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Abstract Inspired by the blending method developed by [P. Seleson, S. Beneddine, 
and S. Prudhome, A Force-Based Coupling Scheme for Peridynamics and Classical 
Elasticity, (2013)] for the nonlocal-to-local coupling, we create a symmetric 
and consistent blended force-based atomistic-to-continuum (a/c) scheme for the 
atomistic chain in one-dimensional space. The conditions for the well-posedness 
of the underlying model are established by analyzing an optimal blending size 
and blending type to ensure the .H 1 semi-norm stability for the blended force-
based operator. We present several numerical experiments to test and confirm the 
theoretical findings. 

Keywords Atomistic-to-continuum coupling · Symmetric-force-based blending · 
Stability and blending size analysis 

1 Introduction 

Many important materials from airplane wings to computer chips can be improved 
by a better understanding of failure modes such as fracture and fatigue. Thus, one of 
the most important goals of computational materials science is to efficiently and 
reliably predict phenomena such as crack growth and to facilitate the design of 
new materials better able to resist failure. Scientists and engineers have proposed 
several multi-scale methods (e.g., [1–10]) to overcome the computational challenges 
in fidelity and efficiency. 

The two main strategies in multi-scale modeling are: (1) bottom-up atomistic-
to-continuum: coarse-graining of microscopic descriptions (e.g., atomistic models) 
of material behavior [2, 3, 11–13]; (2) top-down local-to-nonlocal: informing 
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macroscopic models (e.g., continuum equations) with physics gleaned from the 
microscopic scales [5, 7–10, 14–19]. The former provides a “closer” comparison 
with macroscopic experiments, and the latter predicts the materials’ microscopic 
properties [6]. Meanwhile, the two approaches have many interconnections, and 
their development and understanding often inspire each other. 

In this chapter, we employ a symmetric blending strategy developed by P. Seleson 
et al. for the nonlocal-to-local coupling [8, 9] and develop a new force-based 
atomistic-to-continuum model for a 1D atomistic chain. We then study the stability 
property of the new coupling scheme in terms of the blending function and its 
blending size using similar mathematical tools from [20]. We investigate the optimal 
number of atoms within the blending region to ensure the positive definiteness of 
the resulting force blending operator under the discrete . H 1 semi-norm. The results 
admit a very narrow blending region to maintain the coercivity and efficiency when 
the number of atoms is large. In addition, the stability analysis developed in this 
chapter is crucial for the convergence for several popular iterative methods for 
solving large-force equilibrium systems. 

We will arrange the paper as follows. In Sect. 2, we introduce the force-based 
symmetric blending method for a 1D atomistic chain. We construct an atomistic, 
linearized force equation and a continuum, linearized force equation from the 
atomistic energy equation. The consistency between these methods is discussed in 
Proposition 2.2. A blending function is then introduced to symmetrically combine 
these two force-based equations. 

In Sect. 3, we establish the optimal conditions on the size of the blending region 
for the blending force operator with respect to the .H 1 stability. Theorem 3.1 
establishes these conditions. 

In Sect. 4, a uniform stretch is applied to compute the critical strain errors for 
various types of blending functions with different blending sizes. It is found that 
the cubic blending function is optimal. We find that a larger polynomial size on the 
blending region is suggested from the numerical trials when the number of atoms in 
the chain is just moderately large. 

Also in Sect. 4, we test a sine and Gaussian external force to the system to 
model the displacement with our force-based blending method. The displacements 
produced by the blending methods with sufficient blending size agree with those of 
fully atomistic models. In addition, we compare the impact of interaction range of 
the atomistic model and observe that an interaction range potential greater than 2 
neighbors does not change the displacement significantly. 

2 Derivation of the Symmetric- and Consistent-Force-Based 
Scheme 

In this section, we will introduce notations, introduce the reference atomistic model, 
and then derive the continuum approximation. After this, we introduce a blending
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equation to symmetrically combine these two models. Utilizing this blending 
equation, a coupling scheme for the blended atomistic and continuum forces is 
created. 

2.1 Notations 

We consider a 1D atomistic chain with finite interaction range up to the N -th nearest 
neighbor and a total number of 2M atoms within the domain . �. We denote the 
scaled reference lattice .x� = a� for .� ∈ Z with fixed reference lattice spacing 
constant .a := 1

M
such that we can select a reference domain that is fixed to be . � =

(−1, 1]. Throughout, the interaction range N will be fixed. The chain is deformed 
to a current configuration .y� = x� + u�. 

The displacement field .u = (u�)�∈Z : Z → R is  assumed to be 2M periodic 
discrete function, and . U denotes the space of all 2M periodic displacement functions 

. U := {u : u�+2M = u�|� ∈ Z}.

Accordingly, we set the deformation space by 

. Y := {y : y� = x� + u�|u ∈ U, � ∈ Z}.

We also define the discrete differentiation operator for simplicity, . u
′
, on periodic 

displacements by 

. u
′
� := u�+1 − u�

a
.

Then we may define the higher-order discrete differentiation . u
′′
, . u(3), and .u(4) for . �

by 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u
′′
�

:= u′
�−u′

�−1
a

,

u
(3)
�

:= u′′
�+1−u′′

�

a
,

u
(4)
�

:= u
(3)
� −u

(3)
�−1

a
.

(2.1) 

For a displacement .u ∈ U and its discrete derivatives, we employ the discrete . �2 and 
. �∞ norms by 

.||u||2
�2

:=
M∑

�=−M+1

|u�|2a, and ||u||�∞ := max−M+1≤�≤M
|u�|. (2.2)
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In particular, the associated inner product for . �2 is 

. 〈u,w〉 :=
M∑

�=−M+1

u�w� a.

We also employ the discrete .H 1 semi-norm, .|u|2
H 1 =

∥
∥
∥u

′∥∥
∥
2

�2
, in the stability 

analysis. 
Meanwhile, we proceed with .̃u : R → R as a quintic spline interpolation of u 

such that 

.

ũ(a�) = u�,

ũ(−Ma) = ũ(Ma),

lim
t→(a�)−

dωũ

dxω
(t) = lim

t→(a�)+
dωũ

dxω
(t), ω = 1, . . . , 4

. (2.3) 

As . ̃u is a continuous function, we can introduce notations for its derivatives, for 
instance, . ̃ux as its first derivative at .(a�), and .̃uxx as its second derivative at .(a�), 
etc. 

We can compare the derivatives of .̃u(x) with the differencing of . u�. Clearly, we 
have 

.

u′
� =ũx(a�) + a

2
ũxx(ξ)

u
′′
� =ũxx(a�) + a2

12
ũxxxx(ξ̃ )

. (2.4) 

Note that throughout, subscript . � is used to denote when discrete differentiation 
is employed, whereas subscript x is used to denote when considering the true 
derivatives. 

As in [20], we will frequently use the following discrete summation by parts 
identity: 

Lemma 2.1 Suppose .{u�}b�=a+1 and .{v�}b�=a+1 are two sequences; then we have 

. 

b∑

�=a+1

u�(v� − v�−1) = [ubvb − uava] −
b∑

�=a+1

(u� − u�−1)v�−1.

Furthermore, when both .{u�}b�=a+1 and .{v�}b�=a+1 are periodic sequences with 
.u(a) = u(b) and .v(a) = v(b), we have 

. 

b∑

�=a+1

u�(v� − v�−1) = −
b∑

�=a+1

(u� − u�−1)v�−1.

We use this lemma to find conditions on coupling to ensure the positive definiteness 
of the bilinear form of the symmetric, blended force-based operator.
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2.2 1D Atomistic and Continuum Models 

Energy Formulations and Consistency Analysis 
We now consider a one-dimensional atomistic periodic chain deformed into configu-
ration y ∈ Y. Recall that the atomistic periodicity is fixed to 2M , and the interaction 
range is fixed to N -th neighbors. The total atomistic energy for this periodic chain 
is given by 

.Ea,tot (y) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2
φ

(
y�+k − y�

a

)

, (2.5) 

where φ(·) : R → R is a Lennard–Jones-type potential. It can also be viewed as 
the energy density per unit volume for pairwise interactions. We assume that φ(·) 
has the following properties: 

• φ(r)  = φ(|r|). 
• φ is at least four times differentiable. 
• φxx(1) >  0 and φxx(k) ≤ 0 for  k ≥ 2. 

