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1. Introduction

In this article we study quantitative, asymptotic regularity of the (elliptic-) Poisson
kernel for second order divergence form elliptic operators of the form L = — div A(X)V
in (bounded) rough domains, where the coefficient matrix is assumed to be Hélder con-
tinuous. This extends the work of Kenig and Toro [33] from the case of L = —A, the
Laplacian, to this natural class of variable coefficient operators. One may wish to inter-
pret the results here as asymptotic optimality of the solution map for the linear operator
L, with some extra consideration. Indeed, the solvability of the LP-Dirichlet problem,
with accompanying non-tangential estimates, is equivalent to the Poisson kernel satis-
fying a LP -reverse Holder condition (p’ = p/(p—1)). Our result here is equivalent to
this condition being satisfied for all p > 1 and that for fixed p the constant in the re-
verse Holder inequality tends to the optimal value, 1, when the balls shrink. In fact, the
optimality (in the limit) of this constant for any fixed p > 1 implies the optimality for
all p > 1 and logk € VMO (see [32] for a detailed discussion'). Here our geometric
assumptions on the domain are optimal [35,6], that is, the domains are chord arc with
vanishing constant (see Definitions 2.28 and 2.30). These domains can be described as
having asymptotic flatness (in the sense of Reifenberg [43]) coupled with surface measure
which behaves asymptotically like Lebesgue measure.

Throughout, the ambient space is R**!, n > 2 and we often make the identification
R+ = {(x,t) € R" xR}. We work with divergence form elliptic second order differential
equations of the form L = —div A(X)V, where the real, (n+ 1) x (n+ 1) matrix-valued
function A satisfies the A-ellipticity condition for some A > 1, that is, ||A]|p~ < A and
for almost every X € R™+!

ATHEP < (A(X)E,€), VEE R

Our main result is the following.

L This remarkable theory of ‘self-improvement’ comes from the study of quasiconformal mappings [23,28].
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Theorem 1.1. Let Q C R"! be a bounded vanishing chord arc domain (see Defini-
tions 2.28 and 2.30) and L = — div A(X)V be an elliptic operator, with (real, A-elliptic)
coefficients satisfying the Holder condition

JA(X) — A(Y)| < Cu4|X - Y™, VX, Y e R™T! (1.2)

for some C4 >0 and o € (0,1]. Thenlogk € VMO (see Deﬁmtion Z 33), where k is the
(elliptic-)Poisson kernel for L on the domain 2, that is, k := dw 2 for some Xy € Q.
Here wXo is the elliptic measure for L with pole at Xo, and 0 = ’Hn|89 is the surface
measure for Q.

Let us lay out the structure of the proof of Theorem 1.1. The restriction to real co-
efficients is necessary to define the elliptic measure (via the maximum principle and the
Riesz representation theorem) as the solution map for the Dirichlet problem for L on the
domain 2. (Note that chord arc domains are Wiener regular and therefore the solution
to the L-Dirichlet problem for some f € C.(9) is uf(Xo) = [, f(y) dw™(y).) On
the other hand, some of the solvability results which serve as the startlng point for our
analysis rely on (complex) analytic perturbation theory [2-4]. Indeed, our study begins
with operators on the upper half space, where there is much known for both transver-
sally independent complex L°° perturbations of transversally independent operators with
constant coefficients and operators which are a Dahlberg-Fefferman-Kenig-Pipher [15,22]
type” (‘transversal’) perturbations. For the former we prefer to cite the treatment in [3]
and for the latter [1]. These perturbations are maintained under pull-back on small Lip-
schitz graph domains and due to the Holder condition we may view our operator (even
after pull-back) as a two-fold perturbation of a constant coefficient matrix. Thus, to con-
clude Theorem 1.1, we employ ‘good’ approximation schemes developed in [18,44] and
[33,45], whereby one approximates a vanishing chord arc domain by domains with small
Lipschitz constant and makes the delicate estimates required to show logk € VMO. Here
the former approximation in [18,44] allows us to establish rough ‘A, estimates’ and the
later approximation in [33,45] allows us to establish the refined, asymptotic estimates of
Theorem 1.1 (the ‘rough’ A, estimates are needed to control some errors).

This paper here brings together tools from partial differential equations, harmonic
analysis and geometric measure theory developed over the last 40 years. We attempt
(perhaps in vain) to give a reasonable account of the relevant results to the current work.
For the harmonic measure, in 1976, Dahlberg [14] showed that in a Lipschitz domain the
Poisson kernel satisfies an L2-reverse Holder condition, which, as we mentioned above,
implies the L? solvability of the Dirichlet problem. This sparked a deep interest in the
study of elliptic operators in rough sets that has persisted for decades. In 1982, Jerison
and Kenig [30] showed that in a bounded C! domain logk € VMO. In 1997, Kenig and

2 The perturbations are a quantitative, ‘averaged’ refinement of those in [21].
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Toro [33] extended the work of Jerison and Kenig to vanishing chord arc domains, that
is, Theorem 1.1 with L = —A, by using a version of the Semmes decomposition [45].

In this context, for the variable coefficient case there is a good perturbative theory,
see [20,22,39]. One can extrapolate optimal Poisson kernel regularity (logk € VMO)
from one operator to another, whenever the discrepancy between the operators is a van-
ishing perturbation of Dahlberg-Fefferman-Kenig-Pipher type. On the other hand, aside
from constant coefficient operators and their (vanishing) perturbations, there appears
to be a lack of understanding of the properties that characterize an operator for which
log k € VMO. This paper provides an important example of a natural class of operators
for which this is the case. It also addresses a gap in [40]. There the authors used the
fact that for a uniformly elliptic operator with Holder coefficients on Lipschitz domain
with small Lipschitz constant logk has small BMO norm. This result had not been
established. In fact attempts to fix this gap by standard methods were unsuccessful. A
completely new idea is required to prove this fact, and its introduction is one of the
major original contributions of the current paper. There were also small gaps and errors
in some ‘localization estimates’ in [40], so we carefully reprove these results. For the
most part the techniques in these ‘localization estimates’ follow [40,33], but the proof of
Theorem 1.1 is completely different and requires a number of new ingredients.

As mentioned above, we leverage powerful, refined theorems in the study of elliptic
boundary value problems. We are particularly reliant on the theory built from layer
potentials and the operational calculus of first order Dirac operators associated to diver-
gence form elliptic operators with variable coefficients. The modern treatment of these
objects was shaped by Auscher, Axelsson, Hofmann, McIntosh and many others [2-5]. We
refer the reader to [2] for a relatively comprehensive history, but we remark that these
works grew out of the testing conditions (‘T1/Tb theory’) for singular integrals and
Littlewood-Paley type operators [13,12,17,19,36], and the generalizations of this theory.
Perhaps the most notable such generalization led to the resolution of the Kato conjec-
ture [5] and served as the basis for the results in [2-4]. These works allow us to treat
the L*-perturbation, while we use the results in [1] to handle the Dahlberg-Fefferman-
Kenig-Pipher type perturbation (the key is that we can locally write our operator as a
two-fold perturbation).

Though our results are stated for bounded domains, with suitable modifications anal-
ogous local and global results hold for unbounded domains. For instance, an analogue of
Theorem 1.1 holds for unbounded domains, if we replace VMO with VMOy,.. One can
not conclude log ky, with finite pole is in the space VMO space when the domain has
unbounded boundary. Indeed, log k¥ is not in VMO, when Q is the upper half-space,
L =—-A, and X # co. We only treat bounded domains here to simplify the exposition,
but we refer interested readers to Section 6.1 in [9], where the necessary local to global
argument was presented.

Acknowledgment. The first named author would like to thank Pascal Auscher, Moritz
Egert and Steve Hofmann for helpful conversations concerning the first-order method
and the perturbative theory for elliptic boundary value problems.
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2. Preliminaries

First we introduce notation that will be standard throughout. For notation specific
to chord arc domains and their variants with small constants, see the next subsections
(Sections 2.2 and 2.3). Throughout the paper, by allowable constants we always mean
the dimension n > 2, the ellipticity constant A > 1 and the Hoélder constants C'y > 0
and a € (0,1].

2.1. Notation

o Given a domain Q C R"™! with boundary 99, for z € 9Q and r € (0, diam 9Q) we
let A(x,r) := B(x,r) N IQ denote the surface ball of radius r centered at z. We
make clear which surface measure we are using any time there is possible ambiguity
(e.g. when dealing with multiple domains simultaneously).

o Given x = (z1,...7,41) € R"! (or z € R™ resp.) we define |z|o = sup,{|z;|} to
be the ¢*° norm of z. Similarly, we let |z| := |z|> be the standard Euclidean (¢?)
distance.

« When working with the upper half space (R := {(z,t) € R* x R : ¢ > 0}) we use
the following notation. Let y € R™ = R™ x {0} and r > 0 then we define:

The cube Q(y,7) := {x € R" x {0} : |z — y|oo < r}, with side length 2r and the

(surface) ball A(y,r) :={z € R™ x {0} : |[x —y| < r}.

— Given an n dimensional cube @ = Q(y,r) we let £(Q) := 2r be the side length of
the cube.

— Given an n-dimensional cube ) we let R¢g be the Carleson box relative to @), that
is, Rg = Q x (0,4(Q).

— The Whitney regions W (y,r) = A(y,r/2) x (r/2,3r/2) and

D(y,r) := B(y,10r) N {(x,t) : x € R, t > r/2}.

o Given a (real) divergence form elliptic operator L = — div AV we define its transpose
(and, in this case, adjoint) LT := —div ATV, where AT is the transpose of A, that
is (AT)i; = (A),-

Definition 2.1 (Lipschitz domains). We say a domain (connected open set)  C R"*? is
a -Lipschitz domain if for every = € 02 there exists r > 0 and an isometric coordinate
system with origin £ = O such that

{Y ER"™ Y —2]oo < r}NQ = {YV € R"M |V — 2|0 < 7}N{(y,t) 1y €R™,t > (y)}

(2.2)
for some Lipschitz function ¢ : R® — R with ¢(O) = O and |V¢|e < 7. We say a
domain is a Lipschitz domain if it is a «-Lipschitz domain for some v > 0. We call a
domain Q C R™*! of the form
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Q:={(y,t) :y e R",t > p(y)}

for some Lipschitz function ¢ : R” — R with ||Vy|lec < oo a Lipschitz graph domain
(and if ||V¢||eo <7, a y-Lipschitz graph domain).

Remark 2.3. The number of ‘charts’ needed to cover the boundary in the definition
of Lipschitz domain is often important, but if 9€) is bounded the compactness of the
boundary ensures that only a finite number of charts is required. If Q is a Lipschitz
graph domain only one chart is needed. When we work with Lipschitz domains the
number of charts will always be uniformly bounded.

Definition 2.4 (FKP-Carleson Norm). Given any matrix P = P(z,t) defined on R*" :=
{(z,t) : . € R™,t > 0} we define the Carleson norm of P as

1/2
dz dt

1
[1Pllc == Sup @//||P|i°°(W(z,t))(xvt) . ;
Rq

where the supremum is taken over all cubes @) C R™, Rg is the Carleson box @ x (0, £(Q))
and we recall W(z,t) = A(x,t/2) x (¢t/2,3t/2).

Definition 2.5 (Nontangential Mazimal function). Given any locally L2-integrable func-
tion F' : ]RT'l — R we define the (L?-modified) non-tangential maximal function
N.F:R" - R as

1/2

N,F(z) :=sup ][ |F(y, s)|* dy ds . (2.6)
>0 Wil

For p > 1 we also define the LP-modified non-tangential maximal function NPF :R™ —
R as

1/p

NP(F(2)) = sup 7[ F(y, s)|? dyds
t>0 Wi

Remark 2.7. We use the notation N, F to distinguish it with the standard non-tangential
maximal function defined using L*° norm.

2.2. PDE estimates in chord arc domains

In this subsection we define chord arc domains and state without proof some well-
known results about solutions to elliptic operators as well as elliptic measures on such
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domains. These two non-tangential maximal functions are equivalent if Moser’s estimate
holds.

Chord arc domains are domains with scale-invariant connectivity (Harnack chains),
interior and exterior openness (corkscrews) and whose boundaries are quantitatively
“n-dimensional” (Ahlfors regular boundary).

Definition 2.8 (Two-sided Corkscrew condition [29]). We say a domain (an open and
connected set) Q C R™*! satisfies the two-sided corkscrew condition if there exists a
uniform constant M > 2 such that for all € 9Q and r € (0,diam 90Q) there exists
X1, X5 € R™! such that

B(Xy,r/M) C B(z,r)NQ, B(Xa,r/M) C B(z,r)\
In the sequel, we write A(x,r) := X, for the interior corkscrew point for = at scale r.

Definition 2.9 (Harnack chain condition [29] ). We say a domain Q C R"™™! satisfies
the Harnack chain condition if there exists a uniform constant M > 2 such that if
X1, X € Q with dist(X;,0Q) > € > 0 and | X; — X3| < 2F¢ then there exists a ‘chain’ of
open balls By,...,By with N < Mk such that X; € By, Xo € By, B; N Bjy1 # O for
j=1,...,N—1and M~!diam B; < dist(B;, Q) < M diam B; for j =1,...,N.

Definition 2.10 (Ahlfors reqular). We say a set E C R™*! is Ahlfors regular if E is closed
and there exists a uniform constant C such that

C'r" < H"(B(z,r)NE) < Cr", Yz € E,Vr € (0,diam E).

Definition 2.11 (NTA and chord arc domains [29]). We say a domain Q C R"*! is and
NTA domain if it satisfies the two-sided corkscrew condition and the Harnack chain
condition. We say a domain Q C R"*! is a chord arc domain if it is an NTA domain and
01) is Ahlfors regular. We refer to the constants M and C' in the definitions of the two-
sided corkscrew condition, Harnack chain condition and the Ahlfors regularity condition
as the ‘chord arc constants’.

Remark 2.12. Every bounded (y-)Lipschitz domain is a chord arc domain as are Lipschitz
graph domains. See Remark 2.3.

Now we give several results on the behavior of solutions to real divergence form elliptic
equations in chord arc domains. We note that while the original results are stated for
harmonic functions their proofs carry over for real divergence form elliptic equations as
the primary tools (e.g. the Harnack inequality and Hoélder continuity at the boundary
[24]) are still available and only introduce dependence on the ellipticity parameter. We
also remark that these estimates are suitably local. For instance, if Q C R™*! is a ~-



8 S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025

Lipschitz domain and we work ‘well-inside’® a region as in (2.2) then the estimates on
the boundary behavior of solutions depend on dimension, ellipticity and the parameter
. We refer the reader to [11,31,29]. In the remainder of this section, L = — div AV is a
second order divergence form elliptic operator with real, A-elliptic coefficients.

Lemma 2.13 (Carleson estimate [29]). Let @ C R™* be a chord arc domain, x € 99
and 10r € (0,diam 99Q). If Lu = 0, u > 0 in QN B(x,2r) and u vanishes continuously
on B(z,2r)NoQ then

w(Y) < Cu(A(z, 1)), VY € B(z,r) NN
Here C > 0 depends on n, A and the chord arc constants for 2.

Lemma 2.14 (Hélder continuity at the boundary [29,24]). Let Q C R™*L be a chord arc
domain, x € 9 and 10r € (0,diam 0Q). If Lu = 0, u > 0 in QN B(x, 4r) and u vanishes
continuously on B(z,4r) N OQ then

Y — 2

I)Msup{u(Z) :Z € 0B(z,2r)NQ} < C ('Y_

wn <o Et) A,

for allY € B(z,7) N Q. Here C > 0 and p € (0,1) depend on n, A and the chord arc
constants for €.

