Journal of Machine Learning Research 24 (2023) 1-35 Submitted 6/23; Revised 10/23; Published 11/23

Principled Out-of-Distribution Detection via Multiple Testing

Akshayaa Magesh AMAGESH2@QILLINOIS.EDU
Department of Electrical and Computer Engineering

University of Illinois Urbana-Champaign

Champaign, IL 61820, USA

Venugopal V. Veeravalli VVV@ILLINOIS.EDU
Department of Electrical and Computer Engineering

University of Illinois Urbana-Champaign

Champaign, IL 61820, USA

Anirban Roy ANIRBAN.ROY@SRI.COM
Computer Science Laboratory

SRI International

Menlo Park, CA 94061

Susmit Jha SUSMIT.JHAQSRI.COM
Computer Science Laboratory

SRI International

Menlo Park, CA 94061

Editor: Daniel Roy

Abstract

We study the problem of out-of-distribution (OOD) detection, that is, detecting whether a
machine learning (ML) model’s output can be trusted at inference time. While a number
of tests for OOD detection have been proposed in prior work, a formal framework for
studying this problem is lacking. We propose a definition for the notion of OOD that
includes both the input distribution and the ML model, which provides insights for the
construction of powerful tests for OOD detection. We also propose a multiple hypothesis
testing inspired procedure to systematically combine any number of different statistics from
the ML model using conformal p-values. We further provide strong guarantees on the
probability of incorrectly classifying an in-distribution sample as OOD. In our experiments,
we find that threshold-based tests proposed in prior work perform well in specific settings,
but not uniformly well across different OOD instances. In contrast, our proposed method
that combines multiple statistics performs uniformly well across different datasets and
neural networks architectures.

Keywords: OOD characterization, Conformal p-values, Conditional False Alarm Guaran-
tees, Benjamini-Hochberg procedure.

1. Introduction

Given the ubiquitous use of ML models in safety-critical applications such as self-driving and
medicine, there is a need to develop methods to detect whether an ML model’s output at
inference time can be trusted. This problem is commonly referred to as the out-of-distribution
(OOD) detection problem. If an output is deemed untrustworthy by an OOD detector, one
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can abstain from making decisions based on the output, and default to a safe action. There
has been a flurry of works on this problem in recent years. A particular area of focus has been
on OOD detection for deep learning models (see Lee et al., 2018; Liang et al., 2018; Sastry
and Oore, 2020; Huang et al., 2021; Liu et al., 2020; Kaur et al., 2022). While neural networks
generalize quite well to inputs from the same distribution as the training distribution, recent
works have shown that they tend to make incorrect predictions with high confidence, even
for unrecognizable or irrelevant inputs (see e.g., Szegedy et al., 2013; Nguyen et al., 2015;
Hendrycks and Gimpel, 2017).

In many of the prior works on OOD detection, OOD inputs are considered to be inputs
that are not generated from the input training distribution (see, e.g., Liang et al., 2018;
Sastry and Oore, 2020), which better describes the classical problem of outlier detection.
However, in contrast to outlier detection, the goal in OOD detection is to flag untrustworthy
outputs from a given ML model. Thus, it is essential for the definition of an OOD sample to
involve the ML model. One of the contributions of this paper is a formal definition for the
notion of OOD that involves both the input distribution and the ML model.

In a line of work in OOD detection, it is assumed that the detector has access (exposure) to
OOD examples, which can be used to train an auxiliary classifier, or to tune hyperparameters
for the detection model (see Lee et al., 2018; Hendrycks et al., 2019; Liang et al., 2018, 2022).
Other works rely on identifying certain patterns observed in the training data distribution,
and use these patterns to train the original ML model to help detect OOD examples. For
instance, in the work by Kaur et al. (2022), a neural network is trained to leverage in-
distribution equivariance properties for OOD detection. There is another line of work in
which tests are designed based on statistics from generative models trained for OOD detection.
For instance, in the work by Bergamin et al. (2022), statistics from a deep generative model
are combined through p-values using the Fisher test. In this paper, we focus exclusively on
developing methods that do not use any OOD samples, and can be applied to any pre-trained
ML model.

Prior work has primarily been focused on identifying promising test statistics and
corresponding thresholds, sometimes motivated by empirical observations of the values taken
by these statistics for certain in-distribution and OOD inputs. For instance, in the work by
Lee et al. (2018), a confidence score is constructed through a weighted sum of Mahalanobis
distances across layers, using the class conditional Gaussian distributions of the features
of the neural network under Gaussian discriminant analysis. Liang et al. (2018) proposed
a statistic based on input perturbations and temperature-scaled softmax scores. Liu et al.
(2020) proposed a free energy score based on the denominator of the temperature-scaled
softmax score. Sastry and Oore (2020) derived scores from Gram matrices, through the sum
of deviations of the Gram matrix values from their respective range observed over the training
data. In the work by Angelopoulos et al. (2021), the broad goal is to find all candidate
functions from a given collection in an offline manner through multiple testing, such that
any one of these candidate functions controls some risk at inference time. This approach is
applied by Angelopoulos et al. (2021) to the problem of OOD detection to select suitable
thresholds for a given test statistic to control the false alarm rate. Huang et al. (2021) used
vector norms of gradients from a pre-trained network to form a test statistic. Haroush et al.
(2021) studied OOD detection in Convolutional Neural Networks (CNNs), where spatial and
channel reduction techniques are employed to produce statistics per layer, and these layer
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statistics are combined to form a final score using a method motivated by the tests proposed
by Simes (1986) and Fisher (1992). Thus, their proposed algorithm computes a single score
using all the intermediate features of the CNN and its corresponding empirical p-value. They
provide marginal false alarm guarantees averaged over all possible validation datasets used
to compute the empirical p-value. Additionally, the proposed method by Haroush et al.
(2021) can be applied only to CNNs, and not any general ML model. To summarize, from
prior work, it is unclear which among these scores/statistics is the best for OOD detection,
or if there exists such a test statistic that is useful for all possible out-distributions. The
latter question was raised by Zhang et al. (2021), where they posit that one can construct an
out-distribution for any single score or statistic that results in poor detection performance.

The false alarm probability or type-I error of a test refers to the probability of a single
in-distribution sample being misclassified as OOD, and the detection power refers to the
probability of correctly identifying an OOD distribution sample. Note that the detection
power is also referred to as detection accuracy in prior OOD works. In much of the prior
work on OOD detection, the false alarm probability is estimated using empirical evaluations
on certain in-distribution datasets. What is lacking in such works is a rigorous theoretical
analysis of the probability of false alarm, which can be used to meet pre-specified false alarm
constraints. Such false alarm guarantees are crucial for the responsible deployment of OOD
methods in practice. Note that it is not possible to give any theoretical guarantees on the
detection power of an OOD detection test without prior information about the class of all
possible out-distributions, which is typically not available in practice. Therefore, in prior
work on OOD detection, the detection powers of candidate OOD methods that meet the
same pre-specified false alarm levels are compared empirically.

In this work, we propose a method inspired by multiple hypothesis testing (Holm, 1979;
Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) to systematically combine
multiple test statistics for OOD detection. Our method works for combining any number of
statistics with an arbitrary dependence structure, for instance the Mahalanobis distances
(Lee et al., 2018) and the Gram matrix deviations across layers (Sastry and Oore, 2020)
of a neural network. We should emphasize there is no obvious way to directly combine
such disparate statistics with provable guarantees for OOD detection. Detection procedures
for multiple hypothesis testing are usually based on combining p-values across hypotheses
(Holm, 1979; Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). However, in
the problem of OOD detection, the probability measures under both the in-distribution (null)
and out-of-distribution (alternate) settings are unknown, and thus the actual p-values cannot
be computed. In conformal inference methods (Vovk et al., 1999; Balasubramanian et al.,
2014) the p-values are replaced with conformal p-values, which are estimates computed from
the empirical CDF of the test statistics. These conformal p-values are data-dependent, as
they are calculated from in-distribution samples. In the procedure proposed in this paper,
we use conformal p-values and provide rigorous theoretical guarantees on the probability of
false alarm, conditioned on the dataset used for computing the conformal p-values.
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Contributions

1. We formally characterize the notion of OOD, using which we provide insights on why
it is necessary for OOD tests to involve more than just the new unseen input and the
final output of the ML model for OOD detection.

2. We propose a new approach for OOD detection inspired by multiple testing. Our
proposed test allows us to combine, in a systematic way, any number of different test
statistics produced from the ML model with arbitrary dependence structures.

