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Abstract: Simulation parameter settings such as contact models and object geometry ap-

proximations are critical to training robust manipulation policies capable of transferring

from simulation to real-world deployment. There is often an irreducible gap between

simulation and reality: attempting to match the dynamics between simulation and reality

may be infeasible and may not lead to policies that perform well in reality for a specific

task. We propose AdaptSim, a new task-driven adaptation framework for sim-to-real

transfer that aims to optimize task performance in target (real) environments. First, we

meta-learn an adaptation policy in simulation using reinforcement learning for adjusting

the simulation parameter distribution based on the current policy’s performance in a

target environment. We then perform iterative real-world adaptation by inferring new

simulation parameter distributions for policy training. Our extensive simulation and

hardware experiments demonstrate AdaptSim achieving 1-3x asymptotic performance

and ∼2x real data efficiency when adapting to different environments, compared to

methods based on Sys-ID and directly training the task policy in target environments.1

1 Introduction

Learning robust and generalizable policies for real-world manipulation tasks typically requires a substantial

amount of training data. Since using real data exclusively can be very expensive or even infeasible, we often

resort to training mostly in simulation. This raises the question: how should we specify simulation parame-

ters to maximize performance in the real world while minimizing the amount of real-world data we require?

Figure 1: AdaptSim iteratively improves task
performance in dynamic scooping task under
ªirreducibleº sim-to-real gap.

A popular method is to perform domain randomization

[1, 2, 3, 4]: train a policy using a wide range of different

simulation parameters in the hope that the policy can thus han-

dle possible real-world variations in dynamics or observations.

However, the trained policy may achieve good average per-

formance, but perform poorly in a particular real environment.

There has been work in performing system identification

(Sys-ID) for providing a point or a distributional estimate of

parameters that best matches the robot or environment dy-

namics exhibited in real-world data. This estimation can be

performed using either a single iteration [5] or multiple ones

[6]. These adaptive domain randomization techniques allow

training policies suited to specific target environments.

While simple objects such as a box and its properties like the

inertia can be well-modeled, there is a substantial amount of

ªirreducibleº sim-to-real gap in many settings such as contact-rich manipulation tasks. Consider the task

of using a cooking spatula to dynamically scoop up small pieces of food from a table (Fig. 1). The exact

geometry of the pieces and spatula is difficult to specify, deformations such as the spatula bending against

the table are not yet maturely implemented in simulators, and contact models such as point contact have

been known to poorly approximate the complex real-world contact behavior [7] in these settings. In this

1Webpage: https://irom-lab.github.io/AdaptSim/
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case, real environments are out-of-domain (OOD) from simulation, and performing Sys-ID of simulation

parameters might fail to train a useful policy for the real world due to this inherent irreducible gap.

Contributions. In this work we take a task-driven approach: instead of trying to align the simulation with

real-world dynamics, we focus on finding simulation parameters such that the resulting policy optimizes

task performance. Such an approach can lead to policies that achieve high reward in the real world even

with an irreducible sim-to-real gap. We consider settings where the robot has access to a simulator between

iterations of real-world interactions, allowing it to observe real-world dynamics and adapt the simulator

accordingly with the goal of improving task performance in reality. We propose AdaptSim Ð a two-phase

framework where (i) an adaptation policy that updates simulation parameters is first meta-trained using

reinforcement learning in simulation, and (ii) then deployed on the real environment iteratively. Training

the adaptation policy to maximize task reward enhances the efficiency of real data usage by identifying only

task-relevant simulation parameters and helps trained policies better generalize to OOD (real) environments.

We demonstrate our approach achieving 1-3x asymptotic performance and ∼2x real data efficiency in

OOD environments in three robotic tasks including two that involve contact-rich manipulation, compared

to methods based on Sys-ID and directly training the task policy in target environments.

2 Related Work

Sim-to-real transfer in robotics has been primarily addressed using Domain Randomization (DR) techniques

[1, 8, 9, 10, 11, 12, 13] that inject noise in simulation parameters related to visuals, dynamics, and actuations.

Below we summarize techniques that better adapt to real environments.

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line

of work identifying simulation parameters that match the robot and environment dynamics in the real

environment. BayesSim [6] and follow-up work [16, 17] apply Bayesian inference to iteratively search

for a posterior distribution of the simulation parameters based on simulation and real-world trajectories.

However, these methods consider relatively well-modeled environment parameterizations such as object

mass or friction coefficient during planar contact; Sys-ID approaches can be brittle when the simulation

does not closely approximate the real world [13, 18].

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find

simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply

Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping

coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only

[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target

environments (e.g., 150 in [19]), which is very time-consuming for many tasks requiring human reset.

AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference

(e.g., 20 in our pushing experiments).

3 Problem Formulation

Environment. In simulation, we consider a space Ω that parameterizes quantities such as friction coeffi-

cients and dimensions of geometric primitives. Let E denote a distribution of sim parameters with support

on Ω. Denote a single sim environment E∈Ω and a real environment Er.

Task Policy and Trajectory. We denote a task policy π∈Π:O→A that maps the robot’s observation ot to

action at. Running it in an environment results in a state-action trajectory τ(π;E):[0,T ]×Π×E→S×A
with time horizon T . The trajectory is also subject to an initial state distribution. We specify tasks for

the robot using a reward function (e.g., pushing some object to a specific location on the table), and let

R(τ)∈ [0,1] denote the normalized cumulative reward accrued by a trajectory. We let R(π;E) denote the

reward of running the task policy π in the environment E, in expectation over the initial state distribution.