A simple consequence of this lemma is the following, which is sometimes referred to
as Bourgain’s estimate.

Lemma 2.15 (Bourgain’s estimate [8,2/]). Let Q C R"! be a chord arc domain, z € 09
and 10r € (0,diam o). Then

WA (B(z,r)) 2 1,

where the implicit constants depend on n, A and the chord arc constants for €. Here
wX s the elliptic measure for the operator L on Q with pole at X . In particular, by the
Harnack inequality, for x € 09 and 10r < 10R € (0, diam 0f2)

oA (B(a,r)) 2 1,

where the implicit constants depend on n, A and the chord arc constants for 2 and the
ratio R/r.

Lemma 2.16 (CFMS estimate [11]). Let @ C R™™! be a chord arc domain, x € Q) and
107 € (0,diam 99Q). If Xo € Q\ B(x,4r) then

3 Here this means, {Y : |Y — 2| < r} N Q} in Definition 2.1.
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wXo(B(z,r))
r"=1G(Xo, A(z, 1))

~ 1,

where the implicit constants depend on n, A and the chord arc constants for Q). Here
w™ is the elliptic measure for the operator L on 2 with pole at X and G(X,Y) is the
L-Green function for Q with pole at'Y .

Lemma 2.17 (Doubling for elliptic measure). Let @ C R™*! be a chord arc domain,
x € 09 and 10r € (0,diam 0R?). If Xo € Q\ B(z,4r)

WXo(B(z,2r)) < Cu™ (B(x,7)),
where C' depends on n, A and the chord arc constants for €.
Lemma 2.18 (Comparison principle). Let Q C R" ™! be a chord arc domain, x € 9Q and

10r € (0,diam 9Q). If Lu = Lv = 0, u,v > 0 in QN B(x,2r), u and v are non-trivial
functions which vanish continuously on B(x,2r) N 0Q then

-, uA(z, 1))
~ A:L‘T , VXGB(IE,T)QQ,

where the implicit constants depend on n, A and the chord arc constants for €.

Lemma 2.19 (Quotients of non-negative solutions). Let Q@ C R"™L be a chord arc domain,
x € 90 and r € (0,diam0Q/10). If Lu = Lv = 0, u,v > 0 in QN B(x,2r), and u
and v vanish continuously on B(z,2r) N 0N, then u/v is Holder continuous of order
= p(n, A, chord arc constants) in B(xz,r) N Q. In particular, limy _,, (u/v)(Y) exists
for y € 9Q* and, moreover,

u(X)  u(A(z,r)) X — 2|\ " u(A(z,7)) -
e = () weny X eBwnna. @)

where the constant C > 0 and p € (0,1) depend on n, A and the chord arc constants
for Q.

Next we define the kernel function. It can be more generally defined (for any Xo, X7 €
Q), but we use it only in this specific manner.

Lemma 2.21 (Kernel function). Let Q C R™™ be a chord arc domain, x € 9Q and

10r € (0,diam o). If Xo € Q\ B(x,4r) and X; € B(x,2r) \ B(x,r) we define for
z € 09

4 Here the limit is taken within €.
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dw*o

H(z):= H(Xo,X1,2):= m(z)

The kernel function has the estimate
|H(z)/H(y) — 1| < C¢*, Vz,y:|z—x||y— x| <r

for all ¢ € (0,1/2), where C > 0 and p € (0,1) depend on n, A and the chord arc
constants for ).

Later, we will ‘localize’ the coefficients of our operator, the following lemma is useful
in this regard.

Lemma 2.22. Let ; C R**!, i = 1,2 be chord arc domains such that
Q1 N B(x,10r) = Qo N B(x, 10r)

where x € 0Q; and r € (0,diam 09;/20). Suppose further that L; = —div A;V are two
divergence form A-elliptic operators with Ay = As on B(x,10r). Let w;xo be the L;-elliptic
measure for Q; with pole at Xo € Q;NB(x,87)\B(x,4r).” Then wf(o |B(z,r) and w§°|3(w’r)
are mutually absolutely continuous. In particular, if wf{°|B(Z,T) and H"|s0,nB(x,r) are
mutually absolutely continuous then so are w§°|3(w7r) and H" |90,nB(x,r)-

Moreover,

Xo
dwy

X (y) =1, wy® —a.e ye Bz,r/2)NoQ,
Wa

where the implicit constants depend on n, A and the chord arc constants for Q;, 1 =1,2.

Sketch of the proof. Let y € B(z,r) and s € (0,7). Then the CFMS estimate
(Lemma 2.16) implies that

wf(O(B(y,s)) ~ GI(X01A(y7 8))
wy®(Bly,s))  Ga(Xo, Aly,s))’

(2.23)

where G;(X,Y) is the L;-Green function for €2;. On the other hand, Bourgain’s estimate
(Lemma 2.15) and the CFMS estimate imply that
Gi(Xo, Az, r/50))r" ! ~ wX(B(z,r/50) ~ 1, i=1,2.

%

By (2.23) and the comparison principle® (Lemma 2.18) then shows

5 This means the statements on x, r an X, are to hold simultaneously for i = 1, 2.

6 Here we need to view Gi(Xo,Y) as a L;-r = —div A;-FV null solution away from Xg. This follows by the
fact that if G(X,Y) is the L-Green function then G (X,Y) = G(Y, X) is the LT-Green function. We then
apply the comparison principle with LY in place of L.
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wi* (B(y, 5)) ~ G1(Xo0, Ay, 5))  G1(Xo, A(z,7/50))
wy®(B(y,s)) Gi1(Xo,Aly,s))  G2(Xo, A(zx,7/50))

1

)

where the constants depend on n, A and the chord arc constants for €;, i = 1, 2. From
this estimate one can deduce all of the properties described in the lemma. O

2.3. Chord arc domains with small constants

We study asymptotic flatness in the form of vanishing chord arc domains. To define
these domains, we need to give a few more preliminary definitions.

Definition 2.24 (Separation property). Let Q@ C R"™! be a domain. We say that 2 has
the separation property if for each compact set K C R™*! there exists R > 0 such that
for any xo € 00 N K and r € (0, R] there exists a vector @7 € S™ such that

{X € B(zg,r) : (X —xg,7) >1/4} C N
and
{X € B(zg,r) : (X —zo,7) < —r/4} C Q°.
Notice that 7 points ‘inward’.

Remark 2.25. Provided that 09 is d-Reifenberg flat for ¢ sufficiently small, there is an
equivalent definition of the separation property, see [34, Remark 1.1].

In the sequel, D[;-] will be used to denote the Hausdorff distance between two sets,
that is, for A, B ¢ R**!

D[A; B] := sup{dist(a, B) : a € A} + sup{dist(b, A) : b € B}.

Definition 2.26 (Reifenberg flatness). Given a closed set ¥ € R"*! 2y € ¥ and r > 0,
we define

O(zg,7) := i%f %D[E N B(xzo,r); PN B(xg,7)],
where the infimum is taken over all n-planes P through zy and

O(r) := sup O(xo,r).
ToEX

For R > 0 and § € (0,9,], where ¢, is sufficiently small depending only on the dimension
(see Remark 2.27) we say 3 is (J, R)-Reifenberg flat if

sup O(r) < 0.
re(0,R)
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Remark 2.27. The §,, above is to ensure both that the definition is not vacuous and that
if a domain has Reifenberg flat boundary and satisfies the separation property then it
is, in fact, an NTA domain. See [33, Lemma 3.1] and Appendix A in [35].

Definition 2.28 ((§, R)-chord arc domains). Let @ C R™*! be a domain. Given ¢ € (0, d,,]
and R > 0, we say ) is a (J, R)-chord arc domain if

(1) ©Q has the separation property (with parameter R),
(2) 09 is (4, R)-Reifenberg flat and
(3) H™(B(x,r)NoN) < (14 §)wyr™, for all x € 9N and r € (0, R).

Here w,, is the volume of the n-dimensional unit ball in R™.

Remarks 2.29.

¢ Since Hausdorff measure is non-increasing under projections, the J-Riefenberg flat-
ness of the boundary in the above definition coupled with the upper bound on the
surface measure gives the estimate

(1 =)wpr™ <H"™(B(x,r)NON) < (14 §)wpr”,

for any z € 002 and r € (0, R]. See [33, Remark 2.2].

e There is an equivalent definition of (4, R)-chord arc domain, which is to replace the
third assumption above by 9 being Ahlfors regular (the Ahlfors regularity con-
stant is not necessarily close to one) and the unit outer normal of 2 has BMO norm
bounded above by d. See for example [35, Definition 1.10]. These two definitions are
equivalent (modulo constant) by [33, Theorem 2.1] and [34, Theorem 4.2] respec-
tively. We choose the above definition in this paper for convenience.

Definition 2.30 (Vanishing chord arc domains). We say ) is a vanishing chord arc domain

e is a (d, R)-chord arc domain for some ¢ € (0,d,] and R > 0,
o limsup,_,o+ ©(r) = 0 (where ¥ in the definition of © is 9Q) and

. H™(B(z,1)N8Q) _
o lim, o+ SUP, g — 7 = L.

Note that if € is a vanishing chord arc domain then for every § > 0 there exists Rs > 0
such that Q is a (0, Rs)-chord arc domain.

To organize our arguments involving these types of domains, we introduce some nota-
tion. Given xg € R"™! and 7 € S™ we let P(z0,7) be the plane through z¢ perpendicular
to 71, that is,

P(x0,7) :={X € R"™ . (X — z0,7) = 0};



S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025 13

and additionally, for r > 0 and £ € R we define the shifted cylinder

r
n+1’

Clao, 7€) = {X € R™ ¢ |(X — o) — (X — o, A)7| <

d

r

vn+1

and if £ = 0, we just write C(xq,r, 7). Given § > 0, we also define the following truncated

(X — o, 1) — €] < } (2.31)

cylinders
Ci (zo, 7, 1) == {X € C(wo,r, ) : (X — x0,7) > 257“}
and
Cs (wo,r, 1) == {X € C(zg,r, ) : (X — xo, 1) > 25r}.

Notice that both C;r and Cy are ‘upper’ portions of the cylinder C. We also define the
‘strip’

Ss(xo, 7, M) := {X € C(xo,r, ) : (X — xo,M)| < 26r}.

We may omit the vector 77 in the above notation when there is no confusion.

Now we connect these objects to our definition of (d, R)-chord arc domain. Suppose
Q Cc R*"" is a (8, R)-chord arc domain for some § € (0,6,] and R > 0. Given r € (0, R]
and zo € 082 we let P, , be an n-plane such that

D02 N B(xo,7); Pyy.r N B(xo,7)] < o7

By the separation property and choice of §,, sufficiently small we can ensure that for a
choice of normal vector to the plane P, ., which we label 7i,, ,, we have

C;(SCO,T) = C;(.’l?o/l", ﬁI(},T’) c
and
C<x07T) \ C(s_($0,’l“) C QC7

where C(xo,7) := C(x0,7, Tg,,r) and Cy (20, 7) := Cy (20,7, 7s,,r). (This means that 17y, ,
points inwards.) We also define

Qzo,7,8) = QAN C(xo, 7, Mg, &) (2.32)
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for £ € R and drop £ from the notation when £ = 0. We then note the following inclusions
Cy (zo,7) C Q(z0,7) C Cs (xo,r1)
and
C(xg,r) NN C S5(xo,T),

where Ss5(zo,7) := Ss(x0, T, Tz, r). Note that, while Q(x0,) may not be an NTA or chord
arc domain, the estimates established above hold in a smaller dilate of C(x¢, r) intersected
with ﬁ(xmr), when suitably interpreted (for instance, at points on the boundary of
00 N C(xo, (1 — cyd)r)). See [33, Section 4], in particular the discussion following [33,
Remark 4.2].

Finally we recall the definitions of BMO and VMO functions.

Definition 2.33 (BMO and VMO). Let p be a Radon measure in R™. Then, for all 0 <
r < diam(supp p) and all f € L?(u) we define

2 3
£l = s | )= f f@de)| duw | s
o<s<r
B(z,s) B(z,s)
We say f € BMO(u) if
I fllBrmo = sup sup || fl[«(z,7) < +oo0.

0<r<diam(supp p) TESUPP i

We denote by VMO the closure of uniformly continuous functions on supp g in the
BMO-norm. There is also a notion of VMOj,c; f € VMO if for every compact set
K cR",

1
2

2
i s | f ) f Q)| dut) | 0. (23)
=0 pesupp pNK

B(z,s) B(z,s)
Remark 2.36. In this paper we will work with BMO and VMO functions with respect to
the surface measure H"|sq, where 2 is a domain with Ahlfors regular boundary.

3. Perturbations of constant coefficient operators and Poisson kernels
In this section, we restrict our attention to the upper half space Ri"’l, and study

the Poisson kernels for elliptic operators that are perturbations of constant-coefficient
operators. Let Ay be a real, constant (n+ 1) x (n+ 1) matrix satisfying the A-ellipticity
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condition. We say a real (n+ 1) X (n + 1) matrix satisfying the A-ellipticity condition is
an e-perturbation of Ay, if A(x,t) can be decomposed as

Az, t) = A1(z) + P(z,t) (3.1)
with
[Ao = Arllz= + [[P(z,t)]lc <, (3-2)
see Definition 2.4 for the definition of the Carleson norm || - ||c.

The goal of this section is to prove the following result:

Theorem 3.3. For any 3 € (0,1), there exist 6= 5(5771, A)>0ande= e(B,n7A) such
that the following holds. Suppose A = A(z,t) is a real matriz-valued function on ]Rfrl
satisfying the A-ellipticity condition and moreover, A is an e-perturbation of a constant-
coefficient matriz Ag satisfying the A-ellipticity condition. Then the Poisson kernel for
L = —div(AV) in the upper half space, denoted by k%, satisfies

<fA(y,6w-) [k‘ﬁ((z)]? dz)1/2

1<
- kX (2)dz

<148 (3.4)

A(y,d'r)
forally € R™, >0, 8 <0 and X € D(y,r). We recall that

D(y,r) = Bly, 10r) N {(,1) e R} ¢ > g}

is the upper cap of the ball B(y, 10r).

We will refer to the quotient in (3.4) as the By constant of k% on A(y,d'r). For a

)

constant-coeflicient operator Ag, the Poisson kernel kff(;l is smooth, so roughly speaking

the By constant of kff(;l) on A(0,§) — 1asd—0.

We expect the same to hold for perturbations of constant-coefficient operators. The
above theorem says that, if a matrix A is a sufficiently small perturbation of a constant-
coefficient matrix, then its By constant is sufficiently close to 1 on small enough scale
(in proportion to the distance of the pole to the boundary).

We first prove a simple estimate on the Poisson kernel of constant-coefficient operators.

Lemma 3.5 (Non-degeneracy for constant-coefficient operators). There exists a constant
c1 = c1(n, A) > 0 such that the following holds. If Ag is a real, constant matrixz satisfying
the A-ellipticity condition, then the Poisson kernel for Ly = — div AgV in the upper half
space, denoted by ka,, satisfies
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||k§0||L1(A(y,5r)) > 10", (3.6)

n

2

8
||k§0\|L2(A(y,5r)) > (;) ) (3.7)
forally e R™, r>0, 0 € (0,1] and X € D(y,r).