In the numerical simulation, we employ the Morse potential, and a graphical 
illustration can be found in Fig. 1. 

Next, we derive the continuum model by only using the first neighbor distance, 
that is, we only use the differencing u

′
� as we approximate the argument for φ. For  

k = 2, . . . , N , we have  

. 

y�+k − y�

a
= x�+k − x� + u�+k − u�

a

= k + u′
� +

k−1∑

j=1

u′
�+j .

Using the error estimates listed in (2.4), we can replace u′
�+j by u

′
� and estimate the 

discrepancy 

.

y�+k − y�

a
= k + u′

� +
k−1∑

j=1

ũx

(
a(� + j)

)+ c1a

= k + u′
� +

k−1∑

j=1

ũx

(
(a�)

)+ c2a

= k + ku′
� + c3a,

(2.6)
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Fig. 1 Graphical illustration of the Lennard–Jones-type interaction potential (Morse potential) 
used in numerical experiments. Notice that the local minimum is achieved at the nearest neighbor 
distance r = re 

where c1, c2, and c3 are constants depending on k and regularity of ũ. For  k = 
−N,  .  .  .  ,−2, we can obtain similar consistency estimates. 

The atomistic energy equation is rooted in discrete, nonlocal energy descriptions. 
Assuming the finest mesh with each atom regarded as a node and substituting 
the previous approximation into the atomistic energy (2.5), we thus defined the 
continuum energy as 

.Ec(u) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2
φ
(
k + ku

′
�

)
. (2.7) 

So far, both the atomistic energy and the continuum energy are non-linearly 
dependent on the displacement field {u�}M�=−M+1, and we would like to apply further 
simplifications to obtain linear models. To linearize the total atomistic energy, we 
follow a similar argument as deriving the continuum energy, 

.

y�+k − y�

a
= x�+k − x� + u�+k − u�

a

= k + u�+k − u�

a
.
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Therefore, the total atomistic energy can be written as 

.

Ea,tot (y) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2
φ

(
y�+k − y�

a

)

=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2
φ

(

k + u�+k − u�

a

)
. (2.8) 

Next, we utilize Taylor expansion to φ
(
k+ u�+k−u�

a

)
at the reference configuration 

to linearize the expression. 

. φ

(

k + u�+k − u�

a

)

= φ(k) + u�+k − u�

a
φx(k)

+1

2

(
u�+k − u�

a

)2

φxx(k) + O

((
u�+k − u�

a

)3
)

.

Inserting the Taylor approximation into the atomistic energy equation (2.8), we  
obtain 

. 

M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

[

φ(k) + u�+k − u�

a
φx(k)

+1

2

(
u�+k − u�

a

)2

φxx(k) + O

((
u�+k − u�

a

)3
)⎤

⎦ . (2.9) 

Then, without loss of generality, we assume 
N∑

k=−N,  
k 	=0 

φ(k)  = 0 since this term will not 

contribute to force. Also, since the reference configuration is a local minimizer and 
the potential is symmetric, we have 

. 

N∑

k=−N,
k 	=0

u�+k − u�

a
φx(k) = 0.

Thus, the linearized atomistic energy is 

.
Ea,lin(u) :=

M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
1

2

(
u�+k − u�

a

)2

φxx(k)

)

. (2.10)
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Following the linearization of the atomistic energy, for the continuum energy, we 
utilize Taylor expansion to φ(k + ku

′
�) at the reference configuration to linearize the 

expression 

. φ
(
k + ku

′
�

)
=φ(k) + ku

′
�φx(k) + 1

2

(
ku

′
�

)2
φxx(k)+O

((
ku′

�

)3
)
.

Inserting the Taylor approximation into the continuum energy equation (2.7), we  
obtain 

. 

M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(

φ(k) + ku
′
�φx(k) + 1

2

(
ku

′
�

)2
φxx(k)+O

((
ku′

�

)3
))

.

(2.11) 

Following the same justification as above regarding the terms of the Taylor 
expansion, the linearized continuum energy associated with the finest mesh is 
defined as 

.

Ec,lin(u) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
k2

2

(
u

′
�

)2
φxx(k)

)

=
M∑

�=−M+1

⎛

⎝
N∑

k=1

k2

2
φxx(k)

⎞

⎠
(
u

′
�

)2
a.

(2.12) 

Remark 2.1 Notice that the classical continuum mechanics for interaction range up 
to the N -th nearest neighbor has the following form: 

.Ẽc,lin(̃u) =
ˆ

W

(
dũ

dx

)2

dx, (2.13) 

where dũ 
dx is the deformation field and W represents the strain energy density 

.W :=
N∑

k=1

k2

2
φxx(k). (2.14) 

Notice that if we use a fine mesh and applying a Riemann sum to approximate 
the integral of (2.13), we can convert (2.13) into (2.12). Therefore, the linearized 
continuum energy for a discrete lattice system is consistent with the theory of clas-
sical continuum mechanics. For the consistency between the classical continuum
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mechanics and the linearized continuum energy, we refer to Sect. 6 as it follows 
closely with the consistency for the linearized continuum energy equation and the 
atomistic energy description. 

Since we obtain the atomistic and continuum energies, in the next proposition, 
we will summarize the truncation errors. 

Proposition 2.1 (Consistency Analysis of Linearized Energy Formulations) 
Given a fully refined continuum mesh on the 1D atomistic chain, we derive the 
linearized continuum energy equation (2.12), 

. Ec,lin(u) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
k2

2

(
u

′
�

)2
φxx(k)

)

from the atomistic energy description, (2.5), 

. Ea,lin(u) :=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
1

2

(
u�+k − u�

a

)2

φxx(k)

)

,

with the deformed configuration and the displacement field linked by y� = x� + u�. 
Then, the consistency between the linearized continuum energy equation and the 
atomistic energy equation is O(a2). 

Proof Comparing Ec,lin and Ea,lin, we have  

. Ec,lin − Ea,lin =
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
k2

2
(u

′
�)

2φxx(k)

)

−
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
1

2

(
u�+k − u�

a

)2

φxx(k)

)

.

For any k = 2, ..., N , we compare u�+k around �. Recalling the quintic spline 
interpolation ũ defined in (2.3), we have  

. u�+k = u� + kaũx + O(a2).

Thus, for all k, 

.u�+k − u� = kaũx + O(a2).
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Then, the consistency analysis of energies yields 

. 

Ec,lin − Ea,lin

=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
k2

2
(u

′
�)

2φxx(k)

)

−
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
1

2

(
u�+k − u�

a

)2

φxx(k)

)

=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
k2

2

(
u�+1 − u�

a

)2

φxx(k)

)

−
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

(
1

2

(
u�+k − u�

a

)2

φxx(k)

)

=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

⎛

⎝
k2

2

(
aũx + O(a2)

a

)2

φxx(k)

⎞

⎠

−
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

⎛

⎝
1

2

(
kaũx + O(a2)

a

)2

φxx(k)

⎞

⎠

=
M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

k2

2
φxx(k) + O(a2) −

M∑

�=−M+1

N∑

k=−N,
k 	=0

a

2

k2

2
φxx(k) + O(a2)

= O(a2).

��
Next, we derive the formulae of forces for both linear atomistic and continuum 
models. Because the mesh is fully refined, the linearized continuum force of atom
� can be obtained from taking the first-order variation of the linearized continuum 
energy (2.12) with respect to u�, and we thus get
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. 

F
c,lin
�, (u) := 1

a

δEc,lin(u)

δu�

=
δ

[
∑M

j=−M+1

(∑N
k=1

k2

2 φxx(k)
) (

u
′
j

)2
]

δu�

= −
⎛

⎜
⎝

⎛

⎝
N∑

k=1

k2

2
φxx(k)

⎞

⎠
2(u�+1 − u�)

a2
−
⎛

⎝
N∑

k=1

k2

2
φxx(k)

⎞

⎠
2(u� − u�−1)

a2

⎞

⎟
⎠

= −
⎛

⎝
N∑

k=1

k2φxx(k)

⎞

⎠ u
′′
�,

(2.15) 
where we recall the shorthand notation u

′′
� as 

. u
′′
� := u�+1 − 2u� + u�−1

a2
.

