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Abstract Inspired by the blending method developed by [P. Seleson, S. Beneddine,
and S. Prudhome, A Force-Based Coupling Scheme for Peridynamics and Classical
Elasticity, (2013)] for the nonlocal-to-local coupling, we create a symmetric
and consistent blended force-based atomistic-to-continuum (a/c) scheme for the
atomistic chain in one-dimensional space. The conditions for the well-posedness
of the underlying model are established by analyzing an optimal blending size
and blending type to ensure the H' semi-norm stability for the blended force-
based operator. We present several numerical experiments to test and confirm the
theoretical findings.

Keywords Atomistic-to-continuum coupling - Symmetric-force-based blending -
Stability and blending size analysis

1 Introduction

Many important materials from airplane wings to computer chips can be improved
by a better understanding of failure modes such as fracture and fatigue. Thus, one of
the most important goals of computational materials science is to efficiently and
reliably predict phenomena such as crack growth and to facilitate the design of
new materials better able to resist failure. Scientists and engineers have proposed
several multi-scale methods (e.g., [1-10]) to overcome the computational challenges
in fidelity and efficiency.

The two main strategies in multi-scale modeling are: (1) bottom-up atomistic-
to-continuum: coarse-graining of microscopic descriptions (e.g., atomistic models)
of material behavior [2, 3, 11-13]; (2) top-down local-to-nonlocal: informing
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macroscopic models (e.g., continuum equations) with physics gleaned from the
microscopic scales [5, 7-10, 14-19]. The former provides a “closer” comparison
with macroscopic experiments, and the latter predicts the materials’ microscopic
properties [6]. Meanwhile, the two approaches have many interconnections, and
their development and understanding often inspire each other.

In this chapter, we employ a symmetric blending strategy developed by P. Seleson
et al. for the nonlocal-to-local coupling [8, 9] and develop a new force-based
atomistic-to-continuum model for a 1D atomistic chain. We then study the stability
property of the new coupling scheme in terms of the blending function and its
blending size using similar mathematical tools from [20]. We investigate the optimal
number of atoms within the blending region to ensure the positive definiteness of
the resulting force blending operator under the discrete H' semi-norm. The results
admit a very narrow blending region to maintain the coercivity and efficiency when
the number of atoms is large. In addition, the stability analysis developed in this
chapter is crucial for the convergence for several popular iterative methods for
solving large-force equilibrium systems.

We will arrange the paper as follows. In Sect. 2, we introduce the force-based
symmetric blending method for a 1D atomistic chain. We construct an atomistic,
linearized force equation and a continuum, linearized force equation from the
atomistic energy equation. The consistency between these methods is discussed in
Proposition 2.2. A blending function is then introduced to symmetrically combine
these two force-based equations.

In Sect. 3, we establish the optimal conditions on the size of the blending region
for the blending force operator with respect to the H! stability. Theorem 3.1
establishes these conditions.

In Sect.4, a uniform stretch is applied to compute the critical strain errors for
various types of blending functions with different blending sizes. It is found that
the cubic blending function is optimal. We find that a larger polynomial size on the
blending region is suggested from the numerical trials when the number of atoms in
the chain is just moderately large.

Also in Sect.4, we test a sine and Gaussian external force to the system to
model the displacement with our force-based blending method. The displacements
produced by the blending methods with sufficient blending size agree with those of
fully atomistic models. In addition, we compare the impact of interaction range of
the atomistic model and observe that an interaction range potential greater than 2
neighbors does not change the displacement significantly.

2 Derivation of the Symmetric- and Consistent-Force-Based
Scheme

In this section, we will introduce notations, introduce the reference atomistic model,
and then derive the continuum approximation. After this, we introduce a blending
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equation to symmetrically combine these two models. Utilizing this blending
equation, a coupling scheme for the blended atomistic and continuum forces is
created.

2.1 Notations

We consider a 1D atomistic chain with finite interaction range up to the N-th nearest
neighbor and a total number of 2M atoms within the domain 2. We denote the

scaled reference lattice x;, = af for £ € Z with fixed reference lattice spacing
constant a := % such that we can select a reference domain that is fixed to be Q =

(—1, 1]. Throughout, the interaction range N will be fixed. The chain is deformed
to a current configuration y, = xg + uy.

The displacement field u = (u¢)¢ez : Z — R is assumed to be 2M periodic
discrete function, and U/ denotes the space of all 2M periodic displacement functions
U:= {u UM = Mg|€ € Z}.

Accordingly, we set the deformation space by

Vi={:y=xg+uluecltl e}

We also define the discrete differentiation operator for simplicity, u', on periodic
displacements by

Then we may define the higher-order discrete differentiation u”, u®, and u® for ¢
by

” u,—u
. 4 —1

u =

G

. 1 4

uy) = -t 2.1

@ . ud -,
uz = T

For a displacement u € U/ and its discrete derivatives, we employ the discrete £> and
£%° norms by

M

2. 2 .
lullp = E luel*a, and |lullge = max ugl. (2.2)
—M+1<t<M
t=—M+1
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In particular, the associated inner product for ¢, is

M

(u, w) := Z Upwy a.

t=—M+1

’
u

2
We also employ the discrete H! semi-norm, |u|il L = o in the stability
2

analysis.
Meanwhile, we proceed with & : R — IR as a quintic spline interpolation of u
such that

u(al) = uy,
u(—Ma) =u(Ma), 2.3)
w7y a)ﬁ
Iim —@ = lim —@), w=1,...,4
t—(al)~ dx® t—(al)t dx®

As U is a continuous function, we can introduce notations for its derivatives, for
instance, i, as its first derivative at (af), and U, as its second derivative at (af),
etc.

We can compare the derivatives of u(x) with the differencing of u,. Clearly, we
have

uy =i, (@b) + it (6)
, . (2.4)
” ~ a” o ~
Uy =Uxx (al) + Euxxxx é)

Note that throughout, subscript € is used to denote when discrete differentiation
is employed, whereas subscript x is used to denote when considering the true
derivatives.

As in [20], we will frequently use the following discrete summation by parts
identity:

Lemma 2.1 Suppose {MZ}?=(I+1 and {Ug}?=a+1 are two sequences; then we have

b b
> ue(e—vem1) = [upvp — ugval — Y (g —up_1)ve-1.
{=a+1 {=a+1

Furthermore, when both {W}[Z:a-u and {vg}lg:aJrl are periodic sequences with
u(a) = u(b) and v(a) = v(b), we have

b b
Z ue(vg —ve—1) = — Z (g —ug—1)ve—1.
l=a+1 l=a+1

We use this lemma to find conditions on coupling to ensure the positive definiteness
of the bilinear form of the symmetric, blended force-based operator.