Goal. Our eventual goal is to find a task policy that maximizes the task performance in a real environment

Er. Instead of directly searching for the policy, we search for the best sim parameter distribution E for

training π in the following bi-level optimization objective:

sup
E

R(π∗

E ;E
r), where π∗

E := sup
π

E
E∼E

[R(π;E)], (1)
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Figure 2: AdaptSim consists of two phases: (1) meta-training an adaptation policy in sim by maximizing task reward
on randomly sampled simulated target environments; (2) iteratively adapting simulation parameter distributions based
on real trajectories. The upper-right illustration shows that using only a few real trajectories, the task policy is adapted
to push the bottle closer to the target location (yellow cross).

the optimal task policy for E. Performing the outer level of (1) requires interactions with Er (the real

world); we allow a small budget of such interactions. We emphasize that the objective above identifies

the optimal distribution of simulation parameters for maximizing task performance, unlike objectives that

attempt to match the dynamics between simulation and reality.

4 Approach

One way to solve (1) is to perform blackbox optimization on E by evaluating R(π∗
E
;Er) [19], which

requires a large budget of real trajectories (see results in Sec. 6). AdaptSim instead amortizes the expensive

outer loop to simulation: it solves (1) for many simulated environments, learns the mapping to the solutions,

and then infers the solution for Er. There are two phases (Fig. 2):

1) Meta-learn the adaptation policy in sim: randomly sample target environments Es∈Ω in sim, and

then train an ªadaptationº policy f :(E,τ) 7→∆E using RL to maximize task reward in Es, by updating

the sim parameter distribution (and the corresponding task policies) in iterations.

2) Iteratively adapt sim parameters with real data: given a real environment Er, iteratively infer better

sim parameter distributions using the trained f and a few real trajectories; the task policy is iteratively

fine-tuned in sim to improve task reward with the updated parameter distribution.

4.1 Phase 1: meta-learning the adaptation policy in sim

In order to correctly infer simulation parameters for an unseen real environment at test time, we first train

the adaptation policy to infer better parameters for many simulated target environments. This phase happens

entirely in simulation. Formally, we model the problem as a partially-observable contextual bandit [23].

Definition 1 A Simulation-Adaptation Contextual Bandit (SA-CB) is specified by a tuple (Ω,T ,P,R):

• Ω is the space of contexts. Each context corresponds to a simulated target environment Es; the context is

not directly observable.

• T is the space of partial observations of the context. Each observation corresponds to a trajectory

observed by running the task policy in a given context.

• P is the space of actions. An action corresponds to choosing a sim parameter distribution E.

• R is the reward associated with choosing an action in a particular context (i.e., the reward R(π∗
E
;Es) of

the task policy π∗
E

trained with E when deployed in the target environment Es).

It may be difficult to infer the optimal E ∈ P using a single iteration of interactions with the target

environment Ð if the current task policy fails badly in the target environment, the interaction may reveal

little information. Thus, we iteratively apply incremental changes to E, with the parameter distribution

initialized as Ei=0. Solving the SA-CB (using techniques that we detail below), we meta-learn an adaptation
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policy f(E,τ) to maximize:

E
Es∼UΩ

E
E0∼UP

I
∑

i=0

γiR(π∗

Ei
;Es), (2)

where Ei+1=Ei+∆Ei
,∆Ei

=f
(

Ei,τ(π
∗

Ei
;Es)

)

,

and UΩ and UP are uniform distributions over Ω and P respectively, and γ<1 is the discount factor. This

is the expected discounted sum of task rewards over multiple interactions from i=0 to the adaptation

horizon I, over random sampling of simulated target environment and initial sim parameter distribution.

Figure 3: Task-policy trajectories better reveal task-relevant
information such as scooping dynamics under fast contact.

Sim parameter distribution space. We choose

the space P of possible simulation parameter distri-

butions to be Gaussian with mean bounded within

Ω and a fixed variance. We also use a fixed step

size δ for adapting each simulation parameter, rang-

ing from 10% to 15% of the parameter range de-

pending on the dimension of Ω Ð thus the set of

possible ∆E along each dimension is {δ,−δ,0}.

Algorithm 1 Meta-learning the adaptation pol-
icy in sim

Require: (Ω,T ,P,R), SA-CB
Require: Sf =∅, replay buffer
Require: SE = ∅, set of all simulation parameter

distributions (and their task policies) used
1: Initialize ϵ←1
2: for k←0 to K do
3: Sample target Es∼UΩ and Ei=0∼UP
4: for i←0 to I do
5: Train task policy π∗

Ei
(Sec.A2.2)

6: Collect τ(π∗
Ei
;Es) and R(π∗

Ei
;Es)

7: Sample random ∆Ei or infer ∆Ei =
f(Ei,τ(·;·))

8: Update Ei+1←Ei+∆Ei

9: Add
(

Ei,∆Ei ,τ(·;·),R(·;·)
)

to Sf

10: Add Ei (and π∗
Ei

) to SE

11: end for
12: Train f using Double Q-Learning and Sf

13: Anneal ϵ towards 0
14: end for
15: return f , SE

Task-policy trajectory as observation. We have chosen

the task policy π∗
E

to generate the trajectory observations

used by the adaptation policy. Our intuition is that,

compared to arbitrary policies or ones that generate the

most ªinformativeº trajectories in terms of dynamics

[24], π∗
E

better reveal the task-relevant information of

the target environment . In the scooping task, the robot

needs to attempt to scoop up the pieces so it can learn

about the effect of the environment on the task (e.g., a

piece with a flat bottom is generally harder to scoop).

Simply pushing the pieces around does not exhibit the

behavior of the pieces under fast contact (Fig. 3).