For the atomistic forces, we recall y� = x� + u�, take the first-order variation of 
the total atomistic energy (2.5) at atom �, and notice we employ the forward finite 
differencing; hence, we obtain 

. 

Fa
�,(u) := δEa,tot

δu�

= δ

δu�

M∑

j=−M+1

N∑

k=−N,
k 	=0

1

2
φ

(
yj+k − yj

a

)

= −
N∑

k=−N,
k 	=0

1

2a

(

φx

(

k + u�+k − u�

a

)

− φx

(

k + u� − u�−k

a

))

.

(2.16) 

Next, we linearize the forces around the reference configuration by applying Taylor 
expansion to φx(·), so we obtain the linearized atomistic forces 

. F
a,lin
�, (u) := −

N∑

k=−N,
k 	=0

1

2
φxx(k)

(
u�+k − 2u� + u�−k

a2

)

= −
N∑

k=1

φxx(k)

(
u�+k − 2u� + u�−k

a2

)

. (2.17) 

In the next proposition, we summarize the consistency errors between the linearized 
atomistic and linearized continuum forces.
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Proposition 2.2 (Consistency Analysis of Force) Given a fully refined continuum 
mesh on the 1D atomistic chain, the linearized atomistic force equation (2.17) for 
atom � is 

. F
a,lin
�, (u) := −

N∑

k=1

φxx(k)

(
u�+k − 2u� + u�−k

a2

)

,

and the linearized continuum force equation (2.15) for node � is 

. F
c,lin
�, (u) = −

⎛

⎝
N∑

k=1

k2φxx(k)

⎞

⎠ u
′′
�.

Thus, the consistency error between (2.17) and (2.15) is O(a2). 

Proof Comparing Fc,lin and Fa,lin, we have  

. F
c,lin
�, (u)−�,F

a,lin(u) = −
N∑

k=1

φxx(k)
(
k2u

′′
�

)
+

N∑

k=1

φxx(k)

(
u�+k − 2u� + u�−k

a2

)

.

For any k = 2, . . . , N , we compare u�+k and u�−k around �. Recalling the quintic 
spline interpolation ũ defined in (2.3), we have  

. 

u�+k = ũ
(
a(� + k)

)− ũ (a�) + ũ (a�)

= u� + kaũx + 1

2
(ka)2ũxx + 1

6
(ka)3ũxxx + O(a4),

u�−k = ũ
(
a(� − k)

)− ũ (a�) + ũ (a�)

= u� − kaũx + 1

2
(ka)2ũxx − 1

6
(ka)3ũxxx + O(a4).

Utilizing this Taylor expansion for the atomistic and continuous linear force 
equations, the consistency analysis yields 

.F
c,lin
�, (u) − F

a,lin
�, (u)

= −
N∑

k=1

φxx(k)
(
k2u

′′
�

)
+

N∑

k=1

φxx(k)

(
u�+k − 2u� + u�−k

a2

)

= −
N∑

k=1

φxx(k)

(

k2
u�+1 − 2u� + u�−1

a2

)

+
N∑

k=1

φxx(k)
(
k2ũxx + O(a2)

)
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= −  
N∑

k=1 

φxx(k)
(
k2ũxx + O(a2)

)
+ 

N∑

k=1 

φxx(k)
(
k2ũxx + O(a2)

)

= O(a2). 

A more thorough proof can be seen in Sect. 6.1. ��
Remark 2.2 Notice that a is chosen to be 1 

M with M being large; hence, the 
consistency error becomes small when the number of atoms within � is sufficiently 
large. 

2.3 Derivation of a Symmetric Blending Model for the AtC 
Coupling 

In this section, we will derive a symmetric- and consistent-force-based atomistic-to-
continuum scheme for the 1D atomistic chain. 

We first divide the domain of interest into three distinct sub-domains: . �a : 
the domain described by the atomistic force; . �c: the domain described by the 
continuum force; and . �b: the blending region where the atomistic and continuum 
force models are both used. 

We now introduce a smooth blending function . β that can be defined as such: 

Definition 2.1 (Definition of Blending Function) We may define a smooth blend-
ing function . β� such that: 

.β� =

⎧
⎪⎪⎨

⎪⎪⎩

1, � ∈ �a

0, � ∈ �c

∈ (0, 1), � ∈ �b.

(2.18) 

This blending function can take many forms, and we will employ linear spline, cubic 
spline, and quintic spline blending functions in the numerical experiments in Sect. 4. 

Notice that creating a linearized force equation will give way to easier analysis 
in studying the stability of the scheme and providing insights on the coupling 
conditions of more general cases, so we focus on blending the linearized atomistic 
and continuum forces. In order for consistent symmetry, we start from . k =
−N, . . . , N, and .k 	= 0. Consequently, we start from the linearized, atomistic force 
equation in (2.17) and incorporate the blending function . β� as follows: 

.F
a,lin
�,

:= −
N∑

k=1

φxx(k)
u�+k − 2u� + u�−k

a2
= −

N∑

k=−N,
k 	=0

1

2
φxx(k)

u�+k − 2u� + u�−k

a2
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= −  
N∑

k=−N,  
k 	=0

(
β� + β�+k 

2

)
1 

2 
φxx(k) 

u�+k − 2u� + u�−k 
a2 

− 
N∑

k=−N,  
k 	=0

(

1 − 
β� + β�+k 

2

)
1 

2 
φxx(k) 

u�+k − 2u� + u�−k 
a2 

, 

such that the term .u�+|k|−2u�+u�−|k|
a2

is multiplied by the pair .
(

β�+β�+|k|
2

)
and 

.

(
β�+β�−|k|

2

)
, respectively. Next, we further simplify and get 

. F
a,lin
�, = −

N∑

k=1

(
β�−k + 2β� + β�+k

4

)

φxx(k)
u�+k − 2u� + u�−k

a2

−
N∑

k=1

(

1 − β�−k + 2β� + β�+k

4

)

φxx(k)
u�+k − 2u� + u�−k

a2
. (2.19) 

Then, we approximate the second term of the equation by using the linearized 
continuum portion. Therefore, we get the blended force function that is defined as 

. F
bqcf,lin
�, (u) := −

N∑

k=1

(
β�−k + 2β� + β�+k

4

)

φxx(k)
u�+k − 2u� + u�−k

a2

−
N∑

k=1

(

1 − β�−k + 2β� + β�+k

4

)

φxx(k)k2
u�+1 − 2u� + u�−1

a2

(2.20) 

= −  
N∑

k=1

(
β�−k + 2β� + β�+k 

4

)

φxx(k) 
u�+k − 2u� + u�−k 

a2 

− 
N∑

k=1

(

1 − 
β�−k + 2β� + β�+k 

4

)

φxx(k)k2u
′′
�. 

Remark 2.3 As .� − k and .� + k are both employed in the term of the blending 
function, this blending operator is symmetric as in [8]. 

We also see that the first term recovers (2.17) for .β ≡ 0 and the second term 
recovers (2.15) for .β ≡ 1. Thus, the consistency error between the linearized 
.F

bqcf,lin
�, and .F

a,lin
�, is also of .O(a2).
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3 Stability Analysis for the Linearized Blending Model 

3.1 Bilinear Form of Linearized Blending Model 

In this section, we study the size of the blending region with respect to the 
.H 1 stability of the blending operator. This is achieved by obtaining the optimal 
conditions in which the linearized coupling operator is positive definite under the 
discrete . H 1 semi-norm. 

From (2.20), we consider the bilinear form 

.

〈
Fbqcf,lin

, (u), v
〉
=
〈
F

bqcf,lin

,1 (u), v
〉
+

N∑

k=2

〈
F

bqcf,lin
,k (u), v

〉
, ∀v ∈ U, (3.1) 

where the first neighbor interaction—the first term—is set apart due to its simplicity 
in analysis. The second term accounts for the next-nearest neighbor to the N -th 
nearest neighbor. 

To observe the stability of the operator, we first look at the nearest and next-
nearest-neighbor interaction, for simplicity as well as for the coercivity assumption 
on .φxx(1) > 0 and .φxx(k) ≤ 0 with .k ≥ 2, to find the constraints on the size of 
blending region. Then, we discuss how the next-nearest-neighbor analysis can be 
extended to the general N -th-neighbor interaction. 

