions with E” (the real
world); we allow a small budget of such interactions. We emphasize that the objective above identifies
the optimal distribution of simulation parameters for maximizing task performance, unlike objectives that
attempt to match the dynamics between simulation and reality.

4 Approach

One way to solve (1) is to perform blackbox optimization on £ by evaluating R(7¢; E") [19], which
requires a large budget of real trajectories (see results in Sec. 6). AdaptSim instead amortizes the expensive
outer loop to simulation: it solves (1) for many simulated environments, learns the mapping to the solutions,
and then infers the solution for E,.. There are two phases (Fig. 2):

1) Meta-learn the adaptation policy in sim: randomly sample target environments £° €2 in sim, and
then train an “adaptation” policy f: (£,7)— Ag using RL to maximize task reward in F*, by updating
the sim parameter distribution (and the corresponding task policies) in iterations.

2) Iteratively adapt sim parameters with real data: given a real environment E", iteratively infer better
sim parameter distributions using the trained f and a few real trajectories; the task policy is iteratively
fine-tuned in sim to improve task reward with the updated parameter distribution.

4.1 Phase 1: meta-learning the adaptation policy in sim

In order to correctly infer simulation parameters for an unseen real environment at test time, we first train
the adaptation policy to infer better parameters for many simulated target environments. This phase happens
entirely in simulation. Formally, we model the problem as a partially-observable contextual bandit [23].

Definition 1 A Simulation-Adaptation Contextual Bandit (SA-CB) is specified by a tuple (Q, T ,P,R):

*) is the space of contexts. Each context corresponds to a simulated target environment E°; the context is
not directly observable.

T is the space of partial observations of the context. Each observation corresponds to a trajectory
observed by running the task policy in a given context.

* P is the space of actions. An action corresponds to choosing a sim parameter distribution E.

* R is the reward associated with choosing an action in a particular context (i.e., the reward R(m§;E®) of
the task policy 7% trained with € when deployed in the target environment E°).

It may be difficult to infer the optimal £ € P using a single iteration of interactions with the target
environment — if the current task policy fails badly in the target environment, the interaction may reveal
little information. Thus, we iteratively apply incremental changes to £, with the parameter distribution
initialized as &;—. Solving the SA-CB (using techniques that we detail below), we meta-learn an adaptation

policy f(€,7) to maximize:
I

E E ‘R(rk E® 2
oE EONMP;WR(WSU), @)

where €11 =E; +Agi ,Agi =f (&,T(ﬂ;i ;ES)) R
and Uq and Up are uniform distributions over 2 and P respectively, and v <1 is the discount factor. This
is the expected discounted sum of task rewards over multiple interactions from ¢ = 0 to the adaptation
horizon I, over random sampling of simulated target environment and initial sim parameter distribution.

Sim parameter distribution space. We choose
the space P of possible simulation parameter distri-
butions to be Gaussian with mean bounded within
) and a fixed variance. We also use a fixed step
size § for adapting each simulation parameter, rang-
ing from 10% to 15% of the parameter range de-
pending on the dimension of {2 — thus the set of Figure 3: Task-policy trajectories better reveal task-relevant
possible A¢ along each dimension is {6,—4,0}. information such as scooping dynamics under fast contact.

Algorithm 1 Meta-learning the adaptation pol- Task-policy trajectory as observation. We have chosen

icy in sim the task policy 7% to generate the trajectory observations
Require: (2,7,P,R), SA-CB used by the ada}ptation pqlicy. Our intuition is that,
Require: S; =, replay buffer compared to arbitrary policies or ones that generate the
Require: Sg = &, set of all simulation parameter most “informative” trajectories in terms of dynamics
distributions (and their task policies) used [24], 7} better reveal the task-relevant information of
I+ Initialize e <1 the target environment . In the scooping task, the robot
2: for k«+0to K do g : ping task,
3 Sample target E* ~Uc, and E—o ~Up needs to attempt to scoop up the pieces so it can learn
4 for i< 0todo about the effect of the environment on the task (e.g., a
S Train task pghcy T, (SeC~A3~2) piece with a flat bottom is generally harder to scoop).
6 Collect 7(mg,;E°) and R(mz,; E”) Simply pushing the pieces around does not exhibit the
7: Sample random Ag; or infer Ag;, = : . .
F(ET() behavior of the pieces under fast contact (Fig. 3).
8 Update £i11 =&+ A, Training the adaptation policy using RL. The adap-
9: Add (&,A¢,,7(+),R(+-)) o Sf . e . : .
P tation policy f is parameterized using a Branching Du-
10: Add &; (and 7rg,) to Sg . . .
11 end for eling Q-Network [25], which outputs the state-action
12: Train f using Double Q-Learning and §; Value of choosing any of the {6,—4,0} along each action
13: Anneal e towards 0 dimension. It takes in (1) the vector of the mean of cur-
14: end for rent simulation parameter distribution and (2) trajectory

15: return f, S¢

observation. We apply reinforcement learning (RL) to
train f to maximize Eq. (2). In simulation, we collect K “adaptation trajectories”; each trajectory is a set
{(&, A¢,, R(xf ;E®), (7% ;E°)) }_, and saved in a replay buffer S. Since each step involves training
the corresponding task policy ¢, which can be expensive, we apply off-policy Double Q-Learning [26] for
sample efficiency. Using this, the adaptation policy outputs the greedy action of a parameterized Q function,
J(€,7)=argmax,, Q(E,7;A¢). We use e-greedy exploration with e initialized at 1 and annealed to 0.

This constitutes the first phase of AdaptSim. Algorithm 1 details the steps for collecting adaptation
trajectories in the inner loop (Line 4-15) and meta-learning the adaptation policy. We save all distributions
(and their corresponding task policies, omitted in notations for convenience) in a set Sg, which are used
again in the second phase. Training the task policy for each £ is the most computationally heavy component
of Algorithm 1; in Sec. A2.2 we explain the heuristics applied to allow re-using task policies between & in
order to improve computational efficiency.

4.2 Phase 2: iteratively adapt sim parameters with real data

After meta-training the adaptation policy to find good task policies for a diverse set of target environments in
simulation, we can apply it for inference and perform adaptation for the real environment £”. Algorithm 2
details the iterative process. We apply the same adaptation process as the inner loop of Algorithm 1 for I
iterations: train the task policy in simulation, evaluate it in the real environment, and infer the change of
simulation parameters based on real trajectories. We always apply the greedy action from f(&,7) (¢=0).