Training the adaptation policy using RL. The adap-

tation policy f is parameterized using a Branching Du-

eling Q-Network [25], which outputs the state-action

value of choosing any of the {δ,−δ,0} along each action

dimension. It takes in (1) the vector of the mean of cur-

rent simulation parameter distribution and (2) trajectory

observation. We apply reinforcement learning (RL) to

train f to maximize Eq. (2). In simulation, we collect K ªadaptation trajectoriesº; each trajectory is a set

{
(

Ei,∆Ei
, R(π∗

Ei
;Es), τ(π∗

Ei
;Es)

)

}Ii=0 and saved in a replay buffer Sf . Since each step involves training

the corresponding task policy π∗
Ei

, which can be expensive, we apply off-policy Double Q-Learning [26] for

sample efficiency. Using this, the adaptation policy outputs the greedy action of a parameterized Q function,

f(E,τ)=argmax∆E
Q(E,τ ;∆E). We use ϵ-greedy exploration with ϵ initialized at 1 and annealed to 0.

This constitutes the first phase of AdaptSim. Algorithm 1 details the steps for collecting adaptation

trajectories in the inner loop (Line 4-15) and meta-learning the adaptation policy. We save all distributions

(and their corresponding task policies, omitted in notations for convenience) in a set SE , which are used

again in the second phase. Training the task policy for each E is the most computationally heavy component

of Algorithm 1; in Sec. A2.2 we explain the heuristics applied to allow re-using task policies between E in

order to improve computational efficiency.

4.2 Phase 2: iteratively adapt sim parameters with real data

After meta-training the adaptation policy to find good task policies for a diverse set of target environments in

simulation, we can apply it for inference and perform adaptation for the real environment Er. Algorithm 2

details the iterative process. We apply the same adaptation process as the inner loop of Algorithm 1 for Ir

iterations: train the task policy in simulation, evaluate it in the real environment, and infer the change of

simulation parameters based on real trajectories. We always apply the greedy action from f(E,τ) (ϵ=0).
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Figure 4: Setup of the dynamic pushing and dynamic scooping tasks in both simulation and reality.

Algorithm 2 Iteratively adapt sim parameters
with real data

Require: Er, real environment
Require: (Ω,T ,P,R), SA-CB
Require: f , adaptation policy trained in Phase 1
Require: Sf , set of sim parameter distributions (and

corresponding task policies) from Phase 1

1: Sample S′

f from Sf

2: for i←0 to Ir do
3: for Ei∈S

′

f do
4: Train or fine-tune the task policy π∗

Ei
in

sim
5: Collect τ(π∗

Ei
;Er) and R(π∗

Ei
;Er) in

real
6: Update Ei+1←Ei+f

(

Ei,τ(·;·)
)

7: end for
8: end for
9: return π∗

Ei
with the highest R(·;Er)

Since we have sampled a large set SE of parameter dis-

tributions and trained their task policies in Phase 1, we

may re-use them here. At the beginning of Phase 2, we

sample S′
E

, a set of N distributions saved in SE , as the

initial distributions to be adapted independently. Usually

we pick N=2 considering the trade-off between num-

ber of real trajectories needed and convergence of task

performance (see Appendix A5 for analysis).

5 Tasks

Next we detail the three robotic tasks for evaluating

AdaptSim and baselines. We choose these tasks and

design the environments to highlight the irreducible gap

between training and test domains.

5.1 Swing-up of a linearized double pendulum

This is a classic control task where the goal is to swing up a simple double pendulum with two actuated

joints at one end of the two links. We consider the dynamics linearized around the state with the pendulum

at the top, and thus the optimal policy can be solved exactly using Linear Quadratic Regulator (LQR) [27]

for a particular set of simulation parameters (i.e., a Dirac delta distribution). The task cost (reward) function

is defined with the standard quadratic state error and actuation penalty. The trajectory observation is evenly

spaced points along trajectory of the two joints.

Simulation setup. The environment is parameterized with four parameters: m1 and m2∈ [1,2], point mass

of the two joints, and b1 and b2∈ [1,2], damping coefficients of the two joints. The dynamics is simulated

with numerical integration without a dedicated physics simulator.

5.2 Dynamic table-top pushing of a bottle

The robot needs to dynamically push a bottle to a particular target location on the table (Fig. 4). Since the

target can be outside the workspace of the robot, the robot must push objects with high velocity Ð causing

them to slide after a short period of contact. The task policy is parameterized with a neural network that

maps the desired target location to action including (1) planar pushing angle and (2) robot end-effector

speed (see Appendix A4 for visualization) and the predicted reward. The network then acts as a state-value

(Q) function and is trained off-policy while simulated trajectories are saved in a replay buffer. The task

cost (reward) is defined as the distance between the target location and the final location of the bottle. The

trajectory observation is either (1) the final 2D position of the bottle only, or (2) evenly spaced points along

the 2D trajectory Ð we consider both representations in the experiments.

Notation Description Range

µ table friction coefficient [0.05,0.2]
e hydroelastic modulus [7] [1e4,1e6]
µp patch friction coefficient [0.20,0.80]
yp patch lateral location [−0.10,0.10]

Table 1: Sim setup for the pushing task.

Simulation setup. We employ the Drake physics sim-

ulator [28] for its accurate contact mechanics. In this

simulated environment, a small patch of the table is sim-

ulated with different physics properties, simulating a wet

or sticky area on the work surface. Parameter settings

for this task are shown in Table 1. The hydroelastic mod-

ulus is a parameter of the hydroelastic contact model [7]

implemented in Drake Ð it roughly simulates how ªsoftº the contact is between the objects, with lower

values being softer.
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Real setup. Two 3D-printed bottles (Fig. 4, Heavy and Light) with the same dimensions but different

materials and masses are used. With an idealized model, the sliding distance should only depend on the

contact surface but not the mass Ð which is the case in simulation Ð but in real experiments, we find the

two bottles consistently travel different distances. Additionally, Heavy tends to rotate slightly despite being

pushed straight due to a slightly uneven bottom surface. This type of unmodeled effect exemplifies the

irreducible sim-to-real gap. We also adhere a small piece of high-friction Neoprene rubber to the table,

which decelerates the bottle and further complicate the task dynamics.

