2403.18907v1 [hep-th] 27 Mar 2024

arxiv

Open system dynamics in interacting quantum field theories

Brenden Bowen,! * Nishant Agarwal, ! and Archana Kamall-*

! Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA 01854, USA
(Dated: March 29, 2024)

A quantum system that interacts with an environment generally undergoes non-unitary evolu-
tion described by a non-Markovian or Markovian master equation. In this paper, we construct the
non-Markovian Redfield master equation for a quantum scalar field that interacts with a second
field through a bilinear or nonlinear interaction on a Minkowski background. We use the resulting
master equation to set up coupled differential equations that can be solved to obtain the equal-time
two-point function of the system field. We show how the equations simplify under various approxi-
mations including the Markovian limit, and argue that the Redfield equation-based solution provides
a perturbative resummation to the standard second order Dyson series result. For the bilinear in-
teraction, we explicitly show that the Redfield solution is closer to the exact solution compared
to the perturbation theory-based one. Further, the environment correlation function is oscillatory
and non-decaying in this case, making the Markovian master equation a poor approximation. For
the nonlinear interaction, on the other hand, the environment correlation function is sharply peaked
and the Redfield solution matches that obtained using a Markovian master equation in the late-time

limit.
I. INTRODUCTION

Most physical systems that we encounter, classical or
quantum, are open, in the sense that they interact with
some environment that is either not of interest or un-
known to us. In the case of quantum systems, the open
system approach is natural when observables of interest
act only on a subspace of the full Hilbert space. Equa-
tions of motion for reduced system objects, such as the
density operator, can be obtained by systematically trac-
ing out environment degrees of freedom, converting envi-
ronment operators into correlation functions. A common
technique that is used to describe the non-unitary/non-
Hamiltonian dynamics of an open quantum system is the
master equation approach. In particular, for open sys-
tems where the environment consists of many degrees of
freedom, the reduced dynamics are often well-described
by a quantum Markov process. For such systems, the
time evolution of the reduced density operator is de-
scribed by the celebrated Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equation [1, 2],
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where p = p(t) is the reduced density operator in the
Schrédinger picture. The operators L, are referred to
as Lindblad or jump operators, and the coefficients 7,
are relaxation rates for different decay channels of the
system. More generally, one can carry out a microscopic
derivation of the master equation, starting from the von
Neumann equation for a composite system and explicitly
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tracing out environment degrees of freedom under a se-
ries of approximations. This approach has the advantage
that it leads to an intermediate non-Markovian master
equation called the Redfield equation [3], which will be
our prime focus in this work.

The Redfield equation is similar to the GKLS equa-
tion in that it is time-local but differs from it as the
Yo coefficients are time-dependent. This is important
when coherent feedback from the environment is non-
negligible and induces memory in the reduced system. It
is worth noting, however, that the Redfield equation is
not guaranteed to generate a completely positive map,
unlike the GKLS equation. In fact, it does not neces-
sarily generate a completely positive map even when en-
vironment correlation functions decay rapidly enough to
justify taking a Markovian limit, wherein time-dependent
rates are replaced by their late-time values. Instead, one
has to additionally make the rotating wave approzrimation
(RWA), which drops rapidly oscillating terms in the Red-
field equation, to obtain the completely positive Davies
equation [4, 5] that can then be put in GKLS form. It
is also worth noting that there have been many signifi-
cant efforts to restore positivity in the Redfield equation
[6-14], but each solution comes with limited validity. De-
spite its limitations, the Redfield equation is a tractable
non-Markovian master equation and continues to be an
important tool in the study of open quantum systems,
notably for studies of quantum transport [15].

Recently, there has been much interest in applying the
open system approach to relativistic settings to gain in-
sights into, for example, interacting quantum field theo-
ries [16-23], primordial perturbation theory [24-35], dark
matter [36], gravitational decoherence [37, 38], gravita-
tional waves [39], construction of particle detectors in
curved spacetime [40-42], and holography [43-45]. Our
interest in this paper is to revisit the open quantum field
theory (QFT) paradigm and to use it to calculate cor-
relation functions of a system field of interest. Specif-



ically, we demonstrate how the open system approach
allows for approximations that prioritize the dynamics
of the reduced system, which can lead to more accurate
solutions than standard loop corrections or Dyson series
perturbation theory results.