3D-printed
bottles for
the pushing

Food pieces for the copin task

Figure 4: Setup of the dynamic pushing and dynamic scooping tasks in both simulation and reality.

Algorithm 2 Tteratively adapt sim parameters Since we have sampled a large set Sg of parameter dis-

with real data tributions and trained their task policies in Phase 1, we
Require: ", real environment may re-use them here. At the beginning of Phase 2, we
Requjre; (Q,,T,P, R), SA-CB sample S, a set of V distributions saved in Sg, as the

Require: f, adaptation policy trained in Phase 1 initial distributions to be adapted independently. Usually
Require: Sy, set of sim parameter distributions (and we pick N =2 considering the trade-off between num-
corresponding task policies) from Phase 1 ber of real trajectories needed and convergence of task

1: Sample S} from S : :
2 forii0io I" do performance (see Appendix A5 for analysis).
3: for £ €5} do
4: Train or fine-tune the task policy ¢, in S Tasks

S I A . B Next we detail the three robotic tasks for evaluating
> real Collect 7(mz,; E) and R(nz,; B") in AdaptSim and baselines. We choose these tasks and
6 Update €41+ Ei+f(Ei,7(-+)) design the environments to highlight the irreducible gap
7: end for between training and test domains.
5 end for 51 Swi f a linearized double pendul
9: return 73, with the highest R(-1E") . wing-up of a linearized double pendulum

This is a classic control task where the goal is to swing up a simple double pendulum with two actuated
joints at one end of the two links. We consider the dynamics linearized around the state with the pendulum
at the top, and thus the optimal policy can be solved exactly using Linear Quadratic Regulator (LQR) [27]
for a particular set of simulation parameters (i.e., a Dirac delta distribution). The task cost (reward) function
is defined with the standard quadratic state error and actuation penalty. The trajectory observation is evenly
spaced points along trajectory of the two joints.

Simulation setup. The environment is parameterized with four parameters: m; and ms € [1,2], point mass
of the two joints, and by and b, € [1,2], damping coefficients of the two joints. The dynamics is simulated
with numerical integration without a dedicated physics simulator.

5.2 Dynamic table-top pushing of a bottle

The robot needs to dynamically push a bottle to a particular target location on the table (Fig. 4). Since the
target can be outside the workspace of the robot, the robot must push objects with high velocity — causing
them to slide after a short period of contact. The task policy is parameterized with a neural network that
maps the desired target location to action including (1) planar pushing angle and (2) robot end-effector
speed (see Appendix A4 for visualization) and the predicted reward. The network then acts as a state-value
(Q) function and is trained off-policy while simulated trajectories are saved in a replay buffer. The task
cost (reward) is defined as the distance between the target location and the final location of the bottle. The
trajectory observation is either (1) the final 2D position of the bottle only, or (2) evenly spaced points along
the 2D trajectory — we consider both representations in the experiments.

Simulation setup. We employ the Drake physics sim-

. . . Notati Descripti R
ulator [28] for its accurate contact mechanics. In this otation .es.mp on . anee
simulated environment, a small patch of the table is sim- p table friction coefficient - [0.05,0.2]

lated with different physi " mulati ¢ e hydroelastic modulus [7] [le4,1e6]
ulated with different physics properties, simulating a we 1y patch friction coefficient [0.20,0.80]
or sticky area on the work surface. Parameter settings Up patch lateral location [—0.10,0.10]

for this task are shown in Table 1. The hydroelastic mod-
ulus is a parameter of the hydroelastic contact model [7]
implemented in Drake — it roughly simulates how ““soft” the contact is between the objects, with lower
values being softer.

Table 1: Sim setup for the pushing task.

Real setup. Two 3D-printed bottles (Fig. 4, Heavy and Light) with the same dimensions but different
materials and masses are used. With an idealized model, the sliding distance should only depend on the
contact surface but not the mass — which is the case in simulation — but in real experiments, we find the
two bottles consistently travel different distances. Additionally, Heavy tends to rotate slightly despite being
pushed straight due to a slightly uneven bottom surface. This type of unmodeled effect exemplifies the
irreducible sim-to-real gap. We also adhere a small piece of high-friction Neoprene rubber to the table,
which decelerates the bottle and further complicate the task dynamics.

5.3 Dynamic scooping of food pieces with a spatula

The robot needs to use a cooking spatula to scoop up small food pieces on the table (Fig. 4). Itis a
challenging task that requires intricate planning of the scooping trajectory — we notice humans cannot
complete the task consistently without a few trials to practice. The task policy is parameterized with
a neural network that maps the initial positions of the food pieces to parameterization of the scooping
trajectory: (1) initial distance of the spatula from the pieces, (2) initial pitch angle of the spatula from the
table, and (3) the timestep to lift up the spatula (see Appendix A4 for details), and the predicted reward.
The task reward is defined as the ratio of food pieces on the spatula at the end of the action. The trajectory
observation is evenly spaced points along 2D trajectories of the food pieces.

Simulation setup. We again use the Drake simulator. The parameter settings are shown in Table 2.
Real setup. Six different kinds of food pieces are used

- o . Notation Description Range
(Fig. 4): (1) chocolate raisin, (2) (fake, rubber-like) — -
sliced carrot, (3) (fake, rigid) sliced cucumber, (4) raw # friction coefficient [0-25,04]
: ’ - gid) ’ e hydroelastic modulus [1e4,5e5]
Brussels sprout, (5) raw sliced mushroom, and (6) g food piece geometry {ellipsoid,cylinder}
Oreo cookie. They cover different shapes from being h food piece height [1.5cm,2.5cm]

round, ellipsoidal, to roughly cylindrical, and also have Table 2: Sim setup for the scooping task.
different amounts of deformation and friction.