3. We provide strong theoretical guarantees on the probability of false alarm, conditioned
on the dataset used for computing the conformal p-values. This is stronger than false
alarm guarantees in prior work (e.g., Balasubramanian et al., 2014; Kaur et al., 2022),
where the guarantees are given in terms of an expectation over all possible datasets.

4. We perform extensive experiments across different datasets to demonstrate the efficacy
of our method. We perform ablation studies to show that combining various statistics
using our method produces uniformly good results across various types of OOD examples
and deep neural network (DNN) architectures.

2. Problem Statement and OOD Modeling

Consider a learning problem with (X,Y’) ~ Pxy, where (X,Y’) is the input-output pair and
Pxy is the distribution of the dataset available at training time. Let the dataset available
at training time be denoted by T = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, where n is the size of
the dataset. Let the ML model be denoted by f(W,.), where W is the random variable
denoting the parameters of the ML model. For instance, W depicts the weights and biases
in a neural network. Let (Xiest, Yiest) be a random variable generated from an unknown
distribution, and (Ztest, Ytest) be an instance of this random variable seen by the ML model
at inference time. Given 7 and the ML model, the goal is to detect if this new unseen sample
might produce an incorrect output with high confidence. This might happen because either
the input does not conform to the training data distribution, or if the ML model is unable
to capture the true relationship between the input Xies; and the true label Yiest. Whether
a new unseen sample is OOD or not depends on both the ML model and the distribution
vay.

A precise mathematical definition of the OOD detection problem that captures both the
input distribution and the ML model appears to be lacking in prior work. The most common
definition is based on testing between the following hypotheses (see, e.g., Liang et al., 2018):

Ho : Xtest ~ Px

. (1)
Hl . Xtest 7[/ PX,

where Hy corresponds to ‘in-distribution’ and H; corresponds to ‘out-of-distribution’. However,
such a definition does not involve the ML model, and better describes the problem of outlier
detection, which is fundamentally different from the problem of OOD detection.

Let Y = f(W,X), and consider the distribution Pyy = Px x PY|X as the joint
distribution of the input and the output of the ML model. Using this joint distribution as
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the ‘in-distribution’, consider the following testing problem:

H() : (Xtestyyvtest) ~ PX,Y

2
Hl : (Xtestanest) 7(‘ PXV)A/' ( )
Note that this is a definition of OOD detection that involves both the input distribution
and the ML model (through P}A,'X = Prw, x=z)|x=2). It also captures both the cases where
the input is not drawn from P x, and when the ML model is unable to capture the relationship
between the unseen input and its label.
The hypothesis test in (2) involves the true label Yiest and the distribution P Xy Since

these quantities are unknown, the model prediction YViest and the empirical distribution P Xy

of (X, f/) based on the training data, respectively, may be used instead. When the ML model
performs well during training, the training loss is approximately 0, i.e,

1 .
Training loss = — Z L(Y;,Y;) = 0, (3)
n
i=1

where L(Y,Y) is a non-negative loss function with L(Y,Y) = 0 implying ¥ = ¥". Thus, when
the training loss is approximately 0, Y = Y holds for almost all the training data points.
This implies that the empirical versions P vy and P x,vy of the distributions P ¢ and Py y,
respectively, are approximately equal to each other. Using the empirical versions of the
distributions in (2), we arrive at a formulation that tests whether the new unseen sample
conforms to the distribution P x,y or not, which again does not involve the ML model. Thus,
in order to incorporate the ML model f(W,.) in an operational OOD detection framework,
we conclude that it is necessary to use other functions of the input derived from the ML
model® in addition to just the final output ¥ in constructing test statistics for effective
OOD detection. Such a strategy is commonly employed, without theoretical justification,
in many OOD detection works, for instance, through the use of intermediate features of a
neural network to calculate the Mahalanobis score (Lee et al., 2018) and Gram matrix score
(Sastry and Oore, 2020), and gradient information to calculate the GradNorm score (Huang
et al., 2021). The discussion above provides a qualitative theoretical justification for these
strategies developed in prior works.

3. Proposed Framework and Algorithm

In this section, we describe our proposed framework formally, and present our algorithm
to combine any number of different functions of the input with an arbitrary dependence
structure.

In our formulation of OOD detection in (2), we posit that, in addition to the input and
the output from the ML model, it is necessary to use other functions? of the input, which
are dependent on the ML model. We refer to these functions as score functions, denoted by

1. In this paper, we use the term statistic or score interchangeably to denote these functions of the input
derived from the ML model.
2. Without loss of generality, we may assume that these functions are scalar-valued.
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s1(.),...,s%(.). The outputs of the score functions are scalar-valued scores T, T2, ..., TK:
T! = s1(X)
: (4)
T = 5(X).

The scores are chosen based on some prior information, say using empirical observations,
that the distributions of the scores for in-distribution samples are concentrated around
smaller values, whereas they are likely to be concentrated around larger values for OOD
samples (Liang et al., 2018, Sec 5.2). For a new input Xiest, let (Tihg, T, - - - » Tihg) be the
corresponding scores. Note that one of scores TE, could be based on the final output from
the learning model }A’test.

3.1 Motivation for multiple testing framework

In order to construct an OOD detection test for the new sample Xiest using the scores, the
scores would need to be combined in some manner. Since we do not know the dependence
structure between the scores, combining them in an ad hoc manner, such as summing them
up, cannot be justified and may result in tests with low power (probability of detection) for
many OOD distributions.

For instance, consider a simple bivariate Gaussian setting as follows:

Hy : (T*,T?) ~ N(0, 1)
Hy : (TY,T%) £ N0, I).

Ad hoc combining: Consider the test that combines the test statistics in an ad hoc
manner by summing them. Let the statistic T = T' + T2, and let @ be the p-value when
the observed value of the statistic is . Recall that the p-value is given by:

Q =Py {T > t}. (6)

For given o > 0, let T7 denote the test which rejects Hyg if Q < . For test T7, the probability
of false alarm, i.e.,

(5)

Py, (reject Hy), (7)

can be controlled at «, by exploiting the fact that p-values have a uniform distribution
under the null hypothesis. However, the detection power of the test under different possible
distributions under the alternate hypothesis might be poor. For instance, if (T, T?) ~
N((1,—1),I) under the alternate hypothesis, the statistic T = T' + T? has the same
distribution under the null and alternate hypotheses. Thus the detection power of test T is
« as well. It is possible to find many such joint distributions for the alternate hypothesis,
under which the detection power of test T7 is poor, i.e., it is close to the probability of false
alarm.

Combining Inspired by Multiple Testing: Consider the following split of the above
testing problem into two binary hypothesis testing problem corresponding to the statistics
T' and T2:

HO,l : Tl ~ N(O, 1) Hl,l : T’1 75 N(O, 1)

2 2 (8)
Hoz: T2 ~N(0,1)  His: T? £ N(0,1).
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Let Q' and Q2 be the p-values corresponding to the two individual tests in (8), and Q1) < Q)
be the ordered p-values. Let

m = max{i : Q) <ia/2}. 9)

Then, let test Ty be defined such that it rejects Hg if m > 1. Similar to test T, the probability
of false alarm of test To can be controlled at level a. On the other hand, we see that the
detection power of test To when (T1,7?) ~ P, where P, = N((u1, u2), 1), satisfies the
following condition:

P, (reject Ho) > 1 — min{l — U(U (e /2) — 1), 1 — U (T 1 (a/2) — p2)}, (10)

where U(.) is the complementary cumulative distribution function of a N (0, 1) random variable.
The detection power satisfies a minimum quality of performance under all distributions for
the alternate hypothesis. Note that it is also possible for some distributions for the alternate
hypothesis, for instance if (T, T?) ~ N((1,1),I), that test T; has better detection power
than test Js.

Thus, if we do not have any prior information on the behaviour of the statistics under
the alternate hypotheses, combining multiple test statistics in an ad hoc manner (such as
summing them) might not be desirable. Further, there is no obvious way to combine two
completely different set of statistics, say the Mahalanobis scores from different layers of a
DNN and the energy score.

3.2 Proposed OOD Detection Test

Motivated by the above discussion, we propose the following multiple testing framework for
OOD detection:
Hoi: Tiege ~ PY Hip: Ty o4 P

)

(11)

Hox : TE, ~P5  Hyx:TE, £ PK,

where P!, ... PX are the distributions of the corresponding scores when Xies is an in-
distribution sample as defined in (2). It is clear to see that if the new input Xie is an
in-distribution sample, then all Hp; are true in (11), and if X is an OOD sample, then
one or more of (Ho1,...,Ho i) are likely to be false. Thus, we propose a test that declares
the instance as OOD, if any of the Hy; are rejected.