First, we provide a careful derivation of the Redfield
equation for two interacting scalar QFTs on a Minkowski
background. We consider two forms of interaction: one,
bilinear in the system and environment fields, and an-
other where the system field remains linear but the en-
vironment field is nonlinear. We then use the resulting
Redfield equation to calculate the equal-time two-point
function of the system field and compare the result to a
standard loop correction. For the bilinear interaction, we
find that the Redfield equation-based solution is closer to
the exact solution than a loop correction, suggesting that
the Redfield equation provides a perturbative resumma-
tion to the standard loop correction. We also find that
both the Markovian limit and RWA fail to capture the
exact dynamics in this case, as the environment correla-
tion function that enters the Redfield equation is oscilla-
tory and non-decaying. For the nonlinear interaction, on
the other hand, the environment correlation function is
sharply peaked, and the late-time behavior of the Red-
field solution matches that obtained in the Markovian
limit.

The remainder of this paper is organized as follows.
In section II, we introduce the Lagrangian for a compos-
ite system of two scalar fields and write the quantized
Hamiltonian in terms of their Fourier modes. We next
provide a comprehensive derivation of the Redfield equa-
tion in section III, making a special effort to explicate the
various approximations and their regimes of validity, and
then discuss the Markovian limit and RWA. In section IV,
we outline a method to calculate the equal-time two-point
function from the Redfield equation. We also discuss how
to obtain limiting cases such as the Markovian limit and
the standard loop correction, relegating details of the so-
lution in the Markovian limit to appendix A. In section V,
we apply this method to calculate the two-point function
in the case of a bilinear interaction and compare it to the
exact result. We present the details of the exact solution
in appendix B and show the various coefficients that en-
ter the Redfield equation in appendix C. We next apply
the Redfield equation-based method to the case of a non-
linear environment in section VI and show the various co-
efficients that enter the Redfield equation in appendix D.
We finally discuss a few subtleties of the calculation that
deserve further understanding but are outside the scope
of this work in section VII and end with a discussion in
section VIII.

II. SETUP

We consider a composite system of two real, interacting
Klein-Gordon fields, ¢(#,t) and x(&,t), with masses m
and M, respectively, in 3 4+ 1D. We restrict our interest

to observables of the ¢ field, treating the y field as an
environment, and specialize to a single interaction term
that is linear in ¢ and either linear or quadratic in x.
The Lagrangian density that we consider is then
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where (9¢)? = —¢2 + (ﬁq’))Q, the dot denoting a deriva-
tive with time, and A is a coupling constant with mass
dimension 3 — n, where n € {1,2}. We have adopted
the mostly plus metric signature (—, +, 4+, +) and work
in units where 4 = ¢ = 1. Identifying the canonically
conjugate momenta 74 = ¢ and m, = ¥, we perform
the usual Legendre transformation and integrate over
R3 to obtain the Hamiltonian. We then impose that
the only non-vanishing field commutation relations are
[6(8), 75(D)] = [X(@) 7] = i0° (F - §), and write
the quantized Hamiltonian in the Schrodinger picture as
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are the system and environment free Hamiltonians, re-
spectively, and
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is the interaction Hamiltonian. We remark here that
this interaction is not bounded from below due to the
odd power of ¢. However, this instability in the system
dynamics can be easily removed by including suitable
self-interactions for QAS and y. We ignore such additional
terms for simplicity and also note that the instability does
not cause issues in a perturbative treatment for m # 0,
M # 0, and with the ¢ field initialized in the vacuum [46].

Since it will be convenient to write the master equation
in terms of eigenoperators of the system’s free Hamilto-
nian, Hy g, we choose to work in momentum space where
the creation and annihilation operators are eigenopera-
tors of the free Hamiltonian. We use the Fourier expan-
sions

where we have indicated the arguments of the Fourier
modes with subscripts such that ¢; = ¢(k) and x5 =



X(p). We further write the field operators (;ASE and xj in
terms of their creation and annihilation operators,
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where we have defined the frequencies w? = k? + m? and
Q2 = p® + M?, that inherit the commutation relations

(10)
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We can then write the free Hamiltonian, H'O = ﬁo,s +
Hy g, in the form
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where we have dropped the (infinite) zero-point energy
term and note that it can be removed systematically by
shifting the free Lagrangian density by a constant. For
the interaction Hamiltonian, we choose to explicitly write
the system field in terms of creation and annihilation
operators. As shown in section IIIC, this allows us to
easily transition from the Redfield master equation to the
Davies master equation by isolating the time dependence
of system operators in the interaction picture. Thus we
write Hj,: as
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where we have defined the dimensionless system integral
3
Jz=/ %;—3, the dimensionless system operators
k
5 3/2. s 3/2.
Ly, =wPag, Ly, =wltaly, (15)

and the environment operator
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corresponding to the system mode k. In the interaction
picture, the LE N inherit the time-dependence of the cre-

ation and annihilation operators,
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where ¢ is the initial time at which all pictures coincide.
We simply used the ¢-dependence to distinguish operators
in the interaction picture from those in the Schrodinger
picture above and use the same simplified notation below
as well. We find later that the L operators appear in the
master equation in the same way as the Lindblad opera-
tors of a GKLS equation. Since it is not always possible
to write the master equation in GKLS form, however, we
refer to the L operators as the dimensionless eigenoper-
ators of the system.