Proof. The second inequality follows from combining (3.6) and Holder’s inequality. Since
the solutions to constant-coefficient operator are scale invariant, it suffices to show

HkXOHLl(A(O,ﬁ)) Z Clén, fOI‘ every X S D(O, 1) (38)
We claim that it suffices to consider the case when Ag is symmetric. If not, let

Ay + AT
AO,S = 0 —; 0

be the symmetrization of Ay. Since Ay is a constant coefficient matrix, the solution
u € C?, and we have

diV(onu) = Zai(aijaju) = Zaij 818ju
i,J i,J

g Wi 0i0ju+ 3, 5 aji 0idju
_ ZZ,] J J 5 Z g J J = diV(AO,svu)'

Assume the matrix Ag is symmetric. By the decomposition of symmetric matrices and

a change of variable formula, we get an explicit formula for kff(;l):

v (3)
v (3)

EXY (2) = ¢ det(Ag) 2

0

—— (3.9)

where ¢, = I'((n 4+ 1)/2)/7("+1/2 is the same constant in the Poisson kernel for the
Laplacian, and /A4y ~!is defined by the diagonalization decomposition of Ag (the square
root matrix and inverse matrix exist, since the eigenvalues of Aj are all bounded from
below by 1/A). Then the lower bound (3.8) is obtained easily by (3.9) and the Harnack
inequality. O

Next we analyze how the Poisson kernels change under a perturbation of the coefficient
matrices.

Proposition 3.10. There exists €9 = €g(n, A) such that the following holds for every e <
€o- If A = A(x,t) is a real matriz valued function on RT‘I satisfying the A-ellipticity
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condition and moreover, A is an e-perturbation of a real, constant-coefficient matriz Ag
satisfying the A-ellipticity condition, then

1KGD — K§ D L2 @ny < CeTt/2,

where C' = C(n,A) and v’ =n'(n,A) > 0 and kff’t) and kfo’t) (resp.) are the Poisson
kernels for the operators L = —div AV and Lo = —div AgV (resp.) in the upper half
space.

Remark 3.11. The above proposition could be amended, for instance, to include the
case of perturbations of real, t-independent, symmetric coefficients, but the case of a
perturbation of constant coefficients is sufficient for our purposes.

Proof. Without loss of generality assume z = 0. By the explicit formula in (3.9), it is
easy to see that the kernel kffo’l) for the constant coefficient matrix Ay has the form

< =1, and thus kff(;l) € L*(R™). Fix t > 0. We can similarly get that
2

(I+afzf+taf 27,
K9 e L2 (R™).
Our first goal is to show

K = K00 N L2y < CeTt7m2, (3.12)

where Aj(x) is the t-independent part in the decomposition (3.1) of A.
To that end we use the L2-duality:

0, 0, 0, 0,
K50 =K Ny = sup | [ (K000) K50 0)) ) dy

HfHL2(Rn):1 R

= sup ‘u}(O,t) - u?c((),t)| ) (3.13)

HfHL2(Rn):1

where for each f € L?(R"), we define

up(w,t) = /k%t)(y)f(y)d% i=0,1. (3.14)
Rn
They are solutions to the Dirichlet problem for the operators L; = —div A;V with

data f. Note that when we consider (not necessarily symmetric) elliptic operators in an
unbounded domain ]Ri“, there may be several weak solutions to the Dirichlet problem,
depending on which function spaces we consider (see [7] for example). Throughout the
paper, we will refer to the solution obtained as in (3.14) (i.e. by integrating the boundary
data against the elliptic measure) as the elliptic measure solution. In particular when
0 < f e C>®(R") the elliptic measure always satisfies 0 < uy(t,z) < sup|f|.



18 S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025

From the work of Auscher, Axelsson and Hofmann [3, Theorem 1.1] on L perturba-
tion result of the boundary value problem, the Dirichlet problem to — div(A;(z)Vu) =
with L? boundary data is well defined: for every f € L?(R™) there exist solutions @7,
i = 0,1, such that

[N} L2 ®nys N3] L2 @) < CllfllL2®ny; (3.15)

moreover, we have

||N*(ﬂ} - ﬁ?)HLQ(Rn) S CEHf”Lz(]Rn), (316)

provided that € > 0 in the statement of the theorem is small enough depending on n
and A. We remark that this requires the use of (complex) analytic perturbations, but
we restrict to a “real neighborhood”, where the result is (trivially) also true. When the
boundary data satisfy 0 < f € C°(R"™), these two solutions agree, i.e. u} = ﬂ} We
defer the proof to Subsection A.5 of Appendix A.

With (z,t) = (0,t) fixed, we define W := W(0,t) = A(0,¢/2) x (t/2,3t/2) and for
v € (0,1] we define YW = A(0,7¢/2) x (t — L, ¢ + ). We make the observation that
for v < 1/2, YW C W(y,t)" for all y € A(x,t/4). It follows that for v € (0,1/2] and
y € Az, t/4)

1/2 1/2

7[|u;;(y)|2dy < Oy~ D/ 7[ [uf(Y) ] dY

W(y,t)

< C«,Y—(n—i-l)/QN*u}(y)
for i = 0, 1. Averaging over y € A(xz,t/4) and using (3.15) we see

1/2

#Iuj?(Y)I?dY < Oy~ D22 Noul|paa ey

<C _("H)/Qt_n/znf”m R (3.17)

for ¢ =0, 1. Similarly by (3.16), we obtain that for v € (0,1/2]

7§£ wp(Y) —u(Y)) dY| < Cey™ /2472 £l 12 gy (3.18)

7 See Definition 2.4.
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Now we recall that solutions to divergence-form (real-valued) elliptic operators satisfy
interior Holder regularity, by DeGiorgi-Nash-Moser theory [16,42,38]. Thus for Y, Z €
(1/4)W and i = 0,1

1/2

n 7
) -z <o (B2 | e ] <o (B52) oo,
(1/2W
(3.19)
where we used (3.17) with v = 1/2 in the second inequality, and the constants C' and
n > 0 depend only on n and A. In particular, if we let Y = (0,¢) and average over
Z e yW C (1/4)W we obtain

us(0.0) = ffuy(2)a2] <7 fage (3.20)
YW

fori =0,1.
Setting v = e¢7ren T and then using the triangle inequality, (3.18) and (3.20) we obtain

[u}(0,8) = u$(0,6)] < C(y" + ey~ T2 | ey < CEMET| f| 2@ (3:21)

where n’ = %JE—ZH Then the claim (3.12) follows from combining (3.21) and the L2
duality (3.13).

Next, we show
1K — kD L2y < Cet7/2, (3.22)

This will follow exactly as the proof of (3.12), provided we have the analogous estimates
to (3.15) and (3.16). These are afforded by the work of Auscher and Axelsson [1] on the
boundary value problems for perturbations of t-independent operators.® Let f € L?(R")
and let uy be the (unique) solution to the L?-Dirichlet problem for the operator L =
—div AV. With u} as before, we may use [1, Sections 9 and 10]

INcusllz2@ny < CllFllL2@n) (3.23)

and

73/2
1N (ug — ub)l| 2@y < Cellf o2 (rn), (3.24)

8 In particular, we must use the representation in [1, Equation (42)] and the bounds established in [1,
Theorem 9.2, Lemma 10.2]. Here it should be noted that the functions A used in the expression [1, Equation
(42)] are also in a perturbative regime with linear dependence on the FKP-Carleson norm, see the proof of
[1, Corollary 9.5]. See Appendix A.
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provided that e is small depending on n and A. We discuss the derivation of these two
estimates in detail in Appendix A.

Above we have LP-averages with p = 3/2 in the definition of N? / 2, but we obtain
‘comparability’ of L? and L?/? averages using Moser’s local boundedness estimate for
solutions since we work with real-valued elliptic operators. To be more precise, by de-
noting I/IN/(x,t) = A(x,t) x (t/4,t) D W(x,t), Moser type estimate gives

1/2

sup  Jup (V)] S ][ P dyds | < N (ug)(@),
YeW (z,t) ~
W (z,2t)

where N, (uy) is the non-tangential maximal function defined as ]V*(uf) in (2.6), but
with a fatter Whitney region W(x, t) in place of W (x,t). On the other hand, it is a clas-
sical result that ||N*(uf)||Lz(Rn) R~ H]\Af*(uf)HLz(Rn) (i.e. the L2-norm of non-tangential
maximal function is independent of the opening angle). The same holds for u} Hence
we get

(Retun) " (32— )™

IR g — ) o) < \
L2(R7)

| (F) ™ (7220 - )™

L2(R™)

N7 1/4 NT 1/4 NT3/2 3/4
< (IR + IV ) ot ) N2 (= )3 e
< O fll 2, (3.25)

where the last estimate follows by combining (3.23) and (3.24). The inequalities (3.23)
and (3.25) are the direct analogue of (3.15) and (3.16). Proceeding exactly as before we
obtain (3.22), and combining this with (3.12) we have

16§ — ]fff;t)HLZ(Rn) < O,
as desired. O

Proposition 3.10 has one unfortunate drawback the estimate depends on the placement
of the pole. This stops us from working with the small scales without doing some extra
work. In order to do work with the small scales, we take three steps:

(1) Use Proposition 3.10 to immediately give us a good ‘single-scale By type estimate’
for perturbations of constant coefficient operators (Corollary 3.26).

(2) Observe how the change of pole argument interacts with single-scale By estimates
to allow us to move down to small scales (Lemma 3.28) by paying a (controllable)
penalty.
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(3) Combining (1) and (2) we obtain a good estimate for perturbations of constant
coefficient operators down to small scales (Corollary 3.30).

Corollary 3.26. For every 8 € (0,1) and ¢ € (0,1) there exists €1 = €1(0, 8,n,A) € (0,¢)
such that the following holds. Suppose A = A(x,t) is a real matriz-valued function on
RT‘l satisfying the A-ellipticity condition and A is an €1 -perturbation of a real, constant-
coefficient matriz Ay satisfying the A-ellipticity condition. Then

1/2
(fA(y,ér) [k§0 (Z)]2 dZ)
fA(y767') kfo (Z) dz

1/2
(Faan X ()" d2)

forally e R™, r >0,y €R™ and X € D(y,r).

<(@1+5)

(3.27)

Proof. Let 31 € (0,1) be fixed, whose value will be chosen later. By Proposition 3.10
and Lemma 3.5, if €1 is chosen so that Ce] < Brc16™? we have

16X — kX | z2(aw.om) < Billkd, ln2(ac.sm)

and

16X — kX 21 aw.om) < Bullkd, 1ot aw,om)-

Thus, for this choice of €; we have

IkX N L2awery _ 1+ B kA, lL2cac.om)

1B L agwory — 1= B IRX Iz ac.om)’

which yields (3.27) upon normalization and appropriate choice of 31 (so that }fi <

B
1+8). O

The above corollary says that for any 5 € (0,1), if A is a small perturbation of a
constant-coefficient matrix Ag, then the By constant of k% is bounded by (1 + 3) times
that of ki{o. As mentioned above, the caveat is that the smallness also depends on 9§,
which is the ratio between the radius of the surface ball in consideration and the distance
from the pole to the boundary. This prevents us from getting Bs type estimates for all
sufficiently small scales (with fixed pole). We will overcome this by a ‘good change of
pole’.

Lemma 3.28 (Change of pole comparison). Let L = — div AV be a real divergence form
operator on RT’l, with A satisfying the A-ellipticity condition. We also assume the
corresponding Poisson kernel ka exists and is in L} (R™). There are constants &y =

do(n,A) € (0,1) and C = C(n,A) > 1 such that for any § € (0,0) fized,
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, 9 1/2
.57
fA(y,é/r) k4 (2) x o\ 1/2
(JCA 5 (kA(Z)))
(1 Co#) . e e
faw.s )kShFr%z) Fawern ¥ )
y,8'r
, o\ 1/2
.5
fA(y,(w) ko (2)
< (14 O™ 5 (3.29)
(,757)
fA(y,&’r) kA ° (Z)

for anyy € R™, r >0, §' € (0,6/10] and X € D(y,r).

Proof. We apply Lemma 2.21, which allows us to change poles of the elliptic measure,
to the upper half space RT’l. To be precise, we consider the radius s := %%/7‘, ¢= %5 €
(0,1/2) and poles Xo = X € D(y,r) and X; = (y,d'r/d). The fact that Xy ¢ B(y, 4s)
follows from the assumption ¢’ < §/10, and clearly X; € B(y,2s) \ B(y,s). Then there
are constants C, u > 0 such that the kernel function

dw™
H(z) = 5 (Z>
dw(y’ 35 )
satisfies
H(z) ‘
—1| < Cs*, for every z € Ay, (s) = Ay, d'r).
‘H(y) y (y,¢s) (y,0'r)

Hence when § is sufficiently small, we have for every z, 2" € A(y,d'r),

H(z) _ H(y)(1+Cd") ’
< <14 C'é6".

H(z) = Hy)1—Cor) =

On the other hand,
X (y,ilr) ’
BX(2) = 22 ) = 1) 2 ) = B R ).

do do

Therefore
@i, \ v
2\ 1/2 JCA( o | Fa ? ()
(fA(y,afr) (k3 (2)) ) H(z) !

< sup . 7
z,2' €A(y,8'r) H(Z,) (y,%r)

fA 5'r kf(z)
(o) fA(y,a/r)kA

(2)
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5 2
J[_' k(%?"") (2)
A(y,d'r) A

)
JCA(y,a/r) ka (2)

1/2

<(1+C'6H)

This is the second inequality of (3.29). The first inequality is obtained similarly. O

Corollary 3.30. For every 5 € (0,1) and § € (0,0¢), where &y is from Lemma 3.28, there
exists €1 = €1(0, B,m, A) € (0,€0) such that the following holds for every e < 1. (Here €
is as in Proposition 3.10.)

If A = A(x,t) is a real matriz valued function on RTFI satisfying the A-ellipticity
condition and moreover, A is an e-perturbation of a real, constant-coefficient matrixz Ag
satisfying the A-ellipticity condition, then

1/2
2, \M? CRIPINE
(Fayorm FX )] d2) e (fm,a) O] dZ>
f kX (2)dz =1+ J(1+6) 0D () g
Ay,o'r) PA fA(o,s) Ao (2)d=

(3.31)

for every y € R"™, r >0, §' € (0,6/10] and X € D(y,r).

Proof. The proof is by combining Corollary 3.26 and the change of pole comparison in
Lemma 3.28. Set s = %/r, the estimates (3.29) and (3.27) yield

1/2
2\ 1/2 (y:s) 2
(Faarm (X)) (1+ 08" (f“”’“) (470) >
fA(y,é’r) ki{(z) - fA(y,zss) k%,S)(z)

w2
(fA(y,&s) (kAO7 (Z)> )
JCA(y,és) kx(f(;S)(z)

) 1/2
(fA(o,a) {k,(fdl)(z)} dZ)

0,1
fac.0) k1(40 (2)dz

<(A+CM)A+p)

<A+CMA+p)

)

where we use the translation and dilation invariance for k4,, i.e. Poisson kernel for
constant-coefficient operator, in the last estimate. O

We now apply Corollary 3.30 twice. The first application is to get uniform control
on the scale at which the By constant becomes ‘near optimal’ for constant coefficient
operators. Surely (3.9) allows us to show the following Lemma, but we prove this via a
compactness argument here only using the smoothness of the Poisson kernel for constant
coefficient operators and the previous corollary.
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Lemma 3.32. For every 5/ € (0,1) there exists 61 = 61(8',n,A) € (0,d0) such that for
any real, constant-coefficient elliptic matrix Ao satisfying the A ellipticity condition, we
have

(fg(aé)[kﬁ””(ZHQ dz>1/2

<1+4p
Fao K" () dz

for all 6 € (0,67).