We propose an algorithm for OOD detection inspired by the Benjamini-Hochberg (BH)
procedure given by Benjamini and Yekutieli (2001) (preliminaries are provided in the
Appendix). Most multiple testing techniques, including the BH procedure, involve computing
the p-values of the individual tests. The p-value of a realization t’ of the test statistic T,
i € [K], is given by

qi = PHo,i {Ti = ti} =1- FHo,z‘(ti)v (12)

where Fy,,(.) is the CDF of T. The p-value for T¢; is a random variable

Qi =1- FHo,i(Ttiest)‘ (13)
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The distribution of this p-value under null hypothesis is uniform over [0, 1]. Its distribution
under the alternate hypothesis concentrates around 0, and is difficult to characterize in
general. Also, while a p-value close to 0 is evidence against the null hypothesis, a large
p-value does not provide evidence in favor of the null hypothesis.

If we do not know the distributions under the null hypotheses to calculate the exact
p-values, conformal inference methods suggest evaluating the empirical CDF of T under
the null hypothesis using a hold-out set (denoted by T.,1) known as the calibration set, to
construct a conformal p-value Q. A conformal p-value satisfies the following property:

Py, {QZ’ < t} <t (14)

when Xiest is independent from T, and 7% has a continuous distribution. The classical

conformal p-value (see Vovk et al., 1999) is given by:

QZ’ _ 1+ ‘{.7 € Jeal : 7? 2 Ttiest}‘.
1 + |7cal‘

(15)

The estimate Q" is said to be a marginally valid conformal p-value, as it depends on Tg,. In
other words, (14) can be rewritten as follows:

B[Py, {Q' < T }| <1, (16)

where the expectation is over all possible calibration datasets. The property in (14) is however
not valid conditionally, i.e., Py, {Ql < t]?'cal} need not be upper-bounded by ¢. This is

important to note, as false alarm guarantees given for out-of-distribution detection methods
using conformal inference (see, e.g., Balasubramanian et al., 2014; Kaur et al., 2022) are
based on (16). Such guarantees are not strong, as they only guarantee that the probability of
false alarm, averaged over all possible calibration data sets, is controlled. While the problem
of conditional coverage has been discussed in the context of sequential testing for distribution
shifts (e.g., Podkopaev and Ramdas, 2021) and conformal inference (e.g., Vovk, 2012), it has
not been discussed widely under the setting of single sample OOD detection.

The related problem of outlier testing using conformal p-values is studied by Bates
et al. (2023). However, the result from Bates et al. (2023), stating that conformal p-values
satisfy the PRDS (Positive Regression Dependent on a Subset) property, which is required
for the False Discovery Rate (FDR) control in the BH procedure, is valid only under the
setting where the individual test statistics (and hence the original p-values) are independent.
The PRDS property does not hold for the conformal p-values Q' in Algorithm 1, since the
corresponding p-values Q° (see (13)) are highly dependent through the common input Xiest.
In addition, the conditional false alarm guarantees provided by Bates et al. (2023) utilize
calibration conditionally valid (CCV) p-values proposed by Bates et al. (2023), as opposed
to the conformal values proposed by Vovk et al. (1999) (which we use in our work). Indeed,
these CCV p-values cannot be directly used in our setting to obtain false alarm guarantees
in Theorem 2, without a similar adjustment to the thresholds as in (19), as the p-values
would be dependent through both the calibration dataset and the input.

In our proposed OOD detection test we use conformal p-values in place of the actual
p-values. In order to compute the conformal p-values, we maintain a calibration set T,;.
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In this work, we aim to provide conditional false alarm guarantees, i.e., if Xiest is an
in-distribution sample (all Hy; are true in (11)), then

Py (Tcal) = P, (declare OOD |Tga1) = Ph,(reject at least one Ho ;| Tear) (17)

is controlled with high probability. As discussed earlier in this section, such conditional
guarantees are essential for the safe deployment of OOD detection algorithms. Note that in
the literature on multiple testing, the marginal false alarm probability Py, (declare OOD ) is
equivalent to the Family Wise Error Rate (FWER) or False Discovery Rate (FDR) when all
the null hypotheses are true in (11) (detailed discussion provided in the Appendix).

We compute the scores of these K statistics for the samples in the calibration set Tey.

Using these, we calculate the conformal p-values Ql, QQ, . ,AQK fpr the new sample as in
(74), and order the conformal p-values in increasing order as QW ., Q@ ..., Q¥ Lete>0
be a parameter of the OOD detection algorithm, and let o > 0, and let
m:max{i:Q(i) < C(?(Z)K'}’ (18)
where
51
CE)=(1+6) - (19)
j=1

The factor of Z]K:1 % is included in order to obtain false alarm guarantees for any arbitrary
dependence between the test statistics. The factor of (1 + €) is a constant related to the
size of the calibration dataset, and is introduced to provide strong conditional false alarm
guarantees, conditioned on the calibration set (discussed further in the proof of the results
below). While choosing a smaller value of € improves the power of the proposed OOD
detection test, it increases the size of the calibration set needed to provide the conditional
false alarm guarantees. The OOD detection test declares the instance Xiest as OOD if m > 1,
i.e., if any of the Hyp; are rejected. The pseudo-code is described in Algorithm 1.

For instance, consider a deep neural network (DNN) with L layers. Let T',..., T* denote
the Mahalanobis scores (Lee et al., 2018). Let TX*! ... T?! denote the Gram deviation
scores (Sastry and Oore, 2020). Lee et al. (2018) use outlier exposure to combine T, ... T*
into a single score for a threshold-based test, and Sastry and Oore (2020) use the sum of
TLFL .. T2 for a similar test. However, it is not straightforward to determine how to
combine the L Mahalanobis scores and the L Gram deviation scores for OOD detection
without outlier exposure. In Algorithm 1, we provide a systematic way to construct a test
that uses all these 2L contrasting scores. In addition, we provide a systematic way to design
the test thresholds to meet a given false alarm constraint as presented below in Theorem 2.

3.3 Theoretical Guarantees

On running Algorithm 1, we can guarantee that the conditional probability of the false alarm
is bounded by a with high probability. In order to provide this guarantee, we need to enforce
certain sample complexity conditions on the size of the calibration set nc,1, as detailed in the
Lemma below.
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Algorithm 1 BH based OOD detection test with conformal p-values

Inputs:

New input Xiest;

Scores over T,y as {{le =sl(X;):j¢€ ‘Ical},...,{TJK =sK(X;):j¢€ ‘.Tcal}};
ML model f(W,.);

Desired conditional probability of false alarm « € (0, 1).

Algorithm:

For Xiest, compute scores Ttiest.

Calculate conformal p-values as:

o 1+ {j €T T} > Tiog}|
1+ “Ica1|

Order them as QM) < Q® < ... < QU9.
Calculate m = max {z QU i
Output:

Declare OOD if m > 1.

IA

Lemma 1 Let € > 0, K and « be as in Algorithm 1. Let aj = |(nca + 1)0(%)KJ, b =

(Neal + 1) — aj, and p; = GTJb] For a given § > 0, let nea be such that

a;

min KI(1+E)/’I‘j (aj,b;) >1— (21)

=12, K2

where I(a,b) is the reqularized incomplete beta function (the CDF of a Beta distribution
with parameters a,b). Then for random variables 7“§ ~ Beta(aj,b;) forj=1,..., K,

P Oﬂ{r;'.g(we)c(of‘(j)l(} >1-4. (22)

i oj
< — i b
P{rj < (1+6)C’(K)K} I(HE)C(KJ)K(aj,b])
> Ttep, (aj, by) (23)
)
>1- ﬁ>

where I,(a,b) is the CDF of a Beta distribution with parameters a,b, and the second
inequality follows since p; is upper bounded by % From the Union Bound, we have

10
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i=1j=1 =1 j=1
K K (24)
1)
<> =
i=1 j=1
<é.
Thus, we have the desired result in Lemma 1. |

The condition on 1., in Lemma 1 is due to the fact that the CDF of the conformal
p-values conditioned on the calibration dataset follows a Beta distribution (see Vovk et al.,
1999), and is essential to provide the guarantees in Theorem 2. Due to the form of the CDF
of the Beta distribution, it is difficult to characterize the dependence of n., on «, d, € and
K in closed form. We plot the calibration dataset sizes nc, as given by Lemma 1 for e =1
and K =5 for different values of § in Figure 1. Note that € = 1 is conservative.