The discrete stability analysis is inspired by and similar to the analogous 
continuous analysis for the force-based operator that can be seen in Appendix 6. 
We proceed with the analysis for the discrete case. 

3.2 Stability Analysis for Next-Nearest-Neighbor Interaction 
Range: N = 2 

Lemma 3.1 For any displacements u = (u�)
M
�=−M+1 from the deformed configu-

ration y� = x� + u�, the bilinear forms of nearest neighbor and the next-nearest-
neighbor interaction operator can be written as 

. 

〈
F

bqcf,lin

,1 (u), u
〉
= φxx(1)

∥
∥
∥u

′∥∥
∥
2

�2
〈
F

bqcf,lin

,2 (u), u
〉

= 2

{

2φxx(2)
∥
∥
∥u

′∥∥
∥
2

�2
− φxx(2)

2
a2
∥
∥
∥
√

βu
′′∥∥
∥
2

�2
+φxx(2)

2
a2
∥
∥
∥
∥

√

|β ′′ |u′
∥
∥
∥
∥

2

�2

+ R + S

}

,

(3.2)
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where 

. R :=
M∑

�=−M+1

φxx(2)

2

(
u

′
�β

(3)
�−1(u�−1) − u

′′
�β

′′
� u

′
�a
)

a3

and 

. S :=
M∑

�=−M+1

φxx(2)

2

(
u

′
�

)
a2
(
β ′

�u
′
� − β

′
�−2u

′
�−2

)
.

Proof For the nearest-neighbor interaction, as the Fa,lin and Fc,lin coincide, we 
have 

. 

〈
F

bqcf,lin

,1 (u), u
〉
= −

M∑

�=−M+1

[

φxx(1)a

(
u�+1 − 2u� + u�−1

a2

)]

u�

= −
M∑

�=−M+1

φxx(1)u
′′
�u�a.

Then, using the discrete derivative and summation by parts formula from 
Lemma 2.1, we conclude that 

. 

〈
F

bqcf,lin

,1 (u), u
〉
= −

M∑

�=−M+1

φxx(1)u
′′
�u�a = φxx(1)

∥
∥
∥u

′∥∥
∥
2

�2
.

For the next-nearest-neighbor interaction, recall from (2.20) for the linearized 
blending operator F bqcf,lin

�,2 

. 

F
bqcf,lin

�,2 (u)

= −
[(

β�+k + 2β� + β�−k

4

)

φxx(k)

(
u�+k − 2u� + u�−k

a2

)

+
(

1 − β�+k + 2β� + β�−k

4

)

φxx(k)

(
u�+1 − 2u� + u�−1

a2

)

k2

]∣∣
∣
∣
∣
∣
k=2

,

so the bilinear form with test function u is
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. 

〈
F

bqcf,lin

,2 (u), u
〉

=
M∑

�=−M+1

F
bqcf,lin

�,2 (u) · u�a

=
M∑

�=−M+1

{

−
(

β�+2 + 2β� + β�−2

4

)

φxx(2)

(
u�+2 − 2u� + u�−2

a2

)

a

−
(

1 − β�+2 + 2β� + β�−2

4

)

φxx(2)

(
u�+1 − 2u� + u�−1

a2

)

4a

}

· u�.

(3.3) 

We particularly focus on terms contributed to β� as the other terms could be 
similarly treated. Hence, we divide the constant “1” in (3.3) by 1 = 1 

4 + 2 4 + 1 4 , 
collect terms contributed to β�, and recall the finite difference defined in (2.1); then 
we have 

. T := −φxx(2)

2

⎡

⎣
M∑

�=−M+1

(
u�+2 − 2u� + u�−2

a

)
(
β�u�

)

+ (1 − β�

)
(

u�+1 − 2u� + u�−1

a

)

4u�

]

= −φxx(2)

2

⎡

⎣
M∑

�=−M+1

(
u

′
�+1 + u

′
� − u

′
�−1 − u

′
�−2

) (
β�u�

)

+ (1 − β�

) (
u

′
� − u

′
�−1

)
4u�

]

= −φxx(2)

2

⎡

⎣
M∑

�=−M+1

(
u

′
� − u

′
�−1

)
4u�

⎤

⎦+ −φxx(2)

2

×
M∑

�=−M+1

[(
u

′
�+1 − u

′
�

)
− 2

(
u

′
� − u

′
�−1

)
+
(
u

′
�−1 − u

′
�−2

)]

· (β�u�

)

=: T1 + T2. (3.4) 

We consider T1 first by using Lemma 2.1
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. 

T1 =
M∑

�=−M+1

−φxx(2)

2

(
u

′
� − u

′
�−1

)
4u� =

M∑

�=−M+1

φxx(2)

2
u

′
�−14

(
u� − u�−1

)

=
M∑

�=−M+1

φxx(2)

2
u

′
�−14

(
u

′
�−1

)
a = 2φxx(2)‖u′ ‖2�2 .

(3.5) 

Treating T2 is more tedious and is still mainly based on Lemma 2.1. We have  

. T2 =
M∑

�=−M+1

−φxx(2)

2

[((
u

′
�+1 − u

′
�

)− (u′
� − u

′
�−1

))

−
((

u
′
� − u

′
�−1

)− (u′
�−1 − u

′
�−2

))
]

· (β�u�

)

=
M∑

�=−M+1

φxx(2)

2

[((
u

′
�+1 − u

′
�

)− (u′
� − u

′
�−1

))
]

· (β�+1u�+1 − β�u�

)

=
M∑

�=−M+1

φxx(2)

2

(
u

′′
� − u

′′
�−1

)
a · (β�+1u�+1 − β�u�

)

=
M∑

�=−M+1

−φxx(2)

2

(
u

′′
�

)
a ·
[(

β�+1u�+1 − β�u�

)− (β�u� − β�−1u�−1
)]

=
M∑

�=−M+1

−φxx(2)

2

(
u

′′
�

)
a ·
[(

β�+1u�+1 − β�u�+1
)

+ (β�u�+1 − 2β�u� + β�u�−1
)− (β�u�−1 − β�−1u�−1

)]

=
M∑

�=−M+1

−φxx(2)

2

(
u

′′
�

) · β�u
′′
�a

3 + −φxx(2)

2

(
u

′′
�

) ·
[
β

′
�u�+1 − β

′
�−1u�−1

]
a2

= : −φxx(2)

2
a2‖√βu

′′ ‖2�2 + T22.

Now we mainly focus on T22 term, which can be treated as 

.

T22 =
M∑

�=−M+1

−φxx(2)

2

(
u

′
� − u

′
�−1

) ·
[
β

′
�u�+1 − β

′
�−1u�−1

]
a

=
M∑

�=−M+1

φxx(2)

2

(
u

′
�

) ·
[(

β
′
�u�+1 − β

′
�−1u�−1

)
−
(
β

′
�−1u� − β

′
�−2u�−2

)]

a.
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We work on 

. 

(
β

′
�u�+1 − β

′
�−1u�−1

)
−
(
β

′
�−1u� − β

′
�−2u�−2

)

= β
′
�(u�+1 − u�−1) + u�−1

(
β

′
� − 2β

′
�−1 + β

′
�−2

)

+ β
′
�−1(u�−1 − u�) + β

′
�−2(u�−2 − u�−1)

= β
′
�(u

′
� + u′

�−1)a + u�−1β
(3)
�−1a

2 − β
′
�−1u

′
�−1a − β ′

�−2u
′
�−2a.

Then we plug into T22 to get 

. 

T22 =
M∑

�=−M+1

φxx(2)

2

(
u

′
�

)

·
[

β
′
�(u

′
� + u′

�−1)a + u�−1β
(3)
�−1a

2 − β
′
�−1u

′
�−1a − β ′

�−2u
′
�−2a

]

a

= φxx(2)

2

M∑

�=−M+1

(
u′

�

)
([

u�−1β
(3)
�−1a

2 + (β ′
�u

′
�−1 − β ′

�−1u
′
�−1

)
a

]

a

+
[

β ′
�u

′
� − β ′

�−2u
′
�−2

]

a2

)

=φxx(2)

2

M∑

�=−M+1

(
(
u

′
�

)
β

(3)
�−1

(
u�−1

)+ (u′
�

)2
β

′′
� − u′′

�β
′′
� u′

�a

)

a3

+ φxx(2)

2

M∑

�=−M+1

(

β ′
�u

′
� − β ′

�−2u
′
�−2

)

u′
�a

2.