Proof. Let 8’ € (0,1) and set A" = 2A. Let 8 € (0,1) and 62 € (0, dp) be such that
(1+CH)1+B)* <1+,

where dyp = dp(n,A’) is as in Lemma 3.28 for A’. By (3.9), for every real, constant

Ay satisfying the A-ellipticity condition we have that k:g)(;l)(z) is a smooth function in z.

Smoothness, combined with the non-degeneracy (3.6), yields that there exists b=2¢ (Ap),
which we may assume is less than s, such that

1) 9 1/2
(fA(O,S) {kA’ (2)} dz)
faos Ky (2) dz

<1+8.

Thus, the estimate (3.31) in Corollary 3.30 implies that there exists” & = 61(5, B,n,N') <
(5A)~! such that if A{) is a real, constant coefficient matrix the A’-ellipticity condition
and HAO — A6||Loo < €

k(o,l) 2d 1/2
fA(o,a) Al (2)| dz

k(01)( )d

(fA(o,S) [kffvl)(z)r dz)1/2

k(0 1)(z) dz

< (14C"(1+p)

fA(o 5) fA(o 3)

<144,

for all § € (0,6/10]. On the other hand, the collection of balls of the form Bag (Ao, € (Ao))
= {Af : [|[Ao—Af|| L= < &1(A0)}, as A ranges over all real, constant-coefficient matrices,

10 cover of the set of all real, constant-coefficient matrices satisfying the

forms an open
A-ellipticity condition (in the L®-metric), which is a compact set. We may then extract
a finite sub-cover {B;} = {B(A4},é1(A%))} from which the conclusion of the theorem

follows by letting &, := min; 6(A5)/10. O

9 Note that, in particular, & = & (Ao) since § (momentarily) depends on Ag.
10 This is why we employed the use of A’ and made the restriction & < (5A)~!
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Now we are ready to conclude our treatment of perturbations of constant-coefficient
operators. We are (finally) able to say, quantitatively, that sufficient proximity to a
constant-coefficient operator in the sense of (3.2) controls the B constant at small
scales.

Proof of Theorem 3.3. Let 3’ € (0,1) be such that (14 8')2 = 1+ /2. Next, we choose
6 € (0,671), where 61 = 61(8’,n, A) is from Lemma 3.32, small enough so that

(1+C8") (1482 <1+5.
We apply Corollary 3.30 with 8 = 8" and ¢ as above. It follows that if € = €1 (5, 5/, n, A) >

0 is as in Corollary 3.30 (with 8 = 8’) we have for all A satisfying the hypothesis of the
theorem

1/2
2 .\ 01
(JCA(y,J’r) I:kii((z)] dZ) (fA(y,é) [kAO (Z)i| dZ)
X (2 d < (14+05"1+8) o
fA(y,(s/r) A (2)dz JCA(o,s) kA(; (2) dz

<145,

forally € R, r > 0, ¢ € (0,6/10] and X € D(x,r), where we use that § € (0,4;)
and Lemma 3.32 in the second line. Setting 6 = §/10 we obtain the conclusion of the
theorem.

4. Operators with Holder coefficients in Lipschitz domains

In this section, we modify Hoélder-continuous coefficient matrices (in Lipschitz do-
mains) so that they are small perturbations of constant coefficient matrices, and this
will allow us to use the results of Section 3. We will rely on the “flat” transformation
between Lipschitz domains and the upper half space. The relevant computations are
standard, so we include them in Appendix C. But we suggest reader to first read the
notation and statements in Appendix C, since we rely heavily on them in this section.
For instance, we often employ the ‘flattening map’ ® defined in Appendix C.

In what follows, if 7 > 0 we let () be the open n-dimensional cube centered at zero
with side length 27, that is, @, = {z € R" : |2|s < T}

Lemma 4.1. Let ¢ : R” = R, ¢(0) = 0 be a Lipschitz function with Lipschitz constant
v < ﬁ. Suppose A is a A-elliptic matriz satisfying the Holder condition (1.2). Then

for T > 0 the matriz-valued function!

' We remind the reader that Rg_,, is the p-adapted Carleson box, defined in (C.3).
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A(0) ifz ¢ Q-
A o(x,t) = ¢ Az, t) if (z,t) € R, o
Az, o(x))  otherwise

has the decomposition
Ariol@,1) = Ax(a) + P(a,0),
with
[ A1 = AQO) [ Lo ) + [|Plle, < Ci7?, (4.2)
where C1 depends on Cy,n and o. Here
Aq(z) = Az, p(x))1g. (x) + A0)(1 — 1g.(z)), and BP(z,t) := A, ,(z,t) — A1(x).

In particular, A= Jg(AT,g, o ® ) Js is a real, 4\-elliptic matriz with the decomposi-
tion

A(z,t) = Ay (x) + P(x, 1),
satisfying
| Ay — Apll Lo mny + IPllc < 2C17 + 4y/nvA,

where Ay = JI(A1 0o @Y = JI(A1)Js, P .= JE(B o 1) Jp and A :=
3 (0)A(0)J5(0).

Proof. Fix 7 > 0. The second statement concerning g, its decomposition and the corre-
sponding bounds follows immediately from Proposition C.6 and (4.2).
To prove the estimate (4.2), we begin with the L* estimate for A;(x)—Ag. For x € Q.
A1 (2) — A0)] = |A(z, () — A(O)] < Cal(z, p(@))|* S 7,
where the implicit constant depends on Cy, n and «. Since A;(z) = A(0) for z ¢ Q-,
we have obtained the estimate ||A; — A(0)|| o ®rn) < CT*.

We are left with estimating the p-adapted Carleson norm of P := A, , — A;. For any
X € Rg, ., we write X = (z,p(z) + 1) € Q, and X = (z, ¢(z)). Hence

P(X)] = [ A7 (X) = A1(X)] = [A(X) — AX)| < Cat®.

Since P(X) =0 in (Rq, )¢ it follows that for any cube Q C R"
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1/2
dyds
Pll¢c, = sup / PlTe s
IPlle, sup |Q| 1PNz wetws)) 5= iy o)
1 “@ dz dt "
x
= sup | — Pod 3. ) T
s i [ 1Pe e iy
0 Q
min(4(Q),47) 1/2
< C sup / 2=t dt <C7%,
QCRn

0

where we used the flattening change of variables in the second line. Combining our
estimates for [|A; — A(0)|[foc(r») and [|P||c, we obtain (4.2). O

The next Proposition says that the modified coefficient matrix enjoys an almost op-
timal reverse-Holder estimate.

Proposition 4.3. Let 3 > 0. There exist dg,v3,73 > 0 depending on B and allowable
constants such that the following holds.

Assume A is a real, A-elliptic matriz-valued function satisfying the Holder condition
(1.2), and ¢ : R™ = R, ¢(0) = 0, is Lipschitz with | V¢||oo < v3. Then for allT € (0,75),
the Poisson kernel (denoted by b ,) for Ly, = —div A; ,V'? and the domain Q, with
pole X € (1, satisfies

1/2
(JCAw(y,ér)(hf,w)g da)
hX, do

<1+, (4.4)
wa(yﬁT)

for ally € R™,r > 0,6 € (0,63) and X € ®~Y(D(y,r)). Here o is the surface measure
to Graph(p) = {(z,¢(x)) : @ € R"}, Ay(y,0r) :== B((y, ¢(y)),dr) N Graph(y) is the
surface ball, and ® is the flattening map for .

Proof. Let 5 = min{1, 5/2} and let k;% be the “pulled back” Poisson kernel, that is, kg
is the Poisson kernel in the upper half space for L = —div ZV, where A = JL (Arp o

®~1)Jp. Using Lemma 4.1, there exists Af), a real, constant 4A-elliptic matrix such that
A has the decomposition
A(z,t) = Ay (z) + P(x,t)

and

12 See Lemma 4.1.
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IA = AL~ + |[Pllc < 2C17§ + 4v/nysA.

In particular we may initially choose 75 and 7g small depending on B and allowable
constants, to guarantee that A is an e(()-perturbation of the constant-coefficient matrix
A} (as in (3.1), (3.2)), so that by Theorem 3.3 we have

(fA(y,g/r) [kzg(m/)r dx,)l/z

Z
k% (a') da’

<14+4<2 (4.5)
fA(y,é’r)

for any y € R",r > 0,6’ € (0,0) and Z € D(y,r). The constant & = 6(3,n,A) was
determined in Theorem 3.3. We now fix 753 and set dg = 4, but we will further restrict
v in order to control the errors coming from the flattening change of variables.

Fix r > 0,8 € (0,65), y € R and X € ®~1(D(y,7)) and set Z = ®(X) € D(y,r).
Let P : R™*! — R™ be the projection operator, that is, P(x,t) := x for all (z,t) € R*+1L.
By Proposition C.1 and (4.5)

1/2
1/2 Z () 2 /
(Fa, o (50 do) B CORD)) (fP(Av(”"‘”) i) dx) (4.6)
| .

wa(y,ér) (hX,)2do — |P(Ay(y,dr)) fP(Aw(y,ér)) k%(x/) Ao’ ’

where the error term comes from changing the averages. Let us now make the simple
observation that for o € R™ and rg > 0

A(zo, mo(1 4+ |[Vel|%)~Y2) C P(Ay(x0,70)) € A(wo,70)), (4.7)

where the second inclusion is obvious and the first, similarly, is a consequence of the
Pythagorean theorem. Indeed, if 2 € A(zo,70(1 + ||Vip||%,)71/2) then

(@, 0(2)) = (20, p(20))* < |z — zo” + |Vl % |2 — z0f* < ro.

The inclusions in (4.7) give the estimate

Ay, or)| or

T (PG, = O (xwwgo

The above estimate and (4.7) yield

) = (L+[IVellZ) ™2

1/2 1/2

[k%(x’)rdx' < (14 V|2 ][ 20| @ | s

P (A (y,07)) A(y,or)

Again using (4.7) we have
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Wi (Aly, or(L+ [VelZ)1?)
B [P(Ag(y,0r))]

(4.9)
WE(A(y,or(1+ [|Ve]%)~1?) ][ V(o) da
= A A )
Z(A(y,o)) A
A(y,or)
where wZ = k% dz’ is the elliptic measure for L on Rﬁ“.
Combining (4.6), (4.8) and (4.9) with the estimate
H™ (A (y,67) < VT F VAL IP(A(y, 67)|
we have
1/2
(JCA (y, 5r)(h7' SO) dU) < (1 n 5)(1 n ||V<p||2 )ni»l w%(A(ya 5T))
Faon (X )7do = =) T Al e (T IVelL)72)
(4.10)
where we used (4.5) to control the ratio of the averages of k;% by (1+ ). Clearly we can
n+1

make (14 ||[V¢||2,) "+ sufficiently close to one by choice of 3, so we need to handle the
ratios of the elliptic measure. This can be done in a variety of ways, but we choose to
do it directly with the following.

Claim 4.11. Let s > 0 and suppose p = fdx for f >0, f € L'(A(y, s)) satisfies

1/

][dex <2 ][ fda. (4.12)

(,5) A(y,s)
Then for 5" € ([1 — (1/4)]'/"s, ),

1(As) < 1

w(Agr) l_z(sn_(s,)n)l/%

where Ay = A(y, ') and A, := A(y, ).

Proof of Claim 4.11. The proof is a direct consequence of (4.12) and Holder’s inequality.
Indeed,

1/2

pd A = [ raesmranan?| [ pa

AN\A A,

s
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1/2
< 1A\ A2 (A/f”x

AL\AL 1/2
SZ(%> p(As)

<2 (w)1/2u<As>

S’I’L

where we used (4.12) in the second to last line. With this inequality in hand, we easily
prove the claim by writing

n_ (\n\ 1/2
U(As):1+U(As\As)S1+2(S (S) ) U(As). O
(Agr) p(Agr) s" (Agr)
The estimate (4.5) allows us to apply Claim 4.11 to the measure pu = wg, s = or

and s’ = 0r(1 + ||V|%)~'/2, where s’ will satisfy the hypothesis of the claim by the
smallness of yg. This yields the estimate

wZ(A(y,or)) 1
BT VAR = (1 (14 )

/2"

This estimate in concert with (4.10) and choice of vz sufficiently small gives

1/2 )
(wa(y,ér) (h‘f)'(,tp)z dO’) s (1 + 7[23)%
e, S (1+5)
fA@(yjr)( 'r,ap) o

where we recall that 1 + B <148/2. O
5. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. To begin, we require an ‘almost
optimal’ version of Lemma 2.22 (which is a comparison between elliptic measures of two
operators who agree locally), after we impose sufficient flatness on the boundary and
Holder regularity on the coefficients. This almost-optimal comparison will allow us to
transfer the almost-optimal reverse Holder estimate in Proposition 4.3 of the modified
coefficient matrix to that of the original matrix, in local regions of sufficiently flat Lip-
schitz domains. We will also use this almost-optimal comparison to relate the Poisson
kernel for a (8, R)-chord arc domain  and its localized domain Q(z,r), which can be
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approximated by Lipschitz domains from inside and outside. The notation used here can
be found at the end of Section 2.3.

Until we get to the proof of Theorem 1.1 we largely follow [40], tightening the presen-
tation along the way. We begin with a lemma which resembles [40, Lemma 3.7].

Lemma 5.1. Let Q be a (8, R)-chord arc domain with 6 < 6,,. There exists a constant M’
depending on the dimension so that the following holds. Let M > M’', 0 < s < R/M,
xo € 0 and § € (—s/100,s/100) and set

C :=C(xo, Ms, 7y, ms,E),
defined in (2.31), and 7 := C N Q. Suppose that

e Oy is a chord arc domain satisfying Q2 NC = (1.
o Ay and As are coefficient matrices defined on Q1 and Qo, respectively, such that
A1 = A2 on Ql.

Fori=1,2, let w; be the elliptic measure for the operator in L; := —div A;V in Q; and
Gi(X,Y) be the Green function for L; in Q1. If X € B(xo,10~8(n+1)"'2Ms), it holds

dwiX G1(X,Y)
= lim ——= 5.2
dwX W)= Jm = X v) (52)
for w a.e. y € B(X,100dist(X,0Q)) N ONs,'* where the limit is taken within Q.
Additionally, if Xo = xo + tM sfig,, pms for somet € [ﬁ, 4\/%} then
d“’fo( ) = lim G1X0Y) (5.3)
duwy® v= Yoy Go(Xo,Y)’ '

for wy a.e. y € B(xg,10s) N . Moreover, for every e > 0 there exists M" > M’
depending on €, n and the chord arc constants of Qo such that if M > M" it holds that

_ dwiX® dwite
(+at = 00 /T < 0o 654
2 2

for wy°-a.e. y, z € B(xo,10s) N ONy.

Proof. Recall that the estimates in Section 2.3 can be applied for the truncated domain
Oy as if it were a chord arc domain itself, provided we work away from OC. (See the
paragraph before Definition 2.33.) The constant M’ is simply to overcome the shift of

13 We remark that by the choice of X, the ball B(X,100dist(X,dQ)) is well contained in the cylinder C
and thus B(X, 100 dist(X, 8Q)) N 99 = B(X, 100 dist(X, 8Q)) N 8Q = B(X, 100 dist(X, 8Q)) N 0.
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the cylinder by &. First we prove (5.2); the proof for (5.3) is nearly identical and we omit
it.