A One-Dimensional Symmetric-Force-Based Blending Method for Atomistic-. . . 219
2.2 1D Atomistic and Continuum Models

Energy Formulations and Consistency Analysis

We now consider a one-dimensional atomistic periodic chain deformed into configu-
ration y € ). Recall that the atomistic periodicity is fixed to 2M, and the interaction
range is fixed to N-th neighbors. The total atomistic energy for this periodic chain
is given by

M N
Ea,tot(y) = Z Z %d) (ye*‘rka_ y@) , (2.5)

t=—M+1k=—N,
k#£0

where ¢ () : R — R is a Lennard—Jones-type potential. It can also be viewed as
the energy density per unit volume for pairwise interactions. We assume that ¢ (-)
has the following properties:

* o) =o(rD.
e ¢ is at least four times differentiable.
e ¢x(1) > 0and ¢y, (k) <0 fork > 2.

In the numerical simulation, we employ the Morse potential, and a graphical
illustration can be found in Fig. 1.

Next, we derive the continuum model by only using the first neighbor distance,
. . . / .
that is, we only use the differencing u, as we approximate the argument for ¢. For
k=2,..., N, we have

Yerk — Yo Xetk — Xg + Ugpk — Uy

a - a
k=1
_ l ’
_k+u€+2u”j.
j=1

Using the error estimates listed in (2.4), we can replace u}, 4 by uj, and estimate the
discrepancy

k—1
T Sk DT e ) e
J=
. 2.6)
=k+up+ Y i ((@b)) + cra
j=1

=k + kuj + cza,
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Fig. 1 Graphical illustration of the Lennard—Jones-type interaction potential (Morse potential)
used in numerical experiments. Notice that the local minimum is achieved at the nearest neighbor
distance r = r,

where c¢1, ¢3, and c¢3 are constants depending on k and regularity of u. For k =
—N, ..., —2, we can obtain similar consistency estimates.

The atomistic energy equation is rooted in discrete, nonlocal energy descriptions.
Assuming the finest mesh with each atom regarded as a node and substituting
the previous approximation into the atomistic energy (2.5), we thus defined the
continuum energy as

M N
Ew= Y Y %q& (k n ku;) . @2.7)
(=—M+1 ki;é\/,

So far, both the atomistic energy and the continuum energy are non-linearly
dependent on the displacement field {u,} éwz _m+1> and we would like to apply further
simplifications to obtain linear models. To linearize the total atomistic energy, we
follow a similar argument as deriving the continuum energy,

Yerk — Yo Xepk — Xo + Uppp — Uy
a a

Up+k — Uy
P .

=k 4+
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Therefore, the total atomistic energy can be written as

E% tot(y) _ Z Z (M)

—M+1k=—N
k#0

Z Z < Me+ka— ug )

—M+1k=—N
k£0

(2.8)

Next, we utilize Taylor expansion to ¢ (k+ ““£=") at the reference configuration
to linearize the expression.

¢ (k + 2k “) Pk + "y (k)

+1 <—”f+k — ”E>2¢xx(k) +0 <<—”f+k — ”Z>3> .
2 a a

Inserting the Taylor approximation into the atomistic energy equation (2.8), we
obtain

Z Z [¢<k>+“eL¢x(k)

—M+1 k=—
k;éO
U (g —ue\ sk —ug\’
.1 (—* ) b+ 0 (LI ) L 29
2 a a
N
Then, without loss of generality, we assume Z ¢ (k) = 0 since this term will not
k=—
k;éO

contribute to force. Also, since the reference configuration is a local minimizer and
the potential is symmetric, we have

N u
Y Tk =0,

k=—N,
k0

Thus, the linearized atomistic energy is

2
E% lm(u) _ Z Z ( (WL> d)xx(k))- (2.10)

—M+1k=—N
k20
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Following the linearization of the atomistic energy, for the continuum energy, we
utilize Taylor expansion to ¢ (k +ku ) at the reference configuration to linearize the
expression

& (K + kit ) =@ (k) + kit b (k) + 5 (kul) bex(k)+0 ((ku)).

Inserting the Taylor approximation into the continuum energy equation (2.7), we
obtain

Z Z <¢(k)+ku[¢x(k)+ : (ku,3> $ee ()40 ((ku;f)),

—M+1k=—N
k20

@2.11)

Following the same justification as above regarding the terms of the Taylor
expansion, the linearized continuum energy associated with the finest mesh is
defined as

c,lin . u Y a [k "\?
l=—M+1k=—N,
k#0 2.12)
M N 2
-y Z%%(k) (u;)za.

t=—M+1 \k=1

Remark 2.1 Notice that the classical continuum mechanics for interaction range up
to the N-th nearest neighbor has the following form:

- dii\?
Ec,lln(u):/W(d_M) dx, (2.13)
X

where 4 = I is the deformation field and W represents the strain energy density

N k2
Z— Grx (K). (2.14)

—2

Notice that if we use a fine mesh and applying a Riemann sum to approximate
the integral of (2.13), we can convert (2.13) into (2.12). Therefore, the linearized

continuum energy for a discrete lattice system is consistent with the theory of clas-
sical continuum mechanics. For the consistency between the classical continuum
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mechanics and the linearized continuum energy, we refer to Sect. 6 as it follows
closely with the consistency for the linearized continuum energy equation and the
atomistic energy description.

Since we obtain the atomistic and continuum energies, in the next proposition,
we will summarize the truncation errors.

Proposition 2.1 (Consistency Analysis of Linearized Energy Formulations)
Given a fully refined continuum mesh on the 1D atomistic chain, we derive the
linearized continuum energy equation (2.12),

- M N a k2 N2
EC’Im(u) = Z Z 5 (? (M@) ¢xx(k)>
l=—M+1 k?;(l)\’»

from the atomistic energy description, (2.5),

li U Yoa 1 weik — g\
R OE D DD D 5(7) P () )

t=—M+1k=—N,
k20

with the deformed configuration and the displacement field linked by y, = x¢ + uy.
Then, the consistency between the linearized continuum energy equation and the
atomistic energy equation is O (a”).

Proof Comparing ES/" and E®!™" we have

clin a,lin u Y a(k* 2
E“"" — ESTT = Z Z 5 7(”@) ¢xx (k)

t=—M+1k=—N,
k0

M N a1 (uerr —uy 2
-5 () )
2\2 a
t=—M+1k=—N,

k0

For any k = 2, ..., N, we compare u around £. Recalling the quintic spline
interpolation u defined in (2.3), we have

ugrk = ug + kay + 0 (a?).
Thus, for all &,

Uprk — g = kaliy + O(a?).
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Then, the consistency analysis of energies yields

Ec,lin . Ea,lin

= % i o LRI
4 4 2 2 E XX
2
u Yoa 1 ek — e\
-y n 2(—) Pree ()
M N 2 2
_ a (k= (ueyr —ug
= > > 2<2 (—a ) %(k))
M l a 1 Upk — Uy
-3 ¥ g (R )Mc)
=—M+1k= a
k 0
M N 2 [~ 27\ 2
_ a |k [auy, + O(a®)
-y 3¢ 3<—) borl)

M N

2
a1 {kaiiy + 0@®
- Z Z 3 5<7> Orx (k)

t=—M+1k=—N,

ks£0
Z Z 22<z>”(k>+0<az>— Z Z 22¢“(k>+0<a2>
{=—M+1k=— l=—M+1k=—N
;éo k#0

= 0(a?).