4000 1 8000 -

3500 + 7000 +

3000 + 6000

n_cal
n_cal

2500 4 5000 o

2000 + 4000

1500 < T T T T T T 3000 - T T T T T T
0.0 0.1 02 0.3 0.4 05 0.0 0.1 0.2 03 0.4 0.5
delta delta

(a) a = 0.1 (b) @ = 0.05

Figure 1: Calibration dataset sizes that guarantees Theorem 1 with probability 1 — §

In the following result, we formally present the conditional false alarm guarantee for
Algorithm 1.

Theorem 2 Let o, € (0,1). Let Tea be a calibration set, and let ney be large enough
(as defined in the Lemma 1). Then, for a new input Xiest and an ML model f(W,.), the

probability of incorrectly detecting Xiest as OOD conditioned on Tea while using Algorithm 1
18 bounded by «, i.e.,

Pr(Tcal) = Pa, (declare OOD |Tcq) < a, (25)

with probability 1 — 0.

11
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We adapt the proof of FDR control for the BH procedure provided by Benjamini and Yekutieli
(2001) for our algorithm, to the use of conformal p-values estimated from the calibration set
instead of the actual p-values in Algorithm 1. The details of the proof are presented in the
Appendix.
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Figure 2: False Alarm probabilities with CIFAR10 and SVHN as in-distribution datasets for
ResNet and DenseNet

3.4 Empirical Validation

We verify the results in Theorem 2 through experiments with CIFAR10 and SVHN
as in-distribution datasets, and ResNet and DenseNet architectures (more details on the
experimental setup are given in Section 4). In Figure 2, we plot the false alarm probabilities
when the thresholds for comparing the conformal p-values are set according to Algorithm 1.
The dashed line represents the theoretical upper bound on the false alarm probability. As
seen in Figure 2, the false alarm probability is bounded by the theoretical upper bound as
stated in Theorem 2 for all settings considered. Note that the results in this paper hold for
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any given ML model, and while the bound may be conservative for certain settings (e.g.,
DenseNet with CIFAR10), it is tight in other cases (e.g., ResNet with SVHN).

Such strong theoretical guarantees are absent in most prior work on OOD detection. A
few works that have suggested the use of conformal p-values for OOD detection, such as the
work by Kaur et al. (2022), provide marginal false alarm guarantees of the form:

Py, {declare OOD } = E [Py, {declare OOD |Tca}] < (26)

where the expectation is over all possible calibration sets. (See also the discussion surrounding
(16).) However, this does not guarantee that the false alarm level « is maintained with high
probability for the particular calibration dataset used. In addition, it does not provide any
information on the size of the calibration dataset to be used.

4. Experimental Evaluation

In the previous section, we have provided guarantees on the strong probability of false alarm
for Algorithm 1. However, since it is not possible to theoretically analyze the power of
such a test (due to the structure of the alternate hypothesis), we evaluate the power of our
proposed approach through experiments. In addition, since we do not know beforehand
what kind of OOD samples might arise at inference time, an effective OOD detection test
must perform uniformly well across different OOD datasets, for a given deep neural network
(DNN) architecture. In our experiments, we evaluate both of these metrics to demonstrate
the effectiveness of our approach.

Following the standard protocol for OOD detection (Lee et al., 2018; Sastry and Oore,
2020; Liu et al., 2020), we consider settings with CIFAR10 and SVHN as the in-distribution
datasets.

e For CIFARI10 as the in-distribution dataset, we study SVHN, LSUN, ImageNet, and
iISUN as OOD datasets.

e For SVHN as the in-distribution dataset, we study LSUN, ImageNet, CIFAR10 and
iSUN as OOD datasets.

We evaluate the detection performance on two pre-trained architectures: ResNet34 (He
et al., 2016) and DenseNet (Huang et al., 2017). The calibration dataset in each case is a
subset of 5000 samples of the in-distribution training dataset.

We evaluate the proposed approach, and compare it with baseline methods based on
the standard metric of probability of detection Pp or power (i.e., probability of correctly
detecting an OOD sample) at probability of false alarm Pg at 0.1. Note that in some prior
works on OOD detection, the probability of detection is referred to as the True Negative
Rate (TNR) and 1 — Pr as the True Positive Rate (TPR), where the in-distribution samples
are considered positives, and OOD samples are considered negatives.

Recall that we focus exclusively on methods that do not have any outlier exposure to
OOD samples (see Hendrycks et al., 2019; Liang et al., 2018; Lee et al., 2018), and can
be applied to any pre-trained ML model. We compare our approach against baselines:
Mahalanobis (Lee et al., 2018), Gram matrix (Sastry and Oore, 2020), and Energy (Liu et al.,
2020). For the Mahalanobis baseline, we use the scores from the penultimate layer of the
network to maintain uniformity.
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To evaluate our proposed method, we systematically combine the following test statistics
using our multiple testing approach as detailed in Algorithm 1:

1. Mahalanobis distances from individual DNN layers (Lee et al., 2018): Let g;(X),i =
1,..., L denote the outputs of the intermediate layers of the neural network for an
input X. We estimate 4, the class-wise mean of g;(.), as the empirical class-wise mean
from the training dataset:

i = 9i(X;)s (27)

where n. is the number of points with label c¢. We estimate the common covariance X
for all classes as

2= L3 () - ) (6~ ) (25)

¢ j:Yj=c
The Mahalanobis score for layer ¢ is calculated as:
max — (g:(X;) = 1) 871 (9i(X5) — e) " (29)

We calculate 5 Mahalanobis scores from the intermediate layers for the ResNet34
architecture, and 4 scores for the DenseNet architecture.

2. Gram matrix deviations from the individual DNN layers (Sastry and Oore, 2020): For
each intermediate layer 7, the Gram matrix of order p is calculated as:

1

M (@) = (9" )" (30)

where the power is calculated element-wise. For each flattened upper triangular Gram
matrix M?, there are n; correlations. The class-specific minimum and maximum values
for the correlation j (i.e., j-th element of M}), class ¢, layer ¢ and power p are estimated
from the training dataset as min|c|[i][p][j] and max|c|[¢][p][j], respectively. For a new
input X, the deviation for correlation j, layer ¢, power p is calculated with respect to
the predicted class cx as

MP(X)[j]—min[cx][i j . . . . .
R \n)n[ijn][cx][i][[p)]([]j[]|][p”j] if MY(X)[5] > min[ex][4][p][j]

Ox(isp, ) = § el QOB 3¢ AP 5) < maxex](ifpll] 3V

0 otherwise.

As proposed by Sastry and Oore (2020), the Gram matrix score for layer ¢ is then
calculated as the sum of dx(7,p, j) over values of p from 1 to 10, for all values of j,
and normalized by the empirical mean of dx (7, p, 7). We calculate 5 Gram scores from
the intermediate layers for the ResNet34 architecture, and 4 scores for the DenseNet
architecture.
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Figure 3: Probabilities of scores rejected with CIFAR10 and SVHN as in-distribution datasets
for ResNet and DenseNet

3. Energy statistic (Liu et al., 2020): The energy score is a temperature scaled log-sum-
exponent of the softmax scores

C
~Tlogy /T, (32)
=1

where C'is the number of classes, ;(.) are the softmax scores, and 71" is the temperature
parameter. In our experiments, we set the temperature parameter 17" to 100 for all
in-distribution datasets, DNN architectures and OOD datasets (as stated by Liu et al.
(2020), the energy score is not sensitive to the temperature parameter).