Fix X as in the lemma and set dx := dist(X, 99). We recall the following Riesz
formula (see [27, Lemma 2.25])

[ —ve0) = - fJarmvvaen vemar, 69)
09, Qs

for every ¢ € C°(R"!) and X € Q;, i = 1,2. Applying Lemma 2.19 to the Green’s
functions G1(X, ) and G2(X,-), we have that the limit

G1(X,Y)
lim ———F .
9() = i = X (5.6)
exists for ws -a.e. y € B(X,100dx) N Q. On the other hand, similar to Lemma 2.22
(and using the Lebesgue differentiation theorem for Radon measures),

dwit _ wi (B(y,r))
=1 —_— L
dwi ) et wX (B(y,r))

exists for ws -a.e. y € B(X,100dx) N 0Qy.

For y € B(X,100dx) N 092y and r < dx we let 1y, (X) = ¥(|X — y|/r), where
(NS C°°((72,2)) is radially decreasing with ¢» = 1 on [—1,1], so that |V, ,| < C/r.
Let uy .,
boundary data 1, »|aq,. A modification of the standard (‘harmonic analysis’) argument

1 = 1,2, be the variational solution to the Dirichlet problem for L; in €2; with

used to prove the Lebesgue differentiation theorem (for doubling measures) also shows
for wy-a.e. y € B(X,100dx) N 0s

(y) = lim Joa, Vur(2) Aot (2) fi Y (X)
T%‘” fBQ Pyr(2) dwy (z)  r—0+ UZT(X)

X
dwy

o (5.7)

Indeed, to make such an observation one should appeal to the techniques in [47, Chapter
1] and [46, Chapter 1] by building weighted maximal function out of the radial function
¥(|X]) using the fact that ws is doubling. More specifically, one can introduce the
operator

Ay rh(z) =

/ V(2 dw2 (2),

fagz Yz dw2 392

and dominate it by an associated (local) maximal operator. Then note that, for suffi-
ciently small r the quotient inside the limit in the middle term of (5.7) is exactly Ay »h(y)
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with h = %\B(X,Qoodx)ma%, which is an ws-integrable function by Lemma 2.22. Fi-
nally, use [47, Chapter 1: Theorem 1]'* to provide the (local) weak-type bounds for
the maximal operator and follow the ideas in [46, Chapter 1]. We leave the details to
interested readers.

Now fix y € B(X,100dx ) N8y such that (5.6) and (5.7) hold. Denote ;. := u},, and

(X)) = Py »(X) = (] X — y|/r). The fact that r < dx implies that X ¢ B(y,2r) =
supp ¢, and € = Qs on supp ¢,. Hence by the Riesz formula (5.5), we have

/ by o = // (AT (YV)Vy Gi(X, V), Vy 5, (V) dY

Q;

= _//(A{(Y)VYGE()QY),VYQ/JT(Y» dy, i=1,2,

Q

(5.8)

where we used that A; = A5 on €7 and Qo = Q4 on supp ¥,..
Notice that by the CEMS estimates and Lemma 2.22, we have g(y) = 1. We are going
to show that
1 2 r\" 2
|ur(X) = g()uf(X)| < C =) gy)ui(X), (5.9)
where 4 is the Holder exponent as in Lemma 2.19. Using that ¢g(y) ~ 1 we may divide
by the positive constant u?(X) on both sides to obtain

oo << (&)

and letting » — 0 shows

1 = .
8 w2 — YW

Then recalling (5.6) and (5.7), the desired equality (5.2) follows. Therefore it suffices to
show (5.9) and we do this now.

Using (5.8) and carefully noting that g(y) is a fized scalar since y is fixed, we may use
the boundedness of A; and the properties of 1, to conclude

|up(X) = g(y)ui(X)]

= // A VZ Gl(X Z) (y)GQ(X,Z)],Vz’l/JT(Z)> dz

Q1NB(y,2r)

4 Note that condition (iv) therein is explicitly stated in the proof as not necessary and an analog of the
required covering lemma holds in our setting.
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1/2
< // V2 [G1(X. Z) — g(y)Gal(X, Z)) dZ
Q1NB(y,2r)
1/2
X // \V 29, |2dZ
QlﬂB(y,QT‘)
1/2
<7 // V2 [Gi(X.2) — g)Ca(X, 2))PdZ | . (5.10)
Q1NB(y,2r)

Again noting that g¢(y) is a fixed scalar, we may use that U(Z) = Gi1(X,Z) —
g(y)G2(X, Z) is a solution to LTU = 0 in Oy N B(y, 10r) which vanish on 92, N B(y, 10r)
so that we may apply the boundary Caccioppoli inequality to the function U. It follows
that

1/2
w00 - gl s | fF 1610 2) - gwiGax. )Pz
Q1NB(y,4r)
1/2
_ G1(X, Z) ’
<t o — Go(X, Z)|*dZ
. ST )| 16ax.2)
Q1NB(y,4r)
_ Gi1(X,-
<r" 1 sup = —g(y sup  Go(X,-).
Q1NB(y,4r) GQ(Xa) ( ) Q1NB(y,4r) 2( )

(5.11)

Next, we use Lemma 2.19, the Carleson estimate (Lemma 2.13) to obtain
1 2 r\" n—1

< () st (B.n)

where we used the CFMS estimate (Lemma 2.16) in the second line. Finally, using the
local doubling of w5 we see that u2(X) ~ ws (B(y,r)), which along with the estimate
above yields the estimate (5.9). As we had reduced matters to proving (5.9), this shows

As remarked above, (5.3) has the same proof as (5.2). To obtain (5.4) we use
Lemma 2.19 to deduce that the function

T Yoy G2(X0,Y)
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satisfies for y, z € B(xg,10s) N 0N
ly —2\" 5 \M
— < <
9(y) —9(2)| S ( I, 9(xo) S (MS) 9(2),

where we denote dx, := dist(Xg, dQ). Thus, (5.4) readily follows from (5.3) provided we
choose M" sufficiently large. 0O

P'¢
dw] 0

X
dws ©

Remark 5.12. Notice that Lemma 5.1, in fact, shows that (+) is locally Holder

continuous with quantitative estimates. This is simply a consequence of the fact that

X
Z‘”%{Z (y) = g(y), where g(y) is as in the proof of Lemma 5.1, and g has these estimates
W

byzLemma 2.19.

Combining the Lemma 5.1 with Proposition 4.3 we obtain the following.

Proposition 5.13. Let € € (0,1). There exist positive constants v, T and M > M" (M" is
from Lemma 5.1) depending on € and allowable constants such that the following holds.

Assume L = — div AV is a divergence form elliptic operator with A-elliptic coefficients
A satisfying the Holder condition (1.2), and ¢ : R™ — R, ¢(0) = 0, is Lipschitz with

IVolloo <. Then for all M > M, s € (0,7/M) and § € [—s/200, s/200], the Poisson

kernel, h, for the operator L in the domain

(NZMS,g = SNI%MS@ ={(z,t) :z € R",t > p(x)} NC(0, M s, €41,&)
satisfies
1/2

(Fy.m ()2 dor(2))
fB(y,T) hX do(z)

< (1+¢)?, (5.14)

for all y € B(0,5s) N Graph(yp) and r € (0,5s). Here 0 := 7—l"|a§MSg and X =

({0}™, Mts) for some t € {ﬁ, 4\/%]

Proof. We first fix all the constants, the reason for which will become clear shortly. Let
Oey Ve, Te be constants from Proposition 4.3 (using 8 = €), and let M” be the constant
from Lemma 5.1. We set 7 = 7. and M = 20y/n + 1max{1/6., M",1}. Finally, we set
~v = min{¥e, On, ¥n }, Where =y, is chosen so that

C(O’ S/a €n+1, f) N Qtp C RQS/,cp

for all ¢ > 0 and & < ¢'/100. In particular, the inclusion holds for £ < s'/(M"100). For
any Lipschitz function ¢ whose Lipschitz constant is bounded by <y, the domain
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Q:=Q, :={(z,t) :x € R", t > p(x)}

clear is a (8,,00)-chord arc domain. Let M > M and s € (0,7/M) be arbitrary. Then
QMs,f may play the role of ©; in Lemma 5.1 (note z¢g = 0 here). Indeed, while R x {0}
may not be the plane that minimizes the bilateral distance, the graph of ¢ is J,-flat at
scale M s with respect to this plane.

Let y € B(0,5s) N Graph(y) and r € (0,5s) be arbitrary. If we write y = (v, ¢(y'))
with ¢ € R™, then |y’| < 5s. Notice that ®, the ‘flattening map’ for ¢, fixes X = (0, Mts)
and that

I X — | < VY2 + (Mts)? < 2Mts

by the choice of M, so X € ®~}(D(y’, Mts)). Moreover, by our choice of M >
20v/n + 1/6. we have

Oc - Mts > 5s > .
Thus by Proposition 4.3,
1/2

(Fp.0)(02)? dr(2))
fB(y,r) hX do(z)

<1+k¢,

where h is the Poisson kernel for the operator L, , in {2 = Q. On the other hand, the
elliptic matrices A1 = A, , and Ay = A agree on the cylinder C(0, Ms,€,41,£) by the
inclusion

C(O7 MS7 €n+17 f) - RQMS»‘P C RQT»‘P'
Therefore applying (5.4) from Lemma 5.1 we obtain (5.14). O
The following corollary follows immediately by the theory of weights:

Corollary 5.15. Let € € (0,1). There exist constants'®> M* > M" > 1/e and v., 7!
depending on € and allowable constants such that the following holds.

Assume L = — div AV with A-elliptic coefficients satisfying the Holder condition (1.2),
and ¢ : R™ — R, p(0) = 0, is Lipschitz with |Vo|e < .. Then for all M > M*,
s € (0,7./M) and & € [—s/200,s/200] the elliptic measure, W, for the operator L in the
domain

QMS@ = Q%Ms’g ={(z,t) :z € R",t > p(x)} NC(0, M s, ep41,8)

5 Here M" is from Lemma 5.1.
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satisfies

S

1+e€ ~X o 1—e¢
(14+¢)! (Zg;) <= (B) (1+e¢) (UEiD , VECACB(0,2s), (5.16)

where o 1= H"[55 . and X = ({0}™, Mts) for any t € [ and A is an

arbitrary surface ball.

1 3
4/ n+1" 4x/n+1}

Proof. Proposition 5.13 says that & = h¥do € By(0), and the By constant can be
made as close to 1 as possible. For any € € (0, 1), we choose constants appropriately in
the Proposition, so that the By constant (i.e. the right hand side of (5.14)) is bounded
above by exp((¢/K)?), where K is a dimensional constant as in [32, Corollary 8]. Then
by [32, Corollary §]

o* € A1 y(0) with constant 1 +¢, @&~ € Bi(o) with constant 1+ e. (5.17)

(See [32, Section 3.1] for the definition of A,(c) weight.) Both estimates in (5.16) then
follow easily from (5.17) and Hoélder’s inequality. O

We are now ready to give the Proof of Theorem 1.1. Here we diverge a bit from the
techniques in [40,33], opting for an approach that largely avoids the use of the Poisson
kernel and instead works with the elliptic measure more directly. This avoids some of
the issues that arise in [40].

Proof of Theorem 1.1. Let 2 be a vanishing chord arc domain. Recall that this means
for all 6 € (0,6,], Qis a (J, Rs) chord arc domain for some Rs > 0 (see Remarks 2.29).
We set w := w™0 to be the elliptic measure associated to L for the domain Q with fixed
pole Xy € Q.

We first make the following claim which gives a much rougher estimate than what we
will produce in the end.

Claim 5.18. The elliptic measure w is locally an A., weight, that is, there exist 7y and
constants Cy, 6 depending on allowable constants such that

6
Z’)Ei) <Gy (Zi;) VE C A, (5.19)

where A is any surface ball with radius less than or equal to 79, that is, A = B(x,r)NoQ
with « € 902 and r € (0, 19].

To state a more precise estimate, we first fix some constants. For every 8 € (0, 1), we
fix a constant ¢ € (0,5/2) so that
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(146) (%+e> . < 0+5), (5.20)

with the intention of using the estimate obtained in Corollary 5.15. Let M” > 0 be
the constant found in Lemma 5.1, and M*,v.,7/ > 0 be constants found in Corol-
lary 5.15, and set M = max{M*,1/8}. Let 6 € (0,d,] be sufficiently small, depending
on B,¢€,v., M* and allowable constants, and recall Q2 is a (d, Rs)-chord arc domain.
Claim 5.21. For any zg € 002 and s sufficiently small satisfying

sM < min{7., 79, R5/10, dist(Xo, 09)/5)},

it E C B(xzg,s) N0NQ =: Ay satisfies

o(B) 1
O'(Ao) a 2
then
g—(f0>) =2+ 0B, (5.22)

where C' is a constant depending on the dimension. Here o is the surface measure for
the domain Q(xg, Ms), which agrees with that of Q on B(zg, s); and @ is the elliptic
measure for Q(zg, Ms) with pole at X7 1=z + ﬁMs T, Ms-

Let us take this claim for granted momentarily and see how to conclude the theorem.
Assuming (5.22), we want to change to domain from Q(zq, Ms) to 2, and change the
pole from X; to Xp, in the hope to get a similar estimate for w = wX°. By Lemma 5.1
and the choice of parameters,

w1 (E)
wX1(Ao)

2

(E)
w(Ao)

1
< (1+e€)? §(1+B)2(§+Cﬂ).
Here we remind the reader that the pole of w is at X;. To change the pole of w from X
to Xp, we use Lemma 2.21 in a similar manner to Lemma 3.28. Note that the pole X;

is roughly at distance Ms > s/ from the center of Ay a surface ball of radius s, and
dist(X1,00) < Ms < dist(Xo, 92)/5. This allows us to use Lemma 2.21 to say

w(E)
w(Ap)

X1
< (1+Cp") % Lo (5.23)

To sum up, this combined with Claim 5.21 says that for any z¢ € 992 and s sufficiently
small (depending on ),
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:((AEO)) - % for a Borel set E C Ay = w(E)

Among other things [32, Theorem 10] establishes the equivalence between the above
statement (5.24) (that is, condition (e) in [32, Theorem 10]) and the fact that the Bs
constant of w is close to 1 (that is, condition (c¢) in [32, Theorem 10]). We in fact need a

—_

NENED C'B. (5.24)

quantitative local estimate proved in [32, Theorems 8 and 9], to see that (5.24) implies

2

f kdo | < (1+C'BH?) ][ EY2do |, (5.25)

A(zo,s) A(zo,s)

where k = dw/do is the Poisson kernel. For the sake of self-containment we include proof
of (5.25) in Appendix B, see Lemma B.2. Since 5 can be chosen arbitrarily small, again
by [32, Theorem 8] we conclude that logk € VMO.

It remains to prove Claims 5.18 and 5.21. We start with Claim 5.21, taking Claim 5.18
for granted.

Proof of Claim 5.21. Without loss of generality we may assume z¢o = 0 and 7z, pms =
&n+1. For notational convenience we set €2 := Q(0, Ms).

