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1. Introduction

In this article we study quantitative, asymptotic regularity of the (elliptic-) Poisson 
kernel for second order divergence form elliptic operators of the form L = − div A(X)∇
in (bounded) rough domains, where the coefficient matrix is assumed to be Hölder con-
tinuous. This extends the work of Kenig and Toro [33] from the case of L = −Δ, the 
Laplacian, to this natural class of variable coefficient operators. One may wish to inter-
pret the results here as asymptotic optimality of the solution map for the linear operator 
L, with some extra consideration. Indeed, the solvability of the Lp-Dirichlet problem, 
with accompanying non-tangential estimates, is equivalent to the Poisson kernel satis-
fying a Lp′ -reverse Hölder condition (p′ = p/(p − 1)). Our result here is equivalent to 
this condition being satisfied for all p > 1 and that for fixed p the constant in the re-
verse Hölder inequality tends to the optimal value, 1, when the balls shrink. In fact, the 
optimality (in the limit) of this constant for any fixed p > 1 implies the optimality for 
all p > 1 and log k ∈ V MO (see [32] for a detailed discussion1). Here our geometric 
assumptions on the domain are optimal [35,6], that is, the domains are chord arc with 
vanishing constant (see Definitions 2.28 and 2.30). These domains can be described as 
having asymptotic flatness (in the sense of Reifenberg [43]) coupled with surface measure 
which behaves asymptotically like Lebesgue measure.

Throughout, the ambient space is Rn+1, n ≥ 2 and we often make the identification 
Rn+1 = {(x, t) ∈ Rn×R}. We work with divergence form elliptic second order differential 
equations of the form L = − div A(X)∇, where the real, (n + 1) × (n + 1) matrix-valued 
function A satisfies the Λ-ellipticity condition for some Λ ≥ 1, that is, ‖A‖L∞ ≤ Λ and 
for almost every X ∈ Rn+1

Λ−1|ξ|2 ≤ 〈A(X)ξ, ξ〉, ∀ξ ∈ Rn+1.

Our main result is the following.

1 This remarkable theory of ‘self-improvement’ comes from the study of quasiconformal mappings [23,28].



S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025 3
Theorem 1.1. Let Ω ⊂ Rn+1 be a bounded vanishing chord arc domain (see Defini-
tions 2.28 and 2.30) and L = − div A(X)∇ be an elliptic operator, with (real, Λ-elliptic) 
coefficients satisfying the Hölder condition

|A(X) − A(Y )| ≤ CA|X − Y |α, ∀X, Y ∈ Rn+1 (1.2)

for some CA > 0 and α ∈ (0, 1]. Then log k ∈ V MO (see Definition 2.33), where k is the 
(elliptic-)Poisson kernel for L on the domain Ω, that is, k := dωX0

dσ for some X0 ∈ Ω. 
Here ωX0 is the elliptic measure for L with pole at X0, and σ = Hn|∂Ω is the surface 
measure for Ω.

Let us lay out the structure of the proof of Theorem 1.1. The restriction to real co-
efficients is necessary to define the elliptic measure (via the maximum principle and the 
Riesz representation theorem) as the solution map for the Dirichlet problem for L on the 
domain Ω. (Note that chord arc domains are Wiener regular and therefore the solution 
to the L-Dirichlet problem for some f ∈ Cc(∂Ω) is uf (X0) =

´
∂Ω f(y) dωX0(y).) On 

the other hand, some of the solvability results which serve as the starting point for our 
analysis rely on (complex) analytic perturbation theory [2–4]. Indeed, our study begins 
with operators on the upper half space, where there is much known for both transver-
sally independent complex L∞ perturbations of transversally independent operators with 
constant coefficients and operators which are a Dahlberg-Fefferman-Kenig-Pipher [15,22]
type2 (‘transversal’) perturbations. For the former we prefer to cite the treatment in [3]
and for the latter [1]. These perturbations are maintained under pull-back on small Lip-
schitz graph domains and due to the Hölder condition we may view our operator (even 
after pull-back) as a two-fold perturbation of a constant coefficient matrix. Thus, to con-
clude Theorem 1.1, we employ ‘good’ approximation schemes developed in [18,44] and 
[33,45], whereby one approximates a vanishing chord arc domain by domains with small 
Lipschitz constant and makes the delicate estimates required to show log k ∈ V MO. Here 
the former approximation in [18,44] allows us to establish rough ‘A∞ estimates’ and the 
later approximation in [33,45] allows us to establish the refined, asymptotic estimates of 
Theorem 1.1 (the ‘rough’ A∞ estimates are needed to control some errors).

This paper here brings together tools from partial differential equations, harmonic 
analysis and geometric measure theory developed over the last 40 years. We attempt 
(perhaps in vain) to give a reasonable account of the relevant results to the current work. 
For the harmonic measure, in 1976, Dahlberg [14] showed that in a Lipschitz domain the 
Poisson kernel satisfies an L2-reverse Hölder condition, which, as we mentioned above, 
implies the L2 solvability of the Dirichlet problem. This sparked a deep interest in the 
study of elliptic operators in rough sets that has persisted for decades. In 1982, Jerison 
and Kenig [30] showed that in a bounded C1 domain log k ∈ V MO. In 1997, Kenig and 

2 The perturbations are a quantitative, ‘averaged’ refinement of those in [21].
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Toro [33] extended the work of Jerison and Kenig to vanishing chord arc domains, that 
is, Theorem 1.1 with L = −Δ, by using a version of the Semmes decomposition [45].

In this context, for the variable coefficient case there is a good perturbative theory, 
see [20,22,39]. One can extrapolate optimal Poisson kernel regularity (log k ∈ V MO) 
from one operator to another, whenever the discrepancy between the operators is a van-
ishing perturbation of Dahlberg-Fefferman-Kenig-Pipher type. On the other hand, aside 
from constant coefficient operators and their (vanishing) perturbations, there appears 
to be a lack of understanding of the properties that characterize an operator for which 
log k ∈ V MO. This paper provides an important example of a natural class of operators 
for which this is the case. It also addresses a gap in [40]. There the authors used the 
fact that for a uniformly elliptic operator with Hölder coefficients on Lipschitz domain 
with small Lipschitz constant log k has small BMO norm. This result had not been 
established. In fact attempts to fix this gap by standard methods were unsuccessful. A 
completely new idea is required to prove this fact, and its introduction is one of the 
major original contributions of the current paper. There were also small gaps and errors 
in some ‘localization estimates’ in [40], so we carefully reprove these results. For the 
most part the techniques in these ‘localization estimates’ follow [40,33], but the proof of 
Theorem 1.1 is completely different and requires a number of new ingredients.

As mentioned above, we leverage powerful, refined theorems in the study of elliptic 
boundary value problems. We are particularly reliant on the theory built from layer 
potentials and the operational calculus of first order Dirac operators associated to diver-
gence form elliptic operators with variable coefficients. The modern treatment of these 
objects was shaped by Auscher, Axelsson, Hofmann, McIntosh and many others [2–5]. We 
refer the reader to [2] for a relatively comprehensive history, but we remark that these 
works grew out of the testing conditions (‘T1/Tb theory’) for singular integrals and 
Littlewood-Paley type operators [13,12,17,19,36], and the generalizations of this theory. 
Perhaps the most notable such generalization led to the resolution of the Kato conjec-
ture [5] and served as the basis for the results in [2–4]. These works allow us to treat 
the L∞-perturbation, while we use the results in [1] to handle the Dahlberg-Fefferman-
Kenig-Pipher type perturbation (the key is that we can locally write our operator as a 
two-fold perturbation).

Though our results are stated for bounded domains, with suitable modifications anal-
ogous local and global results hold for unbounded domains. For instance, an analogue of 
Theorem 1.1 holds for unbounded domains, if we replace V MO with V MOloc. One can 
not conclude log kL with finite pole is in the space V MO space when the domain has 
unbounded boundary. Indeed, log kX

L is not in VMO, when Ω is the upper half-space, 
L = −Δ, and X �= ∞. We only treat bounded domains here to simplify the exposition, 
but we refer interested readers to Section 6.1 in [9], where the necessary local to global 
argument was presented.

Acknowledgment. The first named author would like to thank Pascal Auscher, Moritz 
Egert and Steve Hofmann for helpful conversations concerning the first-order method 
and the perturbative theory for elliptic boundary value problems.
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2. Preliminaries

First we introduce notation that will be standard throughout. For notation specific 
to chord arc domains and their variants with small constants, see the next subsections 
(Sections 2.2 and 2.3). Throughout the paper, by allowable constants we always mean 
the dimension n ≥ 2, the ellipticity constant Λ ≥ 1 and the Hölder constants CA > 0
and α ∈ (0, 1].

2.1. Notation

• Given a domain Ω ⊂ Rn+1 with boundary ∂Ω, for x ∈ ∂Ω and r ∈ (0, diam ∂Ω) we 
let Δ(x, r) := B(x, r) ∩ ∂Ω denote the surface ball of radius r centered at x. We 
make clear which surface measure we are using any time there is possible ambiguity 
(e.g. when dealing with multiple domains simultaneously).

• Given x = (x1, . . . xn+1) ∈ Rn+1 (or x ∈ Rn resp.) we define |x|∞ = supi{|xi|} to 
be the �∞ norm of x. Similarly, we let |x| := |x|2 be the standard Euclidean (�2) 
distance.

• When working with the upper half space (Rn+1
+ := {(x, t) ∈ Rn ×R : t > 0}) we use 

the following notation. Let y ∈ Rn = Rn × {0} and r > 0 then we define:
– The cube Q(y, r) := {x ∈ Rn × {0} : |x − y|∞ < r}, with side length 2r and the 

(surface) ball Δ(y, r) := {x ∈ Rn × {0} : |x − y| < r}.
– Given an n dimensional cube Q = Q(y, r) we let �(Q) := 2r be the side length of 

the cube.
– Given an n-dimensional cube Q we let RQ be the Carleson box relative to Q, that 

is, RQ = Q × (0, �(Q)).
– The Whitney regions W (y, r) = Δ(y, r/2) × (r/2, 3r/2) and

D(y, r) := B(y, 10r) ∩ {(x, t) : x ∈ Rn, t > r/2}.

• Given a (real) divergence form elliptic operator L = − div A∇ we define its transpose 
(and, in this case, adjoint) LT := − div AT ∇, where AT is the transpose of A, that 
is (AT )i,j = (A)j,i.

Definition 2.1 (Lipschitz domains). We say a domain (connected open set) Ω ⊂ Rn+1 is 
a γ-Lipschitz domain if for every x ∈ ∂Ω there exists r > 0 and an isometric coordinate 
system with origin x = O such that

{Y ∈ Rn+1 : |Y −x|∞ < r}∩Ω = {Y ∈ Rn+1 : |Y −x|∞ < r}∩{(y, t) : y ∈ Rn, t > ϕ(y)}
(2.2)

for some Lipschitz function ϕ : Rn → R with ϕ(O) = O and ‖∇ϕ‖∞ ≤ γ. We say a 
domain is a Lipschitz domain if it is a γ-Lipschitz domain for some γ ≥ 0. We call a 
domain Ω ⊂ Rn+1 of the form
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Ω := {(y, t) : y ∈ Rn, t > ϕ(y)}

for some Lipschitz function ϕ : Rn → R with ‖∇ϕ‖∞ < ∞ a Lipschitz graph domain 
(and if ‖∇ϕ‖∞ ≤ γ, a γ-Lipschitz graph domain).

Remark 2.3. The number of ‘charts’ needed to cover the boundary in the definition 
of Lipschitz domain is often important, but if ∂Ω is bounded the compactness of the 
boundary ensures that only a finite number of charts is required. If Ω is a Lipschitz 
graph domain only one chart is needed. When we work with Lipschitz domains the 
number of charts will always be uniformly bounded.

Definition 2.4 (FKP-Carleson Norm). Given any matrix P = P (x, t) defined on Rn+1
+ :=

{(x, t) : x ∈ Rn, t > 0} we define the Carleson norm of P as

‖P ‖C := sup
Q

⎛⎜⎝ 1
|Q|

¨

RQ

‖P ‖2
L∞(W (x,t))(x, t) dx dt

t

⎞⎟⎠
1/2

,

where the supremum is taken over all cubes Q ⊂ Rn, RQ is the Carleson box Q ×(0, �(Q))
and we recall W (x, t) = Δ(x, t/2) × (t/2, 3t/2).

Definition 2.5 (Nontangential Maximal function). Given any locally L2-integrable func-
tion F : Rn+1

+ → R we define the (L2-modified) non-tangential maximal function 
Ñ∗F : Rn → R as

Ñ∗F (x) := sup
t>0

⎛⎜⎝ −−−
¨

W (x,t)

|F (y, s)|2 dy ds

⎞⎟⎠
1/2

. (2.6)

For p > 1 we also define the Lp-modified non-tangential maximal function Ñp
∗ F : Rn →

R as

Ñp
∗ (F (x)) := sup

t>0

⎛⎜⎝ −−−
¨

W (x,t)

|F (y, s)|p dy ds

⎞⎟⎠
1/p

.

Remark 2.7. We use the notation Ñ∗F to distinguish it with the standard non-tangential 
maximal function defined using L∞ norm.

2.2. PDE estimates in chord arc domains

In this subsection we define chord arc domains and state without proof some well-
known results about solutions to elliptic operators as well as elliptic measures on such 
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domains. These two non-tangential maximal functions are equivalent if Moser’s estimate 
holds.

Chord arc domains are domains with scale-invariant connectivity (Harnack chains), 
interior and exterior openness (corkscrews) and whose boundaries are quantitatively 
“n-dimensional” (Ahlfors regular boundary).

Definition 2.8 (Two-sided Corkscrew condition [29]). We say a domain (an open and 
connected set) Ω ⊂ Rn+1 satisfies the two-sided corkscrew condition if there exists a 
uniform constant M > 2 such that for all x ∈ ∂Ω and r ∈ (0, diam ∂Ω) there exists 
X1, X2 ∈ Rn+1 such that

B(X1, r/M) ⊂ B(x, r) ∩ Ω, B(X2, r/M) ⊂ B(x, r) \ Ω.

In the sequel, we write A(x, r) := X1, for the interior corkscrew point for x at scale r.

Definition 2.9 (Harnack chain condition [29] ). We say a domain Ω ⊂ Rn+1 satisfies 
the Harnack chain condition if there exists a uniform constant M ≥ 2 such that if 
X1, X2 ∈ Ω with dist(Xi, ∂Ω) > ε > 0 and |X1 − X2| < 2kε then there exists a ‘chain’ of 
open balls B1, . . . , BN with N < Mk such that X1 ∈ B1, X2 ∈ BN , Bj ∩ Bj+1 �= Ø for 
j = 1, . . . , N − 1 and M−1 diam Bj ≤ dist(Bj , ∂Ω) ≤ M diam Bj for j = 1, . . . , N .

Definition 2.10 (Ahlfors regular). We say a set E ⊂ Rn+1 is Ahlfors regular if E is closed 
and there exists a uniform constant C such that

C−1rn ≤ Hn(B(x, r) ∩ E) ≤ Crn, ∀x ∈ E, ∀r ∈ (0, diam E).

Definition 2.11 (NTA and chord arc domains [29]). We say a domain Ω ⊂ Rn+1 is and 
NTA domain if it satisfies the two-sided corkscrew condition and the Harnack chain 
condition. We say a domain Ω ⊂ Rn+1 is a chord arc domain if it is an NTA domain and 
∂Ω is Ahlfors regular. We refer to the constants M and C in the definitions of the two-
sided corkscrew condition, Harnack chain condition and the Ahlfors regularity condition 
as the ‘chord arc constants’.

Remark 2.12. Every bounded (γ-)Lipschitz domain is a chord arc domain as are Lipschitz 
graph domains. See Remark 2.3.

Now we give several results on the behavior of solutions to real divergence form elliptic 
equations in chord arc domains. We note that while the original results are stated for 
harmonic functions their proofs carry over for real divergence form elliptic equations as 
the primary tools (e.g. the Harnack inequality and Hölder continuity at the boundary 
[24]) are still available and only introduce dependence on the ellipticity parameter. We 
also remark that these estimates are suitably local. For instance, if Ω ⊂ Rn+1 is a γ-
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Lipschitz domain and we work ‘well-inside’3 a region as in (2.2) then the estimates on 
the boundary behavior of solutions depend on dimension, ellipticity and the parameter 
γ. We refer the reader to [11,31,29]. In the remainder of this section, L = − div A∇ is a 
second order divergence form elliptic operator with real, Λ-elliptic coefficients.

Lemma 2.13 (Carleson estimate [29]). Let Ω ⊂ Rn+1 be a chord arc domain, x ∈ ∂Ω
and 10r ∈ (0, diam ∂Ω). If Lu = 0, u ≥ 0 in Ω ∩ B(x, 2r) and u vanishes continuously 
on B(x, 2r) ∩ ∂Ω then

u(Y ) ≤ Cu(A(x, r)), ∀Y ∈ B(x, r) ∩ Ω.

Here C > 0 depends on n, Λ and the chord arc constants for Ω.

Lemma 2.14 (Hölder continuity at the boundary [29,24]). Let Ω ⊂ Rn+1 be a chord arc 
domain, x ∈ ∂Ω and 10r ∈ (0, diam ∂Ω). If Lu = 0, u ≥ 0 in Ω ∩B(x, 4r) and u vanishes 
continuously on B(x, 4r) ∩ ∂Ω then

u(Y ) ≤ C

(
|Y − x|

r

)μ

sup{u(Z) : Z ∈ ∂B(x, 2r) ∩ Ω} ≤ C

(
|Y − x|

r

)μ

u(A(x, r)),

for all Y ∈ B(x, r) ∩ Ω. Here C > 0 and μ ∈ (0, 1) depend on n, Λ and the chord arc 
constants for Ω.

A simple consequence of this lemma is the following, which is sometimes referred to 
as Bourgain’s estimate.

Lemma 2.15 (Bourgain’s estimate [8,24]). Let Ω ⊂ Rn+1 be a chord arc domain, x ∈ ∂Ω
and 10r ∈ (0, diam ∂Ω). Then

ωA(x,r)(B(x, r)) � 1,

where the implicit constants depend on n, Λ and the chord arc constants for Ω. Here 
ωX is the elliptic measure for the operator L on Ω with pole at X. In particular, by the 
Harnack inequality, for x ∈ ∂Ω and 10r < 10R ∈ (0, diam ∂Ω)

ωA(x,R)(B(x, r)) � 1,

where the implicit constants depend on n, Λ and the chord arc constants for Ω and the 
ratio R/r.

Lemma 2.16 (CFMS estimate [11]). Let Ω ⊂ Rn+1 be a chord arc domain, x ∈ ∂Ω and 
10r ∈ (0, diam ∂Ω). If X0 ∈ Ω \ B(x, 4r) then

3 Here this means, {Y : |Y − x|∞ � r} ∩ Ω} in Definition 2.1.
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ωX0(B(x, r))
rn−1G(X0, A(x, r)) ≈ 1,

where the implicit constants depend on n, Λ and the chord arc constants for Ω. Here 
ωX is the elliptic measure for the operator L on Ω with pole at X and G(X, Y ) is the 
L-Green function for Ω with pole at Y .

Lemma 2.17 (Doubling for elliptic measure). Let Ω ⊂ Rn+1 be a chord arc domain, 
x ∈ ∂Ω and 10r ∈ (0, diam ∂Ω). If X0 ∈ Ω \ B(x, 4r)

ωX0(B(x, 2r)) ≤ CωX0(B(x, r)),

where C depends on n, Λ and the chord arc constants for Ω.