We use a subset of 45000 points from the training dataset (with no overlap with the
calibration dataset) to calculate the class-wise empirical means and shared covariance for the
Mahalanobis scores, and the minimum and maximum correlations for the Gram scores.
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For CIFAR10 and SVHN as the in-distribution datasets, we use our proposed method in
Algorithm 1 to combine the Mahalanobis scores and Gram scores across layers, and the energy
score, to detect OOD samples. There are 11 scores (i.e., K = 11) in total for the ResNet34
architecture, and 9 scores (i.e., K = 9) for the DenseNet architecture. Recall that Algorithm
1 declares an input to be an OOD sample if any of the K null hypotheses corresponding to
the K scores are rejected. For different OOD datasets, we empirically study the probability
of each null hypothesis being rejected by Algorithm 1. In Figure 3, we plot the empirical
probability of each score i being rejected, i.e., the proportion of data points in each OOD
dataset for which the corresponding null hypothesis Hy; was rejected. The Mahalanobis
score and Gram score of layer i are denoted by ‘Mahala i’ and ‘Gram i’ respectively, and the
energy score is denoted by ‘Energy’. We observe that while the probability of a hypothesis
corresponding to a particular score being rejected is high for certain OOD datsets, there exist
instances from other OOD datasets for which it is quite low. For example, in the Resnet34
architecture with CIFAR10 as the in-distribution dataset, while the Mahalanobis scores of
layers 2, 3 and 5, and the Gram scores of layer 5 are useful to detect OOD instances from
the LSUN, ImageNet and iSUN datasets, they are not likely to be useful in detecting OOD
instances from the SVHN dataset. On the other hand, the Mahalanobis and Gram scores
from layer 4 of the network are more useful in detecting OOD instances from the SVHN
dataset than from the LSUN, ImageNet and iSUN datasets. This study provides evidence
that a single score may not be useful to detect all kinds of OOD instances that an ML model
might encounter at inference time, and combining different scores systematically, as proposed
in Algorithm 1, might lead to a more robust OOD detection method. We demonstrate an
improvement in detection performance and the robustness of our proposed OOD detection
method through extensive experiments presented further in this section.

In addition to baseline methods from previous works on OOD detection, we further
compare our proposed method of combining multiple scores in Algorithm 1 with a baseline
that combines scores naively through an averaging rule. This naive OOD detection test

maintains thresholds 7q,...,7x for the K scores. Let ; be the weight for the i-th score
where
and let v be defined as
T
T K Z Vi (34)
i=1
The naive averaging OOD detection rule declares an input to be an OOD sample if v > %
The thresholds 7, ..., Tk are set to ensure a false alarm probability of 0.1.

It is also possible to construct an OOD detection test adapted from the Bonferroni
procedure similar to Algorithm 1, by replacing m with:

. A o
: < ——
{Z VS UroK }
i.e., calculating m as the number of hypotheses i for which the corresponding conformal
p-value is smaller than the constant ﬁ A sample is declared as OOD if m > 1. This

procedure is detailed in Algorithm 2 for completeness. We can provide guarantees on the
conditional false alarm probability for Algorithm 2 as well (see Appendix D).

: (35)

m =
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The detection power performances for CIFAR10 and SVHN as in-distribution datasets are

presented in Tables 1 and 2, for the Mahalanobis, Gram and Energy baselines, naive averaging
method, Bonferroni-inspired procedure (Algorithm 2) and our BH-inspired method (Algorithm
1) of combining different statistics. Both the naive averaging rule and the Bonferroni inspired
method use the Mahalanobis and Gram scores from all the layers, and the energy score.
We annotate our method with the number of statistics used, e.g., Mahalanobis, Gram and
Energy (5/4+5/4+1) uses 5,4 layers in ResNet34, DenseNet architectures respectively, for
both Mahalanobis and Gram, and the energy score. For each in-distribution dataset, we
consider 8 cases, comprising of 4 OOD Datasets and 2 different DNN architectures.

1. Improvement in probability of detection across OOD datasets and DNN

architectures: The best probability of detection in all 8 cases with CIFAR10 as
in-distribution correspond to our method of combining statistics. Similarly, with SVHN
as in-distribution, our method of combining statistics gives the best probability of
detection in all 8 cases. Thus, our approach leads to an improvement across OOD
datasets and DNN architectures.

. Lower variation in detection probability across OOD datasets and DNN
architectures: Detection probabilities of baselines Mahalanobis, Gram and Energy
exhibit a much higher variation across different kinds of OOD samples as compared to
the combination of all statistics.

With CIFAR10 as the in-distribution dataset, for the ResNet34 architecture: the
variation in Pp is 82.77 — 90.97 for the Mahalanobis baseline, 92.34 — 96.04 for the
Gram baseline, and 73.21 — 81.16 for the energy baseline. In contrast, our method of
combining all statistics has a variation of 97.03 — 98.00. For DenseNet, the variation in
Pp is 82.81 — 92.98 for the Mahalanobis baseline, 80.04 — 89.97 for the Gram baseline,
and 42.40 — 96.89 for the energy baseline. Our method of combining all statistics has a
variation of 94.57 — 97.78.

A similar trend is seen with SVHN as the in-distribution dataset. Thus, we see that
while the baseline methods have a high variation in the detection performance across
different OOD datasets, our method of combining all statistics performs uniformly
well across OOD datasets. This is a key improvement, as the kind of OOD samples
encountered at inference time is unknown, and our proposed method shows very little
variation across different OOD datasets.

. Comparison with naive averaging: We observe that the naive averaging method
does not perform as well as our proposed method of combining statistics, and indeed
has a high variation in its detection performance across different OOD datasets. Thus,
we see that while it is imperative to combine multiple scores for effective and robust
OOD detection, combining them in an ad hoc manner such as uniform averaging does
not yield good results.

. Comparison with Bonferroni-inspired procedure: In general, the Bonferroni
procedure has been observed to have a smaller detection power as compared to the
BH procedure (see Sec 4 Benjamini and Hochberg, 1995). Indeed, we observe that the
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Table 1: Comparison with baseline methods for CIFAR10 as in-distribution. Each entry is
Pp(%) at Pp = 10%.

OOD Dataset Method ResNet34 DenseNet

Mahala (penultimate layer) 82.77 92.98

Gram (sum across layers) 96.04 89.97

SVHN Energy 73.21 42.40
Naive Averaging (5/4 + 5/4 + 1) 81.13 83.28

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 96.41 91.13

Ours - Mahala (5/4) 87.92 93.16

Ours - Gram (5/4) 95.61 89.90

Ours - Mahala, Energy (5/4 + 1) 91.88 94.03

Ours - Gram, Energy (5/4 + 1) 96.78 90.77

Ours - Mahala, Gram (5/4 + 5) 96.23 94.21

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.13 94.57

Mahala (penultimate layer) 85.45 82.81

Gram (sum across layers) 92.34 80.04

ImageNet Energy 76.76 94.93
Naive Averaging (5/4 + 5/4 + 1) 86.45 80.96

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 95.92 95.89

Ours - Mahala (5/4) 96.90 95.19

Ours - Gram (5/4) 92.60 80.12

Ours - Mahala, Energy (5/4 + 1) 97.28 98.09

Ours - Gram, Energy (5/4 + 1) 94.53 95.19

Ours - Mahala, Gram (5/4 + 5) 96.38 92.81

Ours - Mahala, Gram and Energy (5/445/4+1) 97.03 97.20

Mahala (penultimate layer) 90.97 84.11

Gram (sum across layers) 95.94 81.83

LSUN Energy 81.16 96.89
Naive Averaging (5/4 + 5/4 + 1) 91.31 83.79

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 96.99 96.53

Ours - Mahala (5/4) 98.11 96.38

Ours - Gram (5/4) 96.16 81.67

Ours - Mahala, Energy (5/4 + 1) 97.87 98.20

Ours - Gram, Energy (5/4 + 1) 96.61 96.43

Ours - Mahala, Gram (5/4 + 5/4) 98.02 94.40

Ours - Mahala, Gram and Energy (5/4+5/4+1) 98.00 97.78

Mahala (penultimate layer) 89.99 83.19

Gram (sum across layers) 95.10 81.47

iSUN Energy 80.11 95.10
Naive Averaging (5/4 + 5/4 + 1) 89.22 81.70

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 96.76 94.79

Ours - Mahala (5/4) 97.24 95.26

Ours - Gram (5/4) 95.11 81.09

Ours - Mahala, Energy (5/4 + 1) 97.17 97.12

Ours - Gram, Energy (5/4 + 1) 96.19 94.73

Ours - Mahala, Gram (5/4 | 5/4) 97.36 92.93

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.67 96.34
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Table 2: Comparison with baseline methods for SVHN as in-distribution. Each entry is
Pp(%) at Pp = 10%.