Summarizing all terms T1, T2, T22 for terms belong to β� in (3.3), and treat those for 
β�−2 and β�+2 in a similar way, we get (3.2) and R, S terms. ��
Remark 3.1 The terms R and S from above are viewed as “residual term.” Thus, 
we will estimate their bounds controlled by the support of β ′

�, the size of blending 
region, in pursuit of the positive definiteness of the bilinear form. 

Lemma 3.2 Let R, S be defined as above; then we have the following estimates: 

.

|R| ≤
(−φxx(2)

)

2

(

c3L
− 5

2 a− 1
2 + 2c2(L)−2

)∥
∥
∥u

′∥∥
∥
2

�2
,

|S| ≤ (− φxx(2)
)
c1(L)−1‖u′‖2�2,

(3.6)
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where L is the number of atoms within the blending region �b, a = 1 
M being the 

lattice spacing, and 2M being the total number of atoms within the periodic domain
� = (−1, 1], and the constants c1, c2, and c3 depend on β(j) with j = 1, . . . , 3, 
respectively. 

Proof Recall that 

. R =
M∑

�=−M+1

φxx(2)

2

(
u

′
�β

(3)
�−1(u�−1) − u

′′
�β

′′
� u

′
�a
)

a3.

Also notice that the finite differences of β are nonzero only on �b, so utilizing the 
fact that φxx(2) ≤ 0 and Hölder’s inequality, we get 

. 

|R| ≤
∣
∣
∣
∣
∣
∣

∑

�∈�b

φxx(2)

2
(u

′
�)
(
β

(3)
� (u�−1)

)
a3

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

�∈�b

φxx(2)

2
u′′

�β
′′
� u′

�a
4

∣
∣
∣
∣
∣
∣

≤ −φxx(2)

2

∥
∥
∥β

(3)
∥
∥
∥

�∞

∥
∥
∥u

′∥∥
∥

�2(�
b)

‖u‖�2(�
b)a

2

+ −φxx(2)

2
‖β(2)‖�∞‖u′′‖�2(�

b) ‖u′‖�2(�
b)a

3.

Also notice that |�b| =  La, and by the discrete Poincaré inequality, we have

‖u‖�2(�b) 
≤ (La) 

1 
2

∥
∥
∥u

′∥∥
∥

�2 
. In addition, we use the fact that

∥
∥
∥β(j)

∥
∥
∥

�∞ 
≤ c (La)−j . 

Then 

. |R| ≤ −φxx(2)

2

∥
∥
∥β

(3)
∥
∥
∥

�∞

∥
∥
∥u

′∥∥
∥

�2(�
b)

‖u‖�2(�
b)a

2

+ −φxx(2)

2
‖β(2)‖�∞‖u′′‖�2(�

b) ‖u′‖�2(�
b)a

3

≤ −φxx(2)

2
c3(La)−3(La)

1
2

∥
∥
∥u

′∥∥
∥
2

�2
a2 + −φxx(2)

2
c2(La)−2 2

a
‖u′‖2�2a3

≤ −φxx(2)

2

(

c3L
− 5

2 a− 1
2 + 2c2(L)−2

)∥
∥
∥u

′∥∥
∥
2

�2
.

Next, we bound S. Recall that 

.S :=
M∑

�=−M+1

φxx(2)

2
(u

′
�)a

2
(
β ′

�u
′
� − β

′
�−2u

′
�−2

)
.
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Utilizing similar inequalities, we obtain 

. 
|S| ≤ −φxx(2)

2
‖β ′‖�∞ · 2‖u′‖2�2a ≤ −φxx(2)

2
c1(La)−1 · 2‖u′‖2�2a

= (− φxx(2)
)
c1(L)−1‖u′‖2�2 .

Hence, we prove the lemma. ��
Theorem 3.1 Suppose that the number of atoms M within the chain model is 
sufficiently large, or equivalently, the lattice spacing a = 1 

M is sufficiently small; 
also suppose that the fully atomistic model with next-nearest-neighbor interaction 
N = 2 is stable so that [φxx(1) + 4φxx(2)] > 0. Let L denote the number of atoms 
within the blending region and let the blending function β be sufficiently smooth 

such that
∥
∥
∥β(j)

∥
∥
∥∞ 

≤ (La)−j . Then there exists a positive constant C̃ such that 

.

2∑

k=1

M∑

�=−M+1

〈
F

bqcf,lin
�,k u, u

〉
≥ C̃

∥
∥
∥u

′∥∥
∥
2

�2
. (3.7)

C̃ is strictly bounded above zero as a = 1 
M → 0. 

Proof For N = 2 and from Lemma 3.1, the blended force-based operator satisfies 

. 

M∑

�=−M+1

〈
F

bqcf,lin

�,2 (u), u
〉
= (φxx(1) + 4φxx(2)

) ∥∥
∥u

′∥∥
∥
2

�2

− φxx(2)a
2
∥
∥
∥
√

βu
′′∥∥
∥
2

�2
+ φxx(2)a

2
∥
∥
∥
∥

√

β
′′
u

′
∥
∥
∥
∥

2

�2

+ 2R + 2S.

(3.8) 

From Lemma 3.2, we have  

.

|2R + 2S|≤ − φxx(2)

2

(
2c3L

− 5
2 a− 1

2 + 4c2L
−2 + c1L

−1
) ∥
∥
∥u

′∥∥
∥
2

�2

≤ − φxx(2)

2

(
c4L

− 5
2 a− 1

2

) ∥
∥
∥u

′∥∥
∥
2

�2
;

(3.9) 

hence, we have 

. 2R + 2S ≥ φxx(2)

2

(
c4L

− 5
2 a− 1

2

) ∥
∥
∥u

′∥∥
∥
2

�2

with the latter inequality following from L−2 ≤ L−1 ≤ L− 5 
2 a− 1 

2 as L− 5 
2 a− 1 

2 

dominates the latter two terms when a is sufficiently small.
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From (3.8), we want to observe the terms that do not favor the coercivity in the 
terms of the H 1 semi-norm. For the second term, since φxx(2) ≤ 0, we have 

. − φxx(2)a
2
∥
∥
∥
√

βu
′′∥∥
∥
2

�2
≥ 0,

and thus it does not negatively contribute. For the third term, we observe that 

. φxx(2)a
2
∥
∥
∥
∥

√

β
′′
u

′
∥
∥
∥
∥

2

�2

≥φxx(2)c5L
−2
∥
∥
∥u

′∥∥
∥
2

�2

because of φxx(2) ≤ 0. For up to N = 2 neighbor interaction, we have from the 
coercivity of atomistic model that φ′′(1) + 4φ′′(2) >  0; hence, for the linearized 
force-blended model, we have 

. 

〈
F

bqcf,lin

,1 + F
bqcf,lin

,2 , u
〉
≥
[

φxx(1) + φxx(2)
(
4 + c4L

− 5
2 a− 1

2 + c5L
−2
)] ∥
∥
∥u

′∥∥
∥
2

�2

≥ C̃

∥
∥
∥u

′∥∥
∥
2

�2

for C̃ = (φxx(1) + 2φxx(2)
)

> 0 strictly positive, and independent of a → 0. 
Thus, we can conclude that the necessary and optimal blending size for coercivity 

is L− 5 
2 a− 1 

2 � 1/c4, that is, L = Ĉa− 1 
5 = ĈM 

1 
5 for some Ĉ >  0. ��

3.3 Stability Analysis for General N -th-Nearest-Neighbor 
Interaction Range 

To observe the general form of the N -th-neighbor interaction range, we notice that 
for . k = 3, . . . , N

. 

〈
F

bqcf,lin
,k (u), u

〉

= −φxx(k)

M∑

�=−M+1

{(
β�+k + 2β� + β�−k

4

)(
u�+k − 2u� + u�−k

a2

)

+
(

1 − β�+k + 2β� + β�−k

4

)

k2
(

u�+1 − 2u� + u�−1

a2

)}

u�a.