Lemma 2.18 (Comparison principle). Let Ω ⊂ Rn+1 be a chord arc domain, x ∈ ∂Ω and 
10r ∈ (0, diam ∂Ω). If Lu = Lv = 0, u, v ≥ 0 in Ω ∩ B(x, 2r), u and v are non-trivial 
functions which vanish continuously on B(x, 2r) ∩ ∂Ω then

u(X)
v(X) ≈ u(A(x, r))

v(A(x, r)) , ∀X ∈ B(x, r) ∩ Ω,

where the implicit constants depend on n, Λ and the chord arc constants for Ω.

Lemma 2.19 (Quotients of non-negative solutions). Let Ω ⊂ Rn+1 be a chord arc domain, 
x ∈ ∂Ω and r ∈ (0, diam ∂Ω/10). If Lu = Lv = 0, u, v ≥ 0 in Ω ∩ B(x, 2r), and u

and v vanish continuously on B(x, 2r) ∩ ∂Ω, then u/v is Hölder continuous of order 
μ = μ(n, Λ, chord arc constants) in B(x, r) ∩ Ω. In particular, limY →y(u/v)(Y ) exists 
for y ∈ ∂Ω4 and, moreover,∣∣∣∣u(X)

v(X) − u(A(x, r))
v(A(x, r))

∣∣∣∣ ≤ C

(
|X − x|

r

)μ
u(A(x, r))
v(A(x, r)) , ∀X ∈ B(x, r) ∩ Ω, (2.20)

where the constant C > 0 and μ ∈ (0, 1) depend on n, Λ and the chord arc constants 
for Ω.

Next we define the kernel function. It can be more generally defined (for any X0, X1 ∈
Ω), but we use it only in this specific manner.

Lemma 2.21 (Kernel function). Let Ω ⊂ Rn+1 be a chord arc domain, x ∈ ∂Ω and 
10r ∈ (0, diam ∂Ω). If X0 ∈ Ω \ B(x, 4r) and X1 ∈ B(x, 2r) \ B(x, r) we define for 
z ∈ ∂Ω

4 Here the limit is taken within Ω.
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H(z) := H(X0, X1, z) := dωX0

dωX1
(z).

The kernel function has the estimate

|H(z)/H(y) − 1| ≤ Cζμ, ∀z, y : |z − x|, |y − x| < ζr,

for all ζ ∈ (0, 1/2), where C > 0 and μ ∈ (0, 1) depend on n, Λ and the chord arc 
constants for Ω.

Later, we will ‘localize’ the coefficients of our operator, the following lemma is useful 
in this regard.

Lemma 2.22. Let Ωi ⊂ Rn+1, i = 1, 2 be chord arc domains such that

Ω1 ∩ B(x, 10r) = Ω2 ∩ B(x, 10r)

where x ∈ ∂Ωi and r ∈ (0, diam ∂Ωi/20). Suppose further that Li = − div Ai∇ are two 
divergence form Λ-elliptic operators with A1 = A2 on B(x, 10r). Let ωX0

i be the Li-elliptic 
measure for Ωi with pole at X0 ∈ Ωi∩B(x, 8r) \B(x, 4r).5 Then ωX0

1 |B(x,r) and ωX0
2 |B(x,r)

are mutually absolutely continuous. In particular, if ωX0
1 |B(x,r) and Hn|∂Ω1∩B(x,r) are 

mutually absolutely continuous then so are ωX0
2 |B(x,r) and Hn|∂Ω2∩B(x,r).

Moreover,

dωX0
1

dωX0
2

(y) ≈ 1, ωX0
2 − a.e. y ∈ B(x, r/2) ∩ ∂Ω,

where the implicit constants depend on n, Λ and the chord arc constants for Ωi, i = 1, 2.

Sketch of the proof. Let y ∈ B(x, r) and s ∈ (0, r). Then the CFMS estimate 
(Lemma 2.16) implies that

ωX0
1 (B(y, s))

ωX0
2 (B(y, s))

≈ G1(X0, A(y, s))
G2(X0, A(y, s)) , (2.23)

where Gi(X, Y ) is the Li-Green function for Ωi. On the other hand, Bourgain’s estimate 
(Lemma 2.15) and the CFMS estimate imply that

Gi(X0, A(x, r/50))rn−1 ≈ ωX0
i (B(x, r/50) ≈ 1, i = 1, 2.

By (2.23) and the comparison principle6 (Lemma 2.18) then shows

5 This means the statements on x, r an X0 are to hold simultaneously for i = 1, 2.
6 Here we need to view Gi(X0, Y ) as a LT

i = − div AT
i ∇ null solution away from X0. This follows by the 

fact that if G(X, Y ) is the L-Green function then GT (X, Y ) = G(Y, X) is the LT -Green function. We then 
apply the comparison principle with LT in place of L.
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ωX0
1 (B(y, s))

ωX0
2 (B(y, s))

≈ G1(X0, A(y, s))
G1(X0, A(y, s)) ≈ G1(X0, A(x, r/50))

G2(X0, A(x, r/50)) ≈ 1,

where the constants depend on n, Λ and the chord arc constants for Ωi, i = 1, 2. From 
this estimate one can deduce all of the properties described in the lemma. �
2.3. Chord arc domains with small constants

We study asymptotic flatness in the form of vanishing chord arc domains. To define 
these domains, we need to give a few more preliminary definitions.

Definition 2.24 (Separation property). Let Ω ⊂ Rn+1 be a domain. We say that Ω has 
the separation property if for each compact set K ⊂ Rn+1 there exists R > 0 such that 
for any x0 ∈ ∂Ω ∩ K and r ∈ (0, R] there exists a vector �n ∈ Sn such that

{X ∈ B(x0, r) : 〈X − x0, �n〉 ≥ r/4} ⊂ Ω

and

{X ∈ B(x0, r) : 〈X − x0, �n〉 ≤ −r/4} ⊂ Ωc.

Notice that �n points ‘inward’.

Remark 2.25. Provided that ∂Ω is δ-Reifenberg flat for δ sufficiently small, there is an 
equivalent definition of the separation property, see [34, Remark 1.1].

In the sequel, D[·; ·] will be used to denote the Hausdorff distance between two sets, 
that is, for A, B ⊂ Rn+1

D[A; B] := sup{dist(a, B) : a ∈ A} + sup{dist(b, A) : b ∈ B}.

Definition 2.26 (Reifenberg flatness). Given a closed set Σ ∈ Rn+1, x0 ∈ Σ and r > 0, 
we define

Θ(x0, r) := inf
P

1
r D[Σ ∩ B(x0, r); P ∩ B(x0, r)],

where the infimum is taken over all n-planes P through x0 and

Θ(r) := sup
x0∈Σ

Θ(x0, r).

For R > 0 and δ ∈ (0, δn], where δn is sufficiently small depending only on the dimension 
(see Remark 2.27) we say Σ is (δ, R)-Reifenberg flat if

sup Θ(r) < δ.

r∈(0,R)
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Remark 2.27. The δn above is to ensure both that the definition is not vacuous and that 
if a domain has Reifenberg flat boundary and satisfies the separation property then it 
is, in fact, an NTA domain. See [33, Lemma 3.1] and Appendix A in [35].

Definition 2.28 ((δ, R)-chord arc domains). Let Ω ⊂ Rn+1 be a domain. Given δ ∈ (0, δn]
and R > 0, we say Ω is a (δ, R)-chord arc domain if

(1) Ω has the separation property (with parameter R),
(2) ∂Ω is (δ, R)-Reifenberg flat and
(3) Hn(B(x, r) ∩ ∂Ω) ≤ (1 + δ)ωnrn, for all x ∈ ∂Ω and r ∈ (0, R].

Here ωn is the volume of the n-dimensional unit ball in Rn.

Remarks 2.29.

• Since Hausdorff measure is non-increasing under projections, the δ-Riefenberg flat-
ness of the boundary in the above definition coupled with the upper bound on the 
surface measure gives the estimate

(1 − δ)ωnrn ≤ Hn(B(x, r) ∩ ∂Ω) ≤ (1 + δ)ωnrn,

for any x ∈ ∂Ω and r ∈ (0, R]. See [33, Remark 2.2].
• There is an equivalent definition of (δ, R)-chord arc domain, which is to replace the 

third assumption above by ∂Ω being Ahlfors regular (the Ahlfors regularity con-
stant is not necessarily close to one) and the unit outer normal of Ω has BMO norm 
bounded above by δ. See for example [35, Definition 1.10]. These two definitions are 
equivalent (modulo constant) by [33, Theorem 2.1] and [34, Theorem 4.2] respec-
tively. We choose the above definition in this paper for convenience.

Definition 2.30 (Vanishing chord arc domains). We say Ω is a vanishing chord arc domain

• Ω is a (δ, R)-chord arc domain for some δ ∈ (0, δn] and R > 0,
• lim supr→0+ Θ(r) = 0 (where Σ in the definition of Θ is ∂Ω) and
• limr→0+ supx∈∂Ω

Hn(B(x,r)∩∂Ω)
ωnrn = 1.

Note that if Ω is a vanishing chord arc domain then for every δ > 0 there exists Rδ > 0
such that Ω is a (δ, Rδ)-chord arc domain.

To organize our arguments involving these types of domains, we introduce some nota-
tion. Given x0 ∈ Rn+1 and �n ∈ Sn we let P (x0, �n) be the plane through x0 perpendicular 
to �n, that is,

P (x0, �n) := {X ∈ Rn+1 : 〈X − x0, �n〉 = 0};
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and additionally, for r > 0 and ξ ∈ R we define the shifted cylinder

C(x0, r, �n, ξ) :=
{

X ∈ Rn+1 : |(X − x0) − 〈X − x0, �n〉�n| ≤ r√
n + 1

,

|〈X − x0, �n〉 − ξ| ≤ r√
n + 1

}
, (2.31)

and if ξ = 0, we just write C(x0, r, �n). Given δ > 0, we also define the following truncated 
cylinders

C+
δ (x0, r, �n) :=

{
X ∈ C(x0, r, �n) : 〈X − x0, �n〉 ≥ 2δr

}
and

C−
δ (x0, r, �n) :=

{
X ∈ C(x0, r, �n) : 〈X − x0, �n〉 ≥ −2δr

}
.

Notice that both C+
δ and C−

δ are ‘upper’ portions of the cylinder C. We also define the 
‘strip’

Sδ(x0, r, �n) :=
{

X ∈ C(x0, r, �n) : |〈X − x0, �n〉| ≤ 2δr

}
.

We may omit the vector �n in the above notation when there is no confusion.
Now we connect these objects to our definition of (δ, R)-chord arc domain. Suppose 

Ω ⊂ Rn+1 is a (δ, R)-chord arc domain for some δ ∈ (0, δn] and R > 0. Given r ∈ (0, R]
and x0 ∈ ∂Ω we let Px0,r be an n-plane such that

D[∂Ω ∩ B(x0, r); Px0,r ∩ B(x0, r)] ≤ δr.

By the separation property and choice of δn sufficiently small we can ensure that for a 
choice of normal vector to the plane Px0,r, which we label �nx0,r, we have

C+
δ (x0, r) := C+

δ (x0, r, �nx0,r) ⊂ Ω

and

C(x0, r) \ C−
δ (x0, r) ⊂ Ωc,

where C(x0, r) := C(x0, r, �nx0,r) and C−
δ (x0, r) := C−

δ (x0, r, �nx0,r). (This means that �nx0,r

points inwards.) We also define

Ω̃(x0, r, ξ) = Ω ∩ C(x0, r, �nx0,r, ξ) (2.32)
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for ξ ∈ R and drop ξ from the notation when ξ = 0. We then note the following inclusions

C+
δ (x0, r) ⊂ Ω̃(x0, r) ⊂ C−

δ (x0, r)

and

C(x0, r) ∩ ∂Ω ⊂ Sδ(x0, r),

where Sδ(x0, r) := Sδ(x0, r, �nx0,r). Note that, while Ω̃(x0, r) may not be an NTA or chord 
arc domain, the estimates established above hold in a smaller dilate of C(x0, r) intersected 
with Ω̃(x0, r), when suitably interpreted (for instance, at points on the boundary of 
∂Ω ∩ C(x0, (1 − cnδ)r)). See [33, Section 4], in particular the discussion following [33, 
Remark 4.2].

Finally we recall the definitions of BMO and V MO functions.

Definition 2.33 (BMO and VMO). Let μ be a Radon measure in Rn. Then, for all 0 <
r < diam(supp μ) and all f ∈ L2(μ) we define

‖f‖∗(x, r) = sup
0<s<r

⎛⎜⎝  

B(x,s)

∣∣∣∣∣∣∣f(y) −
 

B(x,s)

f(z) dμ(z)

∣∣∣∣∣∣∣
2

dμ(y)

⎞⎟⎠
1
2

. (2.34)

We say f ∈ BMO(μ) if

‖f‖BMO(μ) := sup
0<r<diam(supp μ)

sup
x∈supp μ

‖f ||∗(x, r) < +∞.

We denote by VMO the closure of uniformly continuous functions on supp μ in the 
BMO-norm. There is also a notion of VMOloc; f ∈ VMOloc if for every compact set 
K ⊂ Rn,

lim
r→0

sup
x∈supp μ∩K

⎛⎜⎝  

B(x,s)

∣∣∣∣∣∣∣f(y) −
 

B(x,s)

f(z) dμ(z)

∣∣∣∣∣∣∣
2

dμ(y)

⎞⎟⎠
1
2

= 0. (2.35)

Remark 2.36. In this paper we will work with BMO and VMO functions with respect to 
the surface measure Hn|∂Ω, where Ω is a domain with Ahlfors regular boundary.

3. Perturbations of constant coefficient operators and Poisson kernels

In this section, we restrict our attention to the upper half space Rn+1
+ , and study 

the Poisson kernels for elliptic operators that are perturbations of constant-coefficient 
operators. Let A0 be a real, constant (n + 1) × (n + 1) matrix satisfying the Λ-ellipticity 



S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025 15
condition. We say a real (n + 1) × (n + 1) matrix satisfying the Λ-ellipticity condition is 
an ε-perturbation of A0, if A(x, t) can be decomposed as

A(x, t) = A1(x) + P (x, t) (3.1)

with

‖A0 − A1‖L∞ + ‖P (x, t)‖C ≤ ε, (3.2)

see Definition 2.4 for the definition of the Carleson norm ‖ · ‖C .
The goal of this section is to prove the following result:

Theorem 3.3. For any β̃ ∈ (0, 1), there exist δ̃ = δ̃(β̃, n, Λ) > 0 and ε = ε(β̃, n, Λ) such 
that the following holds. Suppose A = A(x, t) is a real matrix-valued function on Rn+1

+
satisfying the Λ-ellipticity condition and moreover, A is an ε-perturbation of a constant-
coefficient matrix A0 satisfying the Λ-ellipticity condition. Then the Poisson kernel for 
L = − div(A∇) in the upper half space, denoted by kX

A , satisfies

1 ≤

(ffl
Δ(y,δ′r)

[
kX

A (z)
]2

dz
)1/2

ffl
Δ(y,δ′r) kX

A (z) dz
< 1 + β̃ (3.4)

for all y ∈ Rn, r > 0, δ′ < δ̃ and X ∈ D(y, r). We recall that

D(y, r) := B(y, 10r) ∩
{

(x, t) ∈ Rn+1
+ : t >

r

2

}
is the upper cap of the ball B(y, 10r).

We will refer to the quotient in (3.4) as the B2 constant of kX
A on Δ(y, δ′r). For a 

constant-coefficient operator A0, the Poisson kernel k(0,1)
A0

is smooth, so roughly speaking

the B2 constant of k
(0,1)
A0

on Δ(0, δ) → 1 as δ → 0.

We expect the same to hold for perturbations of constant-coefficient operators. The 
above theorem says that, if a matrix A is a sufficiently small perturbation of a constant-
coefficient matrix, then its B2 constant is sufficiently close to 1 on small enough scale 
(in proportion to the distance of the pole to the boundary).

We first prove a simple estimate on the Poisson kernel of constant-coefficient operators.

Lemma 3.5 (Non-degeneracy for constant-coefficient operators). There exists a constant 
c1 = c1(n, Λ) > 0 such that the following holds. If A0 is a real, constant matrix satisfying 
the Λ-ellipticity condition, then the Poisson kernel for L0 = − div A0∇ in the upper half 
space, denoted by kA0 , satisfies
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‖kX
A0

‖L1(Δ(y,δr)) ≥ c1δn, (3.6)

‖kX
A0

‖L2(Δ(y,δr)) ≥ c1

(
δ

r

)n
2

, (3.7)

for all y ∈ Rn, r > 0, δ ∈ (0, 1] and X ∈ D(y, r).

Proof. The second inequality follows from combining (3.6) and Hölder’s inequality. Since 
the solutions to constant-coefficient operator are scale invariant, it suffices to show

‖kX
A0

‖L1(Δ(0,δ)) ≥ c1δn, for every X ∈ D(0, 1). (3.8)

We claim that it suffices to consider the case when A0 is symmetric. If not, let

A0,s := A0 + AT
0

2

be the symmetrization of A0. Since A0 is a constant coefficient matrix, the solution 
u ∈ C2, and we have

div(A0∇u) =
∑
i,j

∂i(aij∂ju) =
∑
i,j

aij ∂i∂ju

=
∑

i,j aij ∂i∂ju +
∑

i,j aji ∂i∂ju

2 = div(A0,s∇u).

Assume the matrix A0 is symmetric. By the decomposition of symmetric matrices and 
a change of variable formula, we get an explicit formula for k(0,1)

A0
:

k
(0,1)
A0

(z) = cn det(A0)− 1
2

∣∣∣∣√A0
−1
(

0
1

)∣∣∣∣∣∣∣∣√A0
−1
(

−z
1

)∣∣∣∣n+1 , (3.9)

where cn = Γ((n + 1)/2)/π(n+1)/2 is the same constant in the Poisson kernel for the 
Laplacian, and 

√
A0

−1 is defined by the diagonalization decomposition of A0 (the square 
root matrix and inverse matrix exist, since the eigenvalues of A0 are all bounded from 
below by 1/Λ). Then the lower bound (3.8) is obtained easily by (3.9) and the Harnack 
inequality. �

Next we analyze how the Poisson kernels change under a perturbation of the coefficient 
matrices.

Proposition 3.10. There exists ε0 = ε0(n, Λ) such that the following holds for every ε <
ε0. If A = A(x, t) is a real matrix valued function on Rn+1

+ satisfying the Λ-ellipticity 
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condition and moreover, A is an ε-perturbation of a real, constant-coefficient matrix A0
satisfying the Λ-ellipticity condition, then

‖k
(x,t)
A − k

(x,t)
A0

‖L2(Rn) ≤ Cεη′
t−n/2,

where C = C(n, Λ) and η′ = η′(n, Λ) > 0 and k(x,t)
A and k(x,t)

A0
(resp.) are the Poisson 

kernels for the operators L = − div A∇ and L0 = − div A0∇ (resp.) in the upper half 
space.

Remark 3.11. The above proposition could be amended, for instance, to include the 
case of perturbations of real, t-independent, symmetric coefficients, but the case of a 
perturbation of constant coefficients is sufficient for our purposes.