6 Experiments

Through extensive experiments below, we demonstrate that AdaptSim improves asymptotic task perfor-
mance compared to Sys-ID and other baselines when adapting to real and OOD simulated environments,
while also improving data efficiency. For baselines, first we consider methods that directly optimizes the
task policy: (1) Uniform domain randomization (UDR): train a task policy to optimize the average
task reward over environments from U ; (2) UDR+Target: fine-tune the task policy from UDR with real
data; (3) LearnInTarget: directly train a task policy with data in the target environment only by fitting a
small neural network that maps action to final reward. The policy then outputs the action with the highest
predicted reward. With enough real data, this baseline should act as the oracle or upper bound of task
performance, but can be inefficient. Next, we consider two that perform SysID and iteratively train the
task policy like AdaptSim: (4) SysID-Bayes [6, 29]: iteratively infer the sim parameter distribution based
on real trajectories to match dynamics in sim and reality, known as BayesSim; (5) SysID-Point: infer a
point estimate of the sim parameter instead of a distributional one (we hypothesize that in some settings
randomizing sim parameters with a distribution can negatively impact task policy training).

6.1 AdaptSim achieves better task performance through adaptation

Sim-to-Sim Adaptation. We perform experiments for all baselines adapting to different WD (Within-
Domain) and OOD simulated environments. WD environments are generated by sampling all simulation
parameters within {2 of each task, and OOD environments are generated by sampling some parameters
outside (2 (see Appendix A5 for details). Table 3 shows the adaptation results in the target environments in
the three tasks. While Sys-ID baselines achieve high reward in WD environments, AdaptSim outperforms
Sys-ID baselines in almost all OOD environments.

Sim-to-Real Adaptation. Next we perform experiments for adapting to real environments. Fig. 5 shows
the average reward achieved at each adaptation iteration in the pushing and scooping tasks. Generally the
performance gap between AdaptSim and Sys-ID baselines is larger in reality, with AdaptSim achieving
better performance. In the scooping task, for example, AdaptSim is able to train a task policy for sliced
cucumbers with decent performance (60% success rate); the pieces are very thin and difficult to scoop
under (Fig. 8). Other baselines fail to scoop up the pieces.

Double Pendulum Swing-Up Bottle Pushing Food Scooping
Method WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4
AdaptSim 098 096 095 095 098 095 087 073 086 077 1.00 064 100 1.00 0.55

SysID-Bayes [6] 0.85 0.76 079 023 096 098 080 065 081 079 090 066 081 100 036
SysID-Point 095 0.60 073 039 076 094 084 068 085 078 094 063 09 100 042

UDR - - 068 065 061 067 058 065 022 043 055 0.12
UDR+Target - - - - - 078 073 066 071 070 061 031 049 060 021
LearnInTarget - - - - - 091 075 066 074 071 003 000 025 026 0.03

Table 3: Sim-to-Sim Adaptation. Best average reward achieved over adaptation horizons at different WD and OOD
simulated target environment in the three tasks. For the pendulum task, the values are normalized in [0,1] using the
reward achieved by UDR (lower bound) and by using the best possible parameters within €2 (upper bound, estimated
with exhaustive sampling). For the pushing task, the values are normalized with 20cm as the maximum error, which is
the range of possible goal locations in the forward direction.

Loy
=]

1.0 .
T Chocolate (Fake) sliced. (Fake) sliced
raisin / carrot.< "~——= | cucumber

/

4 S ——

Heavy bottle

o
©
W
o
o

O
)

ormalized reward
o X
3
d
=)
o

P & < ———

N

- AdaptSim
SyslID-Bayes

— SysID-Point
Light bottle UDR

== LearninTarget

[l =
o o

Brussels Sliced Cookie
0.8| sprout mushroom i

reward Norl

&
©

o
S

Normalized reward
o
o

N lized
© © o 9o
o N B o

4 51 2 3 4 5

o
o

N

w

IS

w

-

] “‘il
w

IS

w

i

N)

3
Iterations Iterations

Figure 5: Sim-to-Real Adaptation. Reward achieved over adaptation iterations by all methods, in the task of pushing
(left) and scooping up (right) different real objects (see Fig. 4 for images). Results are averaged over 10 trials in the
pushing task and 5 in the scooping task.

Real data budget
6.2 AdaptSim improves real data efficiency Method 0 4 8 16 24 32 40 48
Pushing task. We compare AdaptSim with Learn- A gansim - 030 0.69 0.80 0.83 0.84 0.84 0.82 0.83

InTarget and UDR+Target with different number LearnInTarget 0.05 0.04 0.63 0.69 0.76 0.80 0.84 0.83
of real data budget. With enough data, LearnInTar- UDR+Target 0.63 0.56 0.62 0.66 0.68 0.74 0.82 0.82
get and UDR+Target should achieve high reward BayesOpt - - - - 065072079080
in the target environment. We do not compare with Table 4: Adaptation Data Efficiency. Normalized reward
Sys-ID baselines here since Sec. 6.1 shows they achieved using different amount of real data in the pushing
typically fail to achieve the same level of task per- task with Heavy bottle.

formance in real environments. In the task of pushing Heavy bottle, Table 4 shows that AdaptSim achieves
a similar level of task performance (~0.83) using only 16 trials while LearnInTarget and UDR+Target
uses 40. Fine-tuning with real data in UDR+Target is ineffective until the real budget is sufficient and
can negatively impact the performance in the low-data regime (e.g., 4 and 8). This also exemplifies using
simulation to amortize data requirements for policy training. We also introduce a new baseline BayesOpt
here based on [19] that directly optimizes Eq. (1) with Bayesian Optimization. However, with 24 rollouts
(the minimum needed to initialize the optimization) it only achieves 0.65.

Larger improvement in scooping task. While LearnInTarget and UDR+Target achieve reasonable
performance in the pushing task, LearnInTarget achieves low reward on all the food pieces in the scooping
task, and UDR+Target does not improve upon the performance of UDR policies. The action space in the
scooping task is more complex and requires significantly more data to search for or improve task policies.
AdaptSim’s adaptation pre-training in simulation considerably amortizes the real data requirement.