(3.10) 

The k-th-neighbor interaction differs by having .β�±k terms that are treated similarly 
to . β� terms. .φxx(k) is a non-positive constant term for all .k ≥ 2.



A One-Dimensional Symmetric-Force-Based Blending Method for Atomistic-. . . 237

Similarly to the previous subsection, we fix an interaction range k and at the 
moment only consider all terms that contribute to . β�; thus we get 

. 

T := −φxx(k)

2

M∑

�=−M+1

(

k2
u�+1 − 2u� + u�−1

a

)

(u�)

− φxx(k)

2

M∑

�=−M+1

[(
u�+k − 2u� + u�−k

a
− k2

u�+1 − 2u� + u�−1

a

)
(
β�u�

)
]

= T1 + T2.

For . T1, we similarly have 

.

T1 = − φxx(k)

2

M∑

�=−M+1

(

k2
u�+1 − 2u� + u�−1

a

)

(u�)

= − φxx(k)

2

M∑

�=−M+1

k2
(
u′

� − u′
�−1

)
u� = k2

2
φxx(k)‖u′‖2�2 .

(3.11) 

For . T2, the simplification is more difficult; we have 

. 

T2 = − φxx(k)

2

M∑

�=−M+1

[(
u�+k − 2u� + u�−k

a
− k2

u�+1 − 2u� + u�−1

a

)
(
β�u�

)
]

= − φxx(k)

2

M∑

�=−M+1

⎡

⎣

( k∑

j=1

k∑

s=1

u′′
�−j+s

)

− k2u′′
�

⎤

⎦
(
aβ�u�

)

= − φxx(k)

2

M∑

�=−M+1

⎡

⎣
k∑

j=1

k∑

s=1

(

u′′
�−j+s − u′′

�

)
⎤

⎦
(
aβ�u�

)
.

Due to the exact symmetry of j and s, we have  

. 

k∑

j=1

k∑

s=1

u′′
�−j+s =

k∑

j=1

k∑

s=1

u′′
�−s+j .

Hence, . T2 can be converted into a symmetrical form
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. 

T2 = − φxx(k)

2

M∑

�=−M+1

⎡

⎣
k∑

j=1

k∑

s=1

(

u′′
�−j+s − u′′

�

)
⎤

⎦
(
aβ�u�

)

= − φxx(k)

4

M∑

�=−M+1

⎡

⎣
k∑

j=1

k∑

s=1

(

u′′
�−j+s − 2u′′

� + u′′
�+j−s

)
⎤

⎦
(
aβ�u�

)

= − φxx(k)

4

M∑

�=−M+1

⎡

⎣
k∑

j=1

k∑

s=1

(
u′′

�−j+s − u′′
�

)− (u′′
� − u′′

�+j−s

)

⎤

⎦
(
aβ�u�

)
.

(3.12) 

Therefore, by the discrete summation by parts formula, we have 

. 

T2 = φxx(k)

4

M∑

�=−M+1

⎡

⎢
⎣

k∑

j=1

k∑

s=1

(
u′′
�−j+s − u′′

�

)

⎤

⎥
⎦ a
(
β�−j+su�−j+s − β�u�

)

= −φxx(k)

4

M∑

�=−M+1

⎡

⎢
⎣

k∑

j=1

k∑

s=1

u′′
�a

⎤

⎥
⎦

×
((

β�−j+su�−j+s − β�u�

)
−
(
β�u� − β�+j−su�+j−s

))

= −φxx(k)

4

M∑

�=−M+1

⎡

⎢
⎣

k∑

j=1

k∑

s=1

u′′
�a

⎤

⎥
⎦

(

β�−j+su�−j+s − 2β�u� + β�+j−su�+j−s

)

.

(3.13) 

We can carefully work on the symmetrical term 

. 

(

β�−j+su�−j+s − 2β�u� + β�+j−su�+j−s

)

r:=j−s=
(

β�−ru�−r − 2β�u� + β�+ru�+r

)

= β�−ru�−r − β�u�+1 + (β�u�+1 − 2β�u� + β�u�−1
)− β�u�−1 + β�+ru�+r

= β�u
′′
�a

2 + β�−ru�−r − β�u�+1 + β�+ru�+r − β�u�−1.

Without loss of generality, we assume .r > 0, and then
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.

(

β�−ru�−r − 2β�u� + β�+ru�+r

)

= β�u
′′
�a

2 + β�−ru�−r − β�u�+1 + β�+ru�+r − β�u�−1

= β�u
′′
�a

2 + (β�u�−r − β�u�−1
)+ (β�u�+r − β�u�+1

)

+ u�+r

r−1∑

t=0

β ′
�+t a − u�−r

r−1∑

t=0

β ′
�−r+t a.

(3.14) 

Therefore, we can handle . T2 for general k-th-neighbor interaction range in a similar 
way to that for the case of .k = 2 and obtain that 

. |T2| ≤ (−φxx(k))
(|̃c4|L− 5

2 a− 1
2 + |̃c5|L−2)‖u′‖2

�2
,

which suggests that for . k ≥ 2

. T2 ≥ (φxx(k))
(
c̃4L

− 5
2 a− 1

2 + c̃5L
−2)‖u′‖2

�2
.

Combining with . T1 estimate (3.11), we have for any . k ≥ 2

. 〈Fbqcf,lin
,k (u), u〉 ≥ φxx(k)

(
k2 + ĈkL

− 5
2 a− 1

2 + ĈkL
−2
)

‖u′‖2
�2

(3.15) 

with .L = C̃a− 1
5 when .a = 1

M
being sufficiently small. 

Thus, collecting all interactions up to the N -th-nearest-neighbor interaction 
range, we have 

. 

〈
Fbqcf,lin

, (u), u
〉
=
〈
F

bqcf,lin

,1 (u), u
〉
+

N∑

k=2

〈
F

bqcf,lin
,k (u), u

〉

≥
⎡

⎣φxx(1) +
N∑

k=2

φxx(k)
(
k2 + ĈkL

− 5
2 a− 1

2
)

⎤

⎦ ‖u′‖2
�2

.

Hence, similar to Theorem 3.1, we summarize the stability conditions on the 
blending size for a general atomistic chain with N -th-nearest-neighbor interaction 
in the following theorem. 

Theorem 3.2 Suppose that the number of atoms M is sufficiently large, which 
is equivalent to .a = 1

M
being sufficiently small, and the blending function . β is 

sufficiently smooth. Also, we assume that the fully atomistic model is stable so that 

.

⎡

⎣φxx(1) +
N∑

k=1

k2φxx(k)

⎤

⎦ > 0.
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If the blending size L satisfies .L = C̃a− 1
5 , then the linear B-QCF operator . Fbqcf,lin

,

is positive definite in terms of the .H 1 semi-norm 

.

N∑

k=1

M∑

�=−M+1

〈
F

bqcf,lin
�,k u, u

〉
≥ C̃

∥
∥
∥u

′∥∥
∥
2

�2
, (3.16) 

where . ̃C is strictly bounded above zero as .a = 1
M

→ 0. 

Meanwhile, we can see that the bounds are dependent on the smoothness of . β. 
Therefore, we aim to find the optimal types of blending function to preserve the 
bounds in the coming numerical session. 

Remark 3.2 Throughout, the term “optimal” is used to describe the conclusion that 

.L = C̃a− 1
5 is the optimal blending size for keeping coercivity of the force operator 

when .a = 1
M

→ 0. Optimality in these instances describes the smallest asymptotic 
order that could be expected to ensure stability. However, the analysis of consistency 
conditions is beyond the purview of this chapter. Note that . ̂C is dependent on the 
blending function, . β, and the choice for potential energy, . φ; and it is not on the 
lattice spacing constant, a. 

Also notice from the inequality (3.15) that .ĈkL
− 5

2 a− 1
2 dominates the other terms 

only when the lattice spacing .a = 1
M

is very small. As a result, the asymptotically 

rate .L ∼ a− 1
5 = M

1
5 might be not observed when the size of atomistic chain is 

only moderately large. In this case, we suggest to take .L ∼ a− 1
3 = M

1
3 , which is 

observed in the numerical test. 

4 Numerical Experiments 

We conduct numerical experiments to verify the theoretical findings from the 
stability analysis. 

