
importers. Analyses of such data are often based on matrix factorisation models like the one pre-
sented by Rohe and Zeng:

A ≈ ZBY⊤

ai,j = z⊤

i Byj, 

where A is the data matrix, the values of z1, . . . , zn represent heterogeneity along the rows, and 
y1, . . . , yd represent heterogeneity along the columns. As with the identification of the loading ma-
trix in factor analysis, the conundrum of matrix-variate data analysis is that there are infinitely 
many matrix factorizations that give the same low-rank least-squares approximation to A. 
How to select from among them? One approach is to abandon least-squares and instead infer 
the correct factorisation based on specific distributional assumptions about the latent row and 
column factors, often using a parametric statistical model. Such approaches can incorporate 
subject-matter knowledge about the factors into the estimation procedure, but are typically 
very computationally intensive. Alternatively, standard matrix factorisation methods, such as 
the singular value decomposition, are relatively inexpensive computationally, but they select a fac-
torisation using arbitrary identifiability constraints that are not derived from the data.

What has been needed is a data analysis method that is computationally inexpensive, but also 
identifies the factors using information from the data. I propose a vote of thanks to Rohe and 
Zeng for providing just such a method. As they show in their article, the classic VARIMAX criter-
ion, applied to rows or columns of a data matrix, can identify rotations that recover non-Gaussian 
latent factors. Their results unify several multivariate statistical methods, and highlight that much 
of what might be thought of as multivariate data analysis should really be considered as matrix- 
variate data analysis.

Conflict of interest: None declared.
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We would like to congratulate the authors on publication of a truly seminal paper. Indeed, they 
managed to accomplish a rare and extremely valuable task: take a technique, Varimax, that has 
been used for half a century for generating sparse PCA, provide conditions for its applicability 
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and produce the error bounds. They name this new version Vintage Sparse PCA (vsp). In particu-
lar, if X = ZBYT , where components of Z = {Zi,j} and Y = {Yi,j} are independent zero mean unit 
variance leptokurtic random variables, and rows of matrices Z and Y are identically distributed, 
then matrices Z and Y are identifiable, and Varimax allows one to do this. The paper provides very 
elegant arguments why kurtosis κ > 3 leads to identifiability of matrices Z and Y. Applications of 
vsp include, among others, Independent Component analysis, Stochastic Block Model (SBM), 
Degree-Corrected Stochastic Block Model (DCBM), Overlapping, Mixed Membership and 
Degree-Corrected Mixed Membership Stochastic Block Models, and sparse dictionary learning.

Since each of the above research areas developed its own techniques, it would be interesting to 
see how vsp performs for specific types of problems. The authors do not provide any numerical 
examination of the precision of the vsp in various scenarios (due to their sheer multitude and 
the fact that the complete paper is already over 100 pages). Therefore, we carry out a limited simu-
lation study that complements the paper.

Specifically, we study three simulations scenarios. Scenario 1 considers SBM with k = 2 commu-
nities, where Z is a clustering matrix with exactly one 1 per row and Y = Z. Scenario 2 examines 
DCBM, where again Z = Y and matrix Z = ΘW, Θ is a diagonal and W is a clustering matrix. 
Scenario 3 deals with matrices Z ∈ R

n×k and Y ∈ R
n×d comprised of independent T random var-

iables with ν degrees of freedom. In the first two scenarios, we generated clusters using multi-
nomial distribution with equal probabilities. Elements of Θ are generated as Uniform on [0, 1]. 
For SBM and DCBM, the diagonal and nondiagonal elements of matrix B are, respectively, equal 
to a and wa. For Scenario 3, elements of B are Uniform on [0, 1].