IIT. MASTER EQUATION CONSTRUCTION

We assume that the system and environment are ini-
tially uncorrelated and that the interaction is turned on
at the time ¢o. The initial state of the composite system
can then be written without loss of generality as a tensor
product,

o (to) = p(to) ® pr, (18)

where pr = pr(tp). This can be time-evolved in the
standard way, using the unitary time-evolution operator
U(t,to),

&(t) = U(t, t0)6 (to)UT (¢, o) - (19)

For the composite system Hamiltonian H = ﬁo + f[int,

U(t,tp) is in turn given by

Ult,to) = o—iHo(t—to) i [y Hit1)dt 7 (20)

where T indicates time-ordering and we have defined
the interaction Hamiltonian in the interaction picture
ﬁl(t) = eiH“(t’tO)H'mt(to)e*iH“(t’tO), where ﬁim(to) is
simply Hin. Now, taking a time-derivative of eq. (19)
yields the von Neumann equation, which we write in the
interaction picture as

%&I(t) =i [Hl(t),&l(t)} . (21)
We are interested in writing dynamical expressions that
are valid to second order in the coupling without treating
the density operator itself as a perturbative object. To
this end, we first integrate eq. (21) from to to ¢ to find
the formal solution for the density operator,

&1(t) = 6 (to) —i/t dt [Eﬁ(tl),&l(tl)}. (22)

to

We then substitute this result for 1(¢) on the right-hand
side of eq. (21) to obtain

%&I(t) = —i {ﬁl(t)ﬁ(to)}

. /t dt, [ﬁl(t), [Hl(tl)a&l(tl)n - (23)

to

Note that although the second term contains two factors
of the interaction Hamiltonian, we have not made any
approximation; hence, the expression above is valid for
any interaction strength at all orders of \. It is easily
verified that replacing 61(¢1) on the right-hand side with
&(tg) would exactly recover the standard second-order
perturbation theory expression, but we will not make this
approximation here.

We now perform a partial trace over the environment
degrees of freedom in eq. (23) to obtain the master equa-



tion for the reduced density operator pr(t) = Trg o1(¢),

%ﬁl(t) = —i [Heff(t%ﬁ(to)}

- /t dt, Trg [ﬁl(t), [ﬁl(h),&l(tl)n , (24)

to

where we have used eq. (18) to rewrite the first commuta-
tor on the right-hand side in terms of an effective Hamil-
tonian Heﬁ‘( ) =Trg {HI pE} It is common to assume
that the environment operators coupling to the system
have zero mean in the state pg, so that Heg(t) = 0. Al-
though this is not always true and depends on the choice
of interaction and initial state, it can generally be im-
posed by including a mean environment field term in the
system Hamiltonian [47]. We choose to explicitly keep
the effective Hamiltonian term but find that it does not
contribute to the equal-time two-point function of the re-
duced system in any of the cases considered in this work.

A. Redfield master equation

As mentioned earlier, eq. (24) still describes the ex-
act dynamics of the composite system; however, to make
further progress, we now restrict to the perturbative

J

dt

We have come a bit closer to the goal of reducing all
instances of o1(t1) to pr(t1) and pg, with the exception
of the irrelevant part of 41(¢1), which brings us to our
first approximation.

We now restrict to the weak-coupling regime and ex-
pand the term containing the irrelevant part of &1(¢1) to
second order in A. Since there are already two factors of A
(one from each Hy), we only need to make the expansion
Q61(t1) = Q61(to) +O(N). Tt is clear from the definitions
in eqgs. (18) and (25), however, that the projection oper-
ator leaves the initial density operator unchanged, from
which we conclude that Qdy(tg) = 0. Therefore, in the
weak-coupling regime, we can write the master equation
as

d
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This approximation is called the Born approximation and
amounts to factorizing the composite system density op-
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regime and make two standard approximations, namely,
the Born and Markov approximations. We would first
like to reduce eq. (24) to an integrodifferential equation
for the reduced density operator, pi(t). For this, it is
useful to define a Zwanzig projection operator P on the
space of density operators for the composite system such
that

Por(t) = Trg {61(t)} @ v
= /() ® m, (25)

where pr is a time-independent reference state for the
environment. We construct a complementary operator
Q through the relationship 1=P+ Q which allows us
to decompose the full density operator as

G1(t) = Pér(t) +
1(t) ® pr + Qai(t) . (26)

In the literature on projection operators, pi(t) ® pr and
Qo1 (t) are referred to as the relevant and irrelevant parts,
respectively [48, 49].