5.3 Dynamic scooping of food pieces with a spatula
The robot needs to use a cooking spatula to scoop up small food pieces on the table (Fig. 4). It is a

challenging task that requires intricate planning of the scooping trajectory Ð we notice humans cannot

complete the task consistently without a few trials to practice. The task policy is parameterized with

a neural network that maps the initial positions of the food pieces to parameterization of the scooping

trajectory: (1) initial distance of the spatula from the pieces, (2) initial pitch angle of the spatula from the

table, and (3) the timestep to lift up the spatula (see Appendix A4 for details), and the predicted reward.

The task reward is defined as the ratio of food pieces on the spatula at the end of the action. The trajectory

observation is evenly spaced points along 2D trajectories of the food pieces.

Simulation setup. We again use the Drake simulator. The parameter settings are shown in Table 2.

Notation Description Range

µ friction coefficient [0.25,0.4]
e hydroelastic modulus [1e4,5e5]
g food piece geometry {ellipsoid,cylinder}
h food piece height [1.5cm,2.5cm]

Table 2: Sim setup for the scooping task.

Real setup. Six different kinds of food pieces are used

(Fig. 4): (1) chocolate raisin, (2) (fake, rubber-like)

sliced carrot, (3) (fake, rigid) sliced cucumber, (4) raw

Brussels sprout, (5) raw sliced mushroom, and (6)

Oreo cookie. They cover different shapes from being

round, ellipsoidal, to roughly cylindrical, and also have

different amounts of deformation and friction.

6 Experiments

Through extensive experiments below, we demonstrate that AdaptSim improves asymptotic task perfor-

mance compared to Sys-ID and other baselines when adapting to real and OOD simulated environments,

while also improving data efficiency. For baselines, first we consider methods that directly optimizes the

task policy: (1) Uniform domain randomization (UDR): train a task policy to optimize the average

task reward over environments from UΩ; (2) UDR+Target: fine-tune the task policy from UDR with real

data; (3) LearnInTarget: directly train a task policy with data in the target environment only by fitting a

small neural network that maps action to final reward. The policy then outputs the action with the highest

predicted reward. With enough real data, this baseline should act as the oracle or upper bound of task

performance, but can be inefficient. Next, we consider two that perform SysID and iteratively train the

task policy like AdaptSim: (4) SysID-Bayes [6, 29]: iteratively infer the sim parameter distribution based

on real trajectories to match dynamics in sim and reality, known as BayesSim; (5) SysID-Point: infer a

point estimate of the sim parameter instead of a distributional one (we hypothesize that in some settings

randomizing sim parameters with a distribution can negatively impact task policy training).

6.1 AdaptSim achieves better task performance through adaptation

Sim-to-Sim Adaptation. We perform experiments for all baselines adapting to different WD (Within-

Domain) and OOD simulated environments. WD environments are generated by sampling all simulation

parameters within Ω of each task, and OOD environments are generated by sampling some parameters

outside Ω (see Appendix A5 for details). Table 3 shows the adaptation results in the target environments in

the three tasks. While Sys-ID baselines achieve high reward in WD environments, AdaptSim outperforms

Sys-ID baselines in almost all OOD environments.

Sim-to-Real Adaptation. Next we perform experiments for adapting to real environments. Fig. 5 shows

the average reward achieved at each adaptation iteration in the pushing and scooping tasks. Generally the

performance gap between AdaptSim and Sys-ID baselines is larger in reality, with AdaptSim achieving

better performance. In the scooping task, for example, AdaptSim is able to train a task policy for sliced

cucumbers with decent performance (60% success rate); the pieces are very thin and difficult to scoop

under (Fig. 8). Other baselines fail to scoop up the pieces.

6



Double Pendulum Swing-Up Bottle Pushing Food Scooping

Method WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4

AdaptSim 0.98 0.96 0.95 0.95 0.98 0.95 0.87 0.73 0.86 0.77 1.00 0.64 1.00 1.00 0.55

SysID-Bayes [6] 0.85 0.76 0.79 0.23 0.96 0.98 0.80 0.65 0.81 0.79 0.90 0.66 0.81 1.00 0.36
SysID-Point 0.95 0.60 0.73 0.39 0.76 0.94 0.84 0.68 0.85 0.78 0.94 0.63 0.90 1.00 0.42

UDR - - - - - 0.68 0.65 0.61 0.67 0.58 0.65 0.22 0.43 0.55 0.12
UDR+Target - - - - - 0.78 0.73 0.66 0.71 0.70 0.61 0.31 0.49 0.60 0.21
LearnInTarget - - - - - 0.91 0.75 0.66 0.74 0.71 0.03 0.00 0.25 0.26 0.03

Table 3: Sim-to-Sim Adaptation. Best average reward achieved over adaptation horizons at different WD and OOD
simulated target environment in the three tasks. For the pendulum task, the values are normalized in [0,1] using the
reward achieved by UDR (lower bound) and by using the best possible parameters within Ω (upper bound, estimated
with exhaustive sampling). For the pushing task, the values are normalized with 20cm as the maximum error, which is
the range of possible goal locations in the forward direction.

Figure 5: Sim-to-Real Adaptation. Reward achieved over adaptation iterations by all methods, in the task of pushing
(left) and scooping up (right) different real objects (see Fig. 4 for images). Results are averaged over 10 trials in the
pushing task and 5 in the scooping task.

6.2 AdaptSim improves real data efficiency

Real data budget

Method 0 4 8 16 24 32 40 48

AdaptSim 0.30 0.69 0.80 0.83 0.84 0.84 0.82 0.83
LearnInTarget 0.05 0.04 0.63 0.69 0.76 0.80 0.84 0.83
UDR+Target 0.63 0.56 0.62 0.66 0.68 0.74 0.82 0.82

BayesOpt - - - - 0.65 0.72 0.79 0.80

Table 4: Adaptation Data Efficiency. Normalized reward
achieved using different amount of real data in the pushing
task with Heavy bottle.