6.3 AdaptSim finds sim parameters that are different from ones from SysID

We expect that AdaptSim finds simulation settings that achieve better task performance while not necessarily
minimizing the full dynamics discrepancies between sim and reality. Fig. 6 shows SysID-Bayes finds
parameters that are closer to the target in the parameter space, but for the pendulum task, such parameters
lead to inferior task reward compared to those found by AdaptSim. Moreover, we compute the dynamics
discrepancy, measured as the total variations between trajectories in the target environment and in the

Table friction coefficient Hydroelastic modulus
0 1.0077¢6

01
o 1Patch lateral position (m)]

0.
Patch friction coefficient

—— AdaptSim
~0.1

—— SysID-Bayes
3 4 5

1 2 3 4

5 1
Iterations

Figure 7: Adaptation in Pushing Task. AdaptSim correctly learns to push the bottle swiftly and close to the target.
The task-relevant sim parameters learned by AdaptSim noticeably differ from those by SysID-Bayes which tends to
underestimate table and patch friction, resulting in a less forceful push of the bottle and worse task performance.

Friction coefficient
40 .
/\/ o

Food piece geomet

Hydroelastic modulus
1e5

S

Food piece height (cm)

0.1
2.5

2.0 Q

12 3 4 5 Y1 2 3 4 s

Iterations

—— AdaptSim
—— SysID-Bayes

Figure 8: Adaptation in Scooping Task. With AdaptSim, the cucumber is successfully scooped up by lifting up the
spatula off the table late; otherwise, the piece slips off the spatula. AdaptSim infers an ellipsoidal shape (¢ =1, food
piece geometry), while SysID-Bayes infers a cylindrical shape.

environment with adapted parameters. The results are 17.6 vs. 12.1 for AdaptSim and SysID-Bayes in
OOD-1 environment, 21.7 and 11.1 in OOD-2, 39.9 and 16.4 in OOD-3, 75.8 and 56.4 in OOD-4. Thus
for all four OOD target environments, SysID-Bayes finds sim parameters whose resulting dynamics are
closer to the target environment (lower discrepancies), but Table 3 shows the task performance is worse.

Fig. 7 and Fig. 8 further show cases where SysID-Bayes under-performs AdaptSim and there are visible
differences between sim parameter distributions found by the two approaches. In the pushing task, SysID-
Bayes infers table and patch friction coefficients that are too low, and the trained task policy pushes the
bottle with little speed. In the scooping task, interestingly, AdaptSim infers an ellipsoidal shape for the
sliced cucumber despite it resembling a very thin cylinder, and the task policy achieves 60% success rate.
Sys-ID infers a cylindrical shape but the task policy fails completely.

-
)

7 Discussions
Summary. We present AdaptSim, a framework for
efficiently adapting simulation-trained task policies

2.0 10 20 i 1.00
2 0.8 18
i 0.99
’ 0.6 6
0.98
S14; 04214
. 0.97
simulation parameter distributions for better perfor- - 02 12
. . . . AdaptSim SysID-} 0.96
mance in diverse simulated target environments, and o @

1.6

Point mass 2
-

-

Damping coeff 2
-

190 12 14 16 18 20
Damping coeff 1

to the real world. AdaptSim meta-learns how to adapt

. . . R L. 1'(1.0 127 14716 18 20
then infers better distributions for training real-world
task policies using a small amount of real data.

Limitations and Future Work. In some settings

Point mass 1 e (1.8 0.3)

Figure 6: Sim parameters found by AdaptSim vs. SysID-
Bayes in the OOD-1 setting of the double pendulum task.
The colors indicate the maximum possible reward at each

AdaptSim does not outperform baselines (e.g., OOD-
4 in the pushing task and scooping up Brussels sprout
in hardware, Fig. A8). First, AdaptSim’s task-driven
adaptation training requires the trained task policy being (nearly) optimal on the corresponding simulation
parameter distribution — while it can be solved exactly in the double pendulum task, the task policy training
in the two manipulation tasks can be noisy. Second, if the target environment is extremely OOD from the
simulation domain and the adaptation policy has not been trained with similar trajectories, AdaptSim may
not work as well. We believe the first issue can be mitigated by allowing more simulation budget for task
policy training and better design of task policy re-use. The second issue can be addressed by designing the
simulation parameter space {2 to better cover possible real-world behavior.

parameter. SysID-Bayes finds parameters closer to the
target in the parameter space (dark red star), but the task
performance is worse.

Acknowledgments

The authors were partially supported by the Toyota Research Institute (TRI), the NSF CAREER Award
[#2044149], and the Office of Naval Research [N00014-23-1-2148, N00014-21-1-2803]. This article solely
reflects the opinions and conclusions of its authors and NSF, ONR, TRI or any other Toyota entity. The
authors would like to thank the Dynamics and Simulation team and Dexterous Manipulation team at TRI
Robotics for technical support and guidance. We also thank Yimin Lin for helpful discussions.

References

[1] L. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert,
G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,
2019.

[2] A.Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk,
A. Zhurkevich, B. Sundaralingam, et al. DeXtreme: Transfer of Agile In-hand Manipulation from
Simulation to Reality. arXiv preprint arXiv:2210.13702, 2022.

[3] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion over
challenging terrain. Science Robotics, 5(47):eabc5986, 2020.

[4] A.Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep drone
racing: From simulation to reality with domain randomization. IEEE Transactions on Robotics, 36
(1):1-14, 2019.

[5] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita, M. Laskey, and K. Goldberg. Planar
robot casting with real2sim2real self-supervised learning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2022.

[6] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilistic
inference for robotics simulators. In Proceedings of Robotics: Science and Systems, 2019.

[7] J. Masterjohn, D. Guoy, J. Shepherd, and A. Castro. Velocity Level Approximation of Pressure Field
Contact Patches. IEEE Robotics and Automation Letters, 7(4):11593-11600, 2022.

[8] K.-C. Hsu, A. Z. Ren, D. P. Nguyen, A. Majumdar, and J. F. Fisac. Sim-to-Lab-to-Real: Safe
reinforcement learning with shielding and generalization guarantees. Artificial Intelligence, 314:
103811, 2023.

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017.

[10] F. Sadeghiand S. Levine. Cad2rl: Real single-image flight without a single real image. In Proceedings
of Robotics: Science and Systems, 2017.

[11] X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[12] G. B. Margolis and P. Agrawal. Walk These Ways: Tuning Robot Control for Generalization with
Multiplicity of Behavior. In Proceedings of the Conference on Robot Learning (CoRL), 2022.

[13] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters. Robot learning from randomized
simulations: A review. Frontiers in Robotics and Al 9, 2022.

[14] M. Gautier and W. Khalil. On the identification of the inertial parameters of robots. In Proceedings
of the IEEE Conference on Decision and Control (CDC), 1988.