We make use of the Semmes decomposition to approximate €2 by Lipschitz domains,
see [45,33]. To be precise by [33, Lemma 5.1] (replacing §* by &), when § is chosen suffi-
ciently small, there exist two Lipschitz functions ¢* : R” — R whose graphs approximate
0N from inside(+) and the outside(-). Set I'y := Graph(¢*) and

= {(2,t) eR"M i 2 € R",t > p(2)}

then the following properties hold:

(1) [Ve*loo < C16M/4

(2) DII* N B(0, Ms); 00N B(0, Ms)] < C16"/*Ms

(3) H™ (B(0,Ms)NOQ\T1) < ¢ exp(—cod™ V) w, (Ms)”
(4) QT NC(0,Ms) CQNC0,Ms) C Q™ NC(0,Ms),

where C1, c1, co are all positive constants depending only on the dimension. Now we let
W+ be the elliptic measure (for L) in the domains QFf = 0t n C(0, Ms) with pole at
X = ﬁM sep, and o be the surface measure for Q. We choose § sufficiently small,
to ensure that C16Y/4Ms < 5/200 and C16*/4 < 4. Thus by (2) [¢T(0)| = [T (0) - 0] <
$/200. (This was the reason for the using parameter £ to shift the cylinder appearing in
Corollary 5.15 above.) Applying Corollary 5.15 to Lipschitz domains Qi we have

o () s

&2

+(F)
+(A)

< (1+€) (Zii;) . WFCACB((0,550)),25),

(5.26)

&2
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where A is a surface ball of the form B(x,r) N dQ%. (We will not use Q for the proof
of this claim, but it is used in proving Claim 5.18.)

Now let E C Ay = B(0,s) N 92 be such that o(E) = (1/2)0(Ap). Set A_ :=
B((0,47(0)),s) NT_. Then

o (ENT_) o(ENT_) < o(E) o(Ao) <1 (14 0)wy,s™ _+€
o_(AL)  o_(AL) T a(Ag) o_(AZ) T 2(1 4 CF6V/2)n/20,5n T 2

by choice of ¢ sufficiently small, where we used property (1) of the Semmes decomposition,
(4.7) for the lower bound on o_(A_) and for the upper bound on o(Ag) we used the
definition of (4, R)-chord arc domain (Definition 2.28). It follows from (5.26) and the
choice (5.20) of € that

(1+5). (5.27)

We now estimate

(B 5(Bg) (B =I+1II (5.28)
Notice that
o(Ao\T-) < o(MAg\T-)
o(Bo) T (o)

c1 exp(—cd~ 4w, (Ms)™

- (1= 6)wps™
c1 exp(—cs —1/4) ppn

_ p( : —55 )M , (5.29)

by property (3) and the definition of (J, R)-chord arc domain (Definition 2.28). Therefore
by a simple pole change argument (or the shaper version, Lemma 2.21), Lemma 2.22 and
the fact that w is Ao, (Claim 5.18) we obtain

I < —
— w(Ay)

B(A\T-) _ w(Bo\T) _ (o(B8g\T )\’
< s (M) <8

by choice of § small. It remains to treat term I, which is a matter of ‘removing the minus
sign’ in (5.27). Since 2 C 27, by the maximal principle

GENT.) _ 5 (ENT )5 (A) _ 1 5 (A)
S S 5.3 Ay S0t Ay

Thus, we may reduce proving Claim 5.21 to the estimate
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T_(AL) )
S <1+ (5.30)

and we do this now.
Notice | X1 — 0| = Ms = | X1 — (¢~ (0),0)| so that Bourgain’s estimate (Lemma 2.15)
and the Harnack inequality yield the estimate

c<w_(AL),w(Ag) <1, (5.31)
where ¢ is a constant depending on €, by way of M. Additionally, by (5.26) we have that

G_(A_\ (1—6Y10)A)
G (A)

o (A_\ (1—8Y16)A )
<(+e ( o (A) )

1—e¢

1— (14 C261/2)=n/2(1 — §1/16)n 1—e
< (1+E) (1+01251/2)_n/2
< B
— 145

by choice of §, where we used the property (1) and the inclusion (4.7). Therefore
G-(A) <1+ B ((1-6Y19A0)
and to prove (5.30), it is enough to show
G_((1=0"1AL) < (1+ B)@(Ao). (5.32)
Let us now assume that § is small enough so that C16'/4Ms < §/8s. Let z € 8§~2\A0 =
00N\ B(0, s), then either x € 002N B(0, Ms)\ B(0,s) or € 9C(0, M s). In the first case,
the choice of § and the property (2) guarantee that there exists & € I'_ N B(0, Ms) such
that |z — #| < 0'/%s, and thus

&~ (7 (0).0)] > [z — |z — 2] — |(7(0).0)] > (1~ 25"/%)s.

In particular,

51/16
B (;c 5 ) N1 —68Y9A_ =0.

This means we may use the Holder continuity of solutions vanishing at the boundary
(Lemma 2.14) to yield the estimate
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S51/8 \#
F(1-0YAY<C <> < C§M18,

§1/16
where p is from Lemma 2.14. In the second case, that is, when z € 9C(0, M s) MO, then
x € AC(0, Ms)NAQ~ since QNC(0, Ms) C Q= NC(0, Ms). Hence & ((1—5Y/16)A_) = 0.
In either case, we have that

T®((1 = 6Y)A ) < Cor/16

whenever z € 9Q \ Ag. Therefore by the maximum principle (and that &° ((1 —
SYIGYA ) <1 for x € Ag) we have

T_((1=0YA_) < @(Ag) 4 CoH/16

< (14 (C/0)"1)3(Ay)

by choice of ¢ sufficiently small, where we used (5.31) in the second line. This shows
(5.32) and the claim follows. O

We are left with proving Claim 5.18, which will be a consequence of the maximum
principle, the Semmes decomposition above and the theory of weights. The proof is
essentially contained [18], but we include a proof that tracks the constants carefully.

Proof of Claim 5.18. By the work of Coifman and Ferfferman [10], or rather its (local)
generalization to spaces of homogeneous type, to prove the claim it is enough to show
the following. For any 7 € (0,1), there exists v = v(n) € (0,1) such that for every surface
ball Ag = B(x,s) NI with € 9N and s € (0, 7], if E C Ag is a Borel set satisfying
o(E) > vo(Ay), then w(E) > nw(Ap). Here 79 > 0 is a fixed constant whose value is to
be specified later. Without loss of generality we assume x = 0.

Similar to the proof of Claim 5.21, the idea here is also to use the elliptic measure of
Lipschitz domain (this time we use Q" instead of 27) to estimate w. For that purpose we
just need a crude version of Corollary 5.15. Let e = 1/2 be fixed, thus we fix the constants
M*,~!, 7! accordingly. Set M = M*. We fix 6 € (0, 6,,] satisfying C15'/* < +/, then there
exists Rs > 0 such that Q is a (d, Rs)-chord arc domain. Let 79 = min{Rs,7.}/M and
s € (0,79] be arbitrary. Then 2 has Semmes decomposition in B(0, M s); moreover by
the choice of § we may apply Corollary 5.15 to Q. Hence in particular, 0T € Ay (04 ) on
Ay = B((0,¢7(0)),s)NT4. For 77 > 0 to be determined later, there exists v = (7)) > 0
such that

a+—(F) > J for a Borel set ' C A, = M > 1. (5.33)
o+ (Ay) 2 w4 (Aq)

We then use properties (1) and (3) of Semmes decomposition along with the definition
of (4, R)-chord arc domain to ensure that
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(AL NAY) > (1= 0)wps™ — ¢y exp(—cad ™V w, (Ms)" > (1 - %) a(Ap).

We may need to choose + slightly bigger (depending on the value of ), to make sure the
last inequality holds. Suppose that E C Ag is a Borel set with o(E) > vo(Ayp). Then

2
oL (ENAL) =o(BNAL) > 290(Ao) > Jor (M),

where we used the estimates of 0(Ag), 0+ (A4) and that ¢ is chosen sufficiently small. Tt
follows from (5.33) that

wi(ENAL)
wi(Ay)

By the maximum principle and Bourgain’s estimate

> 1.

~ - wr(ENAY) _ -
WE)>0(ENAL) " —————= >17.
wy(Ag)
By Lemma 2.22 and a simple change of pole argument (or the shaper version,
Lemma 2.21) we have

W(E> ~ le ~ W
Hence
w(E) -
) >Cn=n

as desired. Here we chose 77 to account for the constant C. O

As we had reduced the proof of the theorem to Claims 5.18 and 5.21, we have proved
the theorem. 0O

Data availability

No data was used for the research described in the article.
Appendix A. A brief explanation of the first order approach

The goal of this appendix is twofold. Firstly, we justify that the solution to the L2-
Dirichlet problem obtained in [1] satisfies the estimates (3.23) and (3.24). Whereas,

modulo verification of the assumptions, (3.23) is explicitly stated in [1, Theorem 2.4(ii)],
the estimate (3.24) requires a deeper understanding of [1] and is obtained by combining
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several lemmas and theorems in various sections. We recommend to the interested reader
to read Section 3, Road map to the proofs in [1] for the general idea of their first order
approach. We give a brief overview here. After the general approach and all relevant
notation are laid out, we give a rigorous proof of (3.24) in Subsection A.4. Then, we show
that when the boundary data satisfies 0 < f € C°(R"™), the solution above (namely,
the solution to the L2-Dirichlet problem obtained in [1]) agrees with the classical elliptic
measure solution (see (3.14)). This is carried out in Subsection A.5.

In what follows we will adopt the notation of [1] and write'® (¢,z) instead of (z,t)
and for a vector ¥ € C™*! write v = (vL,v)) with v, being a scalar.'” This change of
basis is also reflected in the definition of the coefficient matrix A in any divergence form
elliptic operator. Note also that some of the conditions here are often easier to state in
the scalar case, but we maintain the notation in [1] for the ease of identifying estimates
therein.

The first-order approach takes its name from the following: Suppose that u is a solution
to

Lju:=—divAVu =0 in R}*" (A.1)

with Vu € L2 (R, ; L2(R™,C™*1)), then its conormal gradient

loc

f=Vau:= {%23} with 0,,u = (AV, qu) 1 (A.2)

solves the first-order equation
of+DBf =0, (A.3)
where D = {—OVI dlgm} and B is a matrix defined by A as follows. We first write
A= [ijl‘i‘ ihl} , where A, | is a scalar. The strong ellipticity of the matrix A implies

A is strictly positive. We thus define

—1
iamm-t_| 1 0 | [Ar Ay _| 1 0 ][ATL —ATV Ay
B=4:=Al4) _[Au A|||H 0 I A A 0 I '
(A-4)

In fact, if we make the restriction that solutions f to (A.3) belong to the space
L} (Ri;H) where

loc

H:={ge€ LA*R™,C") s curl, g = 0},

16 This is done through a change of basis, so we keep the notion that Ri+1 ={(t,z): ¢t > 0}.
17 The authors work with elliptic systems in [1], but our overview will be for equations for simplicity, i.e.
m = 1.
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we have that the solutions u to divergence form elliptic operator (A.1) (with the ‘gradient
bound on slices’ as above) are in one-to-one correspondence with solutions f to the first-
order equation (A.3). See [1, Proposition 4.1], where this is worked out in detail and note
that this does not require the operator to be t-independent. Therefore to find solutions
to boundary value problems (Neumann BVPs, regularity BVPs, or Dirichlet BVPs) of
(A.1) using first order approach, we need to

(1) study the well-posedness of the first-order equation (A.3) in an appropriate functional
space;
(2) relate and determine the trace of f at t = 0 from the boundary value to (A.1).

Notice that the first task depends on the operator DB and it has nothing to do with
what type of BVPs we consider.

A.1. Well-posedness of the first order equation

When the operator A(t, z) = Ag(x) is t-independent and is a small L*-perturbation of
a constant matrix (or a real symmetric matrix), the well-posedness of the corresponding
first order equation

Of + DBof =0, with By = 4, (A.5)

has been established in [4]. (This result has been obtained before, in [21,2,3], but we
appeal to [4] since the notion of well-posedness there is compatible with [1].) The authors
remark that the operator DBy is not a sectorial operator, but instead bisectorial, that
is, its spectrum is contained in a double sector around the real axis. This means that
the natural operator e~ ‘P50 associated with the free evolution equation (A.5) is not
well-defined on all of H C L?(R™; C**™) for any ¢ # 0. Thus we need to split H into the
spectral subspace Ea' ‘H for the sector in the right half plane and the spectral subspace
Ey H for the sector in the left half plane.'® Moreover, the authors in [4] show that any
solution f to (A.5) in the appropriate functional space (such that f € L? (R, ;H) and

]\N/'*f € L?) is given by the generalized Cauchy reproducing formula e
f=Cffo= e_tDBOEaLfO, for some fy € Ef H. (A.6)
Additionally, using the notation f; = f(¢,-) it satisfies
lim fi=fo and  lm fi=0
18 pFo .= x*(DB,) provided by the bounded holomorphic calculus, where x* is the indicator of the

right-half of the complex plane and x~ is the indicator of the left-half of the complex plane. See [1, Section
4], between Proposition 4.1 and Proposition 4.3.
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in the L? sense.

Since every solution to (A.5) is given by an explicit formula, to study the well-
posedness when the matrix A(t,z) is a (Carleson measure) perturbation of a t-
independent operator Ag(x), we rewrite its first order equation (A.3) as

9.f + DByf = DEJ, (A7)

where £(t,z) = Bo(x) — B(t,z) denotes the perturbation. We remind the reader that
B = A and By = Ay are defined as in (A.4). We also remark that if |4 — Ag|lc < oo
then using the notation in [1, Lemma 5.5] (see [1, Definition 5.4] for the definition of the
operator norm || - ||«)

1€l S I€lle = 1B = Bolle < 1A = Aolle,

with implicit constants depending on the dimension and ellipticity constants. This is
because

B — By = A(A)™" — Ap(Ao) " = [(A — Ag)(A) 7] + [Ap((A) " = (Ao)™1)]

and A < ReA) 1,Re(Ao) 11 < max{||A| oo, || Aollco}, which allows us to control both
bracketed terms using the Carleson norm of A — Ag. Hence under the assumption |4 —
Aplle < 1, the right hand side of (A.7) can be thought of as a small error to the free
evolution of 9 f + DBy f. The above discussion formally justifies [1, Theorem 8.2], which
says solutions to (A.3), or equivalently (A.7), in the appropriate functional space is of
the form

fi = C’S‘h+ + Saf: = e*tDBOES'th + Safs, for some hT € E{}"H; (A.8)

and formally speaking as ¢ — 0 we have f; — fo = h™ + h™, where h~ € EjH

and is determined explicitly. (Notice that when h*t € EfH, we have e PBoEfpt =

e HPBolpt see for example the discussion in page 62 of [1]. So the above formula is the

same as that in [1, Theorem 8.2].) The operator S, is given formally by

t oo

Safy = / e~ (t=)DBopr DE fods — / e=IPBo B DE, fods, (A.9)

0 t

see [1, Equation (1)]; for a rigorous treatment see [1, Proposition 7.1]. Moreover they
also show

IN(SaH)z2@ny SUENNNFllrzny S 1A = AollelI N fll2(n),

whereby one concludes the boundedness of (1 — S4)~! on the space
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X:={f: R - CH" N, f e L7}
for ||A — Ap||¢ sufficiently small. Therefore one seeks solutions of the form
f=0-8S)Cint, for some h™ € Ef H. (A.10)

We summarize the above discussion. Our goal is to find solutions to divergence form
elliptic equations (A.1) with prescribed boundary values (they could be Neumann, regu-
larity, or Dirichlet boundary values). By the one-to-one correspondence between solutions
to (A.1) and solutions to the first-order equation (A.3), it suffices to determine A using
the prescribed boundary value and then use the ansatz (A.10) to compute f. In other
words, we need to determine the trace of f; using the boundary value of u.