Pushing task. We compare AdaptSim with Learn-

InTarget and UDR+Target with different number

of real data budget. With enough data, LearnInTar-

get and UDR+Target should achieve high reward

in the target environment. We do not compare with

Sys-ID baselines here since Sec. 6.1 shows they

typically fail to achieve the same level of task per-

formance in real environments. In the task of pushing Heavy bottle, Table 4 shows that AdaptSim achieves

a similar level of task performance (∼0.83) using only 16 trials while LearnInTarget and UDR+Target

uses 40. Fine-tuning with real data in UDR+Target is ineffective until the real budget is sufficient and

can negatively impact the performance in the low-data regime (e.g., 4 and 8). This also exemplifies using

simulation to amortize data requirements for policy training. We also introduce a new baseline BayesOpt

here based on [19] that directly optimizes Eq. (1) with Bayesian Optimization. However, with 24 rollouts

(the minimum needed to initialize the optimization) it only achieves 0.65.

Larger improvement in scooping task. While LearnInTarget and UDR+Target achieve reasonable

performance in the pushing task, LearnInTarget achieves low reward on all the food pieces in the scooping

task, and UDR+Target does not improve upon the performance of UDR policies. The action space in the

scooping task is more complex and requires significantly more data to search for or improve task policies.

AdaptSim’s adaptation pre-training in simulation considerably amortizes the real data requirement.

6.3 AdaptSim finds sim parameters that are different from ones from SysID

We expect that AdaptSim finds simulation settings that achieve better task performance while not necessarily

minimizing the full dynamics discrepancies between sim and reality. Fig. 6 shows SysID-Bayes finds

parameters that are closer to the target in the parameter space, but for the pendulum task, such parameters

lead to inferior task reward compared to those found by AdaptSim. Moreover, we compute the dynamics

discrepancy, measured as the total variations between trajectories in the target environment and in the
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Figure 7: Adaptation in Pushing Task. AdaptSim correctly learns to push the bottle swiftly and close to the target.
The task-relevant sim parameters learned by AdaptSim noticeably differ from those by SysID-Bayes which tends to
underestimate table and patch friction, resulting in a less forceful push of the bottle and worse task performance.

Figure 8: Adaptation in Scooping Task. With AdaptSim, the cucumber is successfully scooped up by lifting up the
spatula off the table late; otherwise, the piece slips off the spatula. AdaptSim infers an ellipsoidal shape (g=1, food
piece geometry), while SysID-Bayes infers a cylindrical shape.

environment with adapted parameters. The results are 17.6 vs. 12.1 for AdaptSim and SysID-Bayes in

OOD-1 environment, 21.7 and 11.1 in OOD-2, 39.9 and 16.4 in OOD-3, 75.8 and 56.4 in OOD-4. Thus

for all four OOD target environments, SysID-Bayes finds sim parameters whose resulting dynamics are

closer to the target environment (lower discrepancies), but Table 3 shows the task performance is worse.

Fig. 7 and Fig. 8 further show cases where SysID-Bayes under-performs AdaptSim and there are visible

differences between sim parameter distributions found by the two approaches. In the pushing task, SysID-

Bayes infers table and patch friction coefficients that are too low, and the trained task policy pushes the

bottle with little speed. In the scooping task, interestingly, AdaptSim infers an ellipsoidal shape for the

sliced cucumber despite it resembling a very thin cylinder, and the task policy achieves 60% success rate.

Sys-ID infers a cylindrical shape but the task policy fails completely.

7 Discussions

Figure 6: Sim parameters found by AdaptSim vs. SysID-
Bayes in the OOD-1 setting of the double pendulum task.
The colors indicate the maximum possible reward at each
parameter. SysID-Bayes finds parameters closer to the
target in the parameter space (dark red star), but the task
performance is worse.

Summary. We present AdaptSim, a framework for

efficiently adapting simulation-trained task policies

to the real world. AdaptSim meta-learns how to adapt

simulation parameter distributions for better perfor-

mance in diverse simulated target environments, and

then infers better distributions for training real-world

task policies using a small amount of real data.

Limitations and Future Work. In some settings

AdaptSim does not outperform baselines (e.g., OOD-

4 in the pushing task and scooping up Brussels sprout

in hardware, Fig. A8). First, AdaptSim’s task-driven

adaptation training requires the trained task policy being (nearly) optimal on the corresponding simulation

parameter distribution Ð while it can be solved exactly in the double pendulum task, the task policy training

in the two manipulation tasks can be noisy. Second, if the target environment is extremely OOD from the

simulation domain and the adaptation policy has not been trained with similar trajectories, AdaptSim may

not work as well. We believe the first issue can be mitigated by allowing more simulation budget for task

policy training and better design of task policy re-use. The second issue can be addressed by designing the

simulation parameter space Ω to better cover possible real-world behavior.
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Appendix

A1 Extended Related Work

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line

of work identifying simulation parameters that match the robot and environment dynamics in the real

environment before task policy training. BayesSim [6] and follow-up work [16, 17] applies Bayesian

inference to iteratively search for a posterior distribution of the simulation parameters based on simulation

and real-world trajectories. The inference problem has also been formulated using RL to minimize

trajectory discrepancies [30]. A different approach [31, 32, 33] learns a residual model of dynamics (often

parameterized with a neural network) to match simulation or an ideal physics model with reality. However,

all these methods consider relatively well-modeled environment parameterizations such as object mass or

friction coefficient during planar contact; Sys-ID approaches have been shown to fail in cases where the

simulation does not closely approximate the real world [13, 18]. There is also work that avoids inferring

the full dynamics but adapts with a low-dimensional latent representation online [34, 35, 36], but the

representation is still trained with regression to match dynamics or simulation parameters. Importantly,

the Sys-ID approaches highlighted above are all task-agnostic; this can lead to poor performance when

trained task policies are sensitive to mismatches in dynamics between simulation and reality. Chi et al.