In order to make matrices Z and Y identifiable, we renormalise Z to have column norms 
��

n
√

with 
the respective readjustment of matrix B. We choose k = d = 2, vary n, w, a, and set X = ZBYT. 
Since E(Θi,i) = 0.5, values a = 0.5 and a = 0.25 for SBM corresponds to a = 1.0 and a = 0.5 for 

Table 1. ΔZ for the spectral clustering in Lei and Rinaldo (2015), vsp and adjusted vsp, averaged over 1,000 runs 

(standard deviations in parentheses)

Estimation in the stochastic block model

n a w Clustering vsp Adjusted vsp

100 0.5 0.6 0.1840 (0.0554) 0.2538 (0.0202) 0.1834 (0.0577)

200 0.5 0.6 0.0396 (0.0421) 0.1776 (0.0095) 0.0404 (0.0428)

300 0.5 0.6 0.0052 (0.0170) 0.1448 (0.0065) 0.0052 (0.0170)

400 0.5 0.6 0.0004 (0.0047) 0.1248 (0.0045) 0.0004 (0.0047)

500 0.5 0.6 0.0000 (0.0014) 0.1118 (0.0037) 0.0000 (0.0000)

100 0.5 0.8 0.5904 (0.0723) 0.5732 (0.0775) 0.5893 (0.0732)

200 0.5 0.8 0.3940 (0.0449) 0.3805 (0.0316) 0.3926 (0.0447)

300 0.5 0.8 0.2772 (0.0321) 0.3012 (0.0155) 0.2765 (0.0321)

400 0.5 0.8 0.2004 (0.0257) 0.2573 (0.0105) 0.2002 (0.0258)

500 0.5 0.8 0.1476 (0.0224) 0.2285 (0.0077) 0.1479 (0.0225)

100 0.25 0.6 0.4877 (0.0787) 0.4736 (0.0748) 0.4848 (0.0795)

200 0.25 0.6 0.2678 (0.0383) 0.3041 (0.0184) 0.2667 (0.0383)

300 0.25 0.6 0.1600 (0.0301) 0.2431 (0.0106) 0.1603 (0.0306)

400 0.25 0.6 0.0989 (0.0275) 0.2097 (0.0076) 0.0996 (0.0271)

500 0.25 0.6 0.0600 (0.0275) 0.1868 (0.0058) 0.0601 (0.0274)

100 0.25 0.8 0.6633 (0.0335) 0.6655 (0.0377) 0.6626 (0.0338)

200 0.25 0.8 0.6502 (0.0396) 0.6421 (0.0461) 0.6502 (0.0393)

300 0.25 0.8 0.6010 (0.0562) 0.5824 (0.0632) 0.6009 (0.0564)

400 0.25 0.8 0.5112 (0.0526) 0.4858 (0.0528) 0.5112 (0.0527)

500 0.25 0.8 0.4345 (0.0319) 0.4138 (0.0243) 0.4340 (0.0318)
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Table 2. ΔZ for the spectral clustering in Gao et al. (2018), vsp and adjusted vsp, averaged over 1,000 runs (standard 

deviations in parentheses)

Estimation in the degree corrected stochastic block model

n a w Clustering vsp Adjusted vsp

100 1.0 0.6 0.4349 (0.1014) 0.4527 (0.0627) 0.4374 (0.0806)

200 1.0 0.6 0.2277 (0.0462) 0.3138 (0.0251) 0.2683 (0.0327)

300 1.0 0.6 0.1543 (0.0280) 0.2555 (0.0161) 0.2055 (0.0188)

400 1.0 0.6 0.1185 (0.0176) 0.2209 (0.0117) 0.1718 (0.0122)

500 1.0 0.6 0.0973 (0.0131) 0.1975 (0.0093) 0.1505 (0.0091)

100 1.0 0.8 0.8816 (0.0941) 0.8611 (0.0963) 0.8857 (0.0981)

200 1.0 0.8 0.7075 (0.1113) 0.6810 (0.1061) 0.7026 (0.1125)

300 1.0 0.8 0.5224 (0.0687) 0.5253 (0.0446) 0.5267 (0.0561)

400 1.0 0.8 0.4108 (0.0510) 0.4488 (0.0286) 0.4321 (0.0385)

500 1.0 0.8 0.3392 (0.0404) 0.3991 (0.0215) 0.3706 (0.0290)