[15] P. K. Khosla and T. Kanade. Parameter identification of robot dynamics. In Proceedings of the IEEE
Conference on Decision and Control (CDC), 1985.

[16] E. Heiden, C. E. Denniston, D. Millard, F. Ramos, and G. S. Sukhatme. Probabilistic Inference of
Simulation Parameters via Parallel Differentiable Simulation. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2022.

[17] R. Antonova, J. Yang, P. Sundaresan, D. Fox, F. Ramos, and J. Bohg. A bayesian treatment of real-to-
sim for deformable object manipulation. IEEE Robotics and Automation Letters, 7(3):5819-5826,
2022.

[18] C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Iterative residual policy: for goal-
conditioned dynamic manipulation of deformable objects. In Proceedings of Robotics: Science and
Systems, 2022.

[19] F. Muratore, C. Eilers, M. Gienger, and J. Peters. Data-efficient domain randomization with bayesian
optimization. IEEE Robotics and Automation Letters, 6(2):911-918, 2021.

[20] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen. How to pick the domain randomization pa-
rameters for sim-to-real transfer of reinforcement learning policies? arXiv preprint arXiv:1903.11774,
2019.

[21] W. Yu, C. K. Liu, and G. Turk. Policy transfer with strategy optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[22] N. Ruiz, S. Schulter, and M. Chandraker. Learning to simulate. In Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[23] A. Bensoussan. Stochastic control of partially observable systems. Cambridge University Press,
1992.

[24] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brussel. Optimal robot excitation
and identification. IEEE Transactions on Robotics and Automation, 13(5):730-740, 1997.

[25] A. Tavakoli, F. Pardo, and P. Kormushev. Action Branching Architectures for Deep Reinforcement
Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[26] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning. In
Proceedings of the AAAI conference on artificial intelligence, 2016.

[27] R. Tedrake. Underactuated Robotics. 2023. URL https://underactuated.csail.mit.edu.

[28] R. Tedrake and the Drake Development Team. Drake: Model-based design and verification for
robotics, 2019. URL https://drake.mit.edu.

[29] R. Antonova, F. Ramos, R. Possas, and D. Fox. BayesSimIG: Scalable Parameter Inference for
Adaptive Domain Randomization with Isaac Gym. arXiv preprint arXiv:2107.04527, 2021.

[30] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing the
sim-to-real loop: Adapting simulation randomization with real world experience. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), 2019.

[31] A. Allevato, E. S. Short, M. Pryor, and A. Thomaz. Tunenet: One-shot residual tuning for system
identification and sim-to-real robot task transfer. In Proceedings of the Conference on Robot Learning
(CoRL), 2020.

[32] A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez, and L. P. Kaelbling. Combining
physical simulators and object-based networks for control. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2019.

10

[33] A.Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. Tossingbot: Learning to throw arbitrary
objects with residual physics. IEEE Transactions on Robotics, 36(4):1307-1319, 2020.

[34] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid motor adaptation for legged robots. In
Proceedings of Robotics: Science and Systems, 2021.

[35] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy with
online system identification. In Proceedings of Robotics: Science and Systems, 2017.

[36] B. Evans, A. Thankaraj, and L. Pinto. Context is everything: Implicit identification for dynamics
adaptation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2022.

[37] J. Liang, S. Saxena, and O. Kroemer. Learning active task-oriented exploration policies for bridging
the sim-to-real gap. In Proceedings of Robotics: Science and Systems, 2020.

[38] W. Jin and M. Posa. Task-Driven Hybrid Model Reduction for Dexterous Manipulation. arXiv
preprint arXiv:2211.16657, 2022.

[39] A.Z.Ren and A. Majumdar. Distributionally robust policy learning via adversarial environment
generation. IEEE Robotics and Automation Letters, 7(2):1379-1386, 2022.

[40] H. S. Gomes, B. Léger, and C. Gagné. Meta learning black-box population-based optimizers. In
Proceedings of the International Conference on Learning Representations (ICLR), 2023.

[41] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable gaussian process-based transfer surrogates
for hyperparameter optimization. Machine Learning, 107(1):43-78, 2018.

[42] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and N. Freitas.
Learning to learn without gradient descent by gradient descent. In Proceedings of the International
Conference on Machine Learning (ICML), 2017.

[43] M. Volpp, L. P. Frohlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel. Meta-learning
acquisition functions for transfer learning in bayesian optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

[44] A.Z. Ren, B. Govil, T-Y. Yang, K. Narasimhan, and A. Majumdar. Leveraging Language for
Accelerated Learning of Tool Manipulation. In Proceedings of the Conference on Robot Learning
(CoRL), 2022.

[45] L. Johannsmeier, M. Gerchow, and S. Haddadin. A framework for robot manipulation: Skill
formalism, meta learning and adaptive control. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2019.

[46] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[47] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning.
In Proceedings of the International Conference on Learning Representations (ICLR), 2018.

[48] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep g-learning with model-based
acceleration. In Proceedings of the International Conference on Machine Learning (ICML), 2016.

11

Appendix
Al Extended Related Work

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line
of work identifying simulation parameters that match the robot and environment dynamics in the real
environment before task policy training. BayesSim [6] and follow-up work [16, 17] applies Bayesian
inference to iteratively search for a posterior distribution of the simulation parameters based on simulation
and real-world trajectories. The inference problem has also been formulated using RL to minimize
trajectory discrepancies [30]. A different approach [31, 32, 33] learns a residual model of dynamics (often
parameterized with a neural network) to match simulation or an ideal physics model with reality. However,
all these methods consider relatively well-modeled environment parameterizations such as object mass or
friction coefficient during planar contact; Sys-ID approaches have been shown to fail in cases where the
simulation does not closely approximate the real world [13, 18]. There is also work that avoids inferring
the full dynamics but adapts with a low-dimensional latent representation online [34, 35, 36], but the
representation is still trained with regression to match dynamics or simulation parameters. Importantly,
the Sys-ID approaches highlighted above are all task-agnostic; this can lead to poor performance when
trained task policies are sensitive to mismatches in dynamics between simulation and reality. Chi et al.
[18] address the issue by using simulation to predict changes to trajectories from changes in actions as
an implicit policy, but it requires the environment to be resettable, while AdaptSim works with randomly
initialized object states.