O

Next, we derive the formulae of forces for both linear atomistic and continuum
models. Because the mesh is fully refined, the linearized continuum force of atom
£ can be obtained from taking the first-order variation of the linearized continuum
energy (2.12) with respect to uy, and we thus get
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1 SESM (u)
a

Fc,lin u) =
e () Sitg

° [Zﬁ/[=—M+1 (Z/1<V=1 %%X(k)) (u;)z]

(Sug

N N
_ K2 2(ugy1 — ug) K2 2(ug —ug—1)
=— Z ?(pxx(k) — a2 Z ?‘Pxx(k) — a2

k=1 k=1

N
D Kk |y,
k=1
(2.15)
where we recall the shorthand notation u ¢, as

" Upr] — 2Up + Upg—1
Uy == .

a2

For the atomistic forces, we recall y; = x; + uy, take the first-order variation of
the total atomistic energy (2.5) at atom £, and notice we employ the forward finite
differencing; hence, we obtain

8Eat0t y X y
Fiw =" Z Z (_f+ ,)

—M+1k=—N

k£0
Yo Ugik — Ug Ug — Ug—k
S —<¢x(k++—)—¢x<k+—_)).
2a a a
k=—N,
k#£0

(2.16)

Next, we linearize the forces around the reference configuration by applying Taylor
expansion to ¢, (-), so we obtain the linearized atomistic forces

; N 1 Uprk — 2Ug + Up—k
Fol™ ) = — Z —%(k)( — )
k=—
k;éO

N

= = > ¢ux(h) (“”" — Zauf + ”“") . 2.17)

k=1

In the next proposition, we summarize the consistency errors between the linearized
atomistic and linearized continuum forces.
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Proposition 2.2 (Consistency Analysis of Force) Given a fully refined continuum
mesh on the 1D atomistic chain, the linearized atomistic force equation (2.17) for
atom £ is

j al Uptrk — 2ug + Ug—k
FOM () = —Zcpxx(k)( —— )
k=1

and the linearized continuum force equation (2.15) for node € is
_ N
FEM ) = = [ DK | uy.
k=1

Thus, the consistency error between (2.17) and (2.15) is O(az).

Proof Comparing F&!i" and F%!" we have

N N

' . ” Upyk — 21/![ +ue—x

FZ’IM(M)_(, Fa,lzn(u) - _ Zd’x}f (k) <k2“e>+z Pxx (k) < - a2 ) )
k=1 k=1

For any k = 2, ..., N, we compare u¢4, and uy_; around £. Recalling the quintic
spline interpolation # defined in (2.3), we have

uesk =1 (a(€ +k)) — i (al) + i (al)
= ug + kaliy + < (ka)zuxx + - (ka)3um + 0(a",
Up_f = U (a(Z — k)) — U (al) + U (al)

= uy — kaiiy + - (ka)zuxx——aca) Uxex + 0(a*).

Utilizing this Taylor expansion for the atomistic and continuous linear force
equations, the consistency analysis yields

Fec’,lin (u) _ Fz,lin (u)

ul 2 7 Al Uprk — 2ug + ug—g
== 2 dut G +Z¢m(k>( = )

k=1

al pUg1 — 2ug + Uug—g al 2~
=3 us(h) (k = ) > bun ) (KT + 0(a))

k=1
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S o (P + 0@™) + > bl (P + 0@™)

k=1 k=1
= 0(d?).
A more thorough proof can be seen in Sect. 6.1. O

Remark 2.2 Notice that a is chosen to be ﬁ with M being large; hence, the
consistency error becomes small when the number of atoms within €2 is sufficiently

large.

2.3 Derivation of a Symmetric Blending Model for the AtC
Coupling

In this section, we will derive a symmetric- and consistent-force-based atomistic-to-
continuum scheme for the 1D atomistic chain.

We first divide the domain of interest into three distinct sub-domains: ¢:
the domain described by the atomistic force; 2¢: the domain described by the
continuum force; and ©2°: the blending region where the atomistic and continuum
force models are both used.

We now introduce a smooth blending function g that can be defined as such:

Definition 2.1 (Definition of Blending Function) We may define a smooth blend-
ing function S, such that:

1, LeQ
Be =10, e (2.18)
€, 1), el

This blending function can take many forms, and we will employ linear spline, cubic
spline, and quintic spline blending functions in the numerical experiments in Sect. 4.

Notice that creating a linearized force equation will give way to easier analysis
in studying the stability of the scheme and providing insights on the coupling
conditions of more general cases, so we focus on blending the linearized atomistic
and continuum forces. In order for consistent symmetry, we start from k =
—N, ..., N, and k # 0. Consequently, we start from the linearized, atomistic force
equation in (2.17) and incorporate the blending function g, as follows:

N N
alin ._ Z Uepk — 2ug +Up—f Z 1 Utk — 20 + Ui
Fg, = ¢xx(k) a2 - E(bxx (k) a2
k=1 k=—N,
k£0
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Al Be+ Berr\ 1 Ugpk — 2ug +ug—g
=- E Y §¢xx(k) 3
a

k=—N,
k0
N
Be+ Beyk \ 1 Uogk — 2 4+ Ug_k
- > (1-75) 50u® . ,
2 2 a
k=—N,
k0
such that the term % is multiplied by the pair (m> and
(m>, respectively. Next, we further simplify and get
N
i Be—k +2B¢ + Berk Uppk — 2ug +uo—g
FZ mn = — Z ( 4 ¢xx(k) a2
k=1
N
Bo—k +2B¢ + Botk Upik — 2Up + Up—k
-2 (1 - ) P = @19

k=1

Then, we approximate the second term of the equation by using the linearized
continuum portion. Therefore, we get the blended force function that is defined as

Ugrk — 2ug + Ug—f

) B (K) =

bqgcf,li
Fe’qcf m(u) = —

i <,3£—k +2B¢ + Bo+k

4
k=1

N
_ 2 -2 _
_Z(l Bk + ﬁz+,3£+k>¢xx(k)kzuz+1 g+ up—

4 a?