100 0.5 0.6 0.8321 (0.1152) 0.8077 (0.1215) 0.8318 (0.1232)

200 0.5 0.6 0.5725 (0.0862) 0.5545 (0.0622) 0.5691 (0.0744)

300 0.5 0.6 0.4073 (0.0546) 0.4382 (0.0301) 0.4255 (0.0416)

400 0.5 0.6 0.3116 (0.0406) 0.3767 (0.0206) 0.3468 (0.0291)

500 0.5 0.6 0.2489 (0.0327) 0.3366 (0.0161) 0.2967 (0.0221)

100 0.5 0.8 0.9418 (0.0566) 0.9393 (0.0580) 0.9579 (0.0577)

200 0.5 0.8 0.9407 (0.0530) 0.9291 (0.0585) 0.9539 (0.0570)

300 0.5 0.8 0.9148 (0.0638) 0.8978 (0.0743) 0.9263 (0.0710)

400 0.5 0.8 0.8718 (0.0779) 0.8467 (0.0873) 0.8780 (0.0845)

500 0.5 0.8 0.7981 (0.0861) 0.7660 (0.0920) 0.7991 (0.0913)

Table 3. ΔZ and ΔY , averaged over 1,000 runs (standard deviations in parentheses), for the vsp in the case of T 

distribution with ν degrees of freedom and no random errors

Estimation for T-random matrices, no noise

n d ν κ ΔZ ΔY

100 200 5 9 0.1712 (0.1415) 0.1197 (0.1058)

200 400 5 9 0.1229 (0.1091) 0.0869 (0.0753)

300 600 5 9 0.0984 (0.0830) 0.0688 (0.0541)

400 800 5 9 0.0839 (0.0726) 0.0589 (0.0516)

500 1,000 5 9 0.0772 (0.0626) 0.0540 (0.0456)

100 200 10 4 0.2586 (0.1867) 0.2102 (0.1699)

200 400 10 4 0.2068 (0.1663) 0.1508 (0.1399)

300 600 10 4 0.1743 (0.1575) 0.1332 (0.1296)

400 800 10 4 0.1519 (0.1451) 0.1228 (0.1322)

500 1,000 10 4 0.1338 (0.1245) 0.1182 (0.1419)

100 200 16 3.5 0.2886 (0.2033) 0.2616 (0.1924)

200 400 16 3.5 0.2718 (0.2025) 0.2253 (0.1889)

(continued) 
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DCBM. We generate A as symmetric matrix with independent Bernoulli entries for SBM and 
DCBM, while A = X + σΞ where Ξ has iid standard Gaussian entries for Scenario 3.

In Scenarios 1 and 2, we compare vsp with the spectral clustering algorithms in Lei and Rinaldo 
(2015) and Gao et al. (2018), respectively, where matrix Ẑ is based on clustering assignment and 
estimator Θ̂ of Θ. We add the third estimator, adjusted vsp, which leaves only the largest (in ab-
solute value) element of the vsp estimator Û in each row and renormalise Ẑ accordingly. For 
DCBM, we adjust Ẑ to the column norms 

��

n
√

. Note that, for Scenarios 1 and 2, all three algorithms 

Table 3. Continued  

Estimation for T-random matrices, no noise

n d ν κ ΔZ ΔY

300 600 16 3.5 0.2439 (0.1925) 0.2279 (0.1968)

400 800 16 3.5 0.2253 (0.1878) 0.2375 (0.2175)

500 1,000 16 3.5 0.2255 (0.1944) 0.2762 (0.2412)

100 200 28 3.25 0.3378 (0.2094) 0.3168 (0.2130)

200 400 28 3.25 0.3287 (0.2125) 0.2902 (0.2104)

300 600 28 3.25 0.3045 (0.2157) 0.3055 (0.2193)

400 800 28 3.25 0.2932 (0.2089) 0.3616 (0.2345)

500 1,000 28 3.25 0.2966 (0.2153) 0.4184 (0.2430)