4.1 Blending Size and the Stability Constant 

We consider a periodic chain with atom indices from .−M + 1 to M . For  the  
following numerical simulations, we set .M = 2000. The optimal blending size 
as was found analytically in the previous section is .M1/5 ≈ 5. We will test to see if 
the numerical experiments coincide with this value. 

First, we apply the uniform stretch to the atomistic chain and compute the critical 
strain when .Fa,lin and .Fbqcf,lin lose the coercivity. We compare the critical strain 
values between the atomistic model and blending models with different blending
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sizes and various types of blending functions. By comparing these values to the 
atomistic critical strain error, we obtain the optimal blending function and attempt 

to verify the optimal blending size of .M
1
5 found before. 

In numerical experiments, the Morse potential 

. φ(r) = De × [1 − e−α(r−re)]2

was utilized for the interaction potential due to its popularity in applications. We use 
the values .De = 3 and .α = 3, 4, and . 5, respectively. Recall from Fig. 1, the local 
minimal value is set to be .φ(1) and the local height of the potential is . De. Also, as 
. α grows larger, the more narrow the potential becomes. 

We will consider our computational domain as .� = (−1, 1] with periodic 
boundary conditions. The computational domain will be decomposed into several 
sub-domains following [8]. An interaction range is introduced to serve as a buffer 
region to simplify the treatment of periodic boundary conditions. The lattice spacing 
constant that was used had a value of .a = 1

M
, which helped to start the blending 

region. 
For the numerical experiments, we denote the blending region, .�b = (b1, b2), 

for some .b1, b2 ∈ �. The numerical blending size, L, will be defined as .L = b2−b1. 
We can compare the numerical blending size to that which was found in the stability 
analysis. 

Recall from Definition (2.18), 

. β(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ �a

0, x ∈ �c

∈ (0, 1), x ∈ �b = (b1, b2).

We conduct numerical experiments using a piecewise linear spline, piecewise 
cubic spline, and piecewise quintic spline blending function that are defined as 
follows: 

. βlinear (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ �a,

0, x ∈ �c,

1 − x−b1
L

, x ∈ �b,

and 

.βcubic(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ �a,

0, x ∈ �c,

1 + 2( x−b1
L

)3 − 3( x−b1
L

)2, x ∈ �b,
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Fig. 2 Pictorial representation of the blending functions used in numerical experiments. Recall, 
at .β = 1, the purely atomistic model is obtained and at .β = 0, the purely continuum model is 
obtained 

and 

. βquintic(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ �a,

0, x ∈ �c,

1 − 6( x−b1
L

)5 + 15( x−b1
L

)4 − 10( x−b1
L

)3 x ∈ �b.

Graphical demonstrations of these various blending functions can be found in Fig. 2. 
We apply a uniform stretch to the atomistic chain. From this, we numerically 

compute the critical strains of the atomistic model and compare this to the coupling 
model with different blending sizes in pursuit of the critical stretch value that makes 
the atomistic chain unstable. The step size for increasing . γ is .�γ = 10−5. We  
also model the different values of . α in the Morse potential using the cubic blending 
function, and the results are plotted in Fig. 3a. As can be seen in Table 1, the cubic 
blending function reaches the atomistic critical stretch value quicker than the other 
two blending functions (Fig. 3b). 

The results from Table 1 suggest the blending size to be .L ≈ M
1
3 , and this might 

be due to the other terms in the inequality (3.15) when observing only a moderately 
large atomistic chain. For further clarification, see Remark 4.1.
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Fig. 3 The absolute critical strain errors are plotted for the 1D uniform stretching. We set . M =
2000 and . γ a and .γ bqcf are the critical strains for the atomistic and B-QCF models, respectively. 
(a) Models the cubic spline blending for various values of . α; and  (b) models the critical strain 
errors of linear, cubic, and quintic blending functions with .M = 2000 and . α = 3

Table 1 Shown are the 
critical stretching values for 
linear, cubic, and quintic 
blending models for a 
blending size from a to 10a. 
The critical value for the 
purely atomistic model was 
found to be .γ a = 1.195. The  
numerical increment for . �γ

is . 10−5

Blend size Linear Cubic Quintic 

1 1 1 1 

2 1.1400 1.1409 1.1409 

3 1.1269 1.1747 1.1456 

4 1.1562 1.1801 1.1759 

5 1.1624 1.1824 1.1804 

6 1.1692 1.1848 1.1828 

7 1.1735 1.1866 1.1847 

10 1.1811 1.1950 1.1950 

The results from the numerical experiments find the cubic blending function 
as that which converges quickest toward the atomistic strain value and is thus the 
optimal blending function from those we tested. 

Remark 4.1 Recall from (3.9), the assumption that 

. 

(
2c3L

− 5
2 a− 1

2 + 4c2L
−2 + c1L

−1
)

≤
(
c4L

− 5
2 a− 1

2

)
.

The latter two terms on the left side of the inequality would not necessarily be 
negligible if the number of atoms M were not large enough. This accounts for the 
difference observed in the blending size between the analysis and the numerical 
simulation. 

It must be noted that the analysis conducted in the previous section only applies 
to the cubic or quintic blending function used in these simulations. Due to less 
regularities near the boundaries of the blending region, the analysis does not 
encompass the linear blending function. In these experiments, we can also see that 
the linear blending leads to the most discrepancies.
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4.2 Simulation of Deformed Configuration 

Now that we found that the cubic blending function as the optimal blending 
function, we utilize this for the remaining numerical tests. We use a blend size . L = 5

since .2000
1
5 ≈ 4.57 as well as .α = 3 for both numerical experiments. Next, we test 

two functions with periodic boundary conditions as the external force of the system 
to ensure the blended coupling scheme performs as imagined: 

• First, we use a sinusoidal external force 

. Fext
�, = 0.01a × sin(−x� × π).

We use .a = 1
5 numerically and incorporate . −1 into sine because of our left 

domain boundary. 
We obtain the expected force plot for our domain as can be seen in Fig. 4. 
The displacement is also observed for an interaction range potential from first 
neighbor up to third neighbor. We observe that the difference between an 
interaction range potential of .N = 2 versus an interaction range potential of 
.N = 3 is much smaller than the difference between the change in displacement 
for the interaction range potential for .N = 1 and .N = 2. Recall the features of 
the Morse potential are such that .φxx(1) > 0 and .φxx(k) ≤ 0 for .k ≥ 2. Thus, 
after the next-nearest neighbor, .k = 2, the change in displacement will not differ 
by as much. 

• Next, we test a Gaussian external force: 

. Fext
�, = 0.01 × a × e

−(x�−μ)2

2σ2 ,

where .μ = 4a, .σ = 50a, and .a = 1/M with .M = 2000 was used.
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Fig. 4 (a) A sinusoidal external force is shown. (b) The various displacements for this external 
force are displayed within the domain
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Fig. 5 (a) A Gaussian external force is shown. (b) The various displacement for this external force 
is displayed within the domain 

Again, we show the force output for our domain and show the various displace-
ments for three interaction range potentials. Similarly to the sinusoidal external 
force, once the interaction range reaches a value of .N = 2, the change in 
displacement becomes less significant (Fig. 5). 

5 Conclusion 

In this chapter, inspired by the force-based coupling of the peridynamics model of 
[8], we have formulated a similar symmetric and consistent blended force-based 
atomistic-to-continuum coupling scheme in one-dimensional space. We were able 
to identify the optimal asymptotic conditions on the width of the blending region, 

.L ≈ M
1
5 to ensure the . H 1 stability of the linearized force blending operator when 

chain size is huge. 
We have verified the theoretical findings with numerical experiments on the 

blending function and the blending region. From these numerical experiments, we 
find that the cubic blending provides the best results compared to the critical stretch 
of the fully atomistic model. We also find that the optimal blending width from these 

numerical experiments is .L ≈ M
1
3 due to non-negligible terms when not working 

with a large enough atomistic chain. 
In the future, extension of this scheme to two-dimensional atomistic-to-

continuum coupling with a triangular crystal lattice in regard to the neighbors 
will be pursued.
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6 Appendix 

6.1 A More Rigorous Proof for Proposition 2.2, A Consistency 
Analysis of Force 

Proof Comparing Fc,lin and Fa,lin, we have  

. F
c,lin
�, (u) − F

a,lin
�, (u) = −

N∑

k=−N,
k 	=0

1

2
φxx(k)

(
k2u

′′
�

)

+
N∑

k=−N,
k 	=0

1

2
φxx(k)

(
u�+k − 2u� + u�−k

a2

)

.