A.2. Determining the trace of f by Neumann or regularity boundary values of u

By looking at (A.2), how f is defined using w, it should be intuitively clear that
Neumann BVPs and regularity BVPs are more natural in the first order approach, since
the trace of f; is related naturally to the Neumann or regularity boundary value. To
be more precise, when A = A is t-independent, a solution f = C’S‘ h* satisfies the
Neumann boundary value (fo)1 = 0., u = ¢ if and only if its trace A solves the
equation I' 4 h"T = ¢, where

T4, :EfH — L*(R",C)

h+ — (h+)L

is the identification map from the trace of f to the Neumann boundary value of the solu-
tion u to the divergence form elliptic operator (A.1). In other words the well-posedness
of the Neumann BVP is equivalent to I'4, being an isomorphism. Similarly the well-
posedness of the regularity BVP is equivalent to the identification map (with regularity
boundary value)

Ly, :EfH — {g € L*(R",C") : curl, g = 0}
h+ — (h+)“

being an isomorphism. We remark that even for t-independent operators, these maps are
not always invertible; however I' 4, is invertible if we assume a-priori the well-posedness
of BVPs for L4, (for example see [1, Corollary 8.6]).

Now we begin to consider operators with ¢-dependent coefficients. Recall in the above
discussion on the well-posedness of equation (A.3), or equivalently (A.7), a solution f of
the form (A.8) (for some h* € Ef H) has trace

fo=hT+h and h™ = /Ae—sAEggsfs ds € By,
0
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where A = |DBy| and Eg is defined as [1, Equation (22)]. See [1, Theorem 8.2] for the
precise statement. Therefore f satisfies the Neumann boundary condition (fo), = 9,, =
¢ if and only if A solves the equation I' 4h™ = ¢, where I"4 is the map

Ta:EfH — L*(R",C)
ht = (fo)L = | hT + /Ae—sAEggsfsds

0 1

It follows that the well-posedness'® of Neumann BVPs in appropriate function space X'

is equivalent to I'4 being an isomorphism. On the other hand, one can show?’

ITa—=Tall2oz2 S €N S 1A= Aolle

so that one may deduce the invertibility of I' 4 from that of I'4,, provided the Carleson
norm here is small. Thus, the Neumann BVP is well-posed for L 4, provided the smallness
of the Carleson norm and the well-posedness of the Neumann BVP for L 4,. The method
for the regularity problem is similar (where we instead wish to invert the tangential
trace).

A.3. Dirchlet boundary value problems

Solving Dirichlet BVPs using the above first order approach is more complicated
compared to Neumann BVPs or regularity BVPs; and we will give more details in this
section since it is directly related to our proof of (3.24). It is not obvious how the first
order approach applies, due to the lack of identification between the trace of f and the
Dirichlet boundary value of u. Instead of the equation (A.3) for the conormal gradient
f, we consider vector-valued solutions to first order equation

Oww+ BDv = 0. (A.11)

Heuristically, applying D to the equation (A.11) gives (9; + DB)(Dv) = 0. On the other
hand, u solves the divergence form elliptic equation if and only if (0;+DB)(V 4u) = 0. By
comparing f = V au with f = Dv we find that v = —v, . More precisely, for coefficients
A(t, z) which are (Carleson measure) perturbations of t-independent coefficient Ag(z),
we have that solutions to the divergence form elliptic equation (A.1) obeying a certain
square function estimate (that is, Vu € Y defined below in (A.16)) are of the form

u=c—vy,

19 Here one is seeking solutions in the space X and the boundedness of (1 —S4)~'CJ as an operator from
EJ into X are provided in [1].
20 See the proof of [1, Corollary 8.6].
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where v solves the first order equation (A.11) and ¢ € C. Moreover, we have
li =c— d li =
limu = ¢ (vp)L an Jim v, = ¢

in the L? sense. In particular, if we impose that u has Dirichlet boundary value in
L?(R™,C), the constant c is zero. See [1, Theorem 9.3]. We will follow the first order
approach as before to study solutions to equation (A.11) and then find an ansatz for
solutions to Dirichlet BVPs.

For t-independent operators we note that ByD is another bisectorial operator, just
like DBy. So we define the spectral projections Eoi = x*(ByD) as before, which splits
the space H. We make an important remark with regards to DBy and ByD:

By b(DBy) = b(ByD) By (A.12)

where b(+) denotes the functional calculus to an operator on L2, (See the discussion in [1,
Section 7].) This observation allows us to switch between DBy and ByD. Similar to the
argument for DBy, we have that solutions to (A.11) obeying a square function estimate
are of the form

v=Chug+c=ePPEy 4 ¢ (A.13)

for a unique vy € Ear L? and some ¢ € C'*". Therefore, for t-independent operators we
have the representation formula

u=c— (CN'JUO) , g EE(}LLQ,CG(C (A.14)
1
for solutions u to Dirichlet BVPs obeying a square function estimate. See [1, Corollary
9.4].
Now we consider perturbations of ¢-independent operators. Recall that solutions f to
(A.3) are of the form
fr=ePBopt L 5,1, or equivalently f, = (I — S,) te tPBop™t, (A.15)
for some h™ € E’O+ H. We remark that to adapt to Dirichlet BVPs, we work with the
functional space

Yi={ f:RT - <Cl+";/ [ fell72mnytdt < 00 p = L*(Ry, tdt; L*(R™, C1H7)),
0

(A.16)
instead of X'. Moreover [1, Proposition 7.1] shows that

[Sally—y S [IA = Aolle-
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Provided that ||A — Ayl|¢ is sufficiently small, (1 — S4)~! exists as a bounded operator
on the space ).

We want to find v satisfying f = Dwv, so we basically need to factor out D in (A.15)
(even though D is not injective). Indeed by (A.12), imposing the free evolution term
g := e tPBopt (the first term in (A.15)) in ) allows us to rewrite

g = De tBoPESpt = DCFR* (A.17)

for some ht € E L* determined by ht = Dht. And formally for S, we obtain starting
from (A.9) that S4 = DS4 where

t o

Safs = / e~ (=B DEXDE, fods — / e=VBDE=DE, fods. (A.18)

0 t
See [1, Proposition 7.2] for the rigorous treatment of S 4. Putting them together we get
fr=eTPBopt £ Suf, = DCShT + DSaf:,
and thus we can set
v=Cfht 4+ Saf = CHht +Sa(I — S4)"'DCFR*.

In the second equality we substitute the expression for f; in (A.15) and we also use (A.17).
Notice that the first term is exactly the same as (A.13), the solution to d;v + BgDv =0
(the constant c there is always zero for L?-Dirichlet BVPs). Therefore, to solve the
Dirichlet problem to (A.1), we make the ansatz

w= (éﬁﬁ S - SA)*DéJ%*)L (A.19)
for some h+ € Ef L. Moreover,
limv; =vg and lim v; =0
t—0 t— o0

in the L? sense. The trace vy can be written explicitly as

vg = ML h and h = — / eiSKEO_ESfS ds € EO_LZ, (A.20)
0
with A = [BoD)|. See [1, Theorems 9.2, 9.3] and the proof of [1, Corollary 9.5].

It then follows that the solution u has Dirichlet boundary value ¢ € L*(R™) if and
only if h* € Ef L? satisfies



S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025 51

o= limu, = —(u). = " + / e AEyefids |
0 iR

where f = (I — SA)_lDég'ﬁ"’ by the formula (A.15). In other words, if we define the
map

Ta:EfL? — L*(R",C)
e —E++/e*5KEgESfS ds |

0 L

then h is determined by the equation r A7L+ = . The well-posedness of Dirichlet BVPs
is equivalent to I" 4 being an isomorphism. In particular, when A = Ay is t-independent,
this map is just

T, :EfL? — L*(R™,C)
e — (ﬁ*) .
1
Assuming the Dirichlet problem for L4, is well-posed, the map r A, is invertible. Since
(see the proof of [1, Corollary 9.5])

ITag = Tallzeore SHEN. S 14 = Aolle, (A.21)

it follows that I'4 is also invertible provided ||A — Ag|lc < 1. Therefore the Dirichlet
problem for L 4 is also well-posed.

A.4. Proof of estimates for non-tangential mazximal function

We are now ready to use the results in [1] to prove the desired estimates (3.23) and
(3.24) for the non-tangential maximal function. Recall that the elliptic matrix we consider
can be written of the form

A(t,x) = Ao(z) + B(t,x)

where Ap(x) is a small (¢-independent) perturbation of a constant real elliptic matrix and
B(t,x) has small Carleson norm, see (3.1) and (3.2). (Here we denote the t-independent
matrix by Ag(z) instead of A;(z) in (3.1), in order to be consistent with the notation
in the rest of the Appendix.) The well-posedness for Dirichlet problems is established in
[3] for elliptic operators whose ¢t-independent coefficient matrices are small perturbations
of the constant matrix. Thus the Dirichlet problem for L4, is well-posed if € in (3.2) is
sufficiently small. We claim that this solution agrees with the elliptic measure solution
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(as in (3.14)) for smooth, compactly supported data and we postpone the proof of this
fact to Subsection A.5.

The estimate (3.23) just follows directly from [1, Theorem 2.4(ii)]. Now we set out
to prove (3.24). We write corresponding solutions to L4 and La, as up 4 and ug a,,
respectively. By the discussion in the above section, we can write

Up,Ag = (CJFZ;LP)

Up A = (5S'le<p + §A(I — SA)leég'lego)l .

)
L

Hence

Up,A — Up,Ag = (CJ(F,Zl - FZ?,M)

=1+1I.

<3 —1 A +T—1
L+(SA(I SA) DCOFA (,0)L

Notice that I is just Cjht with

ht = (T ' —T e € Ef L2

Recall (A.21) and the invertibility of T Ao, We have

-1 _ p-1 _|lF-1 (T ™o\ -1
T _FA0||L2—>L2_HFA (FAO_FA> 10 L2z

<4 —Tagllz2sre
S IA = Aolle,

provided ||A — Agl|¢ is sufficiently small. It follows then
P+ e S 1A = Aolleligll e

As in the proof of [1, Theorem 10.1], we may write h* as ht = Boh™ with ht € EfH
so that

IN.(Dlz2 = | N<(Cf Boh*)|[ 22 = [INo(BoCoh )|z ~ [Coh™ | S Ih* |22 2 17|12,
where we use (A.12), [1, Theorem 5.2] and the accretivity of By. Thus
INZ2D2 < IN.Dl22 S 14 = Aollclillze,
as desired. To handle II we use [1, Lemma 10.2] which says that

INZ2((Saf) )llzz S IENN LIy S 1A — Aol fly-
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(This is why we have non-tangential maximal function with power 3/2 in (3.24).) Thus,
to obtain a desirable bound for II it is enough to show

(I = S4) " *DCFR* ||y < |IR |22, for any h* € ET L2, (A.22)

where we used that f;‘l is an isomorphism to exchange lecp for h. Recall (see [1,
Proposition 7.1]) that (I — S4)~! : Y — Y is bounded; moreover by the accretivity of
By and the square function estimate for the operator ByD we have

IDCy 1t ||y ~ | BoDe™ PP it ||y ~ |t || 2, VAT € Ef L%
This finishes the proof of (A.22) and therefore

~73/2 — T —
IN2(I) 12 S 1A = AollelI(T = $a) ™' DEFT 3 ¢lly
S 1A= AolleIT 5 ol
S A= Aollellel ze-

This concludes the proof of (3.24) modulo showing that the solution here agrees with
the elliptic measure solution, when the boundary data is smooth.

A.5. For smooth data the solution in [1] agrees with the elliptic measure solution
It remains to show that given 0 < f € C2°(R") the unique L?-solution u in the sense

of [1] agrees with the elliptic measure solution us as in (3.14).%! (It suffices to consider
functions 0 < f € C°(R™), since this is enough to characterize the elliptic measure, or

equivalently the Poisson kernel. Assuming that u € C' (RT‘I), by the maximum principle
it suffices to show u — us(X) — 0 as |X| — oo. Since we know that u;(X) — 0 as
|X| — 00,*” to prove u = uy it suffices to show wu is continuous all the way to the
boundary and u(X) — 0 as | X| — oco. In fact, we will show in the following lemma that

u € CP(R7), where C? is the homogeneous Hélder space:

lv(z) —v(y)]

vl| = sup ————+%

H ||C/"(E) -y |.2? — y|[3 ;
TEY

for a function v : £ — R.

21 This is not without cause, since in general (for example, when the coefficient matrix is non-symmetric),
even with smooth boundary data different notions of solutions may not agree, see the example in [7]. Even
for the Laplacian in the upper half space, it is well known that solutions to the Dirichlet problem are not
unique.

22 This can be proven by comparing it with the elliptic measure of a compact set. Let K = supp f and
assume K C Bpg for some R > 0. Since 0 < f € C°(R™), we have us(X) < w*(Ag) - sup f. On the other
hand, let Ar denote the interior corkscrew point for the ball Br. By Lemma 2.16 and the estimate of the

Green’s function, when X € Ri"'l \ Bir we have wX (ARg) ~ G(X,Ag) - R"™* < %. The right

hand side converges to zero as | X| — oo. Therefore w™ (Ag) — 0, and thus uy(X) — 0 as | X| — oco.
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Lemma A.23 (/26,25]). Let
A(t,x) = Ao(z) + B(t, x)

be a real matriz such that Ag(z) = A, + B(z), A, is a real constant elliptic matriz,
|Bllos < €0 and |B(t,z)|c < €o. If € is small depending on the ellipticity of A. and
dimension then there exists 8 € [0,1) depending on ellipticity, the dimension and ey such
that the following holds. If f € C2°(R™) and u is the (unique) solution to the L*-Dirichlet
problem for L = —div AV on ]Ri+1 produced above, then

ol sy S 1l (A.24)
where the implicit constant depends on dimension and ellipticity of A..

Proof. Here we appeal to the ‘second order methods’ noting that the L? solution to
the Dirichlet problem above is unique so that we are working with the same solution.
The lemma is, in fact, a ‘direct’ result of [26, Theorem 1.4] and [25, Theorem 1.35].
First note that A. is constant so that we may assume A, is symmetric as demonstrated
in Lemma 3.5 above. Thus, [26, Theorem 1.4] gives the solvability of the C*" Dirichlet
problem for coefficients Ay with 8’ € (0, 8)) depending on dimension, ellipticity of A.
and €g, provided € is small enough. Similarly, (at the cost of a smaller ) [25, Theorem
1.35] can be applied to perturb from the coefficients Ay to A, giving the solvability of the
C# Dirichlet problem with 8 € (0, 85/2) for L = —div AV provided € is small enough.
Here is where one should be careful: We need to check that the C# and L? solutions agree
when the data is in C#(R™) N L?(R™), we will call this ‘compatibility’. Note that the C'*
and L? solutions agree for the operator with coefficients L. = — div A,V because they
are both given by convolution with a elliptic-Poisson kernel (see Theorems 1.4 and 3.3
in [37]). The interested reader can carefully check?* that the perturbations [26, Theorem
1.4] and [25, Theorem 1.35] preserve this compatibility. 0O

With the lemma in hand, we are going to prove u(X) — 0 as | X| — oo. By definition
it holds that

Ve (W)l L2wry S 1 f N2 ®my

which (by interior estimates) implies that

sup [lu(t, )l 22wy S Iz @®n)-
t>0

23 This will be a result of the boundary trace of the layer potentials being perturbative in the norms co
and L?: In the case of [26] this is done in [26, Section 4] and in the case of [25] in [25, Proposition 7.21].
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Next, we see for s € R, by breaking up R™ into cubes of side length roughly s and
using Caccioppoli’s inequality, that

s Rn s/2 Rn
where we used sup;~g ||u(t, )| L2®n) S || fllL2(rn). Thus,

2k+1

Z N mny _ N7y
//IW\dedt Z / /IV 2 da dt< I ||2Lk<R Nll ||LS]R |

s R» kOZ"s R™

written compactly ||Vullpogn+1) S Wh%’ where R™! = {(t,2) : t > s,x € R"}.