Table 4. ΔZ and ΔY , averaged over 1,000 runs (standard deviations in parentheses), for the vsp in the case of T 

distribution with ν = 5 degrees of freedom and iid Gaussian random errors with zero mean and standard deviation σ

Estimation for T-random matrices, ν = 5, noise level σ

n d σ ΔZ ΔY

100 200 0.1 0.2209 (0.2064) 0.2022 (0.2090)

200 400 0.1 0.1721 (0.1799) 0.1399 (0.1753)

300 600 0.1 0.1355 (0.1634) 0.1198 (0.1614)

400 800 0.1 0.1246 (0.1626) 0.1104 (0.1657)

500 1,000 0.1 0.1027 (0.1241) 0.0926 (0.1317)

100 200 0.2 0.2850 (0.2540) 0.2665 (0.2553)

200 400 0.2 0.1870 (0.1934) 0.1757 (0.1918)

300 600 0.2 0.1641 (0.1968) 0.1576 (0.2020)

400 800 0.2 0.1486 (0.1912) 0.1446 (0.1959)

500 1,000 0.2 0.1376 (0.1811) 0.1333 (0.1873)

100 200 0.3 0.3178 (0.2716) 0.3077 (0.2718)

200 400 0.3 0.2342 (0.2454) 0.2306 (0.2486)

300 600 0.3 0.1923 (0.2262) 0.1960 (0.2337)

400 800 0.3 0.1701 (0.2061) 0.1736 (0.2129)

500 1,000 0.3 0.1503 (0.1868) 0.1563 (0.2009)

100 200 0.4 0.3604 (0.2886) 0.3537 (0.2940)

200 400 0.4 0.2624 (0.2659) 0.2633 (0.2684)

300 600 0.4 0.2292 (0.2521) 0.2331 (0.2617)

400 800 0.4 0.1959 (0.2368) 0.1991 (0.2424)

500 1,000 0.4 0.1725 (0.2184) 0.1822 (0.2262)
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recover Z perfectly if matrix X is available. Scenario 3 is remarkably different from 1 and 2 since 
vsp does not recover Z and Y exactly from matrix X, and there is no ‘yardstick’ algorithm for com-
parison. Hence, for Scenario 3, we study performance of vsp only, for both X and A, which cor-
responds to σ = 0 and σ > 0.

Results of simulations are presented in Tables 1–4. The errors are measured as Frobenius norms 
ΔZ = ‖Ẑ − Z‖F/

����

n k
√

and ΔY = ‖Ŷ − Y‖F/
����

n d
√

, averaged over 1,000 runs. The standard devia-
tions of the means are reported in parentheses.

Tables 1 and 2 confirm that the algorithms designed specifically for SBM and DCBM have better 
precision that vsp since they ‘know’ that matrix Z has only one nonzero element per row. 
However, adjusted vsp, which makes use of this information, performs very similarly to algo-
rithms specifically designed for SBM and DCBM, with clustering algorithm of Gao et al. (2018)
being slightly more precise in the case of DCBM. Hence, adjusted vsp can be used for clustering 
in the SBM (with average miss-classification proportion Δ2

Z). The errors grow as a decreases 
and w increases due, respectively to sparsity increase and decline of the signal-to-noise ratio.

Table 3 shows that, as ν grows and kurtosis κ = 3 + 6/(ν − 4) decreases, precision of the vsp de-
clines, even when exact matrix X is available. Therefore, for σ > 0, we carry out simulations only 
with ν = 5 (κ = 9). We set d = 2n for various choices of n. Tables 3 and 4 demonstrate that small 
kurtosis can be as much of a problem for recovering Z and X as noise. Indeed, errors for small κ do 
not decline as n and d grow as they do for larger κ and σ.

Conflict of interest: None declared.
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I congratulate Professor Rohe and Dr Zeng on their illuminating paper. Their broad contributions 
will no doubt redouble contemporary research activity in multivariate analysis for years to come. 
Even the paper’s appendices are full of valuable gems, not to be overlooked by readers.
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