Proof. Without loss of generality assume x = 0. By the explicit formula in (3.9), it is 
easy to see that the kernel k

(0,1)
A0

for the constant coefficient matrix A0 has the form 
c(

1+a2
1z2

1+···+a2
n−1z2

n−1
)n+1

2
, and thus k(0,1)

A0
∈ L2(Rn). Fix t > 0. We can similarly get that 

k
(0,t)
A0

∈ L2(Rn).
Our first goal is to show

‖k
(0,t)
A1

− k
(0,t)
A0

‖L2(Rn) ≤ Cεη′
t−n/2, (3.12)

where A1(x) is the t-independent part in the decomposition (3.1) of A.
To that end we use the L2-duality:

‖k
(0,t)
A1

− k
(0,t)
A0

‖L2(Rn) = sup
‖f‖L2(Rn)=1

∣∣∣∣∣∣
ˆ

Rn

(
k

(0,t)
A1

(y) − k
(0,t)
A0

(y)
)

f(y) dy

∣∣∣∣∣∣
= sup

‖f‖L2(Rn)=1

∣∣u1
f (0, t) − u0

f (0, t)
∣∣ , (3.13)

where for each f ∈ L2(Rn), we define

ui
f (x, t) =

ˆ

Rn

k
(x,t)
Ai

(y)f(y)dy, i = 0, 1. (3.14)

They are solutions to the Dirichlet problem for the operators Li = − div Ai∇ with 
data f . Note that when we consider (not necessarily symmetric) elliptic operators in an 
unbounded domain Rn+1

+ , there may be several weak solutions to the Dirichlet problem, 
depending on which function spaces we consider (see [7] for example). Throughout the 
paper, we will refer to the solution obtained as in (3.14) (i.e. by integrating the boundary 
data against the elliptic measure) as the elliptic measure solution. In particular when 
0 ≤ f ∈ C∞

c (Rn) the elliptic measure always satisfies 0 ≤ uf (t, x) ≤ sup |f |.
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From the work of Auscher, Axelsson and Hofmann [3, Theorem 1.1] on L∞ perturba-
tion result of the boundary value problem, the Dirichlet problem to − div(A1(x)∇u) = 0
with L2 boundary data is well defined: for every f ∈ L2(Rn) there exist solutions ûi

f , 
i = 0, 1, such that

‖Ñ∗û1
f ‖L2(Rn), ‖Ñ∗û0

f ‖L2(Rn) ≤ C‖f‖L2(Rn); (3.15)

moreover, we have

‖Ñ∗(û1
f − û0

f )‖L2(Rn) ≤ Cε‖f‖L2(Rn), (3.16)

provided that ε > 0 in the statement of the theorem is small enough depending on n
and Λ. We remark that this requires the use of (complex) analytic perturbations, but 
we restrict to a “real neighborhood”, where the result is (trivially) also true. When the 
boundary data satisfy 0 ≤ f ∈ C∞

c (Rn), these two solutions agree, i.e. ui
f = ûi

f . We 
defer the proof to Subsection A.5 of Appendix A.

With (x, t) = (0, t) fixed, we define W := W (0, t) = Δ(0, t/2) × (t/2, 3t/2) and for 
γ ∈ (0, 1] we define γW = Δ(0, γt/2) × (t − γt

2 , t + γt
2 ). We make the observation that 

for γ ≤ 1/2, γW ⊂ W (y, t)7 for all y ∈ Δ(x, t/4). It follows that for γ ∈ (0, 1/2] and 
y ∈ Δ(x, t/4)

⎛⎝−−−
¨

γW

|ui
f (Y )|2 dY

⎞⎠1/2

≤ Cγ−(n+1)/2

⎛⎜⎝ −−−
¨

W (y,t)

|ui
f (Y )|2 dY

⎞⎟⎠
1/2

≤ Cγ−(n+1)/2Ñ∗ui
f (y)

for i = 0, 1. Averaging over y ∈ Δ(x, t/4) and using (3.15) we see

⎛⎝−−−
¨

γW

|ui
f (Y )|2 dY

⎞⎠1/2

≤ Cγ−(n+1)/2t−n/2‖Ñ∗ui
f ‖L2(Δ(x,t/4))

≤ Cγ−(n+1)/2t−n/2‖f‖L2(Rn) (3.17)

for i = 0, 1. Similarly by (3.16), we obtain that for γ ∈ (0, 1/2]∣∣∣∣∣∣−−−
¨

γW

(
u1

f (Y ) − u0
f (Y )

)
dY

∣∣∣∣∣∣ ≤ Cεγ−(n+1)/2t−n/2‖f‖L2(Rn). (3.18)

7 See Definition 2.4.
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Now we recall that solutions to divergence-form (real-valued) elliptic operators satisfy 
interior Hölder regularity, by DeGiorgi-Nash-Moser theory [16,42,38]. Thus for Y, Z ∈
(1/4)W and i = 0, 1

|ui
f (Y ) − ui

f (Z)| ≤ C

(
|Y − Z|

t

)η

⎛⎜⎝ −−−
¨

(1/2)W

|ui
f |2

⎞⎟⎠
1/2

≤ C

(
|Y − Z|

t

)η

t−n/2‖f‖L2(Rn),

(3.19)
where we used (3.17) with γ = 1/2 in the second inequality, and the constants C and 
η > 0 depend only on n and Λ. In particular, if we let Y = (0, t) and average over 
Z ∈ γW ⊂ (1/4)W we obtain∣∣∣∣∣∣ui

f (0, t) − −−−
¨

γW

ui
f (Z)dZ

∣∣∣∣∣∣ ≤ γηt−n/2‖f‖L2(Rn) (3.20)

for i = 0, 1.
Setting γ = ε

2
2η+n+1 and then using the triangle inequality, (3.18) and (3.20) we obtain

|u1
f (0, t) − u0

f (0, t)| ≤ C(γη + εγ−(n+1)/2)t−n/2‖f‖L2(Rn) ≤ Cεη′
t−n/2‖f‖L2(Rn), (3.21)

where η′ = 2η
2η+n+1 . Then the claim (3.12) follows from combining (3.21) and the L2

duality (3.13).
Next, we show

‖k
(0,t)
A1

− k
(0,t)
A ‖L2(Rn) ≤ Cεη′

t−n/2. (3.22)

This will follow exactly as the proof of (3.12), provided we have the analogous estimates 
to (3.15) and (3.16). These are afforded by the work of Auscher and Axelsson [1] on the 
boundary value problems for perturbations of t-independent operators.8 Let f ∈ L2(Rn)
and let uf be the (unique) solution to the L2-Dirichlet problem for the operator L =
− div A∇. With u1

f as before, we may use [1, Sections 9 and 10]

‖Ñ∗uf ‖L2(Rn) ≤ C‖f‖L2(Rn) (3.23)

and

‖Ñ
3/2
∗ (uf − u1

f )‖L2(Rn) ≤ Cε‖f‖L2(Rn), (3.24)

8 In particular, we must use the representation in [1, Equation (42)] and the bounds established in [1, 
Theorem 9.2, Lemma 10.2]. Here it should be noted that the functions ̃h+ used in the expression [1, Equation 
(42)] are also in a perturbative regime with linear dependence on the FKP-Carleson norm, see the proof of 
[1, Corollary 9.5]. See Appendix A.
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provided that ε is small depending on n and Λ. We discuss the derivation of these two 
estimates in detail in Appendix A.

Above we have Lp-averages with p = 3/2 in the definition of Ñ
3/2
∗ , but we obtain 

‘comparability’ of L2 and L3/2 averages using Moser’s local boundedness estimate for 
solutions since we work with real-valued elliptic operators. To be more precise, by de-
noting W̃ (x, t) := Δ(x, t) × (t/4, t) ⊃ W (x, t), Moser type estimate gives

sup
Y ∈W (x,t)

|uf (Y )| �

⎛⎜⎝  

W̃ (x,2t)

|uf |2 dyds

⎞⎟⎠
1/2

≤ N̂∗(uf )(x),

where N̂∗(uf ) is the non-tangential maximal function defined as Ñ∗(uf ) in (2.6), but 
with a fatter Whitney region W̃ (x, t) in place of W (x, t). On the other hand, it is a clas-
sical result that ‖Ñ∗(uf )‖L2(Rn) ≈ ‖N̂∗(uf )‖L2(Rn) (i.e. the L2-norm of non-tangential 
maximal function is independent of the opening angle). The same holds for u1

f . Hence 
we get

‖Ñ∗(uf − u1
f )‖L2(Rn) �

∥∥∥∥(N̂∗(uf )
)1/4

·
(

Ñ
3/2
∗ (uf − u1

f )
)3/4

∥∥∥∥
L2(Rn)

+
∥∥∥∥(N̂∗(u1

f )
)1/4

·
(

Ñ
3/2
∗ (uf − u1

f )
)3/4

∥∥∥∥
L2(Rn)

�
(

‖Ñ∗(uf )‖1/4
L2(Rn) + ‖Ñ∗(u1

f )‖1/4
L2(Rn)

)
‖Ñ

3/2
∗ (uf − u1

f )‖3/4
L2(Rn)

≤ Cε3/4‖f‖L2(Rn), (3.25)

where the last estimate follows by combining (3.23) and (3.24). The inequalities (3.23)
and (3.25) are the direct analogue of (3.15) and (3.16). Proceeding exactly as before we 
obtain (3.22), and combining this with (3.12) we have

‖k
(x,t)
A − k

(x,t)
A0

‖L2(Rn) ≤ Cεη′
t−n/2,

as desired. �
Proposition 3.10 has one unfortunate drawback the estimate depends on the placement 

of the pole. This stops us from working with the small scales without doing some extra 
work. In order to do work with the small scales, we take three steps:

(1) Use Proposition 3.10 to immediately give us a good ‘single-scale B2 type estimate’ 
for perturbations of constant coefficient operators (Corollary 3.26).

(2) Observe how the change of pole argument interacts with single-scale B2 estimates 
to allow us to move down to small scales (Lemma 3.28) by paying a (controllable) 
penalty.
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(3) Combining (1) and (2) we obtain a good estimate for perturbations of constant 
coefficient operators down to small scales (Corollary 3.30).

Corollary 3.26. For every β ∈ (0, 1) and δ ∈ (0, 1) there exists ε1 = ε1(δ, β, n, Λ) ∈ (0, ε0)
such that the following holds. Suppose A = A(x, t) is a real matrix-valued function on 
Rn+1

+ satisfying the Λ-ellipticity condition and A is an ε1-perturbation of a real, constant-
coefficient matrix A0 satisfying the Λ-ellipticity condition. Then

(ffl
Δ(y,δr)

[
kX

A (z)
]2

dz
)1/2

ffl
Δ(y,δr) kX

A (z) dz
≤ (1 + β)

(ffl
Δ(y,δr)

[
kX

A0
(z)
]2

dz
)1/2

ffl
Δ(y,δr) kX

A0
(z) dz

(3.27)

for all y ∈ Rn, r > 0, y ∈ Rn and X ∈ D(y, r).

Proof. Let β1 ∈ (0, 1) be fixed, whose value will be chosen later. By Proposition 3.10
and Lemma 3.5, if ε1 is chosen so that Cεη′

1 ≤ β1c1δn/2 we have

‖kX
A − kX

A0
‖L2(Δ(y,δr)) ≤ β1‖kX

A0
‖L2(Δ(y,δr))

and

‖kX
A − kX

A0
‖L1(Δ(y,δr)) ≤ β1‖kX

A0
‖L1(Δ(y,δr)).

Thus, for this choice of ε1 we have

‖kX
A ‖L2(Δ(y,δr))

‖kX
A ‖L1(Δ(y,δr))

≤ 1 + β1

1 − β1

‖kX
A0

‖L2(Δ(y,δr))

‖kX
A0

‖L1(Δ(y,δr))
,

which yields (3.27) upon normalization and appropriate choice of β1 (so that 1+β1
1−β1

≤
1 + β). �

The above corollary says that for any β ∈ (0, 1), if A is a small perturbation of a 
constant-coefficient matrix A0, then the B2 constant of kX

A is bounded by (1 + β) times 
that of kX

A0
. As mentioned above, the caveat is that the smallness also depends on δ, 

which is the ratio between the radius of the surface ball in consideration and the distance 
from the pole to the boundary. This prevents us from getting B2 type estimates for all 
sufficiently small scales (with fixed pole). We will overcome this by a ‘good change of 
pole’.

Lemma 3.28 (Change of pole comparison). Let L = − div A∇ be a real divergence form 
operator on Rn+1

+ , with A satisfying the Λ-ellipticity condition. We also assume the 
corresponding Poisson kernel kA exists and is in L2

loc(Rn). There are constants δ0 =
δ0(n, Λ) ∈ (0, 1) and C = C(n, Λ) > 1 such that for any δ ∈ (0, δ0) fixed,
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(1 − Cδμ)

⎛⎝ffl
Δ(y,δ′r)

(
k

(y,
δ′

δ r)
A (z)

)2
⎞⎠1/2

ffl
Δ(y,δ′r) k

(y,
δ′

δ r)
A (z)

≤

(ffl
Δ(y,δ′r)

(
kX

A (z)
)2)1/2

ffl
Δ(y,δ′r) kX

A (z)

≤ (1 + Cδμ)

⎛⎝ffl
Δ(y,δ′r)

(
k

(y,
δ′

δ r)
A (z)

)2
⎞⎠1/2

ffl
Δ(y,δ′r) k

(y,
δ′

δ r)
A (z)

(3.29)

for any y ∈ Rn, r > 0, δ′ ∈ (0, δ/10] and X ∈ D(y, r).

Proof. We apply Lemma 2.21, which allows us to change poles of the elliptic measure, 
to the upper half space Rn+1

+ . To be precise, we consider the radius s := 2
3

δ′

δ r, ζ = 3
2δ ∈

(0, 1/2) and poles X0 = X ∈ D(y, r) and X1 = (y, δ′r/δ). The fact that X0 /∈ B(y, 4s)
follows from the assumption δ′ ≤ δ/10, and clearly X1 ∈ B(y, 2s) \ B(y, s). Then there 
are constants C, μ > 0 such that the kernel function

H(z) = dωX

dω(y, δ′
δ r)

(z)

satisfies ∣∣∣∣H(z)
H(y) − 1

∣∣∣∣ ≤ Cδμ, for every z ∈ Δ(y, ζs) = Δ(y, δ′r).

Hence when δ is sufficiently small, we have for every z, z′ ∈ Δ(y, δ′r),

H(z)
H(z′) ≤ H(y)(1 + Cδμ)

H(y)(1 − Cδμ) ≤ 1 + C ′δμ.

On the other hand,

kX
A (z) = dωX

dσ
(z) = H(z) dω(y, δ′

δ r)

dσ
(z) = H(z) k

(y, δ′
δ r)

A (z).

Therefore

(ffl
Δ(y,δ′r)

(
kX

A (z)
)2)1/2

ffl
Δ(y,δ′r) kX

A (z)
≤ sup

z,z′∈Δ(y,δ′r)

H(z)
H(z′) ·

⎛⎝ffl
Δ(y,δ′r)

(
k

(y,
δ′

δ r)
A (z)

)2
⎞⎠1/2

ffl
′ k

(y,
δ′

δ r)
(z)
Δ(y,δ r) A
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≤ (1 + C ′δμ)

⎛⎝ffl
Δ(y,δ′r)

(
k

(y,
δ′

δ r)
A (z)

)2
⎞⎠1/2

ffl
Δ(y,δ′r) k

(y,
δ′

δ r)
A (z)

.

This is the second inequality of (3.29). The first inequality is obtained similarly. �
Corollary 3.30. For every β ∈ (0, 1) and δ ∈ (0, δ0), where δ0 is from Lemma 3.28, there 
exists ε1 = ε1(δ, β, n, Λ) ∈ (0, ε0) such that the following holds for every ε < ε1. (Here ε0
is as in Proposition 3.10.)

If A = A(x, t) is a real matrix valued function on Rn+1
+ satisfying the Λ-ellipticity 

condition and moreover, A is an ε-perturbation of a real, constant-coefficient matrix A0
satisfying the Λ-ellipticity condition, then

(ffl
Δ(y,δ′r)

[
kX

A (z)
]2

dz
)1/2

ffl
Δ(y,δ′r) kX

A (z) dz
≤ (1 + Cδμ)(1 + β)

(ffl
Δ(0,δ)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ) k

(0,1)
A0

(z) dz
(3.31)

for every y ∈ Rn, r > 0, δ′ ∈ (0, δ/10] and X ∈ D(y, r).

Proof. The proof is by combining Corollary 3.26 and the change of pole comparison in 
Lemma 3.28. Set s = δ′

δ r, the estimates (3.29) and (3.27) yield

(ffl
Δ(y,δ′r)

(
kX

A (z)
)2)1/2

ffl
Δ(y,δ′r) kX

A (z)
≤ (1 + Cδμ)

(ffl
Δ(y,δs)

(
k

(y,s)
A (z)

)2
)1/2

ffl
Δ(y,δs) k

(y,s)
A (z)

≤ (1 + Cδμ)(1 + β)

(ffl
Δ(y,δs)

(
k

(y,s)
A0

(z)
)2
)1/2

ffl
Δ(y,δs) k

(y,s)
A0

(z)

≤ (1 + Cδμ)(1 + β)

(ffl
Δ(0,δ)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ) k

(0,1)
A0

(z) dz
,

where we use the translation and dilation invariance for kA0 , i.e. Poisson kernel for 
constant-coefficient operator, in the last estimate. �

We now apply Corollary 3.30 twice. The first application is to get uniform control 
on the scale at which the B2 constant becomes ‘near optimal’ for constant coefficient 
operators. Surely (3.9) allows us to show the following Lemma, but we prove this via a 
compactness argument here only using the smoothness of the Poisson kernel for constant 
coefficient operators and the previous corollary.
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Lemma 3.32. For every β′ ∈ (0, 1) there exists δ1 = δ1(β′, n, Λ) ∈ (0, δ0) such that for 
any real, constant-coefficient elliptic matrix A0 satisfying the Λ ellipticity condition, we 
have (ffl

Δ(0,δ)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ) k

(0,1)
A0

(z) dz
≤ 1 + β′

for all δ ∈ (0, δ1).

Proof. Let β′ ∈ (0, 1) and set Λ′ = 2Λ. Let β ∈ (0, 1) and δ2 ∈ (0, δ0) be such that

(1 + Cδμ
2 )(1 + β)2 ≤ 1 + β′,

where δ0 = δ0(n, Λ′) is as in Lemma 3.28 for Λ′. By (3.9), for every real, constant 
A0 satisfying the Λ-ellipticity condition we have that k(0,1)

A0
(z) is a smooth function in z. 

Smoothness, combined with the non-degeneracy (3.6), yields that there exists δ̃ = δ̃(A0), 
which we may assume is less than δ2, such that

(ffl
Δ(0,δ̃)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ̃) k

(0,1)
A0

(z) dz
≤ 1 + β.

Thus, the estimate (3.31) in Corollary 3.30 implies that there exists9 ε̃1 = ε̃1(δ̃, β, n, Λ′) <
(5Λ)−1 such that if A′

0 is a real, constant coefficient matrix the Λ′-ellipticity condition 
and ‖A0 − A′

0‖L∞ < ε̃1

(ffl
Δ(0,δ)

[
k

(0,1)
A′

0
(z)
]2

dz

)1/2

ffl
Δ(0,δ) k

(0,1)
A′

0
(z) dz

≤ (1 + Cδ̃μ)(1 + β)

(ffl
Δ(0,δ̃)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ̃) k

(0,1)
A0

(z) dz

≤ 1 + β′,

for all δ ∈ (0, ̃δ/10]. On the other hand, the collection of balls of the form B∞(A0, ̃ε1(A0))
:= {A′

0 : ‖A0−A′
0‖L∞ < ε̃1(A0)}, as A0 ranges over all real, constant-coefficient matrices, 

forms an open10 cover of the set of all real, constant-coefficient matrices satisfying the 
Λ-ellipticity condition (in the L∞-metric), which is a compact set. We may then extract 
a finite sub-cover {Bi} = {B(Ai

0, ̃ε1(Ai
0))} from which the conclusion of the theorem 

follows by letting δ1 := mini δ̃(Ai
0)/10. �

9 Note that, in particular, ε̃1 = ε̃1(A0) since δ̃ (momentarily) depends on A0.
10 This is why we employed the use of Λ′ and made the restriction ε̃1 < (5Λ)−1.
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Now we are ready to conclude our treatment of perturbations of constant-coefficient 
operators. We are (finally) able to say, quantitatively, that sufficient proximity to a 
constant-coefficient operator in the sense of (3.2) controls the B2 constant at small 
scales.