OOD Dataset Method ResNet34 DenseNet

Mahala (penultimate layer) 96.12 96.34

Gram (sum across layers) 97.52 93.57

ImageNet Energy 85.14 70.53
Naive Averaging (5/4 + 5/4 + 1) 97.08 95.67

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 99.72 99.79

Ours - Mahala (5/4) 99.91 99.95

Ours - Gram (5/4) 97.68 94.38

Ours - Mahala, Energy (5/4 + 1) 99.89 99.93

Ours - Gram, Energy (5/4 + 1) 97.85 95.01

Ours - Mahala, Gram (5/4 + 5/4) 99.83 99.91

Ours - Mahala, Gram and Energy (5/4+45/4+1) 99.84 99.89

Mahala (penultimate layer) 93.74 94.17

Gram (sum across layers) 96.20 88.25

LSUN Energy 81.30 71.36
Naive Averaging (5/4 + 5/4 + 1) 95.00 92.81

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 99.89 99.97

Ours - Mahala (5/4) 99.98 100.0

Ours - Gram (5/4) 96.54 89.02

Ours - Mahala, Energy (5/4 + 1) 99.96 99.99

Ours - Gram, Energy (5/4 + 1) 96.82 90.56

Ours - Mahala, Gram (5/4 + 5/4) 99.96 99.98

Ours - Mahala, Gram and Energy (5/4+45/4+1) 99.95 100.0

Mahala (penultimate layer) 95.23 96.01

Gram (sum across layers) 96.50 91.46

iSUN Energy 82.79 71.20
Naive Averaging (5/4 + 5/4 + 1) 96.00 94.53

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 99.88 99.98

Ours - Mahala (5/4) 99.98 100.0

Ours - Gram (5/4) 96.80 91.89

Ours - Mahala, Energy (5/4 + 1) 99.93 100.0

Ours - Gram, Energy (5/4 + 1) 97.21 92.69

Ours - Mahala, Gram (5/4 + 5/4) 99.88 99.98

Ours - Mahala, Gram and Energy (5/4+5/4+1) 99.88 99.98

Mahala (penultimate layer) 96.09 94.25

Gram (sum across layers) 91.58 69.77

CIFARI10 Energy 83.31 54.07
Naive Averaging (5/4 + 5/4 + 1) 86.10 77.22

Bonferroni - Mahala, Gram and Energy (5/4+5/4+1) 95.84 91.77

Ours - Mahala (5/4) 98.31 97.64

Ours - Gram (5/4) 92.39 72.84

Ours - Mahala, Energy (5/4 + 1) 98.13 97.16

Ours - Gram, Energy (5/4 + 1) 92.91 78.03

Ours - Mahala, Gram (5/4 + 5) 97.15 94.83

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.35 95.23
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Bonferroni inspired procedure in Algorithm 2 does not perform as well as our proposed
BH-inspired method of combining statistics from Algorithm 1.

5. Impact of combining all the scores using Algorithm 1: For CIFARI10 as the
in-distribution dataset, in all 8 cases, combining all the scores - Mahalanobis and Gram
from individual layers, and the energy score, is either the best method, or within 1% of
the best performance.

Similarly, with SVHN as the in-distribution dataset, in 7 out of 8 cases, combining all
the scores is either the best method, or within 1% of the best performance (the gap is
2.41% in the remaining case).

Thus, in contrast to existing methods, combining all the statistics using Algorithm 1 is
robust to different kinds of OOD samples across DNN architectures.

In some of the prior work on OOD detection, the Area Under the Receiver Operating
Characteristic (AUROC) metric has been used to compare different tests (Liang et al., 2018;
Liu et al., 2020; Sastry and Oore, 2020; Lee et al., 2018). However, it is not clear that this
measure is useful in such a comparison, especially when the ROC is being estimated through
simulations. It is possible for a test (say, Test 1) to have a larger AUROC than another
test (say, Test 2), with Test 2 having a larger detection power than Test 1 for all values
of false alarm less than some threshold (equivalently, all values of TPR greater than some
threshold). Nevertheless, we provide the AUROC numbers for our experimental setups below
for completeness.

Table 3 contains the AUROC numbers for CIFARI10 as the in-distribution dataset, and
Table 4 contains the AUROC numbers for SVHN as the in-distribution dataset. We observe
similar patterns in the AUROC numbers as the above observations on the detection power
at a fixed false alarm probability. The Mahalanobis, Gram and Energy baselines have a
high variability across different kinds of OOD samples and DNN architectures, whereas our
proposed method of combining all statistics has a low variability. Our proposed method of
combining all statistics either has the best AUROC performance or within 1% of the best
performance in all 8 cases for CIFAR10 and SVHN as the in-distribution datasets.

5. Conclusion

While empirical methods for OOD detection have been studied extensively in recent literature,
a formal characterization of OOD is lacking. We proposed a characterization for the notion
of OOD that includes both the input distribution and the ML model. This provided insights
for the construction of effective OOD detection tests. Our approach, inspired by multiple
hypothesis testing, allows us to systematically combine any number of different statistics
derived from the ML model with an arbitrary dependence structure.

Furthermore, our analysis allows us to set the test thresholds to meet given constraints
on the probability of incorrectly classifying an in-distribution sample as OOD (false alarm
probability). We provide strong theoretical guarantees on the probability of false alarm in
OOD detection, conditioned on the dataset used for computing the conformal p-values.

In our experiments, we observe that no single score is useful for detecting different kinds
of OOD instances. We demonstrated that our proposed method outperforms threshold-based
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Table 3: Comparison with baseline OOD detection techniques for CIFAR10 as in-distribution.
Each entry is AUROC.

OOD Dataset Method ResNet34 DenseNet

SVHN Mabhala (penultimate layer) 93.86 96.72
Gram (sum across layers) 97.28 94.31

Energy 90.24 77.92

Naive Averaging (5/4 + 5/4 + 1) 88.81 88.03

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 97.83 96.72

Ours - Mahala (5/4) 95.34 96.70

Ours - Gram (5/4) 97.47 94.28

Ours - Mahala, Energy (5/4 + 1) 95.84 96.99

Ours - Gram, Energy (5/4 + 1) 97.90 96.20

Ours - Mahala, Gram (5/4 + 5/4) 97.56 96.98

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.76 97.24

ImageNet Mahala (penultimate layer) 94.84 93.12
Gram (sum across layers) 95.90 89.83

Energy 91.40 96.03

Naive Averaging (5/4 + 5/4 + 1) 91.26 84.65

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 97.47 97.54

Ours - Mahala (5/4) 97.89 97.32

Ours - Gram (5/4) 96.09 89.75

Ours - Mahala, Energy (5/4 + 1) 97.97 98.13

Ours - Gram, Energy (5/4 + 1) 97.07 96.79

Ours - Mahala, Gram (5/4 + 5/4) 97.55 96.67

Ours - Mahala, Gram and Energy (5/4+5/4-+1) 97.64 97.70

LSUN Mabhala (penultimate layer) 96.28 90.00
Gram (sum across layers) 97.31 87.97

Energy 92.35 96.83

Naive Averaging (5/4 + 5/4 + 1) 94.30 87.64

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 97.81 97.69

Ours - Mahala (5/4) 98.20 97.54

Ours - Gram (5/4) 97.46 87.76

Ours - Mahala, Energy (5/4 + 1) 98.07 98.16

Ours - Gram, Energy (5/4 + 1) 97.76 97.14

Ours - Mahala, Gram (5/4 + 5/4) 97.99 96.82

Ours - Mahala, Gram and Energy (5/4-+5/4+1) 97.96 97.74

iSUN Mahala (penultimate layer) 96.07 93.71
Gram (sum across layers) 97.01 90.48

Energy 92.05 96.25

Naive Averaging (5/4 + 5/4 + 1) 92.98 85.85

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 97.71 97.18

Ours - Mahala (5/4) 97.95 97.39

Ours - Gram (5/4) 97.15 90.36

Ours - Mahala, Energy (5/4 + 1) 97.93 97.89

Ours - Gram, Energy (5/4 + 1) 97.66 96.71

Ours - Mahala, Gram (5/4 + 5/4) 97.79 96.76

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.83 97.47
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Table 4: Comparison with baseline OOD detection techniques for SVHN as in-distribution.
Each entry is AUROC.