Let N ∈ N be fixed. For any k = −N, . . . , N  and k 	= 0, we apply the Taylor 
expansion to ũ�+k = u�+k and ũ�−k = u�−k around �. We compare the differencing 
notation used to define the discrete displacement field and with choosing a smooth 
spline interpolation. We proceed with defining ũx as this smooth interpolation of the 
discrete displacement field u in order to compute this approximation. 

. 

u�+k = u� + kaũx + 1

2
(ka)2ũxx + 1

6
(ka)3ũxxx + O(a4),

u�−k = u� − kaũx + 1

2
(ka)2ũxx − 1

6
(ka)3ũxxx + O(a4).

Thus, for all k, 

. 

u�+k − 2u� + u�−k = u� + kaũx + 1

2
(ka)2ũxx + 1

6
(ka)3ũxxx + O(a4) − 2u�

+ u� − kaũx + 1

2
(ka)2ũxx − 1

6
(ka)3ũxxx + O(a4)

= (ka)2ũxx + O(a4).

(6.1) 

Utilizing (6.1) for the atomistic and continuous force equations, the consistency 
analysis yields 

.F
c,lin
�, (u) − F

a,lin
�, (u)

= −
N∑

k=−N,
k 	=0

1

2
φxx(k)

(
k2u

′′
�

)
+

N∑

k=−N,
k 	=0

1

2
φxx(k)

(
u�+k − 2u� + u�−k

a2

)



A One-Dimensional Symmetric-Force-Based Blending Method for Atomistic-. . . 247

= −  
N∑

k=−N,  
k 	=0 

1 

2 
k2φxx(k)

(
u�+1 − 2u� + u�−1 

a2

)

+ 
N∑

k=−N,  
k 	=0 

1 

2 
φxx(k)

(
u�+k − 2u� + u�−k 

a2

)

= −  
N∑

k=−N,  
k 	=0 

1 

2 
k2φxx(k) 

a2ũxx + O(a4) 
a2

+ 
N∑

k=−N,  
k 	=0 

1 

2 
k2φxx(k) 

(ka)2ũxx + O(a4) 
a2 

= −  
N∑

k=−N,  
k 	=0 

1 

2 
k2φxx(k)̃uxx + 

N∑

k=−N,  
k 	=0 

1 

2 
k2φxx(k)̃uxx + O(a2) 

= O(a2). 

Thus, the consistency error between the linearized atomistic force equation and the 
continuum force equation is O(a2). ��

6.2 Analysis in the Continuous Setting 

Before finding the nearest neighbor and the next-nearest-neighbor interaction for the 
discrete case, the continuous case was observed. The continuous case was meant to 
shed light on the nature of the discrete case as it would be easier to find. 

From (2.20), we look at the next-nearest-neighbor interaction. Also, we will 
approximate .β�+k+2β�+β�−k

4 ≈ β(x�). Thus, (2.20) becomes for the force-based 
operator: 

.F
bqcf,lin
�, =

(
β�−1 + 2β� + β�+1

4

)

φxx(1)

(
u�+1 − 2u� + u�−1

a2

)

+
(

1 − β�−1 + 2β� + β�+1

4

)

φxx(1)u
′′
�

+
(

β�−2 + 2β� + β�+2

4

)

φxx(2)

(
u�+2 − 2u� + u�−2

a2

)

+
(

1 − β�−2 + 2β� + β�+2

4

)

φxx(2)4u
′′
�
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≈ β(x�)

(

φxx(1)u
′′
� + φxx(2)

(
u�+2 − 2u� + u�−2 

a2

))

+ (1 − β(x�)
) (

φxx(1)u
′′
� + 4φxx(2)u

′′
�

)
. 

Using a Taylor approximation on .u�+2 and .u�−2, the next-nearest-neighbor 
operator becomes 

. F
bqcf,lin
�, = φxx(1)u

′′
� + β(x�)φxx(2)

(

4u
′′
� + 4

3
u

(4)
� a2

)

+ (1 − β(x�)
)
4φxx(2)u

′′
�.

(6.2) 

As the nearest-neighbor interaction is not difficult to find, we drop it from the 
continuous case to find the approximation for the next-nearest neighbor as well as 
utilize the fact that . φ is a Lennard–Jones-type potential. Also, we denote . β(x�)

by . β when there is no ambiguity. Therefore, the continuous next-nearest operator 
becomes 

.

Fux = β(−uxx + a2Auxxxx) + (1 − β)(−uxx)

= βa2Auxxxx − uxx,
(6.3) 

where .A = 4
3 . 

Lemma 6.1 For any displacements .u = (u�)�∈Z from . y�, the nearest neighbor and 
up to the next-nearest-neighbor interaction operator can be written in the form 

.

〈
F

bqcf,lin

,1 , u
〉
= ‖ux‖2

〈
F

bqcf,lin

,2 , u
〉
= 4‖ux‖2 + a216A

∥
∥
∥
√

βuxx

∥
∥
∥
2 + R + S,

(6.4) 

where R and S are given by 

.R = −a2A

ˆ
βxx(ux)

2dx, S = a2A

ˆ
βxx(uxxu)dx. (6.5) 

Proof Since the proof of the first identity of Lemma 6.1 is straightforward, the proof 
for the second-neighbor interaction operator will be given. The main tool used is 
integration by parts based on the periodic boundary conditions. 

.

〈
F

bqcf

,2 u, u
〉
=
ˆ

(βa2Buxxxx − uxx)udx

=
ˆ

−uxxudx +
ˆ

βa2Auxxxxudx
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= 
ˆ 

(ux)
2dx + a2A 

ˆ 
βuuxxxxdx 

= ‖ux‖2 − a2A 
ˆ 

(βu)xuxxxdx 

= ‖ux‖2 + a2A

∥
∥
∥
√

βuxx

∥
∥
∥
2 

(6.6) 

+ a2A 
ˆ 

βx(ux)
2 
xdx − a2A 

ˆ 
βx(u uxx)xdx 

= ‖ux‖2 + a2A

∥
∥
∥
√

βuxx

∥
∥
∥
2 

− a2A 
ˆ 

βxx(ux)
2dx + a2A 

ˆ 
βxx(uxxu)dx 

= ‖ux‖2 + a2A

∥
∥
∥
√

βuxx

∥
∥
∥
2 + R + S. 

��
Using the continuous analysis as a roadmap, we thus derive the discrete analysis in 
Sect. 3. 

6.3 Symbols and Notation 

Superscript e.g., ′, ′′
First-order backward finite difference, second-order central finite 
difference, etc., for the discrete case 

Subscript e.g., x , xx First derivative, second derivative, etc., for the continuous case 
δ 

δu�
First-order variation evaluated at u�

d 
dx

Derivative evaluated at x

‖ · ‖�2 �2-norm

‖ · ‖�∞ ∞-norm

‖ · ‖�2(�
b) 2-norm evaluated on the blending region �b 

| · |H 1 Discrete H 1 semi-norm 

< ·, · > Inner product 

φ Atomistic interaction potential per unit cell 

(·)c Continuum equation 

(·)a Atomistic equation 

(·)lin Linearized equation 

(·)bqcf Force-based blended equation

� Whole domain

�a Atomistic domain
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Superscript e.g., ′, ′′
First-order backward finite difference, second-order central finite 
difference, etc., for the discrete case

�c Continuum domain

�b Blending domain 

β Blending function 

L The number of atoms within the blending region �b 
a Lattice spacing constant 

y� Deformation at �

u� Displacement at �

E Energy equation 

F�,k Force equation at atom � with kth-neighbor interaction 

F�, Force equation at atom � with the summation of all neighbor interaction 

F,k 

Force equation with kth-neighbor interaction with the summation of all 
atoms 

α Parameter in the Morse potential 

N The number of neighbors within the interaction range 

M A half number of atoms in the atomistic chain 

Fext . External force 
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