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find
simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply
Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping
coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only
[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target
environments (e.g., 700 in [19]), which is very time-consuming for many tasks requiring human reset.
AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference
(e.g., 20 in our pushing experiments). Liang et al. [37] apply the same task-driven objective to learn an
exploration policy in manipulation tasks, but the task policy is synthesized using estimated simulation
parameters via Sys-ID. Jin et al. [38] applies task-drived reduced-order model for dexterous manipulation
tasks, but again the model is identified with Sys-ID and no vision-based control is involved. Ren et al.
[39] search for adversarial environments (e.g., objects) given the current task performance to robustify the
policy, but unlike AdaptSim, the adversarial metric is measured in simulated domain only without real data.

Learn to search/optimize. Our work involves learning optimization strategies through meta-learning
across a distribution of relevant problems, allowing for customization to the specific setting and increased
sample efficiency [40, 41]. Chen et al. [42] meta-learns an RNN optimizer for black-box optimization.
Volpp et al. [43] meta-learns the acquisition function in BO with RL; it is able to learn new exploration
strategies for black-box optimization and tuning controller gains in sim-to-real transfer. Meta RL trains the
task policy directly to optimize performance in new environments [44, 45, 46] — AdaptSim applies meta
RL to optimize simulation parameters instead.

A2 Additional details on approach
A2.1 Sparse adaptation reward

In practice, we are only concerned with the reward if it reaches some minimum threshold — a bad task
policy is not useful. Thus we use a sparse—reward version of Eq. (2),

]l B> P D Al

E°~Z/I§z &)NI/{P X;FY 7T€ ’ R)R(ﬂ-SN)7 D

where 1() is the indicator function and R is the sparse-reward threshold. Using a sparse reward also
discourages the adaptation policy from being myopic and getting trapped at a sub-optimal solution,

12

especially since we use a relatively small I (e.g., 5-10) in order to minimize the amount of real data, and
use a small discount factor v (=0.9).

A2.2 Task policy reuse across parameter distributions

Algorithm 1 requires training the task policy for each £, which can be expensive with the two manipulation
tasks. Our intuition is that we can share the task policy between parameter distributions of close distance,
with the following heuristics:

* Record the total budget (i.e., number of trajectories), and j, the number of simulation parameter
distributions that a task policy has been trained with.

¢ Define distance between two parameter distribution D(-,-) such as L2 distance between the mean. If £;
is within a threshold D from a previously seen distribution, re-use the task policy. If the policy is already
trained with M., budget total, do not train again; otherwise train with max (M, ol 1M) budget,
where oo <1 and M is the budget for training the policy for the first time.

* If the nearby parameter distribution re-uses a task policy, do not re-use the same policy again. This
prevents the same task policy being used for too many €.

Remark 1 re-using task policies between parameter distributions makes the reward R depend on the
adaptation history, as 73 depends on previous £ that are used for training. We choose not to model this
history dependency in f, as the reward should be largely dominated by the current E.

A3 Additional details of adaptation policies

Hyperparameters. Table A1 shows the hyperparameters used for the adaptation policy training in Phase 1,
including those defining the heuristics for re-using task policies among simulation parameter distributions.
We generally use smaller adaptation step § for smaller dimensional €.

Task
Parameter Pendulum Pushing Scooping
Total adaptation steps, K led led led
Adaptation horizon, I 10 8 8
Adaptation step size, ¢ 0.10 0.15 0.15

Adaptation discount factor, v 0.9 0.9 0.9
Sprase reward threshold, R 0.95 0.8 0.5

Task policy reuse threshold, D - 0.16 0.16

Task policy max budget, Mmax - 3e4 4e3

Task policy budget discount, o - 0.9 0.9
Task policy init budget, M - led 1.2e3

Table Al: Hyperparameters used in adaptation policy training for the three tasks.

Trajectory observations. We detail the trajectory observation (as input to the adaptation policy) used in
the three tasks.

 Pendulum task: each trial is 2.5 seconds long, and we use 12 evenly spaced points along the trajectories of
the two joints, and thus each trajectory is 24 dimensional. For AdaptSim-State, SysID-Bayes-State, and
SysID-Bayes-Point, again 12 points are used but sampled from the last 0.5 second only. One trajectory is
used at each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.

* Pushing task: each trial is 1.3 seconds long, and we use 6 evenly spaced points along the X-Y trajectory
of the bottle, and thus each trajectory is also 12 dimensional. For AdaptSim-State, SysID-Bayes-State,
and SysID-Bayes-Point, only the final X-Y position of the bottle is used. Two trajectories are used at
each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.

13

* Scooping task: each trial is 1 second long, and we use X-Y position of the food piece at the time step
[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]s (more sampling around the initial contact between the spatula and the
piece), and thus each trajectory is 16 dimensional. Two trajectories are used at each adaptation iteration

— the trajectory input to the adaptation policy is 32 dimensional.

In real experiments, we track the bottle position in the pushing task using 3D point cloud information from
a Azure Kinect RGB-D camera, which we find accurate. In the scooping task, the food pieces are too
small and thin to be reliably tracked with point cloud, and thus we resort to extracting the contours from
the RGB image and then finding the corresponding depth values at the same pixels in the depth image.
During fast contact there can be motion blur around the food piece, and thus we add Gaussian noise with
0.2cm mean for X position and zero mean for Y position, and 0.2cm covariance for both, to the points in
the ground-truth trajectories in simulation. We use positive mean in X since the motion blur tends to occur
in the forward direction.

A4 Additional details of the task setup and task policies

Trajectory observation First, we remove the action sequence from the task-policy trajectory and keep
the state sequence only. Since the dynamics in real environments can be OOD, in order to achieve similar
high-reward states as in simulated environments, the robot would need to use some actions not seen during
training (or not seen for the particular state), hindering the adaptation policy to generalize if action sequence
were included in the task policy trajectory. We assume that the task-relevant state sequence is covered by
T if the task policy performs reasonably well in the real environment. This choice is also present in the
state-only inverse RL literature [47] that addresses train-test dynamics mismatch. See Fig. A4 and related
discussions in Sec. 6.3.