OOD Dataset Method ResNet34 DenseNet

LSUN Mahala (penultimate layer) 96.06 96.22
Gram 97.23 94.17

Energy 87.58 86.01

Naive Averaging (5/4 + 5/4 + 1) 96.85 95.30

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 98.17 99.07

Ours - Mahala (5/4) 99.00 98.92

Ours - Gram (5/4) 97.19 94.11

Ours - Mahala, Energy (5/4 + 1) 98.76 98.94

Ours - Gram, Energy (5/4 + 1) 97.47 95.69

Ours - Mahala, Gram (5/4 + 5/4) 08.82 99.08

Ours - Mahala, Gram and Energy (5/4+5/4+1) 98.21 99.06

ImageNet Mahala (penultimate layer) 96.81 97.01
Gram 97.75 96.34

Energy 90.33 85.76

Naive Averaging (5/4 + 5/4 + 1) 97.91 96.90

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 98.28 99.00

Ours - Mahala (5/4) 98.99 98.89

Ours - Gram (5/4) 97.73 96.32

Ours - Mahala, Energy (5/4 + 1) 98.79 98.91

Ours - Gram, Energy (5/4 + 1) 98.01 97.11

Ours - Mahala, Gram (5/4 + 5/4) 98.87 99.04

Ours - Mahala, Gram and Energy (5/4+5/4-+1) 98.25 99.02

iSUN Mabhala (penultimate layer) 96.49 96.85
Gram 97.40 95.47

Energy 88.75 85.69

Naive Averaging (5/4 + 5/4 + 1) 97.15 96.41

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 98.19 99.05

Ours - Mahala (5/4) 98.99 98.91

Ours - Gram (5/4) 97.37 95.42

Ours - Mahala, Energy (5/4 + 1) 98.76 98.94

Ours - Gram, Energy (5/4 + 1) 97.63 96.40

Ours - Mahala, Gram (5/4 + 5/4) 98.82 99.07

Ours - Mahala, Gram and Energy (5/4+5/4+1) 98.21 99.05

CIFAR10 Mahala (penultimate layer) 96.90 96.59
Gram 95.35 87.06

Energy 89.09 77.72

Naive Averaging (5/4 + 5/4 + 1) 92.42 85.96

Bonferroni - Mahala, Gram and Energy (5/4 + 5/4 + 1) 96.83 96.23

Ours - Mahala (5/4) 97.63 97.50

Ours - Gram (5/4) 95.35 87.21

Ours - Mahala, Energy (5/4 + 1) 97.68 97.43

Ours - Gram, Energy (5/4 + 1) 95.94 91.15

Ours - Mahala, Gram (5/4 + 5/4) 97.32 96.91

Ours - Mahala, Gram and Energy (5/4+5/4+1) 97.10 96.98
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tests for OOD detection proposed in prior work. Across different kinds of OOD examples,
we observed that the state-of-the-art methods from prior work exhibit high variability
across OOD instances and neural network architectures in their probability of detection of
OOD samples. In contrast, our proposed method is robust and provides uniformly good
performance (with respect to both detection power and AUROC) across different kinds
of OOD samples and neural network architectures. This robustness is important, since a
useful OOD detection algorithm should perform well regardless of the type of OOD instance
encountered at inference time.
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Appendix A. Preliminaries on Multiple Testing

Multiple hypothesis testing (a.k.a. multiple testing) refers to the inference problem testing
between multiple binary hypotheses, e.g., Ho; versus Hy;, ¢ = 1,2,..., K. For a given
multiple testing procedure, let R be the number of null hypotheses rejected (i.e., number of
tests declared as the alternative Hj ;), out of which V' is the number of true null hypotheses.
Some measures of performance for multiple testing procedures are as follows:

1. Family Wise Error Rate (FWER): The probability of rejecting at least one null
hypothesis when all of them are true.

2. False Discovery Rate (FDR): Expected ratio of number of true null hypotheses rejected
(V) and the total number of hypotheses rejected (R), i.e.,

v
FDR = E [Rl{ R>O}] . (36)

where the expectation is taken over the joint distribution of the statistics involved in
the multiple testing problem.

When all the null hypotheses are true, V' = R with probability 1, and:
FDR =E [1{R>0}} =P{R > 0} = FWER.

Various multiple testing procedures have been proposed in literature depending on the
quantity of interest to be controlled. Widely used multiple testing procedures involve
calculating the p-values for each test i as %, and combining these p-values to give decisions
for each hypothesis. Let a > 0. One of the earliest tests proposed to control the FWER
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is the Bonferroni test. In this test, each @ is computed, and for each i = 1,..., K, the
corresponding hypothesis Hy; is rejected if

«
Q< (37)

This test controls the FWER . at « for any joint distribution of the test statistics of the K
hypotheses. However, the power of this test has been observed to be low, and hence the
test is considered to be conservative. The FDR measure was proposed by Benjamini and
Hochberg (1995), who also proposed a procedure to control the FDR. Let the p-values for

ecach test i be @7, and let the ordered p-values be denoted by Q). Q@ ... Q). Let

m = max {z QW < K} (38)

The Benjamini-Hochberg (BH) procedure rejects hypotheses Hg 1, ..., Ho , and controls the
FDR at level a when the test statistics are independent. Benjamini and Yekutieli (2001)
showed that the constants in the BH procedure can be modified to KZM T instead of O‘i to
control the FDR at level « for arbitrarily dependent test statistics. Note that the Bonferrom
procedure and the BH procedure can be used to test against the global null Hy (all Ho; are
true), where the probability of false alarm Py, (reject Hyp) is equal to the FWER and FDR.
Our proposed algorithm for the OOD detection problem builds on the BH procedure with the
modified constants, and conformal p-values calculated using a calibration dataset Tg,;, where
we aim to control the conditional probability of false alarm Pr(Tca1) = Pu, (reject Ho|Tcar)
with high probability.

Appendix B. Proposed OOD Modeling

In Section 2, we conclude that functions of the input from the ML model apart from the
final output are required for the OOD formulation presented above. Note that this does not
violate the data-processing inequality, as the out-distribution P Xy characterizes the input
and the model, and these functions of the input give us additional information regarding the
ML model. In addition, these functions give us information to differentiate between the null
and the alternate hypothesis.

Appendix C. Proof of Theorem 2
For¢=1,2,..., K, let
(39)

where

K
C(K)=(1+e¢) Zj (40)
j=1

and let ap = 0. As in (17), the probability of false alarm conditioned on the calibration set
Tcal is given by
PF(Tcal) = PHO (reject H0|Tca1) = PHO (m > 1‘3}331), (41)
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where m is as defined in Algorithm 1. Here Hy denotes the global null hypothesis, which
corresponds to all the Hp; being true. Note that m > 1 signifies that Hy (1), ..., Hg () are
being rejected. Let

Ay = {exactly ¢ of the Hp;’s are rejected}.

Then,
K
Pr(Teal) = Y Prg(Ae|Tea)- (42)
=1

The following lemma is useful in deriving an upper bound for Pg.

Lemma 3 forf=1,..., K,
1 Ny
P, (Ae) = 5 > Pr,({Q < ark N Ay), (43)
i=1

where QZ is as defined in Section 3.

Proof
Let

Wy = {all subsets of {1,2,..., K} with ¢ elements}.

Let A}? be the subset of Ay where the ¢ null hypotheses rejected correspond to the indices in
V € Wy. Then

A= | 47 (44)
VeW,

Note that if £ null hypotheses corresponding to the indices in V € W, are rejected, then
the conformal p-values corresponding to these ¢ tests are less than or equal to ay (since the
maximum among them is less than or equal to ay), and the conformal p-values corresponding
to the remaining K — /¢ tests are greater than ay, i.e.,

Q' <maxQ <ay forieV, (45)
JEV
and
Qi >y fori g V. (46)
Thus,

Py, (4)) ifieV

0 else.