Using eq. (26) in eq. (24) and choosing the reference
state to be the initial state of the environment gives

A1), pu(t) @ ps] | + [0), [Ha(t), Qan(0)] [} (27)

(

erator as
o1(th) = pi(t) @ pr , (29)

so that the density operator of the environment is almost
stationary in the interaction picture. The Born approxi-
mation is also often presented as the assumption that the
environment is sufficiently large and the interaction suffi-
ciently weak so that environment excitations induced by
the system are negligible compared to its free dynamics.
Since weak coupling was sufficient in the above analysis,
however, we make the Born approximation without any
requirement on the number of degrees of freedom in the
environment. We also note that although eq. (28) is only
valid to second order in perturbation theory, the Born
approximation is not equivalent to truncating the Dyson
series expansion since py(t1) itself has not been expanded
in a perturbation series. In fact, as shown in section 1V,
leaving pr(t1) intact allows one to obtain a second-order
resummation for the equal-time two-point function of the
reduced system.

We can write the master equation in eq. (28) in a more
convenient form by expanding out the nested commuta-
tor on the right-hand side and using the explicit form of



the interaction Hamiltonian from eq. (14). This gives

d

where h.c. indicates the Hermitian conjugate, and we
have moved all system operators out of the environ-
ment trace, defining the environment correlation function
Ci(t,t1) through the relation [65]

Trp {07,@ (t)@flg(tl)[)E} - %’%Ck(t,tl)(%r)?’d?’ (F+F),
(31)

with the w?/2 separated out for later convenience. We
can see from eq. (30) that the Born approximation not
only allows us to write an integrodifferential equation
for p; but also to collate the effect of the environment
into time-dependent correlation functions that appear as
coeflicients on system operators.

Although we have made tidy progress by making the
Born approximation, the time integral over pi(¢1) in
eq. (30) implies that we are still accounting for correla-
tions that are not time-local due to the interaction with
the environment. In the standard picture of open sys-
tems, the environment is typically a reservoir with cor-
relation functions that decay rapidly compared to the
timescale over which the system evolves appreciably, nat-
urally suppressing time-nonlocal system correlations [50]
[66]. This lack of memory in the environment justifies
the Markov approximation, which amounts to the re-
placement pr(t1) — pr(t) and is interpreted as neglecting
coherent feedback from the environment. We will first ar-
gue that the Markov approximation is also justified when
the environment correlation function Ci(,t1) is purely
oscillatory, as long as the characteristic timescale, g, of
Ci(t,t1) is much shorter than the characteristic timescale
of the system, 7g. We can see this by considering the ¢;
integral in eq. (30),

t
/ dt1ck(t,tl)ei(_l)ﬁwk(tl_tO)ﬁI(tl) ) (32)
to

the exponential factor being the time-dependence of
L. B(tl). We integrate by parts to find that [67]

t
/dt1ck(t,tl)ei(_l)ﬁwk(tl_to)ﬁl(tl)
to
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where we have defined

ty
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to

The first term on the right-hand side of eq. (33) is pre-
cisely the Markov approximation, so we are left with the
task of showing that the second term is negligible. If
K s(t,t1) is a purely sinusoidal function with a period
of 7., then we partition the domain of integration as

N-1
(to,t) = | (to + n7isto + (n+ 1)m) U (to + N7y 1)
n=0
(35)
where N = |(t — t9)/7s], and rewrite the integral in the
second term on the right-hand side of eq. (33) as ftto dty =
_ 1)7, oA .
22;01 t?:é:j )T Aty + j;toJrNT* dt,. Now if pr(t1) varies
over a characteristic timescale 75 > 7,, then we can move
the derivative of pi(t1) outside of the integrals as

t
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N-1 d . to+(n+1)7,
- n=0 11 pl(tl) to+(n+1)7s /to+n7'* dth:k’ﬂ(t’ tl)
d t
+ Eﬁl(tl) / dtlle,g(t, tl) . (36)
1 t Jtg+NT,

The integrals under the summation now vanish identi-
cally, and we are only left with the second term on the
right-hand side. Furthermore, since N7, — t — tg as
7. — 0, we find that ¢ — (top + N7.) = 0 for sufficiently
small 7,, and so the second term is also negligible if the
environment timescale is much shorter than the system
timescale. We can, therefore, make the Markov approxi-
mation, replacing pr(t1) — p1(t) in eq. (32).