Proof of Theorem 3.3. Let β′ ∈ (0, 1) be such that (1 + β′)2 = 1 + β̃/2. Next, we choose 
δ ∈ (0, δ1), where δ1 = δ1(β′, n, Λ) is from Lemma 3.32, small enough so that

(1 + Cδμ)(1 + β′)2 ≤ 1 + β̃.

We apply Corollary 3.30 with β = β′ and δ as above. It follows that if ε = ε1(δ, β′, n, Λ) >
0 is as in Corollary 3.30 (with β = β′) we have for all A satisfying the hypothesis of the 
theorem

(ffl
Δ(y,δ′r)

[
kX

A (z)
]2

dz
)1/2

ffl
Δ(y,δ′r) kX

A (z) dz
≤ (1 + Cδμ)(1 + β′)

(ffl
Δ(y,δ)

[
k

(0,1)
A0

(z)
]2

dz

)1/2

ffl
Δ(0,δ) k

(0,1)
A0

(z) dz

≤ 1 + β̃,

for all y ∈ Rn, r > 0, δ′ ∈ (0, δ/10] and X ∈ D(x, r), where we use that δ ∈ (0, δ1)
and Lemma 3.32 in the second line. Setting δ̃ = δ/10 we obtain the conclusion of the 
theorem.

4. Operators with Hölder coefficients in Lipschitz domains

In this section, we modify Hölder-continuous coefficient matrices (in Lipschitz do-
mains) so that they are small perturbations of constant coefficient matrices, and this 
will allow us to use the results of Section 3. We will rely on the “flat” transformation 
between Lipschitz domains and the upper half space. The relevant computations are 
standard, so we include them in Appendix C. But we suggest reader to first read the 
notation and statements in Appendix C, since we rely heavily on them in this section. 
For instance, we often employ the ‘flattening map’ Φ defined in Appendix C.

In what follows, if τ > 0 we let Qτ be the open n-dimensional cube centered at zero 
with side length 2τ , that is, Qτ = {x ∈ Rn : |x|∞ < τ}.

Lemma 4.1. Let ϕ : Rn → R, ϕ(0) = 0 be a Lipschitz function with Lipschitz constant 
γ ≤ 1

50n . Suppose A is a Λ-elliptic matrix satisfying the Hölder condition (1.2). Then 
for τ > 0 the matrix-valued function11

11 We remind the reader that RQτ ,ϕ is the ϕ-adapted Carleson box, defined in (C.3).
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Aτ,ϕ(x, t) :=

⎧⎪⎪⎨⎪⎪⎩
A(0) if x /∈ Qτ

A(x, t) if (x, t) ∈ RQτ ,ϕ

A(x, ϕ(x)) otherwise

has the decomposition

Aτ,ϕ(x, t) = A1(x) + P (x, t),

with

‖A1 − A(0)‖L∞(Rn) + ‖P‖Cϕ
< C1τα, (4.2)

where C1 depends on CA, n and α. Here

A1(x) := A(x, ϕ(x))1Qτ
(x) + A(0)(1 − 1Qτ

(x)), and BP (x, t) := Aτ,ϕ(x, t) − A1(x).

In particular, Ã = JT
Φ (Aτ,ϕ ◦ Φ−1)JΦ is a real, 4Λ-elliptic matrix with the decomposi-

tion

Ã(x, t) = Ã1(x) + P̃ (x, t),

satisfying

‖Ã1 − A′
0‖L∞(Rn) + ‖P̃‖C < 2C1τα + 4

√
nγΛ,

where Ã1 := JT
Φ (A1 ◦ Φ−1)JΦ = JT

Φ (A1)JΦ, P̃ := JT
Φ (B ◦ Φ−1)JΦ and A′

0 :=
JT

Φ (0)A(0)JΦ(0).

Proof. Fix τ > 0. The second statement concerning Ã, its decomposition and the corre-
sponding bounds follows immediately from Proposition C.6 and (4.2).

To prove the estimate (4.2), we begin with the L∞ estimate for A1(x) −A0. For x ∈ Qτ

|A1(x) − A(0)| = |A(x, ϕ(x)) − A(0)| ≤ CA|(x, ϕ(x))|α � τα,

where the implicit constant depends on CA, n and α. Since A1(x) = A(0) for x /∈ Qτ , 
we have obtained the estimate ‖A1 − A(0)‖L∞(Rn) < Cτα.

We are left with estimating the ϕ-adapted Carleson norm of P := Aτ,ϕ − A1. For any 
X ∈ RQτ ,ϕ, we write X = (x, ϕ(x) + t) ∈ Ωϕ and X̂ = (x, ϕ(x)). Hence

|P (X)| = |Aτ,ϕ(X) − A1(X)| = |A(X) − A(X̂)| ≤ CAtα.

Since P (X) ≡ 0 in (RQτ ,ϕ)c it follows that for any cube Q ⊂ Rn
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‖P‖Cϕ
= sup

Q⊂Rn

⎛⎜⎝ 1
|Q|

¨

RQ,ϕ

‖P ‖2
L∞(Wϕ(y,s))

dy ds

s − ϕ(y)

⎞⎟⎠
1/2

= sup
Q⊂Rn

⎛⎜⎝ 1
|Q|


(Q)ˆ

0

ˆ

Q

‖P ◦ Φ−1‖2
L∞(W (x,t))

dx dt

t

⎞⎟⎠
1/2

≤ C sup
Q⊂Rn

⎛⎜⎝ min(
(Q),4τ)ˆ

0

t2α−1 dt

⎞⎟⎠
1/2

≤ Cτα,

where we used the flattening change of variables in the second line. Combining our 
estimates for ‖A1 − A(0)‖L∞(Rn) and ‖P ‖Cϕ

we obtain (4.2). �
The next Proposition says that the modified coefficient matrix enjoys an almost op-

timal reverse-Hölder estimate.

Proposition 4.3. Let β > 0. There exist δβ , γβ , τβ > 0 depending on β and allowable 
constants such that the following holds.

Assume A is a real, Λ-elliptic matrix-valued function satisfying the Hölder condition 
(1.2), and ϕ : Rn → R, ϕ(0) = 0, is Lipschitz with ‖∇ϕ‖∞ ≤ γβ. Then for all τ ∈ (0, τβ), 
the Poisson kernel (denoted by hX

τ,ϕ) for Lτ,ϕ = − div Aτ,ϕ∇12 and the domain Ωϕ with 
pole X ∈ Ωϕ satisfies

(ffl
Δϕ(y,δr)(h

X
τ,ϕ)2 dσ

)1/2

ffl
Δϕ(y,δr) hX

τ,ϕ dσ
≤ 1 + β, (4.4)

for all y ∈ Rn, r > 0, δ ∈ (0, δβ) and X ∈ Φ−1(D(y, r)). Here σ is the surface measure 
to Graph(ϕ) = {(x, ϕ(x)) : x ∈ Rn}, Δϕ(y, δr) := B((y, ϕ(y)), δr) ∩ Graph(ϕ) is the 
surface ball, and Φ is the flattening map for ϕ.

Proof. Let β̃ = min{1, β/2} and let kZ
Ã

be the “pulled back” Poisson kernel, that is, kZ
Ã

is the Poisson kernel in the upper half space for L̃ = − div Ã∇, where Ã = JT
Φ (Aτ,ϕ ◦

Φ−1)JΦ. Using Lemma 4.1, there exists A′
0, a real, constant 4Λ-elliptic matrix such that 

Ã has the decomposition

Ã(x, t) = Ã1(x) + P̃ (x, t)

and

12 See Lemma 4.1.
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‖Ã − A′
0‖L∞ + ‖P̃‖C ≤ 2C1τα

β + 4
√

nγβΛ.

In particular we may initially choose τβ and γβ small depending on β̃ and allowable 
constants, to guarantee that Ã is an ε(β̃)-perturbation of the constant-coefficient matrix 
A′

0 (as in (3.1), (3.2)), so that by Theorem 3.3 we have

(ffl
Δ(y,δ′r)

[
kZ

Ã
(x′)
]2

dx′
)1/2

ffl
Δ(y,δ′r) kZ

Ã
(x′) dx′ < 1 + β̃ ≤ 2 (4.5)

for any y ∈ Rn, r > 0, δ′ ∈ (0, ̃δ) and Z ∈ D(y, r). The constant δ̃ = δ̃(β̃, n, Λ) was 
determined in Theorem 3.3. We now fix τβ and set δβ = δ̃, but we will further restrict 
γβ in order to control the errors coming from the flattening change of variables.

Fix r > 0, δ ∈ (0, δβ), y ∈ Rn and X ∈ Φ−1(D(y, r)) and set Z = Φ(X) ∈ D(y, r). 
Let P : Rn+1 → Rn be the projection operator, that is, P (x, t) := x for all (x, t) ∈ Rn+1. 
By Proposition C.1 and (4.5)

(ffl
Δϕ(y,δr)(h

X
τ,ϕ)2 dσ

)1/2

ffl
Δϕ(y,δr)(hX

τ,ϕ)2 dσ
≤ Hn(Δϕ(y, δr))

|P (Δϕ(y, δr))|

(ffl
P (Δϕ(y,δr))

[
kZ

Ã
(x′)
]2

dx′
)1/2

ffl
P (Δϕ(y,δr)) kZ

Ã
(x′) dx′ , (4.6)

where the error term comes from changing the averages. Let us now make the simple 
observation that for x0 ∈ Rn and r0 > 0

Δ(x0, r0(1 + ‖∇ϕ‖2
∞)−1/2) ⊆ P (Δϕ(x0, r0)) ⊆ Δ(x0, r0)), (4.7)

where the second inclusion is obvious and the first, similarly, is a consequence of the 
Pythagorean theorem. Indeed, if x ∈ Δ(x0, r0(1 + ‖∇ϕ‖2

∞)−1/2) then

|(x, ϕ(x)) − (x0, ϕ(x0))|2 ≤ |x − x0|2 + ‖∇ϕ‖2
∞|x − x0|2 < r0.

The inclusions in (4.7) give the estimate

|Δ(y, δr)|
Hn(P (Δϕ(y, δr))) ≤ (δr)n

(
δr√

1 + ‖∇ϕ‖2
∞

)−n

= (1 + ‖∇ϕ‖2
∞)−n/2.

The above estimate and (4.7) yield

⎛⎜⎝  

P (Δϕ(y,δr))

[
kZ

Ã
(x′)
]2

dx′

⎞⎟⎠
1/2

≤ (1 + ‖∇ϕ‖2
∞)n/4

⎛⎜⎝  

Δ(y,δr)

[
kZ

Ã
(x′)
]2

dx′

⎞⎟⎠
1/2

. (4.8)

Again using (4.7) we have
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P (Δϕ(y,δr))

kZ
Ã

(x′) dx′ ≥
ωZ

Ã
(Δ(y, δr(1 + ‖∇ϕ‖2

∞)−1/2))
|P (Δϕ(y, δr))|

≥
ωZ

Ã
(Δ(y, δr(1 + ‖∇ϕ‖2

∞)−1/2))
ωZ

Ã
(Δ(y, δr))

 

Δ(y,δr)

kZ
Ã

(x′) dx′,

(4.9)

where ωZ
Ã

= kZ
Ã

dx′ is the elliptic measure for L̃ on Rn+1
+ .

Combining (4.6), (4.8) and (4.9) with the estimate

Hn(Δϕ(y, δr)) ≤
√

1 + ‖∇ϕ‖2
∞ |P (Δϕ(y, δr))|

we have(ffl
Δϕ(y,δr)(h

X
τ,ϕ)2 dσ

)1/2

ffl
Δϕ(y,δr)(hX

τ,ϕ)2 dσ
≤ (1 + β̃)(1 + ‖∇ϕ‖2

∞)
n+1

4
ωZ

Ã
(Δ(y, δr))

ωZ
Ã

(Δ(y, δr(1 + ‖∇ϕ‖2
∞)−1/2))

(4.10)
where we used (4.5) to control the ratio of the averages of kZ

Ã
by (1 + β̃). Clearly we can 

make (1 + ‖∇ϕ‖2
∞) n+1

4 sufficiently close to one by choice of γβ, so we need to handle the 
ratios of the elliptic measure. This can be done in a variety of ways, but we choose to 
do it directly with the following.

Claim 4.11. Let s > 0 and suppose μ = f dx for f ≥ 0, f ∈ L1(Δ(y, s)) satisfies

⎛⎜⎝  

Δ(y,s)

f2 dx

⎞⎟⎠
1/2

≤ 2
 

Δ(y,s)

f dx. (4.12)

Then for s′ ∈ ([1 − (1/4)]1/ns, s),

μ(Δs)
μ(Δs′) ≤ 1

1 − 2
(

sn−(s′)n

sn

)1/2 ,

where Δs′ := Δ(y, s′) and Δs := Δ(y, s).

Proof of Claim 4.11. The proof is a direct consequence of (4.12) and Hölder’s inequality. 
Indeed,

μ(Δs \ Δs′) =
ˆ

f dx ≤ Hn(Δs \ Δs′)1/2

⎛⎜⎝ ˆ
f2 dx

⎞⎟⎠
1/2
Δs\Δs′ Δs\Δs′
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≤ |Δs \ Δs′ |1/2

⎛⎝ˆ
Δs

f2 dx

⎞⎠1/2

≤ 2
(

|Δs \ Δs′ |
|Δs|

)1/2

μ(Δs)

≤ 2
(

sn − (s′)n

sn

)1/2

μ(Δs)

where we used (4.12) in the second to last line. With this inequality in hand, we easily 
prove the claim by writing

μ(Δs)
μ(Δs′) = 1 + μ(Δs \ Δs′)

μ(Δs′) ≤ 1 + 2
(

sn − (s′)n

sn

)1/2
μ(Δs)
μ(Δs′) . �

The estimate (4.5) allows us to apply Claim 4.11 to the measure μ = ωZ
Ã

, s = δr

and s′ = δr(1 + ‖∇ϕ‖2
∞)−1/2, where s′ will satisfy the hypothesis of the claim by the 

smallness of γβ . This yields the estimate

ωZ
Ã

(Δ(y, δr))
ωZ

Ã
(Δ(y, δr(1 + ‖∇ϕ‖2

∞)−1/2))
≤ 1

1 − 2
(

1 − (1 + γ2
β)−n/2

)1/2 .

This estimate in concert with (4.10) and choice of γβ sufficiently small gives

(ffl
Δϕ(y,δr)(h

X
τ,ϕ)2 dσ

)1/2

ffl
Δϕ(y,δr)(hX

τ,ϕ)2 dσ
≤ (1 + β̃)

(1 + γ2
β) n+1

4

1 − 2
(

1 − (1 + γ2
β)−n/2

)1/2

≤ (1 + β),

where we recall that 1 + β̃ ≤ 1 + β/2. �
5. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. To begin, we require an ‘almost 
optimal’ version of Lemma 2.22 (which is a comparison between elliptic measures of two 
operators who agree locally), after we impose sufficient flatness on the boundary and 
Hölder regularity on the coefficients. This almost-optimal comparison will allow us to 
transfer the almost-optimal reverse Hölder estimate in Proposition 4.3 of the modified 
coefficient matrix to that of the original matrix, in local regions of sufficiently flat Lip-
schitz domains. We will also use this almost-optimal comparison to relate the Poisson 
kernel for a (δ, R)-chord arc domain Ω and its localized domain Ω̃(x0, r), which can be 



S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025 31
approximated by Lipschitz domains from inside and outside. The notation used here can 
be found at the end of Section 2.3.

Until we get to the proof of Theorem 1.1 we largely follow [40], tightening the presen-
tation along the way. We begin with a lemma which resembles [40, Lemma 3.7].

Lemma 5.1. Let Ω be a (δ, R)-chord arc domain with δ < δn. There exists a constant M ′

depending on the dimension so that the following holds. Let M ≥ M ′, 0 < s < R/M , 
x0 ∈ ∂Ω and ξ ∈ (−s/100, s/100) and set

C := C(x0, Ms, �nx0,Ms, ξ),

defined in (2.31), and Ω1 := C ∩ Ω. Suppose that

• Ω2 is a chord arc domain satisfying Ω2 ∩ C = Ω1.
• A1 and A2 are coefficient matrices defined on Ω1 and Ω2, respectively, such that 

A1 = A2 on Ω1.

For i = 1, 2, let ωi be the elliptic measure for the operator in Li := − div Ai∇ in Ωi and 
Gi(X, Y ) be the Green function for Li in Ω1. If X ∈ B(x0, 10−8(n + 1)−1/2Ms), it holds

dωX
1

dωX
2

(y) = lim
Y →y

G1(X, Y )
G2(X, Y ) , (5.2)

for ωX
2 a.e. y ∈ B(X, 100 dist(X, ∂Ω)) ∩ ∂Ω2,13 where the limit is taken within Ω1.

Additionally, if X0 = x0 + tMs�nx0,Ms for some t ∈
[

1
4

√
n+1 , 3

4
√

n+1

]
then

dωX0
1

dωX0
2

(y) = lim
Y →y

G1(X0, Y )
G2(X0, Y ) , (5.3)

for ωX
2 a.e. y ∈ B(x0, 10s) ∩ ∂Ω2. Moreover, for every ε > 0 there exists M ′′ > M ′

depending on ε, n and the chord arc constants of Ω2 such that if M ≥ M ′′ it holds that

(1 + ε)−1 ≤ dωX0
1

dωX0
2

(y)
/

dωX0
1

dωX0
2

(z) ≤ (1 + ε) (5.4)

for ωX0
2 -a.e. y, z ∈ B(x0, 10s) ∩ ∂Ω2.

Proof. Recall that the estimates in Section 2.3 can be applied for the truncated domain 
Ω1 as if it were a chord arc domain itself, provided we work away from ∂C. (See the 
paragraph before Definition 2.33.) The constant M ′ is simply to overcome the shift of 

13 We remark that by the choice of X, the ball B(X, 100 dist(X, ∂Ω)) is well contained in the cylinder C
and thus B(X, 100 dist(X, ∂Ω)) ∩ ∂Ω2 = B(X, 100 dist(X, ∂Ω)) ∩ ∂Ω = B(X, 100 dist(X, ∂Ω)) ∩ ∂Ω1.



32 S. Bortz et al. / Journal of Functional Analysis 285 (2023) 110025
the cylinder by ξ. First we prove (5.2); the proof for (5.3) is nearly identical and we omit 
it.

Fix X as in the lemma and set dX := dist(X, ∂Ω). We recall the following Riesz 
formula (see [27, Lemma 2.25])

ˆ

∂Ωi

ψωX
i − ψ(X) = −

¨

Ωi

〈AT
i (Y )∇Y Gi(X, Y ), ∇Y ψ(Y )〉 dY, (5.5)

for every ψ ∈ C∞
c (Rn+1) and X ∈ Ωi, i = 1, 2. Applying Lemma 2.19 to the Green’s 

functions G1(X, ·) and G2(X, ·), we have that the limit

g(y) := lim
Y →y

G1(X, Y )
G2(X, Y ) (5.6)

exists for ωX
2 -a.e. y ∈ B(X, 100dX) ∩ ∂Ω2. On the other hand, similar to Lemma 2.22

(and using the Lebesgue differentiation theorem for Radon measures),

dωX
1

dωX
2

(y) := lim
r→0+

ωX
1 (B(y, r))

ωX
2 (B(y, r))

exists for ωX
2 -a.e. y ∈ B(X, 100dX) ∩ ∂Ω2.