(2.20)

al Bo—k + 2/3z + Bo+k Uppk — 2ug + g
=-> brx (k) —
k=1

Mz

( Bo—k +2B¢ + Betk
4

) brx (KKt

k=1

Remark 2.3 As £ — k and £ + k are both employed in the term of the blending
function, this blending operator is symmetric as in [8].

We also see that the first term recovers (2.17) for 8 = 0 and the second term
recovers (2.15) for § = 1. Thus, the consistency error between the linearized

qucf’”" and FZ’“" is also of O (a?).



A One-Dimensional Symmetric-Force-Based Blending Method for Atomistic-. . . 229

3 Stability Analysis for the Linearized Blending Model

3.1 Bilinear Form of Linearized Blending Model

In this section, we study the size of the blending region with respect to the
H' stability of the blending operator. This is achieved by obtaining the optimal
conditions in which the linearized coupling operator is positive definite under the
discrete H' semi-norm.

From (2.20), we consider the bilinear form

N
bqcf.li — bgcflin . chflll’l ’ : )
<F’ qefilin gy v> <F’1 (u) v) + kE:2< (u), > Yvel 3.1)

where the first neighbor interaction—the first term—is set apart due to its simplicity
in analysis. The second term accounts for the next-nearest neighbor to the N-th
nearest neighbor.

To observe the stability of the operator, we first look at the nearest and next-
nearest-neighbor interaction, for simplicity as well as for the coercivity assumption
on ¢y, (1) > 0 and ¢, (k) < 0 with k > 2, to find the constraints on the size of
blending region. Then, we discuss how the next-nearest-neighbor analysis can be
extended to the general N-th-neighbor interaction.

The discrete stability analysis is inspired by and similar to the analogous
continuous analysis for the force-based operator that can be seen in Appendix 6.
We proceed with the analysis for the discrete case.

3.2 Stability Analysis for Next-Nearest-Neighbor Interaction
Range: N =2

Lemma 3.1 For any displacements u = (u g)f}’[: _ M4 Jrom the deformed configu-
ration y¢ = Xy + uy, the bilinear forms of nearest neighbor and the next-nearest-
neighbor interaction operator can be written as

(Fh " ), u) = o (1) |u H

< chflzn( ), u>

=2 {205“

2

¢xx @ »

¢xx(2) ZH\F "

+R+S;,
1%

(3.2)
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where
M
¢ (2) 3) " " /
R:= Z % ( B o) — Meﬁe“za) a
t=—M+1
and

f: P22 (1) a? (B, — y-au2)

L=—M+1

Proof For the nearest-neighbor interaction, as the F alin gnd Felin coincide, we
have

M

pbactlin Uerl —2ug +ug—
(Fhe ™ wy,u) == 32 [¢xx<1>a( = )}ue

l=—M+1

M
Y bu(Duguea.

t=—M+1

Then, using the discrete derivative and summation by parts formula from
Lemma 2.1, we conclude that

< chfltn(u) u> Z ¢xx(l)uguea—¢xx(l)H H

—-M+1

For the next-nearest-neighbor interaction, recall from (2.20) for the linearized

blending operator F, hqcf fin

chf lin

(u)
__ |:<,3€+k + Zfz + ﬁz-k) ber () (ue+k - 2u25 + Ml—k)
a
n (1 ~ Berk + Zfz + ﬂz-k) o) (uz+1 - 2au24 + g ) kz} 7

k=2

so the bilinear form with test function u is
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< chflm(u) u>

Z hqcflm(u) - uga

“M+1
M
-y { B <,3£+2 + Zfe + ﬁez) 60 (2) (ue+2 - 2uze + uez) .
a
=—M-+1
3 (1 Bt Zfe + ﬂez) b0n (D) (ue+1 - 2u2e + g ) 4a} g,
a

(3.3)

We particularly focus on terms contributed to B, as the other terms could be
similarly treated. Hence, we divide the constant “1” in (3.3) by 1 = le + % + }1,
collect terms contributed to B¢, and recall the finite difference defined in (2.1); then
we have

@) | — Qug + U
r= 0@ Z (ue+2 ue +ug 2>(ﬂzw)

(=—M+1 a
(- B) (Me+1 — ZZe +up ) 4uz]
M
=D S (it = ) ()
(=—M+1
+ (l — ﬂz) (u;Z — ”;5—1> 4ugi|
_ @) $ (1) | + 2@
R t=—M+1 e 2
M ’ ’ ’ ! ’ !’
x > [(”E—H - ”z) -2 (”e - ”z-1> + (“2—1 - “z—z)} - (Bee)
(=—M+1
=T+ T. 3.4

We consider T first by using Lemma 2.1
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M

6@ [ @
= Z T(ue_”e—l)‘m‘ZZ Z > Uyp_ 14(uz—ue l)
(= M+1 =
M
XX 2)
_ oy ¢ 2<> u, 14(W l)a_zqsxx(z)uu IZ,-
=—M+1

(3.5)

Treating 73 is more tedious and is still mainly based on Lemma 2.1. We have

= Y O (=)~ )

t=—M+1

= (0, =) = Gy =) | ()

X x 2 ! ! !
Z é ( ) [( () — ) — (u) — uz1))} (Beg1ues1 — Beu)

—M+1
M

XX 2 " "
= Z ? 2( )(”z —uy_y)a - (Besiuesr — Beue)

l=—M+1

M

—@Pxx 2 4
= Z %(W)a : [(ﬂe+1uz+1 — Beue) — (Beue — ,BE—IWZ—I)]

b=—M+1
M

- XX 2 4
= Z ¢T()(”z)a : [(ﬂe+1uz+1 — Beugs1)
(=—M+1
+ (Bewes1 — 2Beue + Beue—1) — (Bewe—1 — ﬂe—lue—1)]

M —dx (2 " ” —¢rx (2 ” ! !
= Z ¢T()(W) - Bouya® + ¢—()(Me) : [ﬂzMHl - /313—1“471] a®

2
t=—M+1

bxx(2) "
= _%azﬂ\/ﬁu 17, + T

Now we mainly focus on 73, term, which can be treated as

M
—x (2) , , / ,
T = Z ¢T()(ue - uZ—l) . [ﬂeu“_] — :34—1”5—1] a

(=—M+1

Z ¢”(2) |:<,34u€+1 ﬁ;z—lue—1> - (ﬁz/z—we - /32—2”3—2)} a

(=—M+1
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We work on
(ﬁéuul - ,3;,1”/5—1) - (ﬁéfluz - ﬁLzW—Z)
= Byt — ug—1) + tte—1 <,3(/z — 2B, + ﬂ;—2>
+ ,3;/5_1(14@—1 —ug) + ﬁé_z(ue—z —ug_1)
= /32(”2 +up_y)a+ ”f—lﬂéi)l‘ﬂ - :3é—1“/z—1“ — Bi_auty_sa.
Then we plug into 775 to get