[18] address the issue by using simulation to predict changes to trajectories from changes in actions as

an implicit policy, but it requires the environment to be resettable, while AdaptSim works with randomly

initialized object states.

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find

simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply

Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping

coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only

[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target

environments (e.g., 700 in [19]), which is very time-consuming for many tasks requiring human reset.

AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference

(e.g., 20 in our pushing experiments). Liang et al. [37] apply the same task-driven objective to learn an

exploration policy in manipulation tasks, but the task policy is synthesized using estimated simulation

parameters via Sys-ID. Jin et al. [38] applies task-drived reduced-order model for dexterous manipulation

tasks, but again the model is identified with Sys-ID and no vision-based control is involved. Ren et al.

[39] search for adversarial environments (e.g., objects) given the current task performance to robustify the

policy, but unlike AdaptSim, the adversarial metric is measured in simulated domain only without real data.

Learn to search/optimize. Our work involves learning optimization strategies through meta-learning

across a distribution of relevant problems, allowing for customization to the specific setting and increased

sample efficiency [40, 41]. Chen et al. [42] meta-learns an RNN optimizer for black-box optimization.

Volpp et al. [43] meta-learns the acquisition function in BO with RL; it is able to learn new exploration

strategies for black-box optimization and tuning controller gains in sim-to-real transfer. Meta RL trains the

task policy directly to optimize performance in new environments [44, 45, 46] Ð AdaptSim applies meta

RL to optimize simulation parameters instead.

A2 Additional details on approach

A2.1 Sparse adaptation reward

In practice, we are only concerned with the reward if it reaches some minimum threshold Ð a bad task

policy is not useful. Thus we use a sparse-reward version of Eq. (2),

E
Es∼UΩ

E
E0∼UP

I
∑

i=0

γi1
(

R(π∗

Ei
;Es)≥R

)

R(π∗

Ei
;Es), (A1)

where 1() is the indicator function and R is the sparse-reward threshold. Using a sparse reward also

discourages the adaptation policy from being myopic and getting trapped at a sub-optimal solution,
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especially since we use a relatively small I (e.g., 5-10) in order to minimize the amount of real data, and

use a small discount factor γ (=0.9).

A2.2 Task policy reuse across parameter distributions

Algorithm 1 requires training the task policy for each E, which can be expensive with the two manipulation

tasks. Our intuition is that we can share the task policy between parameter distributions of close distance,

with the following heuristics:

• Record the total budget (i.e., number of trajectories), and j, the number of simulation parameter

distributions that a task policy has been trained with.

• Define distance between two parameter distribution D(·,·) such as L2 distance between the mean. If Ei
is within a threshold D from a previously seen distribution, re-use the task policy. If the policy is already

trained with Mmax budget total, do not train again; otherwise train with max(Mmin, α
j−1M) budget,

where α<1 and M is the budget for training the policy for the first time.

• If the nearby parameter distribution re-uses a task policy, do not re-use the same policy again. This

prevents the same task policy being used for too many E.

Remark 1 re-using task policies between parameter distributions makes the reward R depend on the

adaptation history, as π∗
E

depends on previous E that are used for training. We choose not to model this

history dependency in f , as the reward should be largely dominated by the current E.

A3 Additional details of adaptation policies

Hyperparameters. Table A1 shows the hyperparameters used for the adaptation policy training in Phase 1,

including those defining the heuristics for re-using task policies among simulation parameter distributions.

We generally use smaller adaptation step δ for smaller dimensional Ω.

Task

Parameter Pendulum Pushing Scooping

Total adaptation steps, K 1e4 1e4 1e4
Adaptation horizon, I 10 8 8

Adaptation step size, δ 0.10 0.15 0.15

Adaptation discount factor, γ 0.9 0.9 0.9

Sprase reward threshold, R 0.95 0.8 0.5

Task policy reuse threshold, D - 0.16 0.16

Task policy max budget, Mmax - 3e4 4e3
Task policy budget discount, α - 0.9 0.9

Task policy init budget, M - 1e4 1.2e3

Table A1: Hyperparameters used in adaptation policy training for the three tasks.

Trajectory observations. We detail the trajectory observation (as input to the adaptation policy) used in

the three tasks.

• Pendulum task: each trial is 2.5 seconds long, and we use 12 evenly spaced points along the trajectories of

the two joints, and thus each trajectory is 24 dimensional. For AdaptSim-State, SysID-Bayes-State, and

SysID-Bayes-Point, again 12 points are used but sampled from the last 0.5 second only. One trajectory is

used at each adaptation iteration Ð the trajectory input to the adaptation policy is 24 dimensional.

• Pushing task: each trial is 1.3 seconds long, and we use 6 evenly spaced points along the X-Y trajectory

of the bottle, and thus each trajectory is also 12 dimensional. For AdaptSim-State, SysID-Bayes-State,

and SysID-Bayes-Point, only the final X-Y position of the bottle is used. Two trajectories are used at

each adaptation iteration Ð the trajectory input to the adaptation policy is 24 dimensional.
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• Scooping task: each trial is 1 second long, and we use X-Y position of the food piece at the time step

[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]s (more sampling around the initial contact between the spatula and the

piece), and thus each trajectory is 16 dimensional. Two trajectories are used at each adaptation iteration

Ð the trajectory input to the adaptation policy is 32 dimensional.