For y ∈ B(X, 100dX) ∩ ∂Ω2 and r � dX we let ψy,r(X) := ψ(|X − y|/r), where 
ψ ∈ C∞

c ((−2, 2)) is radially decreasing with ψ ≡ 1 on [−1, 1], so that |∇ψy,r| ≤ C/r. 
Let ui

y,r, i = 1, 2, be the variational solution to the Dirichlet problem for Li in Ωi with 
boundary data ψy,r|∂Ωi

. A modification of the standard (‘harmonic analysis’) argument 
used to prove the Lebesgue differentiation theorem (for doubling measures) also shows 
for ωX

2 -a.e. y ∈ B(X, 100dX) ∩ ∂Ω2

dωX
1

dωX
2

(y) = lim
r→0+

´
∂Ω1

ψy,r(z) dωX
1 (z)´

∂Ω2
ψy,r(z) dωX

2 (z)
= lim

r→0+

u1
y,r(X)

u2
y,r(X) . (5.7)

Indeed, to make such an observation one should appeal to the techniques in [47, Chapter 
1] and [46, Chapter 1] by building weighted maximal function out of the radial function 
ψ(|X|) using the fact that ωX

2 is doubling. More specifically, one can introduce the 
operator

Aψ,rh(x) := 1´
∂Ω2

ψz,r(z) dωX
2 (z)

ˆ

∂Ω2

ψz,r(z)h(z) dωX
2 (z),

and dominate it by an associated (local) maximal operator. Then note that, for suffi-
ciently small r the quotient inside the limit in the middle term of (5.7) is exactly Aψ,rh(y)
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with h = dωX
1

dωX
2

|B(X,200dX )∩∂Ω2 , which is an ωX
2 -integrable function by Lemma 2.22. Fi-

nally, use [47, Chapter 1: Theorem 1]14 to provide the (local) weak-type bounds for 
the maximal operator and follow the ideas in [46, Chapter 1]. We leave the details to 
interested readers.

Now fix y ∈ B(X, 100dX) ∩ ∂Ω2 such that (5.6) and (5.7) hold. Denote ui
r := ui

y,r and 
ψr(X) := ψy,r(X) = ψ(|X − y|/r). The fact that r � dX implies that X /∈ B(y, 2r) =
supp ψr and Ω1 = Ω2 on supp ψr. Hence by the Riesz formula (5.5), we have

ui
r(X) =

ˆ

∂Ωi

ψr ωX
i = −

¨

Ωi

〈AT
i (Y )∇Y Gi(X, Y ), ∇Y ψr(Y )〉 dY

= −
¨

Ω1

〈AT
1 (Y )∇Y Gi(X, Y ), ∇Y ψr(Y )〉 dY, i = 1, 2,

(5.8)

where we used that A1 = A2 on Ω1 and Ω2 = Ω1 on supp ψr.
Notice that by the CFMS estimates and Lemma 2.22, we have g(y) ≈ 1. We are going 

to show that

∣∣u1
r(X) − g(y)u2

r(X)
∣∣ ≤ C

(
r

dX

)μ

g(y)u2
r(X), (5.9)

where μ is the Hölder exponent as in Lemma 2.19. Using that g(y) ≈ 1 we may divide 
by the positive constant u2

r(X) on both sides to obtain∣∣∣∣u1
r(X)

u2
r(X) − g(y)

∣∣∣∣ ≤ C ′
(

r

dX

)μ

and letting r → 0 shows

lim
r→0+

u1
r(X)

u2
r(X) = g(y).

Then recalling (5.6) and (5.7), the desired equality (5.2) follows. Therefore it suffices to 
show (5.9) and we do this now.

Using (5.8) and carefully noting that g(y) is a fixed scalar since y is fixed, we may use 
the boundedness of A1 and the properties of ψr to conclude∣∣u1

r(X) − g(y)u2
r(X)

∣∣
=

∣∣∣∣∣∣∣
¨

Ω1∩B(y,2r)

〈
AT

1 ∇Z [G1(X, Z) − g(y)G2(X, Z)] , ∇Zψr(Z)
〉

dZ

∣∣∣∣∣∣∣
14 Note that condition (iv) therein is explicitly stated in the proof as not necessary and an analog of the 
required covering lemma holds in our setting.
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�

⎛⎜⎝ ¨

Ω1∩B(y,2r)

|∇Z [G1(X, Z) − g(y)G2(X, Z)]|2 dZ

⎞⎟⎠
1/2

×

⎛⎜⎝ ¨

Ω1∩B(y,2r)

|∇Zψr|2dZ

⎞⎟⎠
1/2

� r
n−1

2

⎛⎜⎝ ¨

Ω1∩B(y,2r)

|∇Z [G1(X, Z) − g(y)G2(X, Z)]|2 dZ

⎞⎟⎠
1/2

. (5.10)

Again noting that g(y) is a fixed scalar, we may use that U(Z) = G1(X, Z) −
g(y)G2(X, Z) is a solution to LT

1 U = 0 in Ω1 ∩B(y, 10r) which vanish on ∂Ω1 ∩B(y, 10r)
so that we may apply the boundary Caccioppoli inequality to the function U . It follows 
that

∣∣u1
r(X) − g(y)u2

r(X)
∣∣ � rn−1

⎛⎜⎝ −−−
¨

Ω1∩B(y,4r)

|G1(X, Z) − g(y)G2(X, Z)|2dZ

⎞⎟⎠
1/2

� rn−1

⎛⎜⎝ −−−
¨

Ω1∩B(y,4r)

∣∣∣∣G1(X, Z)
G2(X, Z) − g(y)

∣∣∣∣2 |G2(X, Z)|2dZ

⎞⎟⎠
1/2

� rn−1 sup
Ω1∩B(y,4r)

∣∣∣∣G1(X, ·)
G2(X, ·) − g(y)

∣∣∣∣ sup
Ω1∩B(y,4r)

G2(X, ·).

(5.11)

Next, we use Lemma 2.19, the Carleson estimate (Lemma 2.13) to obtain

∣∣u1
r(X) − g(y)u2

r(X)
∣∣ � ( r

dX

)μ

g(y)rn−1G2(X, A((y, r))

�
(

r

dX

)μ

g(y)ωX
2 (B(y, r))

where we used the CFMS estimate (Lemma 2.16) in the second line. Finally, using the 
local doubling of ωX

2 we see that u2
r(X) ≈ ωX

2 (B(y, r)), which along with the estimate 
above yields the estimate (5.9). As we had reduced matters to proving (5.9), this shows 
(5.2).

As remarked above, (5.3) has the same proof as (5.2). To obtain (5.4) we use 
Lemma 2.19 to deduce that the function

g(y) := lim G1(X0, Y )

Y →y G2(X0, Y )
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satisfies for y, z ∈ B(x0, 10s) ∩ ∂Ω

|g(y) − g(z)| �
(

|y − z|
dX0

)μ

g(x0) �
( s

Ms

)μ

g(z),

where we denote dX0 := dist(X0, ∂Ω). Thus, (5.4) readily follows from (5.3) provided we 
choose M ′′ sufficiently large. �
Remark 5.12. Notice that Lemma 5.1, in fact, shows that dω

X0
1

dω
X0
2

(·) is locally Hölder 
continuous with quantitative estimates. This is simply a consequence of the fact that 
dω

X0
1

dω
X0
2

(y) = g(y), where g(y) is as in the proof of Lemma 5.1, and g has these estimates 
by Lemma 2.19.

Combining the Lemma 5.1 with Proposition 4.3 we obtain the following.

Proposition 5.13. Let ε ∈ (0, 1). There exist positive constants γ, τ and M̃ ≥ M ′′ (M ′′ is 
from Lemma 5.1) depending on ε and allowable constants such that the following holds.

Assume L = − div A∇ is a divergence form elliptic operator with Λ-elliptic coefficients 
A satisfying the Hölder condition (1.2), and ϕ : Rn → R, ϕ(0) = 0, is Lipschitz with 
‖∇ϕ‖∞ ≤ γ. Then for all M ≥ M̃ , s ∈ (0, τ/M) and ξ ∈ [−s/200, s/200], the Poisson 
kernel, h, for the operator L in the domain

Ω̃Ms,ξ = Ω̃ϕ,Ms,ξ := {(x, t) : x ∈ Rn, t > ϕ(x)} ∩ C(0, Ms, en+1, ξ)

satisfies

(ffl
B(y,r)(h

X)2 dσ(z)
)1/2

ffl
B(y,r) hX dσ(z)

≤ (1 + ε)3, (5.14)

for all y ∈ B(0, 5s) ∩ Graph(ϕ) and r ∈ (0, 5s). Here σ := Hn|∂Ω̃Ms,ξ
and X =

({0}n, Mts) for some t ∈
[

1
4

√
n+1 , 3

4
√

n+1

]
.

Proof. We first fix all the constants, the reason for which will become clear shortly. Let 
δε, γε, τε be constants from Proposition 4.3 (using β = ε), and let M ′′ be the constant 
from Lemma 5.1. We set τ = τε and M̃ = 20

√
n + 1 max{1/δε, M ′′, 1}. Finally, we set 

γ = min{γε, δn, γn}, where γn is chosen so that

C(0, s′, en+1, ξ) ∩ Ωϕ ⊂ RQs′ ,ϕ

for all s′ > 0 and ξ ≤ s′/100. In particular, the inclusion holds for ξ ≤ s′/(M ′′100). For 
any Lipschitz function ϕ whose Lipschitz constant is bounded by γ, the domain
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Ω := Ωϕ := {(x, t) : x ∈ Rn, t > ϕ(x)}

clear is a (δn, ∞)-chord arc domain. Let M ≥ M̃ and s ∈ (0, τ/M) be arbitrary. Then 
Ω̃Ms,ξ may play the role of Ω1 in Lemma 5.1 (note x0 = 0 here). Indeed, while Rn × {0}
may not be the plane that minimizes the bilateral distance, the graph of ϕ is δn-flat at 
scale Ms with respect to this plane.

Let y ∈ B(0, 5s) ∩ Graph(ϕ) and r ∈ (0, 5s) be arbitrary. If we write y = (y′, ϕ(y′))
with y′ ∈ Rn, then |y′| < 5s. Notice that Φ, the ‘flattening map’ for ϕ, fixes X = (0, Mts)
and that

|X − y′| ≤
√

|y′|2 + (Mts)2 ≤ 2Mts

by the choice of M , so X ∈ Φ−1(D(y′, Mts)). Moreover, by our choice of M ≥
20

√
n + 1/δε we have

δε · Mts ≥ 5s > r.

Thus by Proposition 4.3,

(ffl
B(y,r)(h

X
τ )2 dσ(z)

)1/2

ffl
B(y,r) hX

τ dσ(z)
≤ 1 + ε,

where hτ is the Poisson kernel for the operator Lτ,ϕ in Ω = Ωϕ. On the other hand, the 
elliptic matrices A1 = Aτ,ϕ and A2 = A agree on the cylinder C(0, Ms, �en+1, ξ) by the 
inclusion

C(0, Ms,�en+1, ξ) ⊂ RQMs,ϕ ⊂ RQτ ,ϕ.

Therefore applying (5.4) from Lemma 5.1 we obtain (5.14). �
The following corollary follows immediately by the theory of weights:

Corollary 5.15. Let ε ∈ (0, 1). There exist constants15 M∗ ≥ M ′′ ≥ 1/ε and γ′
ε, τ ′

ε

depending on ε and allowable constants such that the following holds.
Assume L = − div A∇ with Λ-elliptic coefficients satisfying the Hölder condition (1.2), 

and ϕ : Rn → R, ϕ(0) = 0, is Lipschitz with ‖∇ϕ‖∞ ≤ γ′
ε. Then for all M ≥ M∗, 

s ∈ (0, τ ′
ε/M) and ξ ∈ [−s/200, s/200] the elliptic measure, ω̃, for the operator L in the 

domain

Ω̃Ms,ξ = Ω̃ϕ,Ms,ξ := {(x, t) : x ∈ Rn, t > ϕ(x)} ∩ C(0, Ms, en+1, ξ)

15 Here M ′′ is from Lemma 5.1.
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satisfies

(1 + ε)−1
(

σ(E)
σ(Δ)

)1+ε

≤ ω̃X(E)
ω̃X(Δ) ≤ (1 + ε)

(
σ(E)
σ(Δ)

)1−ε

, ∀E ⊂ Δ ⊂ B(0, 2s), (5.16)

where σ := Hn|∂Ω̃Ms,ξ
and X = ({0}n, Mts) for any t ∈

[
1

4
√

n+1 , 3
4

√
n+1

]
and Δ is an 

arbitrary surface ball.

Proof. Proposition 5.13 says that ω̃X = hXdσ ∈ B2(σ), and the B2 constant can be 
made as close to 1 as possible. For any ε ∈ (0, 1), we choose constants appropriately in 
the Proposition, so that the B2 constant (i.e. the right hand side of (5.14)) is bounded 
above by exp((ε/K)2), where K is a dimensional constant as in [32, Corollary 8]. Then 
by [32, Corollary 8]

ω̃X ∈ A1+ε(σ) with constant 1 + ε, ω̃X ∈ B 1
ε
(σ) with constant 1 + ε. (5.17)

(See [32, Section 3.1] for the definition of Ap(σ) weight.) Both estimates in (5.16) then 
follow easily from (5.17) and Hölder’s inequality. �

We are now ready to give the Proof of Theorem 1.1. Here we diverge a bit from the 
techniques in [40,33], opting for an approach that largely avoids the use of the Poisson 
kernel and instead works with the elliptic measure more directly. This avoids some of 
the issues that arise in [40].

Proof of Theorem 1.1. Let Ω be a vanishing chord arc domain. Recall that this means 
for all δ ∈ (0, δn], Ω is a (δ, Rδ) chord arc domain for some Rδ > 0 (see Remarks 2.29). 
We set ω := ωX0 to be the elliptic measure associated to L for the domain Ω with fixed 
pole X0 ∈ Ω.

We first make the following claim which gives a much rougher estimate than what we 
will produce in the end.

Claim 5.18. The elliptic measure ω is locally an A∞ weight, that is, there exist τ0 and 
constants C0, θ depending on allowable constants such that

ω(E)
ω(Δ) ≤ C0

(
σ(E)
σ(Δ)

)θ

, ∀E ⊂ Δ, (5.19)

where Δ is any surface ball with radius less than or equal to τ0, that is, Δ = B(x, r) ∩∂Ω
with x ∈ ∂Ω and r ∈ (0, τ0].

To state a more precise estimate, we first fix some constants. For every β ∈ (0, 1), we 
fix a constant ε ∈ (0, β/2) so that
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(1 + ε)
(

1
2 + ε

)1−ε

≤ 1
2(1 + β), (5.20)

with the intention of using the estimate obtained in Corollary 5.15. Let M ′′ > 0 be 
the constant found in Lemma 5.1, and M∗, γ′

ε, τ
′
ε > 0 be constants found in Corol-

lary 5.15, and set M = max{M∗, 1/β}. Let δ ∈ (0, δn] be sufficiently small, depending 
on β, ε, γ′

ε, M
∗ and allowable constants, and recall Ω is a (δ, Rδ)-chord arc domain.

Claim 5.21. For any x0 ∈ ∂Ω and s sufficiently small satisfying

sM ≤ min{τ ′
ε, τ0, Rδ/10, dist(X0, ∂Ω)/5)},

if E ⊂ B(x0, s) ∩ ∂Ω =: Δ0 satisfies

σ(E)
σ(Δ0) = 1

2

then

ω̃(E)
ω̃(Δ0) = 1

2 + Cβ, (5.22)

where C is a constant depending on the dimension. Here σ is the surface measure for 
the domain Ω̃(x0, Ms), which agrees with that of Ω on B(x0, s); and ω̃ is the elliptic 
measure for Ω̃(x0, Ms) with pole at X1 := x0 + 1

2
√

n+1 Ms �nx0,Ms.

Let us take this claim for granted momentarily and see how to conclude the theorem. 
Assuming (5.22), we want to change to domain from Ω̃(x0, Ms) to Ω, and change the 
pole from X1 to X0, in the hope to get a similar estimate for ω = ωX0 . By Lemma 5.1
and the choice of parameters,

ωX1(E)
ωX1(Δ0) ≤ (1 + ε)2 ω̃(E)

ω̃(Δ0) ≤ (1 + β)2
(

1
2 + Cβ

)
.

Here we remind the reader that the pole of ω̃ is at X1. To change the pole of ω from X1
to X0, we use Lemma 2.21 in a similar manner to Lemma 3.28. Note that the pole X1
is roughly at distance Ms ≥ s/β from the center of Δ0 a surface ball of radius s, and 
dist(X1, ∂Ω) ≤ Ms ≤ dist(X0, ∂Ω)/5. This allows us to use Lemma 2.21 to say

ω(E)
ω(Δ0) ≤ (1 + Cβμ) ωX1(E)

ωX1(Δ0) ≤ 1
2 + C ′βμ. (5.23)

To sum up, this combined with Claim 5.21 says that for any x0 ∈ ∂Ω and s sufficiently 
small (depending on β),
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σ(E)
σ(Δ0) = 1

2 for a Borel set E ⊂ Δ0 =⇒ ω(E)
ω(Δ0) ≤ 1

2 + C ′βμ. (5.24)

Among other things [32, Theorem 10] establishes the equivalence between the above 
statement (5.24) (that is, condition (e) in [32, Theorem 10]) and the fact that the B2
constant of ω is close to 1 (that is, condition (c) in [32, Theorem 10]). We in fact need a 
quantitative local estimate proved in [32, Theorems 8 and 9], to see that (5.24) implies⎛⎜⎝  

Δ(x0,s)

k dσ

⎞⎟⎠
2

≤ (1 + C ′βμ/2)

⎛⎜⎝  

Δ(x0,s)

k1/2 dσ

⎞⎟⎠ , (5.25)

where k = dω/dσ is the Poisson kernel. For the sake of self-containment we include proof 
of (5.25) in Appendix B, see Lemma B.2. Since β can be chosen arbitrarily small, again 
by [32, Theorem 8] we conclude that log k ∈ V MO.

It remains to prove Claims 5.18 and 5.21. We start with Claim 5.21, taking Claim 5.18
for granted.

Proof of Claim 5.21. Without loss of generality we may assume x0 = 0 and �nx0,Ms =
�en+1. For notational convenience we set Ω̃ := Ω̃(0, Ms).

We make use of the Semmes decomposition to approximate Ω by Lipschitz domains, 
see [45,33]. To be precise by [33, Lemma 5.1] (replacing δ4 by δ), when δ is chosen suffi-
ciently small, there exist two Lipschitz functions ϕ± : Rn → R whose graphs approximate 
∂Ω from inside(+) and the outside(-). Set Γ± := Graph(ϕ±) and

Ω± := {(x, t) ∈ Rn+1 : x ∈ Rn, t > ϕ(x)}

then the following properties hold:

(1) ‖∇ϕ±‖∞ ≤ C1δ1/4

(2) D[Γ± ∩ B(0, Ms); ∂Ω ∩ B(0, Ms)] ≤ C1δ1/4Ms

(3) Hn (B(0, Ms) ∩ ∂Ω \ Γ±) ≤ c1 exp(−c2δ−1/4)ωn(Ms)n

(4) Ω+ ∩ C(0, Ms) ⊆ Ω ∩ C(0, Ms) ⊆ Ω− ∩ C(0, Ms),

where C1, c1, c2 are all positive constants depending only on the dimension. Now we let 
ω̃± be the elliptic measure (for L) in the domains Ω̃± := Ω± ∩ C(0, Ms) with pole at 
X1 := 1

2
√

n+1 Msen and σ± be the surface measure for Ω̃±. We choose δ sufficiently small, 
to ensure that C1δ1/4Ms < s/200 and C1δ1/4 < γ′

ε. Thus by (2) |ϕ±(0)| = |ϕ±(0) − 0| <
s/200. (This was the reason for the using parameter ξ to shift the cylinder appearing in 
Corollary 5.15 above.) Applying Corollary 5.15 to Lipschitz domains Ω̃±, we have

(1+ε)−1
(

σ±(F )
σ±(Δ)

)1+ε

≤ ω̃±(F )
ω̃±(Δ) ≤ (1+ε)

(
σ±(F )
σ±(Δ)

)1−ε

, ∀F ⊂ Δ ⊂ B((0, ϕ±(0)), 2s),

(5.26)
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where Δ is a surface ball of the form B(x, r) ∩ ∂Ω±. (We will not use Ω̃+ for the proof 
of this claim, but it is used in proving Claim 5.18.)