In either of the two cases discussed above, whether
the environment correlation function is purely oscilla-
tory with a short enough timescale (which we will find
for Apx) or decays sufficiently fast (for Adx2), the re-
placement pr(t1) — pr(t) is justified and leaves us with a
time-local master equation called the Redfield equation,

d
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to



where we have suppressed the ® between the density op-
erators and restored the interaction Hamiltonian to high-
light the general form. As discussed in the introduction,
it is well-known that the Redfield equation cannot be put
into GKLS form in general and is thus not guaranteed to
yield a completely positive map. The standard procedure
to ensure positivity is to further take the Markovian limit
and make the RWA, and the resulting equation is called
the Davies equation. In the following two subsections,
we rewrite the Redfield equation in a form that allows
for a straightforward transition to the Davies equation
so that we can easily compare our results in section IV
under different approximations.

B. Markovian limit

When the justification for the Markov approximation
is the rapid decay of environment correlation functions,
we can make a further simplification to the Redfield equa-
tion. Specifically, we can remove the initial state depen-
dence by taking the Markovian limit [49], the general
procedure for which is as follows. Suppose we are in-
terested in the integral of some function f(t¢1) from the
initial time ¢y to a later time ¢. We can make a change
of variables such that the integration is over the time
elapsed since ty as

() = / dt f(t) /0 A —t).  (38)

to

Now, if the function f(¢t —t') decays to zero over the
domain of integration, the value of I(¢) does not change
on increasing the upper limit of the integral. The initial
time can, therefore, be removed by letting ¢t — ty — oo,
yielding the Markovian limit of I(t),

M _ o o
™ (1) = /0 At f(t— 1), (39)

and removing the memory of the system from the dy-
namics. Environments for which the Markovian limit is
permissible are referred to as Markovian environments,
and the reduced dynamics are said to be Markovian.

Rather than taking the Markovian limit at this stage,
we will continue with the upper limit on the integral as
t—to so that the Markovian limit can be obtained simply
by letting ¢t —ty — oo in the ¢; integral. We thus rewrite
the Redfield equation in eq. (37) as

prlt) = [

/ TI‘E

(t), p”(to)]

Hy(t = t)pn(6)pw| +hee.,  (40)

where ‘ftl = fot_to dt;.

C. Standard form of the master equation

We now specialize to the case that the environment is
initialized in its vacuum state and expand environment
correlation functions using Wick’s contractions. Since
the resulting two-point correlators conserve momentum
and are invariant under time translations, we can write
eq. (40) as

Sin(t) = —i [Fra(0), oto)|
-y /k FrasMThp() [LL Ly in)] + 1.,
a,p

(41)
with the coefficients
Frap(t) = e (D7 =) )enlt—to) (42)
) e—i(=1) wyty
Lep) =¥ [ S am), @
ty Wk

where F}, o5 is Hermitian in the sense that it satisfies
the relation Fj, o = F}; k. Ba . The environment correlation

function takes the explicit form [68]

Cr(tr) = ?/53(%2@ )11 (d3

Jj=1

where we have dropped equal-time bubble diagrams since
they can be canceled by adding appropriate renormaliza-
tion counterterms, as we show explicitly for the n = 2
case in section VI, and used time translation invariance
to write C, with a single time argument. As noted be-
fore, Cj, only depends on the magnitude of £ since the P
integrals can always be evaluated relative to the direction
of k. Tt is also worth noting that everything under the
summation in eq. (41) is dimensionless except for I'y g,
which is a rate with mass dimension one. Finally, includ-
ing the Hermitian conjugate term explicitly, we can write
eq. (41) in the standard form
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. 1(er =
+ z; / Frap () k,an(?) [L,;,ﬁm(t)L;a -5 {L,g,aL,;ﬁ,pI(t)}} : (45)
[
where we have defined quiring 2wy, to be large for all k. This requirement is dis-
tinctly problematic in the massless limit, where wy = k
Ve, (t) = Thp(t) + Fz,a(t) ) (46) can be arbitrarily small, and is not clearly resolved in the
1 . massive case. We will, therefore, not make this approxi-
Sk,ap(t) = 2% [Fkﬁ(t) - Fk,a(t)] J (47) mation in general but consider how it affects our results

both of which are also Hermitian matrices that satisfy
Vi,aB = Vi pa and Skap = Sgﬁa.