In real experiments, we track the bottle position in the pushing task using 3D point cloud information from

a Azure Kinect RGB-D camera, which we find accurate. In the scooping task, the food pieces are too

small and thin to be reliably tracked with point cloud, and thus we resort to extracting the contours from

the RGB image and then finding the corresponding depth values at the same pixels in the depth image.

During fast contact there can be motion blur around the food piece, and thus we add Gaussian noise with

0.2cm mean for X position and zero mean for Y position, and 0.2cm covariance for both, to the points in

the ground-truth trajectories in simulation. We use positive mean in X since the motion blur tends to occur

in the forward direction.

A4 Additional details of the task setup and task policies

Trajectory observation First, we remove the action sequence from the task-policy trajectory and keep

the state sequence only. Since the dynamics in real environments can be OOD, in order to achieve similar

high-reward states as in simulated environments, the robot would need to use some actions not seen during

training (or not seen for the particular state), hindering the adaptation policy to generalize if action sequence

were included in the task policy trajectory. We assume that the task-relevant state sequence is covered by

T if the task policy performs reasonably well in the real environment. This choice is also present in the

state-only inverse RL literature [47] that addresses train-test dynamics mismatch. See Fig. A4 and related

discussions in Sec. 6.3.

A4.1 Dynamic pushing of a bottle

Trajectory parameterization. Here we detail the trajectory of the end-effector pusher designed for the

task (Fig. A1). The trajectory is parameterized with two parameters: (1) planar pushing angle, which is

the yaw orientation of the pusher relative to the forward direction that controls the direction of the bottle

being pushed, and (2) forward speed (of the end-effector), in the direction specified by the pushing angle.

The pushing angle varies between −0.3rad and 0.3rad, and the forward speed varies between 0.4m/s and

0.8m/s. We find 0.8m/s roughly the upper speed limit of the Franka Panda arm used. The pusher also

pitches upwards during the motion and the speed is fixed to 0.8rad/s. We design such trajectories to

maximize the pushing distance at the hardware limit.

Initial and goal states. The bottle is placed at the fixed location (x=0.56m,y=0, relative to the arm base)

on the table before the trial starts. The goal location is sampled from a region where the X location is

between 0.7 and 1.0m and Y location is at most 10 degrees off from the centerline (Fig. A1 top-right). The

patch, a 10cm by 10cm square, is placed at x=0.75m with its center (lateral position is varied as one of

the simulation parameter).

Task policy parameterization. The task policy is parameterized using a Normalized Advantage Function

(NAF) [48] that allows efficient Q Learning with continuous action output by restricting the Q value as

a quadratic function of the action, and thus the action that maximizes the Q value can be found exactly

without sampling. In this task, it maps the desired 2D goal location of the bottle to the two action parameters,

planar pushing angle and forward speed. The policy is open-loop Ð the actions are determined before the

trial starts and there is no feedback using camera observations.

Hardware setup. A 3D-printed, plate-like pusher is mounted at the end-effector instead of the paralle-jaw

gripper in both simulation and reality. We also wrap elastic rubber bands around the bottom of the pusher

and contact regions of the bottle to induce more elastic collision, which we find increases the sliding

distance of the bottle.
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Figure A1: Visualization of the pushing trajectory and goal locations in the Drake simulator. There are two action
parameters: (1) forward speed (of the end-effector) and (2) planar pushing angle (i.e., yaw orientation of the end-
effector). The patch is not visualized.

Figure A2: Visualization of the scooping trajectory and initial positions of the food piece in the Drake simulator. There
are three action parameters: (1) initial distance (between the spatula and food piece), (2) initial pitch angle (of the
spatula from the table), and (3) pitch rate (of the end-effector at time step t=0.25).

A4.2 Dynamic scooping of food pieces

Trajectory parameterization. Here we detail the trajectory of the end-effector with the spatula designed

for the task (Fig. A2). The end-effector velocity trajectory is generated using cubic spline with values

clamped at five timesteps. The trajectory only varies in the X and pitch direction (in the world frame),

while remaining zero in the other directions. The only value defining the trajectory that the task policy

learns is the pitch rate, which is the pitch speed at the time t=0.25s and varies between −0.2rad/s and

0.2rad/s. A positive pitch rate means the spatula lifting off the table late, while a negative one means lifting

off early (see the effects in Fig. 8). The other two values that the task policy outputs are the initial pitch

angle of the spatula from the table (varying from 2 to 10 degrees), and the initial distance between the

spatula and the food piece (varying between 0.5cm to 2cm). Generally a higher initial pitch angle can help

scoop under food pieces with flat bottom, and a smaller angle helps scoop under ellipsoidal shapes. We

design such trajectories after extensive testing with food pieces of diverse geometric shapes and physical

properties in both simulation and reality.

Initial states. The food piece is randomly placed in a box area of 8x6cm in front of the spatula; the initial

distance is relative to the initial food piece location.

Task policy parameterization. The task policy is parameterized using a NAF again. In this task, it maps

the initial 2D position of the food piece to the three action parameters: pitch rate, initial pitch angle, and

initial distance.

Hardware setup. We use the commercially available OXO Nylon Square Turner2 as the spatula used

for scooping. It has a relatively thin edge (about 1.2mm) that helps scoop under thin pieces. A box-like,

3D-printed adapter with high-friction tape is mounted on the handle to help the parallel-jaw gripper grasp

the spatula firmly. The exact 3D model of the spatula with the adapter is designed and used in the Drake

simulator; the deformation effect as it bends against the table is not modeled in simulation.

2link: https://www.amazon.com/OXO-11107900LOW-Grips-Square-Turner/dp/B003L0OOSU

15



A5 Additional details of experiments

A5.1 Simulated adaptation

Table A2 shows the simulation parameters used in different simulated target environments for the three

tasks (results shown in Table 3).