Now let E ⊂ Δ0 = B(0, s) ∩ ∂Ω be such that σ(E) = (1/2)σ(Δ0). Set Δ− :=
B((0, ϕ−(0)), s) ∩ Γ−. Then

σ−(E ∩ Γ−)
σ−(Δ−) = σ(E ∩ Γ−)

σ−(Δ−) ≤ σ(E)
σ(Δ0)

σ(Δ0)
σ−(Δ−) ≤ 1

2
(1 + δ)ωnsn

(1 + C2
1 δ1/2)−n/2ωnsn

≤ 1
2 + ε

by choice of δ sufficiently small, where we used property (1) of the Semmes decomposition, 
(4.7) for the lower bound on σ−(Δ−) and for the upper bound on σ(Δ0) we used the 
definition of (δ, R)-chord arc domain (Definition 2.28). It follows from (5.26) and the 
choice (5.20) of ε that

ω̃−(E ∩ Γ−)
ω̃−(Δ−) ≤ 1

2(1 + β). (5.27)

We now estimate

ω̃(E)
ω̃(Δ0) = ω̃(E ∩ Γ−)

ω̃(Δ0) + ω̃(E \ Γ−)
ω̃(Δ0) =: I + II. (5.28)

Notice that

σ(Δ0 \ Γ−)
σ(Δ0) ≤ σ(MΔ0 \ Γ−)

σ(Δ0)

≤ c1 exp(−c2δ−1/4)ωn(Ms)n

(1 − δ)ωnsn

= c1 exp(−c2δ−1/4)Mn

1 − δ
, (5.29)

by property (3) and the definition of (δ, R)-chord arc domain (Definition 2.28). Therefore 
by a simple pole change argument (or the shaper version, Lemma 2.21), Lemma 2.22 and 
the fact that ω is A∞ (Claim 5.18) we obtain

II ≤ ω̃(Δ0 \ Γ−)
ω̃(Δ0) � ω(Δ0 \ Γ−)

ω(Δ0) �
(

σ(Δ0 \ Γ−)
σ(Δ0)

)θ

< β

by choice of δ small. It remains to treat term I, which is a matter of ‘removing the minus 
sign’ in (5.27). Since Ω̃ ⊂ Ω̃−, by the maximal principle

ω̃(E ∩ Γ−)
ω̃(Δ0) ≤ ω̃−(E ∩ Γ−)

ω̃−(Δ−)
ω̃−(Δ−)
ω̃(Δ0) ≤ 1

2(1 + β) ω̃−(Δ−)
ω̃(Δ0) .

Thus, we may reduce proving Claim 5.21 to the estimate
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ω̃−(Δ−)
ω̃(Δ0) ≤ (1 + β)2 (5.30)

and we do this now.
Notice |X1 − 0| ≈ Ms ≈ |X1 − (ϕ−(0), 0)| so that Bourgain’s estimate (Lemma 2.15) 

and the Harnack inequality yield the estimate

c ≤ ω̃−(Δ−), ω̃(Δ0) ≤ 1, (5.31)

where c is a constant depending on ε, by way of M . Additionally, by (5.26) we have that

ω̃−(Δ− \ (1 − δ1/16)Δ−)
ω̃−(Δ−)

≤ (1 + ε)
(

σ−(Δ− \ (1 − δ1/16)Δ−)
σ−(Δ−)

)1−ε

≤ (1 + ε)
(

1 − (1 + C2
1 δ1/2)−n/2(1 − δ1/16)n

(1 + C2
1 δ1/2)−n/2

)1−ε

≤ β

1 + β

by choice of δ, where we used the property (1) and the inclusion (4.7). Therefore

ω̃−(Δ−) ≤ (1 + β)ω̃−((1 − δ1/16)Δ−)

and to prove (5.30), it is enough to show

ω̃−((1 − δ1/16)Δ−) ≤ (1 + β)ω̃(Δ0). (5.32)

Let us now assume that δ is small enough so that C1δ1/4Ms < δ1/8s. Let x ∈ ∂Ω̃\Δ0 =
∂Ω̃ \ B(0, s), then either x ∈ ∂Ω ∩ B(0, Ms) \ B(0, s) or x ∈ ∂C(0, Ms). In the first case, 
the choice of δ and the property (2) guarantee that there exists x̂ ∈ Γ− ∩ B(0, Ms) such 
that |x − x̂| < δ1/8s, and thus

|x̂ − (ϕ−(0), 0)| ≥ |x| − |x − x̂| − |(ϕ−(0), 0)| ≥ (1 − 2δ1/8)s.

In particular,

B

(
x̂,

δ1/16

2

)
∩ (1 − δ1/16)Δ− = Ø.

This means we may use the Hölder continuity of solutions vanishing at the boundary 
(Lemma 2.14) to yield the estimate
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ω̃x
−((1 − δ1/16)Δ−) ≤ C

(
δ1/8

δ1/16

)μ

≤ Cδμ/16,

where μ is from Lemma 2.14. In the second case, that is, when x ∈ ∂C(0, Ms) ∩∂Ω̃, then 
x ∈ ∂C(0, Ms) ∩∂Ω̃− since Ω ∩C(0, Ms) ⊂ Ω− ∩C(0, Ms). Hence ω̃x

−((1 −δ1/16)Δ−) = 0. 
In either case, we have that

ω̃x
−((1 − δ1/16)Δ−) ≤ Cδμ/16

whenever x ∈ ∂Ω̃ \ Δ0. Therefore by the maximum principle (and that ω̃x
−((1 −

δ1/16)Δ−) ≤ 1 for x ∈ Δ0) we have

ω̃−((1 − δ1/16)Δ−) ≤ ω̃(Δ0) + Cδμ/16

≤ (1 + (C/c)δμ/16)ω̃(Δ0)

≤ (1 + β)ω̃(Δ0)

by choice of δ sufficiently small, where we used (5.31) in the second line. This shows 
(5.32) and the claim follows. �

We are left with proving Claim 5.18, which will be a consequence of the maximum 
principle, the Semmes decomposition above and the theory of weights. The proof is 
essentially contained [18], but we include a proof that tracks the constants carefully.

Proof of Claim 5.18. By the work of Coifman and Ferfferman [10], or rather its (local) 
generalization to spaces of homogeneous type, to prove the claim it is enough to show 
the following. For any η ∈ (0, 1), there exists γ = γ(η) ∈ (0, 1) such that for every surface 
ball Δ0 = B(x, s) ∩ ∂Ω with x ∈ ∂Ω and s ∈ (0, τ0], if E ⊂ Δ0 is a Borel set satisfying 
σ(E) ≥ γσ(Δ0), then ω(E) ≥ ηω(Δ0). Here τ0 > 0 is a fixed constant whose value is to 
be specified later. Without loss of generality we assume x = 0.

Similar to the proof of Claim 5.21, the idea here is also to use the elliptic measure of 
Lipschitz domain (this time we use Ω+ instead of Ω−) to estimate ω. For that purpose we 
just need a crude version of Corollary 5.15. Let ε = 1/2 be fixed, thus we fix the constants 
M∗, γ′

ε, τ
′
ε accordingly. Set M = M∗. We fix δ ∈ (0, δn] satisfying C1δ1/4 ≤ γ′

ε, then there 
exists Rδ > 0 such that Ω is a (δ, Rδ)-chord arc domain. Let τ0 = min{Rδ, τ ′

ε}/M and 
s ∈ (0, τ0] be arbitrary. Then Ω has Semmes decomposition in B(0, Ms); moreover by 
the choice of δ we may apply Corollary 5.15 to Ω̃+. Hence in particular, ω̃+ ∈ A∞(σ+) on 
Δ+ := B((0, ϕ+(0)), s) ∩Γ+. For η̃ > 0 to be determined later, there exists γ = γ(η̃) > 0
such that

σ+(F )
σ+(Δ+) ≥ γ

2 for a Borel set F ⊂ Δ+ =⇒ ω̃+(F )
ω̃+(Δ+) ≥ η̃. (5.33)

We then use properties (1) and (3) of Semmes decomposition along with the definition 
of (δ, R)-chord arc domain to ensure that
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σ(Δ+ ∩ Δ0) ≥ (1 − δ)ωnsn − c1 exp(−c2δ−1/4)ωn(Ms)n ≥
(

1 − γ

3

)
σ(Δ0).

We may need to choose γ slightly bigger (depending on the value of δ), to make sure the 
last inequality holds. Suppose that E ⊂ Δ0 is a Borel set with σ(E) ≥ γσ(Δ0). Then

σ+(E ∩ Δ+) = σ(E ∩ Δ+) ≥ 2
3γσ(Δ0) ≥ γ

2 σ+(Δ+),

where we used the estimates of σ(Δ0), σ+(Δ+) and that δ is chosen sufficiently small. It 
follows from (5.33) that

ω̃+(E ∩ Δ+)
ω̃+(Δ+) ≥ η̃.

By the maximum principle and Bourgain’s estimate

ω̃(E) ≥ ω̃+(E ∩ Δ+) ≈ ω̃+(E ∩ Δ+)
ω̃+(Δ+) ≥ η̃.

By Lemma 2.22 and a simple change of pole argument (or the shaper version, 
Lemma 2.21) we have

ω(E)
ω(Δ0) ≈ ωX1(E) ≈ ω̃(E).

Hence

ω(E)
ω(Δ0) ≥ Cη̃ = η

as desired. Here we chose η̃ to account for the constant C. �
As we had reduced the proof of the theorem to Claims 5.18 and 5.21, we have proved 

the theorem. �
Data availability

No data was used for the research described in the article.

Appendix A. A brief explanation of the first order approach

The goal of this appendix is twofold. Firstly, we justify that the solution to the L2-
Dirichlet problem obtained in [1] satisfies the estimates (3.23) and (3.24). Whereas, 
modulo verification of the assumptions, (3.23) is explicitly stated in [1, Theorem 2.4(ii)], 
the estimate (3.24) requires a deeper understanding of [1] and is obtained by combining 
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several lemmas and theorems in various sections. We recommend to the interested reader 
to read Section 3, Road map to the proofs in [1] for the general idea of their first order 
approach. We give a brief overview here. After the general approach and all relevant 
notation are laid out, we give a rigorous proof of (3.24) in Subsection A.4. Then, we show 
that when the boundary data satisfies 0 ≤ f ∈ C∞

c (Rn), the solution above (namely, 
the solution to the L2-Dirichlet problem obtained in [1]) agrees with the classical elliptic 
measure solution (see (3.14)). This is carried out in Subsection A.5.

In what follows we will adopt the notation of [1] and write16 (t, x) instead of (x, t)
and for a vector �v ∈ Cn+1 write v = (v⊥, v‖) with v⊥ being a scalar.17 This change of 
basis is also reflected in the definition of the coefficient matrix A in any divergence form 
elliptic operator. Note also that some of the conditions here are often easier to state in 
the scalar case, but we maintain the notation in [1] for the ease of identifying estimates 
therein.

The first-order approach takes its name from the following: Suppose that u is a solution 
to

LAu := − div A∇u = 0 in Rn+1
+ (A.1)

with ∇u ∈ L2
loc(R+; L2(Rn, Cn+1)), then its conormal gradient

f = ∇Au :=
[

∂νA
u

∇xu

]
with ∂νA

u = (A∇t,xu)⊥ (A.2)

solves the first-order equation

∂tf + DBf = 0, (A.3)

where D =
[

0 divx

−∇x 0

]
and B is a matrix defined by A as follows. We first write 

A =
[

A⊥⊥ A⊥‖
A‖⊥ A‖‖

]
, where A⊥⊥ is a scalar. The strong ellipticity of the matrix A implies 

A⊥⊥ is strictly positive. We thus define

B =Â := A(A)−1 =
[

1 0
A‖⊥ A‖‖

] [
A⊥⊥ A⊥‖

0 I

]−1

=
[

1 0
A‖⊥ A‖‖

] [
A−1

⊥⊥ −A−1
⊥⊥A⊥‖

0 I

]
.

(A.4)
In fact, if we make the restriction that solutions f to (A.3) belong to the space 
L2

loc(R+; H) where

H :=
{

g ∈ L2(Rn,Cn+1) : curlx g = 0
}

,

16 This is done through a change of basis, so we keep the notion that Rn+1
+ = {(t, x) : t > 0}.

17 The authors work with elliptic systems in [1], but our overview will be for equations for simplicity, i.e. 
m = 1.
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we have that the solutions u to divergence form elliptic operator (A.1) (with the ‘gradient 
bound on slices’ as above) are in one-to-one correspondence with solutions f to the first-
order equation (A.3). See [1, Proposition 4.1], where this is worked out in detail and note 
that this does not require the operator to be t-independent. Therefore to find solutions 
to boundary value problems (Neumann BVPs, regularity BVPs, or Dirichlet BVPs) of 
(A.1) using first order approach, we need to

(1) study the well-posedness of the first-order equation (A.3) in an appropriate functional 
space;

(2) relate and determine the trace of f at t = 0 from the boundary value to (A.1).

Notice that the first task depends on the operator DB and it has nothing to do with 
what type of BVPs we consider.

A.1. Well-posedness of the first order equation

When the operator A(t, x) = A0(x) is t-independent and is a small L∞-perturbation of 
a constant matrix (or a real symmetric matrix), the well-posedness of the corresponding 
first order equation

∂tf + DB0f = 0, with B0 = Â0 (A.5)

has been established in [4]. (This result has been obtained before, in [21,2,3], but we 
appeal to [4] since the notion of well-posedness there is compatible with [1].) The authors 
remark that the operator DB0 is not a sectorial operator, but instead bisectorial, that 
is, its spectrum is contained in a double sector around the real axis. This means that 
the natural operator e−tDB0 associated with the free evolution equation (A.5) is not 
well-defined on all of H ⊂ L2(Rn; C1+n) for any t �= 0. Thus we need to split H into the 
spectral subspace E+

0 H for the sector in the right half plane and the spectral subspace 
E−

0 H for the sector in the left half plane.18 Moreover, the authors in [4] show that any 
solution f to (A.5) in the appropriate functional space (such that f ∈ L2

loc(R+; H) and 
Ñ∗f ∈ L2) is given by the generalized Cauchy reproducing formula

f = C+
0 f0 = e−tDB0E+

0 f0, for some f0 ∈ E+
0 H. (A.6)

Additionally, using the notation ft = f(t, ·) it satisfies

lim
t→0

ft = f0 and lim
t→∞

ft = 0

18 E±0 := χ±(DB0) provided by the bounded holomorphic calculus, where χ+ is the indicator of the 
right-half of the complex plane and χ− is the indicator of the left-half of the complex plane. See [1, Section 
4], between Proposition 4.1 and Proposition 4.3.
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in the L2 sense.
Since every solution to (A.5) is given by an explicit formula, to study the well-

posedness when the matrix A(t, x) is a (Carleson measure) perturbation of a t-
independent operator A0(x), we rewrite its first order equation (A.3) as

∂tf + DB0f = DEf, (A.7)

where E(t, x) = B0(x) − B(t, x) denotes the perturbation. We remind the reader that 
B = Â and B0 = Â0 are defined as in (A.4). We also remark that if ‖A − A0‖C < ∞
then using the notation in [1, Lemma 5.5] (see [1, Definition 5.4] for the definition of the 
operator norm ‖ · ‖∗)

‖E‖∗ � ‖E‖C = ‖B − B0‖C � ‖A − A0‖C ,

with implicit constants depending on the dimension and ellipticity constants. This is 
because

B − B0 = A(A)−1 − A0(A0)−1 = [(A − A0)(A)−1] + [ A0((A)−1 − (A0)−1)]

and Λ � Re A⊥⊥, Re(A0)⊥⊥ ≤ max{‖A‖∞, ‖A0‖∞}, which allows us to control both 
bracketed terms using the Carleson norm of A − A0. Hence under the assumption ‖A −
A0‖C � 1, the right hand side of (A.7) can be thought of as a small error to the free 
evolution of ∂tf +DB0f . The above discussion formally justifies [1, Theorem 8.2], which 
says solutions to (A.3), or equivalently (A.7), in the appropriate functional space is of 
the form

ft = C+
0 h+ + SAft = e−tDB0E+

0 h+ + SAft, for some h+ ∈ E+
0 H; (A.8)

and formally speaking as t → 0 we have ft → f0 = h+ + h−, where h− ∈ E−
0 H

and is determined explicitly. (Notice that when h+ ∈ E+
0 H, we have e−DB0E+

0 h+ =
e−t|DB0|h+, see for example the discussion in page 62 of [1]. So the above formula is the 
same as that in [1, Theorem 8.2].) The operator SA is given formally by

SAft :=
tˆ

0

e−(t−s)DB0E+
0 DEsfsds −

∞̂

t

e(s−t)DB0E−
0 DEsfsds, (A.9)

see [1, Equation (1)]; for a rigorous treatment see [1, Proposition 7.1]. Moreover they 
also show

‖Ñ∗(SAf)‖L2(Rn) � ‖E‖∗‖Ñ∗f‖L2(Rn) � ‖A − A0‖C‖Ñ∗f‖L2(Rn),

whereby one concludes the boundedness of (1 − SA)−1 on the space
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X := {f : Rn+1
+ → C1+n; Ñ∗f ∈ L2}

for ‖A − A0‖C sufficiently small. Therefore one seeks solutions of the form

f = (1 − SA)−1C+
0 h+, for some h+ ∈ E+

0 H. (A.10)

We summarize the above discussion. Our goal is to find solutions to divergence form 
elliptic equations (A.1) with prescribed boundary values (they could be Neumann, regu-
larity, or Dirichlet boundary values). By the one-to-one correspondence between solutions 
to (A.1) and solutions to the first-order equation (A.3), it suffices to determine h+ using 
the prescribed boundary value and then use the ansatz (A.10) to compute f . In other 
words, we need to determine the trace of ft using the boundary value of u.

A.2. Determining the trace of f by Neumann or regularity boundary values of u

By looking at (A.2), how f is defined using u, it should be intuitively clear that 
Neumann BVPs and regularity BVPs are more natural in the first order approach, since 
the trace of ft is related naturally to the Neumann or regularity boundary value. To 
be more precise, when A = A0 is t-independent, a solution f = C+

0 h+ satisfies the 
Neumann boundary value (f0)⊥ = ∂νA0

u = ϕ if and only if its trace h+ solves the 
equation ΓA0h+ = ϕ, where

ΓA0 :E+
0 H → L2(Rn,C)

h+ �→ (h+)⊥

is the identification map from the trace of f to the Neumann boundary value of the solu-
tion u to the divergence form elliptic operator (A.1). In other words the well-posedness 
of the Neumann BVP is equivalent to ΓA0 being an isomorphism. Similarly the well-
posedness of the regularity BVP is equivalent to the identification map (with regularity 
boundary value)

ΓA0 :E+
0 H → {g ∈ L2(Rn,Cn) : curlx g = 0}

h+ �→ (h+)‖

being an isomorphism. We remark that even for t-independent operators, these maps are 
not always invertible; however ΓA0 is invertible if we assume a-priori the well-posedness 
of BVPs for LA0 (for example see [1, Corollary 8.6]).