M

xx(z) !
I = Z ¢2 ()

t=—M+1

’ 3 !
. [ﬂe(u;z + Mé_l)a + Me—lﬁé_)laz - /35_1“2_10 - ,82_214/5_211:|a

e R 3 2 e .
i Z (o) | [me—1By71a” + (Bpo—y — By—yup—y)a |a
=M1

+[/3éu’z - ﬁ})

_(bxx(z) M / 3) N2 o, 3
== D0 (o) B (o) + (up) By — ufByuja )a
=—M+1
6@ L (0
+ 2 Z <'3€u2 - 162_2“[_2>Mga2.
t=—M+1

Summarizing all terms 77, 75, T>; for terms belong to B, in (3.3), and treat those for
Be—> and By in a similar way, we get (3.2) and R, S terms. |

Remark 3.1 The terms R and S from above are viewed as “residual term.” Thus,
we will estimate their bounds controlled by the support of g, the size of blending
region, in pursuit of the positive definiteness of the bilinear form.

Lemma 3.2 Let R, S be defined as above; then we have the following estimates:

’
u

IR| < (4@) (C3L—§a—£ + 202(L)_2> ,
2 ) (3.6)

1] < (= ¢ux @) er (L) u'I13,.
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where L is the number of atoms within the blending region Qp, a = % being the
lattice spacing, and 2M being the total number of atoms within the periodic domain
Q = (—1, 1], and the constants c1, ¢, and c3 depend on ,B(j) with j =1,...,3,
respectively.

Proof Recall that

R = Z Dxx(2) (M/gﬂf_)l(”é—l) _ leggu:éa> a3

2
t=—M+1

Also notice that the finite differences of 8 are nonzero only on €25, so utilizing the
fact that ¢, (2) < 0 and Holder’s inequality, we get

XX 2 / XX 2 "l )
&= | Y 2220 (B0 wen) | + | 3 222 et
Leqb LeQb

ol i M T 2
<
- 2 ﬁ YA u ZZ(QI;) ”uHZZ(Qh)a
—¢xx(2)
+ 1B el ey gy 1 ey 0y
Also notice that |Q25] = La, and by the discrete Poincaré inequality, we have

’
u

1
lulle, gy < (La)?

Then

i In addition, we use the fact that H,B(j) He <c (La)_j.
2 o0

—x (2) /
Rl = =2 @) u], o Ml erya?

£(QP)

—xx(2)

I8Pl ey 1 Ny’

— 2 12 — 2 2
< MC3(La)_3(La)% u H a’ + MCZ(L(I)_z—”M,”% a’

2 1) 2 a 2

_ 2 )

< —d));( )<C3L_§a_; +26‘2(L)_2> Hu ,
2

Next, we bound S. Recall that

M
o (2) 7! ! !
S = Z ¢ 2( )(”z)az (:3@”@ - ﬂ€72u572> .

l=—M+1
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Utilizing similar inequalities, we obtain

¢ (2) —¢xx(2) _
181 =208 e - 200 < === ei(La)™ 20
= (= ¢xx @)1 (L) lu'113,.
Hence, we prove the lemma. O

Theorem 3.1 Suppose that the number of atoms M within the chain model is
sufficiently large, or equivalently, the lattice spacing a = ﬁ is sufficiently small;
also suppose that the fully atomistic model with next-nearest-neighbor interaction
N = 2 is stable so that [¢xx (1) + 4y (2)] > 0. Let L denote the number of atoms
within the blending region and let the blending function B be sufficiently smooth

such that H ﬂ(j ) ” < (La)~/. Then there exists a positive constant C such that
o0

12

2 M
> (R ) = € u (3.7)
-M

=
k=1 t=—M+1 2

Cis strictly bounded above zero as a = ﬁ — 0.

Proof For N = 2 and from Lemma 3.1, the blended force-based operator satisfies

Z (R4 0] = (bur D) + 400 @) [u |

—M+1

~ pee2)a® |/’ | :
2

2
+ drx(Qa
1%

+ 2R + 28S.
(3.8)
From Lemma 3.2, we have
2 12
2R +28|< — L@ (2C3L—%a—% 4oL+ clL_1>
2 123
5 ) (3.9
<— Dxx (2) <C4L_%a_%> Hu’ :
2 1%

hence, we have

2

/

2
2R+ 28 > % (C4L7%cf%) ‘u

£

. . . . _3 _1 -5 _1
with the latter inequality following from L2 < L~! < L2472 as L™2a™2
dominates the latter two terms when a is sufficiently small.
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From (3.8), we want to observe the terms that do not favor the coercivity in the
terms of the H! semi-norm. For the second term, since ¢xx(2) <0, we have

~pua |V =0

and thus it does not negatively contribute. For the third term, we observe that

Z

because of ¢y, (2) < 0. For up to N = 2 neighbor interaction, we have from the
coercivity of atomistic model that ¢” (1) + 4¢”(2) > 0; hence, for the linearized
force-blended model, we have

Oxx (2)32

2 12
>guc@esL ™ o
& &

s s 5 12
<F_b1qcf’[m + szqcf’lm, u)z |:d>xx(1) + ¢xx (2) (4 + C4L_%a_% + csL_z):| ‘ u ,
’ ’ 2
~ 12
>C ‘ u
1%

for C = (¢xx (1) + 2¢2x(2)) > O strictly positive, and independent of a — 0.
Thus, we can conclude that the necessary and optimal blending size for coercivity

1 ~

is L= 3q"7 < 1/cq, thatis, L = Ca=5 = CMS5 for some C > 0. O

3.3 Stability Analysis for General N-th-Nearest-Neighbor
Interaction Range

To observe the general form of the N-th-neighbor interaction range, we notice that
fork=3,...,N

bqcf.li
<F,chf m(u), M>

M

_ Be+k + 2P0+ Be—k \ ((Uetk — 2up + up—k
= —¢u(k) Y { ( Z —
(=—M+1
n (1 B+ 2fz + ﬁz-k) 2 (Mz+1 - 2au2:z + ue-l) }uea.

(3.10)

The k-th-neighbor interaction differs by having B¢+ terms that are treated similarly
to B¢ terms. ¢y, (k) is a non-positive constant term for all k£ > 2.
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Similarly to the previous subsection, we fix an interaction range k and at the
moment only consider all terms that contribute to S¢; thus we get

Orx (k) u Upyl — 2ug +Ug—1
T :=— 3 Z <k2 a p )(W)

f=—M+1

_ Pux (k) i [(uuk —2upt ek olers —2urt Me_l)(ﬁeuz)}
a

2 a
l=—M+1

=T+ 7.