Setting

Task Parameter WD OOD-1 OOD-2 OOD-3 OOD-4 Range

Pendulum

m1 1.8 1.8 0.5 1.2 0.4 [1,2]
m2 1.2 0.3 1.8 1.8 2.6 [1,2]
b1 1.5 1.5 1.5 10.0 1.0 [1,2]
b2 1.5 1.5 1.5 10.0 2.0 [1,2]

Pushing

µ 0.1 0.25 0.05 0.15 0.30 [0.05,0.2]
e 1e5 5e4 1e5 5e6 1e5 [1e4,1e6]
µp 0.6 0.1 0.9 0.1 0.15 [0.2,0.8]
yp 0.05 -0.1 0.05 -0.15 0.1 [−0.1,0.1]

Scooping

µ 0.30 0.45 0.20 0.30 0.40 [0.25,0.4]
e 5e4 1e4 5e4 1e6 1e5 [1e4,5e5]
g 1 0 1 0 2 {0,1}
h 2.0 1.4 2.2 2.8 1.9 [1.5,2.5]

Table A2: Simulation parameters used in different simulated target environments for the three tasks. OOD parameters
(outside the range used in adaptation policy training) are bolded. For g in the scooping task, 0 stands for ellipsoid, 1 for
cylinder, and 2 for box.

A5.2 Real adaptation

In Fig. A7 and Fig. A9 we demonstrate additional visualizations of the pushing and scooping results with

AdaptSim.

A5.3 Additional studies

Choice of the simulation parameter space. To answer Q3, we perform a sensitivity analysis by fixing the

target environment (OOD-1 in the double pendulum task) and varying the simulation parameter space. In

OOD-1, the OOD parameter is m2=0.3 while the range in Ω is [1,2]. Fig. A3 shows the results of reward

achieved after adaptation for AdaptSim and the two Sys-ID baselines, as the range shifts further away from

m2=0.3 to [1.1,2.1], [1.2,2.2], and [1.3,2.3]. Sys-ID performance degrades rapidly, while AdaptSim is

more robust.

Figure A3: Adaptation results for AdaptSim and Sys-ID baselines in OOD-1 setting of the double pendulum task, with
different m2 ranges in Ω while m2=0.3 in the target environment.

Pitfalls of Sys-ID approaches. Fig. A4 demonstrates the dynamics mismatch between simulation and

reality, which illustrates the pitfall of SysID approaches. We plot a set of bottle trajectories from randomly

sampled simulation parameters from Ω with a fixed robot action. We also plot the trajectories of Heavy

bottle being pushed with the same action in reality. There are segments of real trajectories that are not well

matched by the simulated ones, and a slight mismatch can lead to diverging final states (and hence different

task rewards).
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Figure A4: Comparison of trajectories from the simulation domain (green, simulated with randomly sampled simulation
parameter settings) and from Heavy bottle in reality (red), with the same robot action applied. The real dynamics can
be OOD from simulation (black boxes) while the final position of the bottle can be WD.

Trade-off between real data budget and task performance convergance. In Sec. 4.2 we introduce N ,

the number of initial simulation parameter distributions that are sampled at the beginning of Phase 2 and

then adapt independently. There is a trade-off between the real data budget (linear to N) and convergence

of task performance. Adapting more simulation parameter distributions simultaneously can potentially help

the task performance converge faster but also require more real data. Fig. A5 shows the effect with the

Light bottle in the pushing task. We vary N from 1 to 4 Ð each simulation parameter distribution takes 2

trajectories at each iteration. N=1 shows slow and also worse asymptotic convergence, which shows that

the parameter distribution can be trapped in a low-reward regime. N=2 performs the best with fastest

convergence in terms of number of real trajectories used. Using higher N shows slower convergence. Note

that the convergence also depends on the dimension of the simulation parameter space Ω Ð we expect

N>2 is needed for the best convergence rate once the dimension increases from 4 used in the pushing

task.

Figure A5: Task performance convergence with respect to the number of real trajectories used with varying N , the
number of simulation parameter distributions adapting simultaneously in Phase 2 with the Light bottle in the pushing
task.

Sensitivity analysis on adaptation step size. Adaption step size δ can affect the task performance

convergence too Ð δ being too low can cause slow convergence, while δ being too high can prevent

convergence since the simulation parameter distribution can ªovershootº the optimal one by a large margin.

Fig. A6 shows the effect of adaptation step size ranging from 0.05 to 0.20 in OOD-1 setting of the double

pendulum task. δ = 0.10 performs the best while δ = 0.05 shows slower convergence. δ = 0.15 also

achieves similar asymptotic performance but the reward is less unstable during adaptation, while with

δ=0.20 the reward does not converge at all.

Comparison of simulation runtime. Compared to Sys-ID baselines, AdaptSim requires significantly

longer simulation runtime for training the adaptation policy in Phase 1. For example: SysID-Bayes uses

roughly 6 hours of simulation walltime to perform 10 iterations of adaptation in the scooping task while

AdaptSim would take 36 hours for Phase 1, and 30 minutes for Phase 2 (i.e., 3 minutes per iteration), using

the same computation setup. However, we re-use the same adaptation policy for different food pieces in

the scooping task, which amortizes the simulation cost.
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Figure A6: Normalized reward at each adaptation iteration using different adaptation step size δ, in OOD-1 setting of
the pendulum task.

Figure A7: Adaptation results of the pushing task with two different target locations (yellow cross, top and bottom
rows) over iterations. The right figure shows the inferred simulation parameter distribution (mean only).

Figure A8: AdaptSim fails to synthesize a task policy for scooping up Brussels sprout. We consider such environment
extremely OOD from the simulation domain.
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Figure A9: Adaptation results of scooping up (top) chocolate raisins, (middle) mushroom slice, and (bottom) Oreo
cookie with AdaptSim.
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