Now we begin to consider operators with t-dependent coefficients. Recall in the above 
discussion on the well-posedness of equation (A.3), or equivalently (A.7), a solution f of 
the form (A.8) (for some h+ ∈ E+

0 H) has trace

f0 = h+ + h− and h− =
∞̂

Λe−sΛÊ−
0 Esfs ds ∈ E−

0 H,
0
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where Λ = |DB0| and Ê−
0 is defined as [1, Equation (22)]. See [1, Theorem 8.2] for the 

precise statement. Therefore f satisfies the Neumann boundary condition (f0)⊥ = ∂νA
=

ϕ if and only if h+ solves the equation ΓAh+ = ϕ, where ΓA is the map

ΓA :E+
0 H → L2(Rn,C)

h+ �→ (f0)⊥ =

⎛⎝h+ +
∞̂

0

Λe−sΛÊ−
0 Esfsds

⎞⎠
⊥

.

It follows that the well-posedness19 of Neumann BVPs in appropriate function space X
is equivalent to ΓA being an isomorphism. On the other hand, one can show20

‖ΓA − ΓA0‖L2→L2 � ‖E‖∗ � ‖A − A0‖C

so that one may deduce the invertibility of ΓA from that of ΓA0 , provided the Carleson 
norm here is small. Thus, the Neumann BVP is well-posed for LA, provided the smallness 
of the Carleson norm and the well-posedness of the Neumann BVP for LA0. The method 
for the regularity problem is similar (where we instead wish to invert the tangential 
trace).

A.3. Dirchlet boundary value problems

Solving Dirichlet BVPs using the above first order approach is more complicated 
compared to Neumann BVPs or regularity BVPs; and we will give more details in this 
section since it is directly related to our proof of (3.24). It is not obvious how the first 
order approach applies, due to the lack of identification between the trace of f and the 
Dirichlet boundary value of u. Instead of the equation (A.3) for the conormal gradient 
f , we consider vector-valued solutions to first order equation

∂tv + BDv = 0. (A.11)

Heuristically, applying D to the equation (A.11) gives (∂t + DB)(Dv) = 0. On the other 
hand, u solves the divergence form elliptic equation if and only if (∂t+DB)(∇Au) = 0. By 
comparing f = ∇Au with f = Dv we find that u = −v⊥. More precisely, for coefficients 
A(t, x) which are (Carleson measure) perturbations of t-independent coefficient A0(x), 
we have that solutions to the divergence form elliptic equation (A.1) obeying a certain 
square function estimate (that is, ∇u ∈ Y defined below in (A.16)) are of the form

u = c − v⊥

19 Here one is seeking solutions in the space X and the boundedness of (1 − SA)−1C+
0 as an operator from 

E+
0 into X are provided in [1].

20 See the proof of [1, Corollary 8.6].
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where v solves the first order equation (A.11) and c ∈ C. Moreover, we have

lim
t→0

ut = c − (v0)⊥ and lim
t→∞

ut = c

in the L2 sense. In particular, if we impose that u has Dirichlet boundary value in 
L2(Rn, C), the constant c is zero. See [1, Theorem 9.3]. We will follow the first order 
approach as before to study solutions to equation (A.11) and then find an ansatz for 
solutions to Dirichlet BVPs.

For t-independent operators we note that B0D is another bisectorial operator, just 
like DB0. So we define the spectral projections Ẽ±

0 = χ±(B0D) as before, which splits 
the space H. We make an important remark with regards to DB0 and B0D:

B0 b(DB0) = b(B0D) B0 (A.12)

where b(·) denotes the functional calculus to an operator on L2. (See the discussion in [1, 
Section 7].) This observation allows us to switch between DB0 and B0D. Similar to the 
argument for DB0, we have that solutions to (A.11) obeying a square function estimate 
are of the form

v = C̃+
0 v0 + c = e−tB0DẼ+

0 v0 + c (A.13)

for a unique v0 ∈ Ẽ+
0 L2 and some c ∈ C1+n. Therefore, for t-independent operators we 

have the representation formula

u = c −
(

C̃+
0 v0

)
⊥

, v0 ∈ Ẽ+
0 L2, c ∈ C (A.14)

for solutions u to Dirichlet BVPs obeying a square function estimate. See [1, Corollary 
9.4].

Now we consider perturbations of t-independent operators. Recall that solutions f to 
(A.3) are of the form

ft = e−tDB0h+ + SAft, or equivalently ft = (I − SA)−1e−tDB0h+, (A.15)

for some h+ ∈ E+
0 H. We remark that to adapt to Dirichlet BVPs, we work with the 

functional space

Y :=

⎧⎨⎩f : Rn+1
+ → C1+n;

∞̂

0

‖ft‖2
L2(Rn)tdt < ∞

⎫⎬⎭ = L2(R+, tdt; L2(Rn,C1+n)),

(A.16)
instead of X . Moreover [1, Proposition 7.1] shows that

‖SA‖Y→Y � ‖A − A0‖C .
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Provided that ‖A − A0‖C is sufficiently small, (1 − SA)−1 exists as a bounded operator 
on the space Y.

We want to find v satisfying f = Dv, so we basically need to factor out D in (A.15)
(even though D is not injective). Indeed by (A.12), imposing the free evolution term 
g := e−tDB0h+ (the first term in (A.15)) in Y allows us to rewrite

g = De−tB0DẼ+
0 h̃+ = DC̃+

0 h̃+ (A.17)

for some h̃+ ∈ Ẽ+
0 L2 determined by h+ = Dh̃+. And formally for SA, we obtain starting 

from (A.9) that SA = DS̃A where

S̃Aft :=
tˆ

0

e−(t−s)B0DẼ+
0 DEsfsds −

∞̂

t

e(s−t)B0DẼ−
0 DEsfsds. (A.18)

See [1, Proposition 7.2] for the rigorous treatment of S̃A. Putting them together we get

ft = e−tDB0h+ + SAft = DC̃+
0 h̃+ + DS̃Aft,

and thus we can set

v = C̃+
0 h̃+ + S̃Aft = C̃+

0 h̃+ + S̃A(I − SA)−1DC̃+
0 h̃+.

In the second equality we substitute the expression for ft in (A.15) and we also use (A.17). 
Notice that the first term is exactly the same as (A.13), the solution to ∂tv + B0Dv = 0
(the constant c there is always zero for L2-Dirichlet BVPs). Therefore, to solve the 
Dirichlet problem to (A.1), we make the ansatz

u =
(

C̃+
0 h̃+ + S̃A(I − SA)−1DC̃+

0 h̃+
)

⊥
(A.19)

for some h̃+ ∈ Ẽ+
0 L2. Moreover,

lim
t→0

vt = v0 and lim
t→∞

vt = 0

in the L2 sense. The trace v0 can be written explicitly as

v0 = h̃+ + h̃− and h̃− = −
∞̂

0

e−sΛ̃Ẽ−
0 Esfs ds ∈ Ẽ−

0 L2, (A.20)

with Λ̃ = |B0D|. See [1, Theorems 9.2, 9.3] and the proof of [1, Corollary 9.5].
It then follows that the solution u has Dirichlet boundary value ϕ ∈ L2(Rn) if and 

only if h̃+ ∈ Ẽ+
0 L2 satisfies
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ϕ = lim
t→0

ut = −(v0)⊥ =

⎛⎝−h̃+ +
∞̂

0

e−sΛ̃Ẽ−
0 Esfs ds

⎞⎠
⊥

,

where f = (I − SA)−1DC̃+
0 h̃+ by the formula (A.15). In other words, if we define the 

map

Γ̃A :Ẽ+
0 L2 → L2(Rn,C)

h̃+ �→

⎛⎝−h̃+ +
∞̂

0

e−sΛ̃Ẽ−
0 Esfs ds

⎞⎠
⊥

,

then h̃+ is determined by the equation Γ̃Ah̃+ = ϕ. The well-posedness of Dirichlet BVPs 
is equivalent to Γ̃A being an isomorphism. In particular, when A = A0 is t-independent, 
this map is just

Γ̃A0 :Ẽ+
0 L2 → L2(Rn,C)

h̃+ �→ −
(

h̃+
)

⊥
.

Assuming the Dirichlet problem for LA0 is well-posed, the map Γ̃A0 is invertible. Since 
(see the proof of [1, Corollary 9.5])

‖Γ̃A0 − Γ̃A‖L2→L2 � ‖E‖∗ � ‖A − A0‖C , (A.21)

it follows that Γ̃A is also invertible provided ‖A − A0‖C � 1. Therefore the Dirichlet 
problem for LA is also well-posed.

A.4. Proof of estimates for non-tangential maximal function

We are now ready to use the results in [1] to prove the desired estimates (3.23) and 
(3.24) for the non-tangential maximal function. Recall that the elliptic matrix we consider 
can be written of the form

A(t, x) = A0(x) + B(t, x)

where A0(x) is a small (t-independent) perturbation of a constant real elliptic matrix and 
B(t, x) has small Carleson norm, see (3.1) and (3.2). (Here we denote the t-independent 
matrix by A0(x) instead of A1(x) in (3.1), in order to be consistent with the notation 
in the rest of the Appendix.) The well-posedness for Dirichlet problems is established in 
[3] for elliptic operators whose t-independent coefficient matrices are small perturbations 
of the constant matrix. Thus the Dirichlet problem for LA0 is well-posed if ε in (3.2) is 
sufficiently small. We claim that this solution agrees with the elliptic measure solution
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(as in (3.14)) for smooth, compactly supported data and we postpone the proof of this 
fact to Subsection A.5.

The estimate (3.23) just follows directly from [1, Theorem 2.4(ii)]. Now we set out 
to prove (3.24). We write corresponding solutions to LA and LA0 as uϕ,A and uϕ,A0 , 
respectively. By the discussion in the above section, we can write

uϕ,A0 =
(

C̃+
0 Γ̃−1

A0
ϕ
)

⊥
,

uϕ,A =
(

C̃+
0 Γ̃−1

A ϕ + S̃A(I − SA)−1DC̃+
0 Γ̃−1

A ϕ
)

⊥
.

Hence

uϕ,A − uϕ,A0 =
(

C̃+
0 (Γ̃−1

A − Γ̃−1
A0

)ϕ
)

⊥
+
(

S̃A(I − SA)−1DC̃+
0 Γ̃−1

A ϕ
)

⊥

= I + II .

Notice that I is just C̃+
0 h̃+ with

h̃+ := (Γ̃−1
A − Γ̃−1

A0
)ϕ ∈ Ẽ+

0 L2.

Recall (A.21) and the invertibility of Γ̃A0 , we have

‖Γ̃−1
A − Γ̃−1

A0
‖L2→L2 =

∥∥∥Γ̃−1
A

(
Γ̃A0 − Γ̃A

)
Γ̃−1

A0

∥∥∥
L2→L2

� ‖Γ̃A − Γ̃A0‖L2→L2

� ‖A − A0‖C ,

provided ‖A − A0‖C is sufficiently small. It follows then

‖h̃+‖L2 � ‖A − A0‖C‖ϕ‖L2 .

As in the proof of [1, Theorem 10.1], we may write h̃+ as h̃+ = B0h+ with h+ ∈ E+
0 H

so that

‖Ñ∗(I)‖L2 = ‖Ñ∗(C̃+
0 B0h+)‖L2 = ‖Ñ∗(B0C0h+)‖L2 ≈ ‖C0h+‖X � ‖h+‖L2 ≈ ‖h̃+‖L2 ,

where we use (A.12), [1, Theorem 5.2] and the accretivity of B0. Thus

‖Ñ
3/2
∗ (I)‖L2 ≤ ‖Ñ∗(I)‖L2 � ‖A − A0‖C‖ϕ‖L2 ,

as desired. To handle II we use [1, Lemma 10.2] which says that

‖Ñ
3/2
∗ ((S̃Af)⊥)‖L2 � ‖E‖∗‖f‖Y � ‖A − A0‖C‖f‖Y .
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(This is why we have non-tangential maximal function with power 3/2 in (3.24).) Thus, 
to obtain a desirable bound for II it is enough to show

‖(I − SA)−1DC̃+
0 h̃+‖Y � ‖h̃+‖L2 , for any h̃+ ∈ Ẽ+

0 L2, (A.22)

where we used that Γ̃−1
A is an isomorphism to exchange Γ̃−1

A ϕ for h̃+. Recall (see [1, 
Proposition 7.1]) that (I − SA)−1 : Y → Y is bounded; moreover by the accretivity of 
B0 and the square function estimate for the operator B0D we have

‖DC̃+
0 h̃+‖Y ≈ ‖B0De−tB0Dh̃+‖Y ≈ ‖h̃+‖L2 , ∀h̃+ ∈ Ẽ+

0 L2.

This finishes the proof of (A.22) and therefore

‖Ñ
3/2
∗ (II)‖L2 � ‖A − A0‖C‖(I − SA)−1DC̃+

0 Γ̃−1
A ϕ‖Y

� ‖A − A0‖C‖Γ̃−1
A ϕ‖L2

� ‖A − A0‖C‖ϕ‖L2 .

This concludes the proof of (3.24) modulo showing that the solution here agrees with 
the elliptic measure solution, when the boundary data is smooth.

A.5. For smooth data the solution in [1] agrees with the elliptic measure solution

It remains to show that given 0 ≤ f ∈ C∞
c (Rn) the unique L2-solution u in the sense 

of [1] agrees with the elliptic measure solution uf as in (3.14).21 (It suffices to consider 
functions 0 ≤ f ∈ C∞

c (Rn), since this is enough to characterize the elliptic measure, or 
equivalently the Poisson kernel. Assuming that u ∈ C(Rn+1

+ ), by the maximum principle 
it suffices to show u − uf (X) → 0 as |X| → ∞. Since we know that uf (X) → 0 as 
|X| → ∞,22 to prove u ≡ uf it suffices to show u is continuous all the way to the 
boundary and u(X) → 0 as |X| → ∞. In fact, we will show in the following lemma that 
u ∈ Ċβ(Rn+1

+ ), where Ċβ is the homogeneous Hölder space:

‖v‖Ċβ(E) := sup
x,y∈E

x�=y

|v(x) − v(y)|
|x − y|β ,

for a function v : E → R.

21 This is not without cause, since in general (for example, when the coefficient matrix is non-symmetric), 
even with smooth boundary data different notions of solutions may not agree, see the example in [7]. Even 
for the Laplacian in the upper half space, it is well known that solutions to the Dirichlet problem are not 
unique.
22 This can be proven by comparing it with the elliptic measure of a compact set. Let K = supp f and 
assume K ⊂ BR for some R > 0. Since 0 ≤ f ∈ C∞

c (Rn), we have uf (X) ≤ ωX (ΔR) · sup f . On the other 
hand, let AR denote the interior corkscrew point for the ball BR. By Lemma 2.16 and the estimate of the 
Green’s function, when X ∈ Rn+1

+ \ B4R we have ωX (ΔR) ≈ G(X, AR) · Rn−1 � Rn−1

|X−AR|n−1 . The right 
hand side converges to zero as |X| → ∞. Therefore ωX (ΔR) → 0, and thus uf (X) → 0 as |X| → ∞.
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Lemma A.23 ([26,25]). Let

A(t, x) = A0(x) + B(t, x)

be a real matrix such that A0(x) = Ac + B̃(x), Ac is a real constant elliptic matrix, 
‖B̃‖∞ < ε0 and ‖B(t, x)‖C < ε0. If ε0 is small depending on the ellipticity of Ac and 
dimension then there exists β ∈ [0, 1) depending on ellipticity, the dimension and ε0 such 
that the following holds. If f ∈ C∞

c (Rn) and u is the (unique) solution to the L2-Dirichlet 
problem for L = − div A∇ on Rn+1

+ produced above, then

‖u‖
Ċβ(Rn+1

+ ) � ‖f‖Ċβ(Rn), (A.24)

where the implicit constant depends on dimension and ellipticity of Ac.

Proof. Here we appeal to the ‘second order methods’ noting that the L2 solution to 
the Dirichlet problem above is unique so that we are working with the same solution. 
The lemma is, in fact, a ‘direct’ result of [26, Theorem 1.4] and [25, Theorem 1.35]. 
First note that Ac is constant so that we may assume Ac is symmetric as demonstrated 
in Lemma 3.5 above. Thus, [26, Theorem 1.4] gives the solvability of the Ċβ′ Dirichlet 
problem for coefficients A0 with β′ ∈ (0, β′

0) depending on dimension, ellipticity of Ac

and ε0, provided ε0 is small enough. Similarly, (at the cost of a smaller β) [25, Theorem 
1.35] can be applied to perturb from the coefficients A0 to A, giving the solvability of the 
Ċβ Dirichlet problem with β ∈ (0, β′

0/2) for L = − div A∇ provided ε0 is small enough. 
Here is where one should be careful: We need to check that the Ċβ and L2 solutions agree 
when the data is in Ċβ(Rn) ∩ L2(Rn), we will call this ‘compatibility’. Note that the Ċβ

and L2 solutions agree for the operator with coefficients Lc = − div Ac∇ because they 
are both given by convolution with a elliptic-Poisson kernel (see Theorems 1.4 and 3.3 
in [37]). The interested reader can carefully check23 that the perturbations [26, Theorem 
1.4] and [25, Theorem 1.35] preserve this compatibility. �

With the lemma in hand, we are going to prove u(X) → 0 as |X| → ∞. By definition 
it holds that

‖Ñ∗(u)‖L2(Rn) � ‖f‖L2(Rn)

which (by interior estimates) implies that

sup
t>0

‖u(t, ·)‖L2(Rn) � ‖f‖L2(Rn).

23 This will be a result of the boundary trace of the layer potentials being perturbative in the norms Ċα

and L2: In the case of [26] this is done in [26, Section 4] and in the case of [25] in [25, Proposition 7.21].
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Next, we see for s ∈ R+, by breaking up Rn into cubes of side length roughly s and 
using Caccioppoli’s inequality, that

2sˆ

s

ˆ

Rn

|∇u|2 dx dt � 1
s2

5s/2ˆ

s/2

ˆ

Rn

|u|2 dx dt �
‖f‖2

L2(Rn)

s
,

where we used supt>0 ‖u(t, ·)‖L2(Rn) � ‖f‖L2(Rn). Thus,

∞̂

s

ˆ

Rn

|∇u|2 dx dt =
∞∑

k=0

2k+1sˆ

2ks

ˆ

Rn

|∇u|2 dx dt �
∞∑

k=0

‖f‖2
L2(Rn)

2ks
�

‖f‖2
L2(Rn)

s
,

written compactly ‖∇u‖L2(Rn+1
s ) � ‖f‖L2(Rn)√

s
, where Rn+1

s = {(t, x) : t > s, x ∈ Rn}. 
It is a fact24 that there exists a constant c such that u − c ∈ Y 1,2(Rn+1

s ) := {v ∈
L

2n
n−1 (Rn+1

s ) : ∇v ∈ L2(Rn+1
s )}, but since supt>0 ‖u(t, ·)‖L2(Rn) < +∞ it must be the 

case that c = 0 and hence u ∈ Y 1,2(Rn+1
s ). Moreover, by the Poincaré Sobolev inequality

‖u‖
L

2n
n−1 (Rn+1

s )
� ‖∇u‖L2(Rn+1

s ) � ‖f‖L2(Rn)/
√

s, (A.25)

where we used our estimate established above.
Now fix γ > 0 and let C1 := ‖u‖

Ċβ(Rn+1
+ ) < ∞. Our goal is to show that there 

exists Mγ so that if |X| > Mγ then |u(X)| ≤ γ. Note that if there exists X = (t, x)
such that |u(X)| > γ then we have that |u(Y )| > γ/2 for all Y ∈ Rn+1

+ such that 
|X − Y | < (γ/2C1)1/β . In particular, if s ∈ R+ and there exists X = (t, x) such that 
|u(X)| > γ with t ≥ s then

‖u‖
L

2n
n−1 (Rn+1

s )
� γ

n2−1
β2n +1

where we used that |u(Y )| > γ/2 in B(X, (γ/2C1)1/β) ∩ Rn+1
s . Thus, choosing s0 large 

enough so that

‖f‖L2(Rn)√
s0

� γ
n2−1
β2n +1

we have from (A.25) that ‖u‖L∞(Rn+1
s0 ) ≤ γ.