A4.1 Dynamic pushing of a bottle

Trajectory parameterization. Here we detail the trajectory of the end-effector pusher designed for the
task (Fig. Al). The trajectory is parameterized with two parameters: (1) planar pushing angle, which is
the yaw orientation of the pusher relative to the forward direction that controls the direction of the bottle
being pushed, and (2) forward speed (of the end-effector), in the direction specified by the pushing angle.
The pushing angle varies between —0.3rad and 0.3rad, and the forward speed varies between 0.4m/s and
0.8m/s. We find 0.8m/s roughly the upper speed limit of the Franka Panda arm used. The pusher also
pitches upwards during the motion and the speed is fixed to 0.8rad/s. We design such trajectories to
maximize the pushing distance at the hardware limit.

Initial and goal states. The bottle is placed at the fixed location (x=0.56m,y=0, relative to the arm base)
on the table before the trial starts. The goal location is sampled from a region where the X location is
between 0.7 and 1.0m and Y location is at most 10 degrees off from the centerline (Fig. A1 top-right). The
patch, a 10cm by 10cm square, is placed at x=0.75m with its center (lateral position is varied as one of
the simulation parameter).

Task policy parameterization. The task policy is parameterized using a Normalized Advantage Function
(NAF) [48] that allows efficient Q Learning with continuous action output by restricting the Q value as
a quadratic function of the action, and thus the action that maximizes the Q value can be found exactly
without sampling. In this task, it maps the desired 2D goal location of the bottle to the two action parameters,
planar pushing angle and forward speed. The policy is open-loop — the actions are determined before the
trial starts and there is no feedback using camera observations.

Hardware setup. A 3D-printed, plate-like pusher is mounted at the end-effector instead of the paralle-jaw
gripper in both simulation and reality. We also wrap elastic rubber bands around the bottom of the pusher
and contact regions of the bottle to induce more elastic collision, which we find increases the sliding
distance of the bottle.

14

Side view u Side view Top-down view
Initial - Final

o —
Forward — p k‘a
speed Planar >

pushing angle

I \ o || ‘ : Pitf:l;;z:ed = Goal zone <—le
N e e T e e

Figure Al: Visualization of the pushing trajectory and goal locations in the Drake simulator. There are two action
parameters: (1) forward speed (of the end-effector) and (2) planar pushing angle (i.e., yaw orientation of the end-
effector). The patch is not visualized.

Side view Q Side view Top-down 06 N
Initial & Final view
(@} 04
72 B - -
: y N
= /
g 00 _Pitch / pN
Initial ih 3 g rate /
. — Initial position 5-0.2 \ /
distance / — o e
0 -0.4 /
Initial pitch angle B _06 \
-0.8 X
: J] e Jrp— — Pitch
0 02 04 0.6 08 1.0
Time (s)

Figure A2: Visualization of the scooping trajectory and initial positions of the food piece in the Drake simulator. There
are three action parameters: (1) initial distance (between the spatula and food piece), (2) initial pitch angle (of the
spatula from the table), and (3) pitch rate (of the end-effector at time step ¢t =0.25).

A4.2 Dynamic scooping of food pieces

Trajectory parameterization. Here we detail the trajectory of the end-effector with the spatula designed
for the task (Fig. A2). The end-effector velocity trajectory is generated using cubic spline with values
clamped at five timesteps. The trajectory only varies in the X and pitch direction (in the world frame),
while remaining zero in the other directions. The only value defining the trajectory that the task policy
learns is the pitch rate, which is the pitch speed at the time ¢=0.25s and varies between —0.2rad/s and
0.2rad/s. A positive pitch rate means the spatula lifting off the table late, while a negative one means lifting
off early (see the effects in Fig. 8). The other two values that the task policy outputs are the initial pitch
angle of the spatula from the table (varying from 2 to 10 degrees), and the initial distance between the
spatula and the food piece (varying between 0.5cm to 2cm). Generally a higher initial pitch angle can help
scoop under food pieces with flat bottom, and a smaller angle helps scoop under ellipsoidal shapes. We
design such trajectories after extensive testing with food pieces of diverse geometric shapes and physical
properties in both simulation and reality.

Initial states. The food piece is randomly placed in a box area of 8x6cm in front of the spatula; the initial
distance is relative to the initial food piece location.

Task policy parameterization. The task policy is parameterized using a NAF again. In this task, it maps
the initial 2D position of the food piece to the three action parameters: pitch rate, initial pitch angle, and
initial distance.

Hardware setup. We use the commercially available OXO Nylon Square Turner” as the spatula used
for scooping. It has a relatively thin edge (about 1.2mm) that helps scoop under thin pieces. A box-like,
3D-printed adapter with high-friction tape is mounted on the handle to help the parallel-jaw gripper grasp
the spatula firmly. The exact 3D model of the spatula with the adapter is designed and used in the Drake
simulator; the deformation effect as it bends against the table is not modeled in simulation.

2link: https : //www . amazon . com/0X0-11107900L0W-Grips-Square-Turner/dp/B003LO00SU

15

A5 Additional details of experiments
AS5.1 Simulated adaptation

Table A2 shows the simulation parameters used in different simulated target environments for the three
tasks (results shown in Table 3).

Setting
Task Parameter WD OOD-1 OOD-2 OOD-3 OOD-4 Range

mi 18 18 05 12 04 [L2
my 12 03 18 18 26 [1.2]

Pendulum " 15 15 15 100 10 [12]

b, 15 15 15 100 20 [12]

Iz 0.1 025 005 015 030 [0.050.2]

Pushin e le5 5e4 1le5 5¢6 1le5 [led,le6)

€ 4 06 01 09 01 015 [0.208]

yp 005 01 005 015 01 [-0.1,01]

030 045 020 030 040 [0.25,04]

. S5e4 led 5e4 1e6 1e5 [led,5eh)
Scooping

o
e
g 1 0 1 0o 2 {01}
ho 20 14 22 28 19 [1525

Table A2: Simulation parameters used in different simulated target environments for the three tasks. OOD parameters
(outside the range used in adaptation policy training) are bolded. For g in the scooping task, O stands for ellipsoid, 1 for
cylinder, and 2 for box.

AS5.2 Real adaptation

In Fig. A7 and Fig. A9 we demonstrate additional visualizations of the pushing and scooping results with
AdaptSim.