For T7, we similarly have

M
T = Grx (k) Z (kzulH - 22@ + uel) (o)

=—M+1
3.11)

M 2
¢x (k) k
D DR (A PIERS SOIP 7
l=—M+1

For T, the simplification is more difficult; we have

v o

k -2 _ -2 _

= xx (k) Z <”£+k ue +ue—k 2 el — 2ue + uyg 1)(/3@”@)]
e=—m+1 L a

N L&, ,
=20y (XX ) - | (o)

{=—M+1

= k 3 3 " ”
:_¢ 2( ) Z Zz<uf—j+s_"‘e> (aﬁlul)-

{=—M+1 _j:l s=1

Due to the exact symmetry of j and s, we have
k k k k
" "
YD) I 3 v

j=1s=1 j=1s=1

Hence, T, can be converted into a symmetrical form
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M

X k £ £ " 4
h=- ¢ 2( ) Z ZZ <ulj+s - ”z) (aBeue)

t=—M+1 [ j=1s=1

M

e (k) LG, .
=== Z ZZ(uz_j+s—2ug+ug+j_s> (aBeue)

t=—M+1 [ j=1s=1

M

¢ux (k) L&, PP
=T g Z ZZ (”e—j+s - ”e) - (”z - ”e+j—s) (aﬁzue)-

t=—M+1 [ j=1s=1

(3.12)

t=—M+1 | j=1s=1
M k
—pxx (k) "
= L |2 ua
t=—M+1 | j=1s=I

X ((ﬂzfjﬂuefjﬂ - ﬂew) - (ﬁeuz - /3£+jfs”€+jfs>>

M k

k
—@xx (k)
= ):C Z Z Z uya (ﬂz—j+sw—j+s —2Beug + ﬁe+j—suz+j—s)~

(=—M+1| j=1s=1

(3.13)

We can carefully work on the symmetrical term
(.Bi—j+su£—j+s — 2Beug + /3/3+j—sue+j—s)

L (ﬂeruer —2Beue + ,3€+rw+r>

= Bo—rtte—r — Better1 + (Beer1 — 2Beue + Beue—1) — Bere—1 + Besritetr
2
= Beuya” + Be—ruo—r — Bette1 + Beartboyr — Beto—1.

Without loss of generality, we assume r > 0, and then
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(ﬁz-ﬂdz-r — 2Bue + /3£+ruz+r)

2
= Bouya® + Be—ro—r — Bette1 + Braritorr — Betto—1

= Puufa® + (Bewe—r — Peuer) + (Beuerr — Beues) G149

r—1 r—1
’ ’
+ Upgtr Z ﬂz.g_ta —Ug—r Z ﬁe—r-Ha-

=0 t=0

Therefore, we can handle 75 for general k-th-neighbor interaction range in a similar
way to that for the case of k = 2 and obtain that

~ _5 _1 ~ _
1Tl < (—x (O ([EIL™2a™2 + [ES|L72) /|17,

which suggests that for k > 2

~ 3 _1 ~ oy —
Ty > (pux () (G4L™2a 2 + ESL72)[|u||2,.
Combining with 77 estimate (3.11), we have for any k > 2

(F chflm(u) u) > drr (k) <k2+CkL 2a~ 2 —|—CkL )||1,¢/||%2 (3.15)

. ~ _1 . .
with L = Ca™5 whena = % being sufficiently small.

Thus, collecting all interactions up to the N-th-nearest-neighbor interaction
range, we have

N
<Fb616f,lin(u) M> — (Fblqcf,lln >+ Z< quflln(u) M>

k=2

N
~ 5 1
> | gD+ Y ¢ ®) (K + CL™3a77) | |7,
k=2

Hence, similar to Theorem 3.1, we summarize the stability conditions on the
blending size for a general atomistic chain with N-th-nearest-neighbor interaction
in the following theorem.

Theorem 3.2 Suppose that the number of atoms M is sufficiently large, which
is equivalent to a = % being sufficiently small, and the blending function B is
sufficiently smooth. Also, we assume that the fully atomistic model is stable so that

N
brr (1) + Y K (k) | > 0.

k=1
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If the blending size L satisfies L = 5a_%, then the linear B-QCF operator F)chf’”"
is positive definite in terms of the H' semi-norm

N M
S Y (=
=M

k=11¢ +1

2

’
u

) (3.16)

%3

where C is strictly bounded above zero as a = % — 0.

Meanwhile, we can see that the bounds are dependent on the smoothness of 8.
Therefore, we aim to find the optimal types of blending function to preserve the
bounds in the coming numerical session.

Remark 3.2 Throughout, the term “optimal” is used to describe the conclusion that

L =Ca™5 is the optimal blending size for keeping coercivity of the force operator
whena = % — 0. Optimality in these instances describes the smallest asymptotic
order that could be expected to ensure stability. However, the analysis of consistency
conditions is beyond the purview of this chapter. Note that Cis dependent on the
blending function, 8, and the choice for potential energy, ¢; and it is not on the
lattice spacing constant, a.

Also notice from the inequality (3.15) that @L_%a_% dominates the other terms
only when the lattice spacing a = % is very small. As a result, the asymptotically

1 1 . . o e P

rate L ~ a=5 = M5 might be not observed when the size of atomistic chain is
. _1 1 . .

only moderately large. In this case, we suggest to take L ~ a~3 = M3, which is

observed in the numerical test.

4 Numerical Experiments

We conduct numerical experiments to verify the theoretical findings from the
stability analysis.

4.1 Blending Size and the Stability Constant

We consider a periodic chain with atom indices from —M 4 1 to M. For the
following numerical simulations, we set M = 2000. The optimal blending size
as was found analytically in the previous section is M'/> ~ 5. We will test to see if
the numerical experiments coincide with this value.

First, we apply the uniform stretch to the atomistic chain and compute the critical
strain when F®!™" and Fb4¢/lin Jose the coercivity. We compare the critical strain
values between the atomistic model and blending models with different blending
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sizes and various types of blending functions. By comparing these values to the
atomistic critical strain error, we obtain the optimal blending function and attempt
to verify the optimal blending size of M 5 found before.

In numerical experiments, the Morse potential

¢(r) = Do x [1 — e @7}

was utilized for the interaction potential due to its popularity in applications. We use
the values D, = 3 and @ = 3,4, and 5, respectively. Recall from Fig. 1, the local
minimal value is set to be ¢ (1) and the local height of the potential is D,. Also, as
o grows larger, the more narrow the potential becomes.

We will consider our computational domain as 2 = (—1, 1] with periodic
boundary conditions. The computational domain will be decomposed into several
sub-domains following [8]. An interaction range is introduced to serve as a buffer
region to simplify the treatment of periodic boundary conditions. The lattice spacing
constant that was used had a value of a = %, which helped to start the blending
region.