It is a fact?® that there exists a constant ¢ such that u — ¢ € YL2(R?TY) = {v €
2n

La=1 (R} : Vo € L2(R2H)}, but since sup, [|u(t, )| L2@n) < +oc it must be the

case that ¢ = 0 and hence u € Y12(R%T1). Moreover, by the Poincaré Sobolev inequality

il 2o, grssy S I V0lzqepss) S 1 flzany V5, (A.25)

where we used our estimate established above.

Now fix v > 0 and let C; := HUHCWW)
exists M., so that if [X| > M, then |u(X)| < 7. Note that if there exists X = (¢,z)
such that |u(X)| > v then we have that |u(Y)| > /2 for all Y € R such that
|X — Y| < (v/2C1)Y#. In particular, if s € R, and there exists X = (¢,x) such that
|u(X)| >~ with ¢ > s then

< 00. Our goal is to show that there

Ll

BQn
L" 1 (Rn+1) ~ ’Y

where we used that |u(Y)| > v/2 in B(X, (v/2C1)Y#) " R?+1. Thus, choosing s large
enough so that

Il 2y
NE

we have from (A.25) that HUHLOO(R:'O“) <.

Having established the bound for ¢ > s, it suffices to show that there exists A so that if
|z| > Aand t € [0, so] then |u(t,z)| <. To do this, we use that sup;- [|u(t, )| L2®n) <
| fll2(rn) and hence

n?-1_ 4
<< fy B2n +

24 Gee [41, Theorem 1.78]. One can adapt the proof there using nested cubes (this time not concentric
dilates though) which exhaust R?+1.
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llull 22 (j0,50]xR™) S VS0l fllL2(R7)-

Arguing as above, it would be impossible to have X; = (xy,tx) with |zx| — oo and
tr € [0, s0] such that |u(X)| > ~. Indeed, for this would give that ||ul|2(jo,s)]xRn) = 0.
This concludes the proof that u(X) — 0 as | X| — oo.

Appendix B. From (5.24) to (5.25)

The goal of this section is to prove Lemma B.2, which will immediately show (5.24)
implies (5.25). We first make an observation that allows us to use the work of Korey
[32] with impunity in the setting of this work. Specifically, we would like to use the
consequences of [32, Theorem 6] and the portion of [32, Theorem 10] unique to the work
there.

Lemma B.1. Let ' C R™*! be a closed set with locally finite H™ measure, that is H™(I'N
B(0,7)) < oo for every r > 0. Set o = H™|r. Then for every Borel set of E C T and
T € [0,1] there exists a Borel F' with o(F) = 1o (E).

Proof. Fix E as above. Clearly, we only need to show result for 7 = 1/2. We see by
monotonicity of measure o(B(0, R)NE) > (1/2)o(E) for some R large enough. Let ry :=
sup{r : o(B(0,7) N E) < (1/2)o(F)}. By monotonicity of measure o(E N 9B(0,79)) +
o(B(0,79)NE) > (1/2)0(E) and o(B(0,79)NE) < (1/2)o(E). Thus, 7’0 (ENIB(0,70))+
a(B(0,m0) N E) = (1/2)o(E) for some 7" € [0,1]. Next we note that ¢ := H"|5p(0,r)
already has the diffusivity property, that is, for every £’ C 9B(0,7¢) and 7" € [0,1]
there exists F/ C E' with o(F') = 7/0(E’) so that we may take £ = E N dB(0,ro)
and find F/ C ENJB(0,rg) so that o(F NIB(0,ry)) = 7'a(E N OB(0,rg)). Setting
F =F U(B(0,79) N E) we have that o(F) = (1/2)c(E). O

Lemma B.2. Let I' C R"™! be a closed set with locally finite H™ measure and set o =
H"|r. Suppose xg € T' and 1o > 0 are such that o(Ag) > 0, where Ag = B(xg,19) NT.
Suppose k € L} (do) with k > 0 and set w = kdo. There exists ¢g and c, absolute

constants, so that the following holds. If there exists € > 0 such that for every F C Ag
with o(F)/o(Ag) = 1/2 it holds that w(F)/w(Ag) < 1/2 4 € for some € € (0,€q) then

2

][ kdo | <(1+ce) ][ kY2 do

(20,8) A(zo,s)

Proof. We start the proof exactly as in the proof (d) to (c¢) in [32, Theorem 10]. Set
f = +Vkan L} (do) function. Set my a, to be the median of the function k on A, that
is

oc{z e Ag:k>mpa}),c({x € Aok <mpa,t) < (1/2)0(Ap)
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Set B/ ={z € Ag : k> mya,} and F' = {x € Ay : kK < mya,}. Then by Lemma B.1
there exists G C Ag \ (E' U F’) such that o(E' UG) = (1/2)0(Ay). Setting E := E'UG
and F := Ay \ E we have that o(E) = o(F) = (1/2)0(Ao),

k(z) <mgp, o—aexelF

and

By hypothesis

Then

:(1—26)_10—F)/f2d0§ (1—26)_1%/fd0'«/mk,Am
P

where we used f < ,/my A, 0-a.e. on F. On the other hand,

w(E) Lie w(Aop)

< = < 2 =
M A, _][k:da (B) (D) (1+2€)][kd0,
E Ag

where we used o(E)/o(Ag) = 1/2 and the hypothesis of the lemma. Combining these
two inequalities we have

][f2d0< (1—2¢)~ ][fda VMk Ay

< (1+26)Y2(1 —2€)~ ][fda ][kdo—

= (142621 —2¢)7! (A][fda (A][ f2do ,
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where we used that the average over F of k is less than the average over A, of k, by the
definition of F and E = Ag \ F. Thus, we have

1/2

][fZ do < (14 ce) ][ fdo, (B.3)
0 Ao

provided that €g is sufficiently small. O
To show (5.24) implies (5.25), we apply the previous lemma with e = C’(5)*. We

also remark here that in order to conclude that logk in VMO from (5.25) one can use
the methods in [32] (armed with Lemma B.1).

Appendix C. Pullbacks and pushforwards for Lipschitz domains

In this appendix, we recall the well-known applications of arguments concerning the
“flat” transformation of solutions to (second order divergence form) elliptic equations on
Lipschitz domains to solutions of a transformed elliptic operator on the upper half space.
This transformation is well adapted to the perturbations under consideration in this work
as many have noted. We continue to work in R"*1, identified as R"*! = {(z,t) € R"xR}.
For a Lipschitz function ¢ : R® — R, with ¢(0) = 0%° we set

Qp = {(z,t) e R"™ ¢ > p(z)}.
We will often just write 2 except when the dependence on ¢ is important. We also define
Graph(p) := {(x,t) € R"" : t = p()}.
The following proposition follows by a simple change of variables.
Proposition C.1. Let ¢ : R” — R, ¢(0) = 0 be a Lipschitz function and Q = Q, be
as above. Let L = —div AV be an elliptic operator with real coefficient matriz A. Let

®(z,t) be the flattening map for ¢, ®(z,t) == (z,t — ¢(x)), so that ®(Q,) = R and
®(Graph(p)) =R™ x {0}. Then u : Q@ — R solves the differential equation

(D) Lu=0eQ
B = fecu(09)

if and only if @ : RT‘I — R solves the differential equation

25 We can always arrange for this by shifting all of the objects under consideration.
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where f(@) = flz,0(x) € CRM), @(X) = (uo ®)(X) and L = —divAV with
A=JF(Ao® ) Jp. Here Jg is the Jacobian matriz of ®, given by

Jo(X) = Jo(z,t) = [Inoxn —Vf(@

so that, in fact, Jg is a functz’on of x. In particular, if A is t-independent so is A.

Moreover, if hs = dw—o is the Poisson kernel for L in Q with pole at X exists then
X 1 8(X)
ha(y, oY) = ——=—=k; '),

L+ |Ve(y)?
where k:if(X)(y) is the Poisson kernel for L in R with pole at ®(X).

To see the last fact, note that for X € Q and f € C.(99)

mm:/%wmmmm /M@w IV T Voly)Pdy:

o0 Rn
and on the other hand,
u(x) = a(@(0) = [ KOGy = [ K210l dy
R~ Rn

From the above we can see that when [|V||oo < 1 the Poisson kernels h4 and k 3 are
very similar. We would like to say that perturbed operators (in the analogous sense of
that in Proposition 3.10) remain so under pullback. This amounts to look at how Jg acts
on vectors and matrices. The following lemma can be directly verified via computation.
We provide some brief details.

Lemma C.2. Let ¢ : R™ = R, ¢(0) = 0 be a Lipschitz function with Lipschitz constant
v :=||V@| L. For almost every x € R™, Jp = Jo(x) has the following properties.

(a) For any € € R+

[T — &2 < Vyl€la, [Je€ = Eloo < [,
[J5€ —€El2 <l [5€ — &l < VY€ oo

(b) For any (n+ 1) x (n+ 1) matriz A,

[T AJs — Aloo < (Viy + 17?) | Al oo
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(c) For any £ € R™1
. 1 2\—1
|Jo€|2 > min 57(1 +4ny7) 72 o ¢l

Here | - |2 and | - |o are the £2 and £>° norms, respectively.

Proof. For £ € R™", & = (&1,...,&n, &ny1) We write &) = (&1,...,&,) and &1 = &ny1.
To prove the assertions of (a) concerning Jg, we write Jo& = (§ — £1.Vp(z),£L), so
that Jo& — & = (=€ Vip(x),0). Similarly, to treat the estimates involving JI we write
JLE = (&), —Ve(x) - § +£1), so that JJE — & = (0,—V(z) - ). Property (b) follows
from property (a) after writing

JEATs — A= (JEAJe — JEA) + (JEA - A)
so that

< Vny|Ads — Al + VnylAls
< (Vny +17?)|Al .

Finally, to see (c), we again write Jo& = (§ — . V(x),£1) so that ||z > max(|§) —
E1V|a,|€1]2). €L V|2 < %\5” |2 then the estimate in (¢) follows readily. If not, then
£ Vel2 > 5[¢)|2 and hence by the Lipschitz condition £, | > ﬁm‘ |2 so that

|[Jo&la > [E1]2 >

1
1+ 47’2,’}/2 |£|27

from which the estimate in (¢) again follows readily. O

Next, we define Whitney and Carleson-type regions, which are well-suited for our
purposes. For ¢ and Q,, as above, and X = (z, p(x) +t) € Q, we define the p-adapted
Whitney region

Wo(X) = {(y,s) : ly — x| <t, p(y) +t/2 < s < p(y) + 3t/2} .

Note that ®(W,,) = W(z,t), the Whitney region in R:L_H. Next, for a cube @ C R™ we
define the p-adapted Carleson box

R ={(y,8) 1y €Q, p(y) <s <oy +4Q)}. (C.3)

Finally, for a measurable (n+1) x (n+1) matrix-valued function P, we define the (FKP)
p-adapted Carleson norm of P as
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1/2

dy ds
Plle, = sup / P2
Pl P OcRr |Q| LeWe(y:9) s — o(y) —o(y)

1o (C4)
da:dt
= sup / 1P 12 (w (e, = [I”"llc.
" ocre | Q] LWl =y

where P/ = P o ®! and we used the flattening change of variables in the second line.
The following lemma is a direct consequence of the definitions above and Lemma C.2.

Lemma C.5. Let ¢ : R™ — R be a Lipschitz function with Lipschitz constant v and
©(0) = 0 and suppose that P is a (n + 1) x (n + 1) matriz-valued function on Q, with
|Pllc, < oo. Then the matriz P = J(Po® 1) Jg satisfies

IPlle < (14 v/ny +n9%)|Plle,

Proof. Recall that Jo(z,t) = Jo(z) so that (C.4) with P/ = P (which means JEPJg is
in place of P)

IPllc < (17§ PJellc, < (1+vny+ny?)|Ple,,
where we used Lemma C.2(b) in the second inequality. O
Combining the previous Lemma with Lemma C.2, one easily obtains the following.
Proposition C.6. Let A > 1. Let ¢ : R™ — R be a Lipschitz function with Lipschitz
constant v < z5— and ©(0) = 0, and Ay a real, constant A-elliptic (n + 1) x (n + 1)

matriz. Suppose A(X) is a real, A-elliptic, matriv-valued function on R™1 with the
decomposition

A(:E,t) - Al(x) + P(lL’,t)
satisfying
A1 = Aol Lo (rn) + [|1Plle, < &

for some k > 0. Then A= JE (Ao ® 1) Jg is a real, 8A-elliptic matriz with the decom-
position

A(z,t) = Ay (z) + P(x,t),

satisfying



62 S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025

| Ay — Apl| oo ey + | Plle < 26 + 4v/myA,

where Ay = JT(A; 0 @ 1)y = JL(A)Js, P :i= JI(P o & 1)Jp and® A :=
J§(0)A0J5(0).

Proof. The form of the decomposition A(z,t) = Ay (z) + P(z,t) is immediate from the
form of A. In particular, notice that A;o®~! = A; since A; = A;(x). The 8A-ellipticity
of A is a consequence of Lemma C.2(b) and (c). Indeed, the boundedness of A follows
from Lemma C.2(b), here one recalls that v < 1/(50n), so that /ny +ny? < 1 (we will
use this several times). To see the lower ellipticity bound, we use the A-ellipticity of A
and Lemma C.2(c) to obtain

(Ae.€) = A7 a3 > (A€l

for almost every x and all £ € R*+L,
To obtain the desired estimate for [|A; — Ag| po®rn), We write

Ay — Ay = (A, — Ag) + (Ay — A)), (C.7)

where A is the (variable) matrix-valued function JI(x)AgJs(z). Using Lemma C.2(b),
and the triangle inequality

141 = Aol < (1+ vy +ny®) [ A1 = Aol| e < 2] A1 — Ao|| = (C.8)
To handle the second term, we again use Lemma C.2(b) to obtain
| Ao — Apllz~ < | Ao — Aol + || Ao — Al
< 2(v/ny +my?) || Aol < 4v/nyA.

Combining (C.7), (C.8) and (C.9) yields the desirable estimate

|41 = Az < 2|41 — Aol + 4v/nyA.
Since Lemma C.5 gives

1Pllc < (1+ vy + m?)IPlle, < 2IP]e,
we obtain

141 = Afll ey + [ Plle < 25 + 4v/nyA,

as desired. 0O

26 Note that Ag is a constant matrix and one can show that Ao is 8A elliptic in the same manner as A.
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