A5.3 Additional studies

Choice of the simulation parameter space. To answer Q3, we perform a sensitivity analysis by fixing the
target environment (OOD-1 in the double pendulum task) and varying the simulation parameter space. In
OOD-1, the OOD parameter is my =0.3 while the range in 2 is [1,2]. Fig. A3 shows the results of reward
achieved after adaptation for AdaptSim and the two Sys-ID baselines, as the range shifts further away from
me=0.3to [1.1,2.1], [1.2,2.2], and [1.3,2.3]. Sys-ID performance degrades rapidly, while AdaptSim is
more robust.

_01-0 = AdaptSim mmm SysiD-Bayes-State SysID-Point-State
Zo.s
g
- 0.6
9]
N
0.4
£
00.2
=
0.0
[1.0, 2.0] [1.1,2.1] [1.2,2.2] [1.3,2.3]

Figure A3: Adaptation results for AdaptSim and Sys-ID baselines in OOD-1 setting of the double pendulum task, with
different my ranges in {2 while m2 =0.3 in the target environment.

Pitfalls of Sys-ID approaches. Fig. A4 demonstrates the dynamics mismatch between simulation and
reality, which illustrates the pitfall of SysID approaches. We plot a set of bottle trajectories from randomly
sampled simulation parameters from €2 with a fixed robot action. We also plot the trajectories of Heavy
bottle being pushed with the same action in reality. There are segments of real trajectories that are not well
matched by the simulated ones, and a slight mismatch can lead to diverging final states (and hence different
task rewards).

16

0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Time (s)

Figure A4: Comparison of trajectories from the simulation domain (green, simulated with randomly sampled simulation
parameter settings) and from Heavy bottle in reality (red), with the same robot action applied. The real dynamics can
be OOD from simulation (black boxes) while the final position of the bottle can be WD.

Trade-off between real data budget and task performance convergance. In Sec. 4.2 we introduce N,
the number of initial simulation parameter distributions that are sampled at the beginning of Phase 2 and
then adapt independently. There is a trade-off between the real data budget (linear to V) and convergence
of task performance. Adapting more simulation parameter distributions simultaneously can potentially help
the task performance converge faster but also require more real data. Fig. A5 shows the effect with the
Light bottle in the pushing task. We vary /N from 1 to 4 — each simulation parameter distribution takes 2
trajectories at each iteration. N =1 shows slow and also worse asymptotic convergence, which shows that
the parameter distribution can be trapped in a low-reward regime. N = 2 performs the best with fastest
convergence in terms of number of real trajectories used. Using higher /N shows slower convergence. Note
that the convergence also depends on the dimension of the simulation parameter space {2 — we expect
N > 2 is needed for the best convergence rate once the dimension increases from 4 used in the pushing
task.

=
[=}

o

O
zzzz
I monu
A WN B

Normalized reward
o o
~ [ee]

o

o
N
IN

6 8 10 12 14 16 18 20 22 24
Number of real trajectories

Figure AS: Task performance convergence with respect to the number of real trajectories used with varying NV, the
number of simulation parameter distributions adapting simultaneously in Phase 2 with the Light bottle in the pushing
task.

Sensitivity analysis on adaptation step size. Adaption step size J can affect the task performance
convergence too — § being too low can cause slow convergence, while § being too high can prevent
convergence since the simulation parameter distribution can “overshoot” the optimal one by a large margin.
Fig. A6 shows the effect of adaptation step size ranging from 0.05 to 0.20 in OOD-1 setting of the double
pendulum task. § = 0.10 performs the best while 6 = 0.05 shows slower convergence. § = 0.15 also
achieves similar asymptotic performance but the reward is less unstable during adaptation, while with
0=0.20 the reward does not converge at all.

Comparison of simulation runtime. Compared to Sys-ID baselines, AdaptSim requires significantly
longer simulation runtime for training the adaptation policy in Phase 1. For example: SysID-Bayes uses
roughly 6 hours of simulation walltime to perform 10 iterations of adaptation in the scooping task while
AdaptSim would take 36 hours for Phase 1, and 30 minutes for Phase 2 (i.e., 3 minutes per iteration), using
the same computation setup. However, we re-use the same adaptation policy for different food pieces in
the scooping task, which amortizes the simulation cost.

17

=
=}

<
©

o
o

o
o

Normalized reward
o
~

o
¢

o
EN
=

2 3 4 5 6 7 8 9 10
Iterations

Figure A6: Normalized reward at each adaptation iteration using different adaptation step size §, in OOD-1 setting of
the pendulum task.

Table friction coefficient Hydroelastic modulus
20 1.001e6

0.
0.15 /\ /_/_
0.10

0.10

0:05 0.01
Patch friction coefficient Patch lateral position (m
0.75 0.1 :

. —— AdaptSim

050 — 0.0 I

0.25 L o1

Iterations

Figure A7: Adaptation results of the pushing task with two different target locations (yellow cross, top and bottom
rows) over iterations. The right figure shows the inferred simulation parameter distribution (mean only).

Figure A8: AdaptSim fails to synthesize a task policy for scooping up Brussels sprout. We consider such environment
extremely OOD from the simulation domain.

18

eration 1

eraton 1 8
Iteration 2 ™
Heration 3 1
eration 4 1
Heration's 1

eraion 119

Iteration 2 ™

Iteration 3 =

Iteration 4 ™

Iteration 5 =

Figure A9: Adaptation results of scooping up (top) chocolate raisins, (middle) mushroom slice, and (bottom) Oreo
cookie with AdaptSim.

19

	Introduction
	Related Work
	Problem Formulation
	Approach
	Phase 1: meta-learning the adaptation policy in sim
	Phase 2: iteratively adapt sim parameters with real data

	Tasks
	Swing-up of a linearized double pendulum
	Dynamic table-top pushing of a bottle
	Dynamic scooping of food pieces with a spatula

	Experiments
	AdaptSim achieves better task performance through adaptation
	AdaptSim improves real data efficiency
	AdaptSim finds sim parameters that are different from ones from SysID

	Discussions
	Extended Related Work
	Additional details on approach
	Sparse adaptation reward
	Task policy reuse across parameter distributions

	Additional details of adaptation policies
	Additional details of the task setup and task policies
	Dynamic pushing of a bottle
	Dynamic scooping of food pieces

	Additional details of experiments
	Simulated adaptation
	Real adaptation
	Additional studies