For the numerical experiments, we denote the blending region, Qb = (b1, by),
for some b1, by € Q2. The numerical blending size, L, will be defined as L = by —b;.
We can compare the numerical blending size to that which was found in the stability
analysis.

Recall from Definition (2.18),

1, x e Q4
Bx) =40, x e
€(0,1), xeQ = (b1 b).
We conduct numerical experiments using a piecewise linear spline, piecewise

cubic spline, and piecewise quintic spline blending function that are defined as
follows:

1, x € Q4,
ﬂlinear(x) — 0, xe QC,
1——x_Lb‘, x € Qb,
and
1, x € Q4
ﬁcubic'(x) — 0’ x € Qc’

14+2(52)3 — 3222y e P,
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Blending Function in Domain
oS T T T T T T

Linear Blending Function
09 —<— Cubic Blending Function
: —S— Quintic Blending Function

0.8 -

Blending Function

0.6 0.8 1

Fig. 2 Pictorial representation of the blending functions used in numerical experiments. Recall,
at B = 1, the purely atomistic model is obtained and at 8 = 0, the purely continuum model is
obtained

and

1, x e Q4
AL (x) = {0, xeqr,

1= 6(320)5 + 15(320)% — 10(372)3 x e P

Graphical demonstrations of these various blending functions can be found in Fig. 2.

We apply a uniform stretch to the atomistic chain. From this, we numerically
compute the critical strains of the atomistic model and compare this to the coupling
model with different blending sizes in pursuit of the critical stretch value that makes
the atomistic chain unstable. The step size for increasing y is Ay = 1075. We
also model the different values of « in the Morse potential using the cubic blending
function, and the results are plotted in Fig. 3a. As can be seen in Table 1, the cubic
blending function reaches the atomistic critical stretch value quicker than the other
two blending functions (Fig. 3b).

The results from Table 1 suggest the blending size tobe L ~ M %, and this might
be due to the other terms in the inequality (3.15) when observing only a moderately
large atomistic chain. For further clarification, see Remark 4.1.
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Abs Strain Error for 1D Uniform Expansion: M=2000 , _ Abs Strain Error for 1D Uniform Expansion: M=2000, a=3
10°F

100F

Linear Spiine
ine

20 25

N
8l
@
B

L L

Fig. 3 The absolute critical strain errors are plotted for the 1D uniform stretching. We set M =
2000 and ¢ and y?9¢/ are the critical strains for the atomistic and B-QCF models, respectively.
(a) Models the cubic spline blending for various values of «; and (b) models the critical strain
errors of linear, cubic, and quintic blending functions with M = 2000 and « = 3

Table 1 Shown are the

. . Blend size |Linear | Cubic | Quintic
critical stretching values for

linear, cubic, and quintic 1 1 1 1
blending models for a 2 1.1400 | 1.1409 | 1.1409
blending size from a to 10a. 3 1.1269 | 1.1747 | 1.1456
The critical value for the 4 1.1562 | 1.1801 | 1.1759
purely atomiszic model was 5 11624 | 11824 | 1.1804
found to be y* = 1.195. The
numerical increment for Ay 6 1.1692 | 1.1848 | 1.1828
is 1073 7 1.1735 | 1.1866 | 1.1847
10 1.1811 | 1.1950 | 1.1950

The results from the numerical experiments find the cubic blending function
as that which converges quickest toward the atomistic strain value and is thus the
optimal blending function from those we tested.

Remark 4.1 Recall from (3.9), the assumption that
_3 _1 ) -1 _3 _1
<2C3L 20t + 4L 4 1L >§(C4L ta z).

The latter two terms on the left side of the inequality would not necessarily be
negligible if the number of atoms M were not large enough. This accounts for the
difference observed in the blending size between the analysis and the numerical
simulation.

It must be noted that the analysis conducted in the previous section only applies
to the cubic or quintic blending function used in these simulations. Due to less
regularities near the boundaries of the blending region, the analysis does not
encompass the linear blending function. In these experiments, we can also see that
the linear blending leads to the most discrepancies.
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4.2 Simulation of Deformed Configuration

Now that we found that the cubic blending function as the optimal blending
function, we utilize this for the remaining numerical tests. We use ablend size L = 5

1
since 20005 =~ 4.57 as well as o« = 3 for both numerical experiments. Next, we test
two functions with periodic boundary conditions as the external force of the system
to ensure the blended coupling scheme performs as imagined:

* First, we use a sinusoidal external force
F{* = 0.01a x sin(—x¢ x 7).

We use a = % numerically and incorporate —1 into sine because of our left
domain boundary.
We obtain the expected force plot for our domain as can be seen in Fig.4.
The displacement is also observed for an interaction range potential from first
neighbor up to third neighbor. We observe that the difference between an
interaction range potential of N = 2 versus an interaction range potential of
N = 3 is much smaller than the difference between the change in displacement
for the interaction range potential for N = 1 and N = 2. Recall the features of
the Morse potential are such that ¢, (1) > 0 and ¢, (k) < 0 for k > 2. Thus,
after the next-nearest neighbor, k = 2, the change in displacement will not differ
by as much.

¢ Next, we test a Gaussian external force:

‘ —Grg=m?
F'=00l xaxe 272

where 4 = 4a, 0 = 50a, and a = 1/M with M = 2000 was used.

a L10% Sine External Force b Sine Force Di

001 F

Displacement
-

\

-0.03 - /
-/

500 1000 1500 2000 -2000 -1500 -1000 -500 o

0
Atom Index Atom Index

1500 -1000 -500 500 1000 1500 2000

Fig. 4 (a) A sinusoidal external force is shown. (b) The various displacements for this external
force are displayed within the domain
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< xternal Force . .
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Sy 18 . . . . . . .
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Atom Index

Atom Index

Fig. 5 (a) A Gaussian external force is shown. (b) The various displacement for this external force
is displayed within the domain

Again, we show the force output for our domain and show the various displace-
ments for three interaction range potentials. Similarly to the sinusoidal external
force, once the interaction range reaches a value of N = 2, the change in
displacement becomes less significant (Fig. 5).

5 Conclusion

In this chapter, inspired by the force-based coupling of the peridynamics model of
[8], we have formulated a similar symmetric and consistent blended force-based
atomistic-to-continuum coupling scheme in one-dimensional space. We were able
to identify the optimal asymptotic conditions on the width of the blending region,

L ~ M5 to ensure the H' stability of the linearized force blending operator when
chain size is huge.

We have verified the theoretical findings with numerical experiments on the
blending function and the blending region. From these numerical experiments, we
find that the cubic blending provides the best results compared to the critical stretch
of the fully atomistic model. We also find that the optimal blending width from these

numerical experiments is L ~ M 3 due to non-negligible terms when not working
with a large enough atomistic chain.