Pu,({Q" < ag} NAY) = {
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Then,
K N K N
D Pu,({Q <arynAy) =) > Pu,({Q <agynA4)) (48)
i=1 =1 VeW,
K A -
=) > Pu,({Q < aw} N A)) (49)
VeEW, i=1
K
= D > 1uenPuy(47) (50)
VeEW, i=1
= D Puy(47) Z Liiey) (51)
VeW,
= > Puy(4))¢ (52)
VeW,
= Py, (Ar), (53)

where the first equality arises from the fact that A, is the union of disjoint sets AX for
V € Wy, and the third equality follows from (47). [ |

Using the result from Lemma 3 in the expression for Pp(Tca1) in (42), we obtain that

PHO {QZ < 0‘[} N A€|(-Tcal)' (54)

|-

(=1 i=1

Note that by definition, g < a1 < ..., ax. Thus,

{Q" <o} n A =Ui_{Q" € (aj1,05]} N Ay, (55)

and

Pp(Tcal) P, ({Q" € (aj—1,05]} N Ag|Tear) (56)

I
M=
s
MN

s
Il
—
~
Il
—
<
Il
—

[
M=
M-
Eﬂj

Pr, ({Q" € (aj-1, 5]} N Ag|Tear) (57)
i=1 j=1 ¢=j
K K K 1
<> Z Z ;PHO({Q2 (-1, 5]} N Ag|Tear) (58)

@
I
—
<
Il
—
)
<

Pi,({Q" € (aj—1, 5]} N Ag|Tear)- (59)

~

=1

@
Il

—_
<
Il

i

M=
;Mf
] >
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Note that the events A, are disjoint for £ = 1,..., K. Thus,

K
> P ({Q € (1,051} N A|Tear) = Py ({Q" € (a1, 5]} N (U1 Ar)|Tear)
/=1

< PHQ({QZ € (ajfhaj]}‘(‘]ical)

= PHo({Qi < O‘j}"jcal) - P({Ql < O‘j—l}‘g’cal)-

Using this in (59),we get that
P (Teal) < ZZ (P, ({Q" < aj}Tcat) — Pr, ({Q" < j_1}Tear))-

Let 7"3» = Py, ({Q" < ;}|Tecal). Then, rearranging the terms from above, we get

K |K-1 Ti'

PF(('Tcal) = Z Z ](] j_ 1) + %

i=1 | j=1

(64)

Note that Pg is a function of Tcal only through random variables r . We have from Vovk
(2012); Bates et al. (2023) that 7 follows a Beta distribution, i.c., 7 ~ Beta(a;, bj), where

oj
o= |t D305
bj = (ncal + 1) — ay.

The mean of this distribution is u; = aaﬁ Let E denote the event
J J

NN {5 =0 agie)

i=1j=1

When the condition on n., in Lemma 1 is satisfied, we have that
P(E)>1-4.

Under the event E, we have that

cal Z

=1

<y

K [K-1 ) i

(1+ea (1+ea
J+1)C(K)K  C(K)K

@
—_
<.
I
—

(65)

(66)

(69)

(70)
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Thus, with probability greater than 1 — §, we have that

Pp(Tea) < a. (73)

Appendix D. Comparison with Bonferroni inspired test

The Bonferroni inspired procedure is detailed in Algorithm 2. We can provide guarantees on
the conditional false alarm probability similar to Theorem 2 for Algorithm 2 as well.

Algorithm 2 Bonferroni based OOD detection test with conformal p-values

Inputs:

New input Xiest;

Scores over T,y as {{T]1 =sl(X;):j€ ‘Tcal},...,{TjK =sK(X;):j¢€ ‘.Tcal}};
ML model f(W,.);

Desired conditional probability of false alarm « € (0, 1).

Algorithm:

For Xiest, compute scores T} .

Calculate conformal p-values as:

Qi _ 1+ ’{J € Teal : T; = Ttiest}"
1+ ‘Tca1|

(74)

Calculatemz‘{i:@ig O‘KH
Output:
Declare OOD if m > 1.

Theorem 4 Let o,6 € (0,1). Let Tea be a calibration set, and let ne, be such that for a
given § > 0,

I(1+6),u,<a7 b) 2 1—- ) (75)

where a = L(ncal + 1)ﬁj ;b= (nca+1) —a, p= 43, and I(a,b) is the CDF of a Beta

distribution with parameters a,b. Then, for a new input Xiesy and a ML model f(W,.), the
probability of incorrectly detecting Xiest as OOD conditioned on Tea while using Algorithm, 2
1s bounded by «, i.e.,

Py, (declare OOD |Tca) < a, (76)
with probability 1 — 0.
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Proof We have that

Pp(Teal) = Py, (reject Ho|Tear) (77)
- PHo (m > 1|r‘Tcal) (78)

K N N
= PHO (z:LJI {Q < (1 + G)K} Srcal) (79)

K N N
< ; PHo <{Q < (1 + 6>K} Tcal) (80)

Let vt = Py, <{QZ < (1+e)K} Tca1>. Thus,
K .

Pp(Teat) = 1. (81)

We have from Vovk (2012); Bates et al. (2023) that r* follows a Beta distribution, i.e., 7 ~
Beta(a, b), where

o
= ca 1 e —— 82
o= |+ D (52)
b= (nca+1)—a. (83)
The mean of this distribution is u = ;%5. Let £ denote the event

K «
E = < (1 — . 84
N{r=avarie) o

When n, satisfies the condition in (75), we have that

K N
1— Py, (E) =1 Py, (Q{r §(1+e)(1+E)K}> (85)
K
§;PHO{WZ(1+6)(1+E)K} (86)
K
:Zl—f%(a,b) (87)
i=1
K K
< Zl - I(1+e)u<a7 b) < Z% <. (88)
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Thus, under event F, i.e., with probability greater than 1 — §, we have that

K .
PF(Tcal) = Z rt

=1
a a (89)
<2495
|

Appendix E. Additional Experimental Results

All experiments presented in this paper were run on a single NVIDIA GTX-1080Ti GPU
with PyTorch.

In addition, we provide the detection probabilities for CIFAR100 as the in-distribution
dataset in Table 5. We consider the Mahalanobis scores and Gram scores from the individual
layers for the same. Recall that the energy score is a temperature scaled log-sum-exponent
of the softmax scores, i.e., —=T'logy ;_; e?i(@/T where ¢ is the number of classes, o; are the
softmax scores, and T is the temperature parameter. We do not consider the energy score
as one of the statistics for CIFAR100 as in-distribution, as we do not expect it to give a
good representation of the in-distribution data. As the number of classes in CIFAR100 is
quite large (100), we expect the softmax scores to not provide a reliable confidence score
for distinguishing in-distribution points from OOD samples. Table 6 contains the AUROC
numbers for CIFAR100 as the in-distribution dataset.
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Table 5: Comparison with baseline OOD detection techniques for CIFAR100 as in-distribution
dataset. Each entry is Pp(%) at Py = 10% for the corresponding detection method, OOD
dataset and DNN architecture.

OOD Dataset Method ResNet34 DenseNet

SVHN Mahala (penultimate layer) 61.75 62.21
Gram 71.60 77.87

Ours - Mahala (5/4) 64.55 62.81

Ours - Gram (5/4) 58.54 78.15

Ours - Mahala, Gram (all) (5/4 + 1) 72.81 70.80

ImageNet Mabhala (penultimate layer) 35.03 89.05
Gram 82.42 86.42

Ours - Mahala (5/4) 86.04 90.72

Ours - Gram (5/4) 74.43 86.85

Ours - Mahala, Gram (all) (5/4 + 1) 85.64 90.15

LSUN Mahala (penultimate layer) 34.00 92.17
Gram 78.36 88.93

Ours - Mahala (5/4) 86.19 92.86

Ours - Gram (5/4) 66.62 89.20

Ours - Mahala, Gram (all) (5/4 + 1) 84.81 92.66

iSUN Mahala (penultimate layer) 36.01 88.89
Gram 83.15 84.82

Ours - Mahala (5/4) 99.35 99.82

Ours - Gram (5/4) 53.71 83.01

Ours - Mahala, Gram (all) (5/4 + 1) 99.42 99.85
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Table 6: Comparison with baseline OOD detection techniques for CIFAR100 as in-distribution
dataset. Each entry is AUROC for the corresponding detection method, OOD dataset and
DNN architecture.

OOD Dataset Method ResNet34 DenseNet

SVHN Mahala (penultimate layer) 89.35 85.81
Gram 91.85 91.33

Ours - Mahala (5/4) 89.42 86.59

Ours - Gram (5/4) 88.86 91.23

Ours - Mahala, Gram (all) (5/4 + 1) 91.53 89.98

ImageNet Mahala (penultimate layer) 78.81 95.38
Gram 94.10 94.13

Ours - Mahala (5/4) 94.96 95.65

Ours - Gram (5/4) 92.00 94.04

Ours - Mahala, Gram (all) (5/4 + 1) 94.96 95.66

LSUN Mahala (penultimate layer) 78.90 96.39
Gram 93.06 95.33

Ours - Mahala (5/4) 94.91 96.13

Ours - Gram (5/4) 90.00 95.19

Ours - Mahala, Gram (all) (5/4 + 1) 94.73 96.18

iSUN Mahala (penultimate layer) 81.38 95.43
Gram 94.71 94.36

Ours - Mahala (5/4) 98.12 98.04

Ours - Gram (5/4) 89.77 93.85

Ours - Mahala, Gram (all) (5/4 + 1) 98.04 97.90
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