In egs. (41) and (45), Fj ap is the interaction picture
time-dependence of the dimensionless system operators,
i’E o which we have separated out so that we may read-

ily,make the RWA. The motivation for the RWA is more
evident for a generic master equation where this time-
dependence is exp[—i(w’ —w)t] and there are summa-
tions over both Bohr frequencies w and w’, which can
be positive or negative. When the difference of the Bohr
frequencies is sufficiently large, this exponential rapidly
oscillates on timescales over which the system dissipates,
and the corresponding terms average to zero. The RWA
neglects these off-diagonal contributions, leaving only
terms with w’ = w. Of course, this is not the case for sys-
tems with dense level spacing, further implying that the
RWA is a poor approximation for systems with a continu-
ous spectrum [11, 14]. This observation naturally signals
that the RWA is not likely to be valid for a field theory
where the wy represent a continuum of Bohr frequen-
cies. One subtlety in the present case is that momentum
conservation has modified the above argument so that
the magnitudes of w and w’ are the same. Indeed, mak-
ing the RWA amounts to replacing Fj o — dap which
neglects all terms proportional to exp[+i2wy(t — to)], re-

J

only from a pedagogical standpoint.

While we could continue to work in the interaction
picture, we now choose to transform to the Schrodinger
picture. This introduces a factor of Fy ,5(t) which mul-
tiplies Fy, o5(t) to yield unity, and a commutator of p(t)
with the free Hamiltonian of the system. This commuta-
tor can be combined with the second term of eq. (45) to
define a modified system Hamiltonian,

Hs(t)=Hos+ Y /k Sk,aﬁ(t)i;aim, (48)
B

where, for a = 3, the second term on the right-hand
side is identified as an environment-induced shift in en-
ergy levels of the system and is then referred to as the
Lamb shift. Transforming back to the Schrodinger pic-
ture turns out to be mathematically convenient as it cir-
cumvents the need to handle time-dependent coefficients
appearing in the Markovian limit, but we comment on
the interaction picture formulation in the next section.

Using the fundamental relationship pi(t) =
etHost=to) j(t)e=Hos(t=t0) = we mnow write the stan-
dard form of the Redfield equation in the Schrédinger
picture as

%ﬁ(t) = i [fa, polt)] =i [As(0).5(0)] + 3 /k Vi () {Ewﬁ(t)ﬁt - % {1t L, B,ﬁ(t)}] : (49)

a,p

where we have defined Po(t) =
e~ Ho.s(t=t0) 515 )etHos(t=t0) and used pg = |0g) (Og| to
reduce the Schrédinger picture effective Hamiltonian
to Heg = (Og| Hint |Og). The last term in eq. (49) is
non-Hamiltonian and describes the decoherence of the
system due to the environment. Eq. (49) is the final
master equation we will use in the remainder of the
paper. We note that the procedure to make the RWA

(

is not evident anymore since the time-dependence of
the rapidly oscillating terms has been absorbed into the
states. The approximation can, nevertheless, be made
by simply dropping the off-diagonal (o # () terms.



IV. EQUAL-TIME TWO-POINT FUNCTION

In principle, one can solve the master equation in
eq. (49) for p and use it to investigate the dynamics of
the reduced system. Especially for systems with a large
Hilbert space, however, this is challenging as it amounts
to determining all matrix elements of p. Since we are
typically interested in system observables, we can instead
use the master equation to directly find how correlation
functions of the reduced system evolve in time. In this
paper, in particular, we are interested in calculating the
equal-time two-point correlation function of gﬁg, which is
easily related to the eigenoperators dE and d% of the sys-
tem’s free Hamiltonian. In this section, we use eq. (49)
to write down coupled differential equations in correla-
tion functions of dl; and dTE and discuss how the various
approximations introduced earlier are manifested. We
solve the resulting equations for the two specific system-
environment interactions in the next two sections.

We start with the equal-time two-point correlation
function for qZ)E, written in the Schrédinger picture as

Trs {é,;(&,;,ﬁ(t)} =G(t)2n)*B(E+F),  (50)

and expand the left-hand side in terms of correlation
functions of &E and &;%. Since each correlation func-

tion must conserve momentum, we define the functions
&k = &k + 19,2 and & 3 such that

(51)
Trs { [akaf_ o ral kak} ﬁ(t)} = &s(t)(2m)?08 (F+ ),
(52)

in terms of which G is given by
Gilt) = = 26, () + &s(0].  (59)

QOJk

We now multiply the master equation in eq. (49) by ap-
propriate combinations of creation and annihilation op-
erators and obtain a set of coupled first-order differential
equations for &, and & 3. The contribution of the H.g
term vanishes identically since it can always be written
as the expectation of three system operators. Thus, the
coeflicients that appear in the coupled equations are com-
binations of the functions Sj .3 and vy 5. Suppressing
the k subscripts on all variables, we find that

E(t) = — [7= () +i2ws (1) £(t) — 25, (1)€3(t) — o (t) |
(54)
(

E(t) = —7- ()& (t) + 8Tm [So(E™ ()] + 7+ (), (55)

where we have defined the functions 7,(t) = i 12(t),
So(t) = Ska2(t), v+ (t) = Yr11(t) £ Yr,22(t), and ws(t) =
wi + Sk1(t) + Sk22(t), with the subscript ‘0’ denoting

‘off-diagonal’. Once an initial density operator is chosen,
eqs. (54) and (55) can be solved using initial conditions
obtained from egs. (51) and (52). We denote the resulting
two-point function obtained by using these solutions for
&(t) and &(t) in eq. (53) with GR(t).