In the future, extension of this scheme to two-dimensional atomistic-to-
continuum coupling with a triangular crystal lattice in regard to the neighbors
will be pursued.
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6 Appendix

6.1 A More Rigorous Proof for Proposition 2.2, A Consistency
Analysis of Force

Proof Comparing F&!i" and F%!" we have

N
7 7 1 "
FEM ) = FE ) = = Y0 Suh (K
k=—N,
k0

N
1 Upk — 2up + up—k
+k_X_;V E<z>xx<k>( — )

k20

Let N € N be fixed. For any k = —N, ..., N and k # 0, we apply the Taylor
expansion to Wy = ugyy and Uy = ug_y around £. We compare the differencing
notation used to define the discrete displacement field and with choosing a smooth
spline interpolation. We proceed with defining i, as this smooth interpolation of the
discrete displacement field u in order to compute this approximation.

- 1 - 1 -
Uprk = ug + katiy + E(ka)zuxx + g(ka)3uxxx + 0(@a*),
o~ s 4
Ui = ug — kauy + E(ka) Uy g(ka) uyxx + 0(a@”).
Thus, for all k,
- 1 - 1 -
ok — 2ug + uo— = ug + kaiiy + z(ka)zuxx + g(ka)3uxxx + 0(a*) —2uy

- 1 ~ 1 ~
+up — kaii, + z(ka)zuxx - a(ka)3uxxx + 0(@a*
= (ka)’Tixy + O(a).
(6.1)
Utilizing (6.1) for the atomistic and continuous force equations, the consistency

analysis yields

Fz,lin (M) _ Fz,lin (Ll)

_ N 1 k k2 " N 1 k Up+k — 2Lt£ +up—g
== 2 o ) (k) + D S )( = )

, k=—N,
k0 k0
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N
1 u —2up +up_g
. §k2¢xx(k)( et — 2 + e )
k=—N, a
k0

N
1 Uptk — 2Up + Ug—k
+ > 50u®) ( —
k=—N,
k0

N 2~ 4 N 2~ 4
1 a“uyy + 0(a”) 1 (ka)“uyx + O(a™)
=— Y K —" "+ Y K k) =
2 a 2 a
k=—N, k=—N,
ks£0 k50

N N
1 - 1 ~
== Y oW+ Y KRy + 0@
2 2
k=—N, k=—N,
k#0 k#0

= 0(d?).

Thus, the consistency error between the linearized atomistic force equation and the
continuum force equation is O (@?). |

6.2 Analysis in the Continuous Setting

Before finding the nearest neighbor and the next-nearest-neighbor interaction for the
discrete case, the continuous case was observed. The continuous case was meant to
shed light on the nature of the discrete case as it would be easier to find.

From (2.20), we look at the next-nearest-neighbor interaction. Also, we will
approximate w ~ B(x¢). Thus, (2.20) becomes for the force-based
operator:

FZQCJ',lin _ (ﬂz-1 +2B¢ + Bet1 ) (D) (WH —2ug + uz—l)

4 2
n (1 B +Zfe + Bet ) Box (i,
n (.315—2 + Zfz + ﬂe+2> ber(2) (W+2 - 214215 + ue-z)
a
N (1 B2+t Zfe + /3E+2) bor ]
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" _ B
~ B(xe) (¢xx(1)u£ + hrr(2) (”€+2 au;z + ug 2))

+ (1= B00) (e (D + 460, )

Using a Taylor approximation on ugip and uy_j, the next-nearest-neighbor
operator becomes

b
Fl

B

c ln " " 4 "
9P — Dy + B(xe)pax (2) <4u@ + gu?)az) + (1= Bxp)) 4br Q)uy.
6.2)

As the nearest-neighbor interaction is not difficult to find, we drop it from the
continuous case to find the approximation for the next-nearest neighbor as well as
utilize the fact that ¢ is a Lennard—Jones-type potential. Also, we denote B(x,)
by B when there is no ambiguity. Therefore, the continuous next-nearest operator
becomes

Fuy, = B(—uxx + azAuxxxx) + (1 = B)(—uyx)
5 (6.3)
= Ba”Auyxyx — Uyy,

where A = %.

Lemma 6.1 For any displacements u = (ug)¢cyz, from yg, the nearest neighbor and
up to the next-nearest-neighbor interaction operator can be written in the form

bgcf,lin 2
(PR, ) =

(6.4)
. 2
(FRI" ) = 4l + @164 |Bue |+ R+,
where R and S are given by
R=—-d’A / Bex(uy)?dx, S=a’A / Brex (txxtt)dx. (6.5)

Proof Since the proof of the first identity of Lemma 6.1 is straightforward, the proof
for the second-neighbor interaction operator will be given. The main tool used is
integration by parts based on the periodic boundary conditions.

<F,b2quu’ Li> = /(ﬂazBuxxxx — Uxx)udx

:/—u”udx—i-/ﬁazAu””udx
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=/(ux)2dx+a2A/ﬂuuxxxxdx

— luxl? = a?A / (Bu)xttnndx

2
= el + A | Bia (6.6)
2 2 2
+a A/ﬂx(ux)xdx—a A/,Bx(uuxx)xdx
2 2 2
=l + aA /Bt
2 2 2
a A/ﬂ”(ux) dx +a A/,Bxx(uxxu)dx
2 2 2
= uxl? + @A | VBure| + R+ 5.
O

Using the continuous analysis as a roadmap, we thus derive the discrete analysis in

Sect. 3.

6.3 Symbols and Notation

Superscripte.g.,’,”

Subscripte.g., x, xx
)

Suyp
dx
Il - lle,

Il - Ilew

Il - Ile, 0
|+ g

< oy >
¢

)¢

OX

(.)lin
(n)bacs

Q

Qtl

First-order backward finite difference, second-order central finite
difference, etc., for the discrete case

First derivative, second derivative, etc., for the continuous case
First-order variation evaluated at u,

Derivative evaluated at x

£>-norm

0o-norm

2-norm evaluated on the blending region €2,

Discrete H' semi-norm

Inner product

Atomistic interaction potential per unit cell

Continuum equation

Atomistic equation

Linearized equation

Force-based blended equation

Whole domain

Atomistic domain
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First-order backward finite difference, second-order central finite

Superscripte.g.,’,” | difference, etc., for the discrete case

Q° Continuum domain

Qb Blending domain

B Blending function

L The number of atoms within the blending region €2,

a Lattice spacing constant

Ve Deformation at ¢

Uy Displacement at ¢

E Energy equation

Fex Force equation at atom ¢ with kth-neighbor interaction

Fy, Force equation at atom ¢ with the summation of all neighbor interaction
Force equation with kth-neighbor interaction with the summation of all

F i atoms

o Parameter in the Morse potential

N The number of neighbors within the interaction range

M A half number of atoms in the atomistic chain

Fext, External force
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