Having established the bound for t ≥ s0, it suffices to show that there exists A so that if 
|x| > A and t ∈ [0, s0] then |u(t, x)| ≤ γ. To do this, we use that supt>0 ‖u(t, ·)‖L2(Rn) <

‖f‖L2(Rn) and hence

24 See [41, Theorem 1.78]. One can adapt the proof there using nested cubes (this time not concentric 
dilates though) which exhaust Rn+1

s .
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‖u‖L2([0,s0]×Rn) �
√

s0‖f‖L2(Rn).

Arguing as above, it would be impossible to have Xk = (xk, tk) with |xk| → ∞ and 
tk ∈ [0, s0] such that |u(Xk)| ≥ γ. Indeed, for this would give that ‖u‖L2([0,s0]×Rn) = ∞. 
This concludes the proof that u(X) → 0 as |X| → ∞.

Appendix B. From (5.24) to (5.25)

The goal of this section is to prove Lemma B.2, which will immediately show (5.24)
implies (5.25). We first make an observation that allows us to use the work of Korey 
[32] with impunity in the setting of this work. Specifically, we would like to use the 
consequences of [32, Theorem 6] and the portion of [32, Theorem 10] unique to the work 
there.

Lemma B.1. Let Γ ⊂ Rn+1 be a closed set with locally finite Hn measure, that is Hn(Γ ∩
B(0, r)) < ∞ for every r > 0. Set σ = Hn|Γ. Then for every Borel set of E ⊆ Γ and 
τ ∈ [0, 1] there exists a Borel F with σ(F ) = τσ(E).

Proof. Fix E as above. Clearly, we only need to show result for τ = 1/2. We see by 
monotonicity of measure σ(B(0, R) ∩E) > (1/2)σ(E) for some R large enough. Let r0 :=
sup{r : σ(B(0, r) ∩ E) < (1/2)σ(E)}. By monotonicity of measure σ(E ∩ ∂B(0, r0)) +
σ(B(0, r0) ∩E) ≥ (1/2)σ(E) and σ(B(0, r0) ∩E) ≤ (1/2)σ(E). Thus, τ ′σ(E∩∂B(0, r0)) +
σ(B(0, r0) ∩ E) = (1/2)σ(E) for some τ ′ ∈ [0, 1]. Next we note that σ̃ := Hn|∂B(0,r0)
already has the diffusivity property, that is, for every E′ ⊂ ∂B(0, r0) and τ ′ ∈ [0, 1]
there exists F ′ ⊆ E′ with σ̃(F ′) = τ ′σ̃(E′) so that we may take E′ = E ∩ ∂B(0, r0)
and find F ′ ⊆ E ∩ ∂B(0, r0) so that σ(F ∩ ∂B(0, r0)) = τ ′σ(E ∩ ∂B(0, r0)). Setting 
F = F ′ ∪ (B(0, r0) ∩ E) we have that σ(F ) = (1/2)σ(E). �
Lemma B.2. Let Γ ⊂ Rn+1 be a closed set with locally finite Hn measure and set σ =
Hn|Γ. Suppose x0 ∈ Γ and r0 > 0 are such that σ(Δ0) > 0, where Δ0 = B(x0, r0) ∩ Γ. 
Suppose k ∈ L1

loc(dσ) with k ≥ 0 and set w = k dσ. There exists ε0 and c, absolute
constants, so that the following holds. If there exists ε > 0 such that for every F ⊂ Δ0
with σ(F )/σ(Δ0) = 1/2 it holds that w(F )/w(Δ0) ≤ 1/2 + ε for some ε ∈ (0, ε0) then⎛⎜⎝  

Δ(x0,s)

k dσ

⎞⎟⎠
2

≤ (1 + cε)

⎛⎜⎝  

Δ(x0,s)

k1/2 dσ

⎞⎟⎠ .

Proof. We start the proof exactly as in the proof (d) to (c) in [32, Theorem 10]. Set 
f :=

√
k an L2

loc(dσ) function. Set mk,Δ0 to be the median of the function k on Δ0, that 
is

σ({x ∈ Δ0 : k > mk,Δ0}), σ({x ∈ Δ0 : k < mk,Δ0}) ≤ (1/2)σ(Δ0)
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Set E′ = {x ∈ Δ0 : k > mk,Δ0} and F ′ = {x ∈ Δ0 : k < mk,Δ0}. Then by Lemma B.1
there exists G ⊆ Δ0 \ (E′ ∪ F ′) such that σ(E′ ∪ G) = (1/2)σ(Δ0). Setting E := E′ ∪ G

and F := Δ0 \ E we have that σ(E) = σ(F ) = (1/2)σ(Δ0),

k(x) ≤ mk,Δ0 , σ − a.e.x ∈ F

and

k(x) ≥ mk,Δ0 , σ − a.e.x ∈ E.

By hypothesis

w(F )
w(Δ0) = 1 − w(E)

w(Δ0) ≥ 1
2 − ε.

Then
 

Δ0

f2 dσ = 1
σ(Δ0)

ˆ

Δ0

k dσ = w(Δ0)
σ(Δ0)

≤ (1 − 2ε)−1 w(F )
σ(F ) = (1 − 2ε)−1 1

σ(F )

ˆ

F

k dσ

= (1 − 2ε)−1 1
σ(F )

ˆ

F

f2 dσ ≤ (1 − 2ε)−1 1
σ(F )

ˆ

F

f dσ
√

mk,Δ0 ,

where we used f ≤ √
mk,Δ0 σ-a.e. on F . On the other hand,

mk,Δ0 ≤
 

E

k dσ = w(E)
σ(E) ≤

1
2 + ε

1
2

w(Δ0)
σ(Δ0) = (1 + 2ε)

 

Δ0

k dσ,

where we used σ(E)/σ(Δ0) = 1/2 and the hypothesis of the lemma. Combining these 
two inequalities we have

 

Δ0

f2 dσ ≤ (1 − 2ε)−1

⎛⎝ 
F

f dσ

⎞⎠√
mk,Δ0

≤ (1 + 2ε)1/2(1 − 2ε)−1

⎛⎝ 
Δ0

f dσ

⎞⎠⎛⎝ 
Δ0

k dσ

⎞⎠1/2

= (1 + 2ε)1/2(1 − 2ε)−1

⎛⎝ 
Δ0

f dσ

⎞⎠⎛⎝ 
Δ0

f2 dσ

⎞⎠1/2

,
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where we used that the average over F of k is less than the average over Δ0 of k, by the 
definition of F and E = Δ0 \ F . Thus, we have

⎛⎝ 
Δ0

f2 dσ

⎞⎠1/2

≤ (1 + cε)
 

Δ0

f dσ, (B.3)

provided that ε0 is sufficiently small. �
To show (5.24) implies (5.25), we apply the previous lemma with ε = C ′(β′)μ. We 

also remark here that in order to conclude that log k in V MO from (5.25) one can use 
the methods in [32] (armed with Lemma B.1).

Appendix C. Pullbacks and pushforwards for Lipschitz domains

In this appendix, we recall the well-known applications of arguments concerning the 
“flat” transformation of solutions to (second order divergence form) elliptic equations on 
Lipschitz domains to solutions of a transformed elliptic operator on the upper half space. 
This transformation is well adapted to the perturbations under consideration in this work 
as many have noted. We continue to work in Rn+1, identified as Rn+1 = {(x, t) ∈ Rn×R}. 
For a Lipschitz function ϕ : Rn → R, with ϕ(0) = 025 we set

Ωϕ := {(x, t) ∈ Rn+1 : t > ϕ(x)}.

We will often just write Ω except when the dependence on ϕ is important. We also define

Graph(ϕ) := {(x, t) ∈ Rn+1 : t = ϕ(x)}.

The following proposition follows by a simple change of variables.

Proposition C.1. Let ϕ : Rn → R, ϕ(0) = 0 be a Lipschitz function and Ω = Ωϕ be 
as above. Let L = − div A∇ be an elliptic operator with real coefficient matrix A. Let 
Φ(x, t) be the flattening map for ϕ, Φ(x, t) := (x, t − ϕ(x)), so that Φ(Ωϕ) = Rn+1

+ and 
Φ(Graph(ϕ)) = Rn × {0}. Then u : Ω → R solves the differential equation

(D)L,Ω

{
Lu = 0 ∈ Ω
u = f ∈ Cc(∂Ω)

if and only if ũ : Rn+1
+ → R solves the differential equation

25 We can always arrange for this by shifting all of the objects under consideration.
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(D)L̃,Rn+1
+

{
L̃ũ = 0 ∈ Rn+1

+

ũ = f̃ ,

where f̃(x) = f(x, ϕ(x)) ∈ Cc(Rn), ũ(X) = (u ◦ Φ−1)(X) and L̃ = − div Ã∇ with 
Ã = JT

Φ (A ◦ Φ−1)JΦ. Here JΦ is the Jacobian matrix of Φ, given by

JΦ(X) = JΦ(x, t) =
[

In×n −∇ϕ(x)
0 1

]
,

so that, in fact, JΦ is a function of x. In particular, if A is t-independent so is Ã.
Moreover, if hX

A = dωX

dσ is the Poisson kernel for L in Ω with pole at X exists then

hX
A (y, ϕ(y)) = 1√

1 + |∇ϕ(y)|2
k

Φ(X)
Ã

(y),

where kΦ(X)
Ã

(y) is the Poisson kernel for L̃ in Rn+1
+ with pole at Φ(X).

To see the last fact, note that for X ∈ Ω and f ∈ Cc(∂Ω)

u(X) =
ˆ

∂Ω

hX
A (Z)f(Z)dσ(Z) =

ˆ

Rn

hX
A (y, ϕ(y))f(y, ϕ(y))

√
1 + |∇ϕ(y)|2dy;

and on the other hand,

u(X) = ũ(Φ(X)) =
ˆ

Rn

k
Φ(X)
Ã

(y)f̃(y) dy =
ˆ

Rn

k
Φ(X)
Ã

f(y, ϕ(y)) dy.

From the above we can see that when ‖∇ϕ‖∞ � 1 the Poisson kernels hA and kÃ are 
very similar. We would like to say that perturbed operators (in the analogous sense of 
that in Proposition 3.10) remain so under pullback. This amounts to look at how JΦ acts 
on vectors and matrices. The following lemma can be directly verified via computation. 
We provide some brief details.

Lemma C.2. Let ϕ : Rn → R, ϕ(0) = 0 be a Lipschitz function with Lipschitz constant 
γ := ‖∇ϕ‖L∞ . For almost every x ∈ Rn, JΦ = JΦ(x) has the following properties.

(a) For any ξ ∈ Rn+1,

|JΦξ − ξ|2 ≤ √
nγ|ξ|2, |JΦξ − ξ|∞ ≤ γ|ξ|∞,

|JT
Φ ξ − ξ|2 ≤ γ|ξ|2, |JT

Φ ξ − ξ|∞ ≤ √
nγ|ξ|∞.

(b) For any (n + 1) × (n + 1) matrix A,

|JT
Φ AJΦ − A|∞ ≤ (

√
nγ + nγ2)|A|∞.
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(c) For any ξ ∈ Rn+1,

|JΦξ|2 ≥ min
{

1
2 , (1 + 4nγ2)− 1

2

}
|ξ|2.

Here | · |2 and | · |∞ are the �2 and �∞ norms, respectively.

Proof. For ξ ∈ Rn+1, ξ = (ξ1, . . . , ξn, ξn+1) we write ξ‖ = (ξ1, . . . , ξn) and ξ⊥ = ξn+1. 
To prove the assertions of (a) concerning JΦ, we write JΦξ = (ξ‖ − ξ⊥∇ϕ(x), ξ⊥), so 
that JΦξ − ξ = (−ξ⊥∇ϕ(x), 0). Similarly, to treat the estimates involving JT

Φ we write 
JT

Φ ξ = (ξ‖, −∇ϕ(x) · ξ‖ + ξ⊥), so that JT
Φ ξ − ξ = (0, −∇ϕ(x) · ξ‖). Property (b) follows 

from property (a) after writing

JT
Φ AJΦ − A = (JT

Φ AJΦ − JT
Φ A) + (JT

Φ A − A)

so that

|JT
Φ AJΦ − A|∞ ≤ |JT

Φ AJΦ − JT
Φ A|∞ + |JT

Φ A − A|∞
≤

√
nγ|AJΦ − A|∞ +

√
nγ|A|∞

≤ (
√

nγ + nγ2)|A|∞.

Finally, to see (c), we again write JΦξ = (ξ‖ − ξ⊥∇ϕ(x), ξ⊥) so that |JΦξ|2 ≥ max(|ξ‖ −
ξ⊥∇ϕ|2, |ξ⊥|2). If |ξ⊥∇ϕ|2 < 1

2 |ξ‖|2 then the estimate in (c) follows readily. If not, then 
|ξ⊥∇ϕ|2 ≥ 1

2 |ξ‖|2 and hence by the Lipschitz condition |ξ⊥|2 ≥ 1
2

√
nγ

|ξ‖|2 so that

|JΦξ|2 ≥ |ξ⊥|2 ≥ 1√
1 + 4nγ2

|ξ|2,

from which the estimate in (c) again follows readily. �
Next, we define Whitney and Carleson-type regions, which are well-suited for our 

purposes. For ϕ and Ωϕ as above, and X = (x, ϕ(x) + t) ∈ Ωϕ we define the ϕ-adapted 
Whitney region

Wϕ(X) := {(y, s) : |y − x| < t, ϕ(y) + t/2 < s < ϕ(y) + 3t/2} .

Note that Φ(Wϕ) = W (x, t), the Whitney region in Rn+1
+ . Next, for a cube Q ⊂ Rn we 

define the ϕ-adapted Carleson box

RQ,ϕ = {(y, s) : y ∈ Q, ϕ(y) < s < ϕ(y) + �(Q)}. (C.3)

Finally, for a measurable (n +1) ×(n +1) matrix-valued function P , we define the (FKP)
ϕ-adapted Carleson norm of P as
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‖P‖Cϕ
:= sup

Q⊂Rn

⎛⎜⎝ 1
|Q|

¨

RQ,ϕ

‖P‖2
L∞(Wϕ(y,s))

dy ds

s − ϕ(y)

⎞⎟⎠
1/2

= sup
Q⊂Rn

⎛⎜⎝ 1
|Q|

¨

RQ

‖P ′‖2
L∞(W (x,t))

dx dt

t

⎞⎟⎠
1/2

= ‖P ′‖C ,

(C.4)

where P ′ = P ◦ Φ−1 and we used the flattening change of variables in the second line.
The following lemma is a direct consequence of the definitions above and Lemma C.2.

Lemma C.5. Let ϕ : Rn → R be a Lipschitz function with Lipschitz constant γ and 
ϕ(0) = 0 and suppose that P is a (n + 1) × (n + 1) matrix-valued function on Ωϕ with 
‖P‖Cϕ

< ∞. Then the matrix P̃ = JT
Φ (P ◦ Φ−1)JΦ satisfies

‖P̃‖C ≤ (1 +
√

nγ + nγ2)‖P‖Cϕ
.

Proof. Recall that JΦ(x, t) = JΦ(x) so that (C.4) with P ′ = P̃ (which means JT
Φ PJΦ is 

in place of P )

‖P̃‖C ≤ ‖JT
Φ PJΦ‖Cϕ

≤ (1 +
√

nγ + nγ2)‖P‖Cϕ
,

where we used Lemma C.2(b) in the second inequality. �
Combining the previous Lemma with Lemma C.2, one easily obtains the following.

Proposition C.6. Let Λ ≥ 1. Let ϕ : Rn → R be a Lipschitz function with Lipschitz 
constant γ ≤ 1

50n and ϕ(0) = 0, and A0 a real, constant Λ-elliptic (n + 1) × (n + 1)
matrix. Suppose A(X) is a real, Λ-elliptic, matrix-valued function on Rn+1 with the 
decomposition

A(x, t) = A1(x) + P (x, t)

satisfying

‖A1 − A0‖L∞(Rn) + ‖P‖Cϕ
< κ

for some κ ≥ 0. Then Ã = JT
Φ (A ◦ Φ−1)JΦ is a real, 8Λ-elliptic matrix with the decom-

position

Ã(x, t) = Ã1(x) + P̃ (x, t),

satisfying
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‖Ã1 − A′
0‖L∞(Rn) + ‖P̃‖C < 2κ + 4

√
nγΛ,

where Ã1 := JT
Φ (A1 ◦ Φ−1)JΦ = JT

Φ (A1)JΦ, P̃ := JT
Φ (P ◦ Φ−1)JΦ and26 A′

0 :=
JT

Φ (0)A0JΦ(0).

Proof. The form of the decomposition Ã(x, t) = Ã1(x) + P̃ (x, t) is immediate from the 
form of A. In particular, notice that A1 ◦ Φ−1 = A1 since A1 = A1(x). The 8Λ-ellipticity 
of Ã is a consequence of Lemma C.2(b) and (c). Indeed, the boundedness of Ã follows 
from Lemma C.2(b), here one recalls that γ < 1/(50n), so that 

√
nγ + nγ2 ≤ 1 (we will 

use this several times). To see the lower ellipticity bound, we use the Λ-ellipticity of A
and Lemma C.2(c) to obtain

〈Ãξ, ξ〉 ≥ Λ−1|JΦξ|22 ≥ 1
4Λ−1|ξ|22,

for almost every x and all ξ ∈ Rn+1.
To obtain the desired estimate for ‖Ã1 − A′

0‖L∞(Rn), we write

Ã1 − A′
0 = (Ã1 − Ã0) + (Ã0 − A′

0), (C.7)

where Ã0 is the (variable) matrix-valued function JT
Φ (x)A0JΦ(x). Using Lemma C.2(b), 

and the triangle inequality

‖Ã1 − Ã0‖L∞ ≤ (1 +
√

nγ + nγ2)‖A1 − A0‖L∞ ≤ 2‖A1 − A0‖L∞ (C.8)

To handle the second term, we again use Lemma C.2(b) to obtain

‖Ã0 − A′
0‖L∞ ≤ ‖Ã0 − A0‖L∞ + ‖A0 − A′

0‖L∞

≤ 2(
√

nγ + nγ2)‖A0‖L∞ ≤ 4
√

nγΛ.
(C.9)

Combining (C.7), (C.8) and (C.9) yields the desirable estimate

‖Ã1 − A′
0‖L∞ ≤ 2‖A1 − A0‖L∞ + 4

√
nγΛ.

Since Lemma C.5 gives

‖P̃‖C ≤ (1 +
√

nγ + nγ2)‖P‖Cϕ
≤ 2‖P‖Cϕ

we obtain

‖Ã1 − A′
0‖L∞(Rn) + ‖P̃‖C < 2κ + 4

√
nγΛ,

as desired. �
26 Note that A′

0 is a constant matrix and one can show that Ã0 is 8Λ elliptic in the same manner as Ã.
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