We note that although we have chosen to formulate dif-
ferential equations for the system creation and annihila-
tion operators in the Schrodinger picture, this is not nec-
essary [69]. Similar strategies have been employed in the
interaction picture, where operators are time-dependent,
and using the field basis, where the I:E are not eigen-
operators of the free Hamiltonian [19, 32, 51]. In these
cases, the time dependence requires additional care — for
example, if eq. (45) is used in place of eq. (49), then the &
variables become mized picture correlators of Schrodinger
picture operators with the interaction picture density op-
erator. The two-point function can then be constructed
by transferring the free time-evolution from 5(t) to the (;AS,;
in eq. (50) and expanding the two-point function in terms
of the mixed picture correlators. The main differences
are that ws(t) — Sk,11(t) + Sk,22(t) and the off-diagonal
cocfficients are multiplied by a factor of Fj, 12(t).

Approximations

The coupled differential egs. (54) and (55) obtained
from the Redfield equation are well-suited for numeri-
cal solutions. Finding analytical solutions, on the other
hand, is not feasible in general but may be possible after
making further simplifications. We consider four sim-
plified cases below: the Markovian limit, the RWA, the
Markovian limit under the RWA, and the standard Dyson
series perturbation theory.

1. Markovian limit

Under the Markovian limit, we let t —ty — oo in I'y, g,
removing the time-dependence from ;.3 and Sk qg.
Since there is no scope for ambiguity, we will indicate
this limit by simply dropping the time argument. In this
case, the coupled egs. (54) and (55) become

£(t) = — (7= + i2ws) &(t) — i25&3(t) — Yo, (56)
E3(t) = —v-&5(t) + 8Tm [So€™ (1)] + 74 - (57)

The Markovian limit is a substantial simplification and
leads to a set of coupled, first-order autonomous differen-
tial equations that can be solved by using, for example,
the Laplace transform, as detailed in appendix A. We
denote the resulting two-point function in the Markovian
limit, obtained by using these solutions for £(t) and £3(t)
in eq. (53), with GM(t).



2. RWA

Under the RWA, we drop the off-diagonal terms in
egs. (54) and (55), resulting in the set of decoupled equa-
tions,

E(t) = — Iy—(t) + i2ws (D] £(1) , (58)
&(t) = —7- (D& () +7+(2) - (59)

The £ equation is solved by simple separation of variables
and the &3 equation can be solved with an integrating
factor; the solutions are

§(1) = E(t)e oAbl (60)
53(75) — gS(tO)e* ftto dtiy—(t1)

t t ty
e dm,(tl)/ dtelie =) 1) (61)

to

We denote the resulting two-point function under the
RWA, obtained by using these solutions for £(¢) and &5(¢)
in eq. (53), with GRWA(¢).

3. RWA and Markovian limit

Performing the RWA and taking the Markovian limit
together effectively reduces the Redfield equation to the
Davies equation. In this case, the coefficients in egs. (58)
and (59) become time-independent and their solutions
reduce to

£(t) = E(t)e~ - Ti2ws)(i=to) (62)
£3(1) = &3 (to)e1- (1) 4 Z—* [1 . e*%“*to)] . (63)

In both examples considered in the following sections,
where we assume that the system starts in the vacuum of
the free theory, we find that v, = v_ and that these solu-
tions reduce to their initial values: £(t) = 0 and &5(¢t) = 1.
Therefore, the Davies master equation does not capture
the open system dynamics that we are interested in, and
we do not consider it further in the paper.

4. Dyson series perturbation theory

As discussed in section IITA, the Redfield equation
matches the standard Dyson series at second order in
A when pr(t1) is expanded to zeroth order on the right-
hand side of eq. (28), replacing pi(t1) there with p(to).
This also decouples egs. (54) and (55), resulting in the
equations

E(t) = —i2wi€(t) — [v-(t) + i2ws(t)] £(to)
— 128, (t)€3(t0) — Y0 (t), (64)
€3(t) = =y (t)&(to) + 8Im [So ()€™ (to)] + 7+ (t), (65)

Wil

FIG. 1: The environment correlation as a function of elapsed
time, ¢1, in a A¢x interacting theory, computed for M = 3m
and k = m, and normalized to unity at ¢; = 0.

where @g(t) = S,11(t) + Sk22(t). These expressions can
be obtained directly from egs. (54) and (55) by replac-
ing all £(t) and &5(¢) on the right-hand side with their
respective initial conditions, except for the wi&(t) term
that originates from transforming the derivative on the
left-hand side of eq. (45) back to the Schrodinger picture
and should, therefore, not be replaced. We denote the
resulting two-point function in perturbation theory, ob-
tained by using the solutions for £(¢) and &5(¢) in eq. (53),
with GET(¢). Note that GET(¢) is essentially the second-
order loop correction to the two-point function.

V. A\¢x INTERACTION

The simplest way to couple the system and environ-
ment fields is through a bilinear coupling. This corre-
sponds to setting n = 1 in eqgs. (2) and (6), so that the
interaction Hamiltonian is given by

Hoe = / Crd(@R(E). (66)

The resulting theory is ezactly solvable since the full
Hamiltonian remains quadratic. The A¢yx interaction
thus provides an excellent benchmark for the master
equation result under various approximations. The exact
calculation is detailed in appendix B and, in particular,
the exact solution for the two-point function, denoted
gexact(t), is shown in eq. (B10). We note that the exact
solution breaks down for a large enough A because the po-
tential is unbounded from below and that the constraint
on A can be avoided by instead choosing the interaction
to be A (¢ — x)?. We continue to work with the A¢x
interaction, however, as it remains well-behaved in the
perturbative regime that we are interested in here.



We now discuss the master equation solution for the
A¢x interaction. Consider first the correlation function
Ci(t1), given by eq. (44), that appears in the I'y g(t) co-
efficients. With n = 1, it becomes

e_iﬂktl

Ck(tl) = QQk )

(67)

where evaluating the single p integral over the
momentum-conserving Jd-function forces the system and
environment momenta to be equal. The Redfield equa-
tion coefficients are now constructed by using the above
expression for Ci(t1) in eq. (43), using the resulting 'y 5
in eqgs. (46) and (47), and finally using the resulting v o
and Sk op in the definitions of 7,, So, v+, and wg af-
ter eq. (55). We show the coefficients explicitly in ap-
pendix C for completeness.

It is clear from eq. (67) that the environment corre-
lation Cg(t1) for this interaction is purely oscillatory, as
shown in fig. 1 for clarity. Given our discussion in sec-
tion IIT B, we should thus not expect the Markovian limit
to capture the dynamics in this case accurately. An-
other way to see that the dynamics here must be non-
Markovian is to notice that each mode in the system is
coupled to exactly one mode in the environment; thus,
the composite system behaves like a collection of pairwise
coupled oscillators. Consequently, there will be substan-
tial memory in the evolution of the system density oper-
ator that should not be neglected. The Markovian limit
can, nevertheless, be imposed by setting the upper limit
of the time integral in I'y g(t) to oo, yielding the time-
independent function of k,

7i(71)ﬂwkt1

i e .
Trp=A [ dij————e """
k.B /O ! 4wy, ¢ ’ (68)

which can be simplified by resolving the right-hand side
into a sum of Fourier cosine and sine transforms.

Although we do not expect the Markovian limit to be
valid, the Markov approximation used in constructing
our master equation can still hold for this interaction. In
section IIT A, we concluded that the Markov approxima-
tion is justifiable for rapidly oscillating environment cor-
relators so long as the characteristic timescale 7g of the
system is much longer than the period 7, of the kernel
K. While 75 ~ w; ', we can obtain 7, by setting 8 = 1
in eq. (34), so as to obtain the longest relevant timescale
for this interaction, which gives 7, ~ | —wi| ', We
thus require that |Qk — wg| > wi. While this condition
breaks down for k& — oo, the effect of the interaction is
suppressed in this limit since I'y, 5(t) is itself suppressed.
For k — 0, on the other hand, this condition translates
into |M —m| > m. We next show that the Redfield
equation-based solution is more accurate than the per-
turbation theory-based solution for M > m, suggesting
that the Markov approximation is indeed a good approx-
imation in this limit.

To distinguish the validity of the Markov approxima-
tion from that of perturbation theory, we consider the
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FIG. 2: The time-averaged absolute error in the two-point
function calculated using the Redfield equation and perturba-
tion theory as a function of M /m in a A¢x interacting theory,
for A\ = Mm/2 and k = 0, and averaged over the time interval

V2t € [0,10].

relative error of the solution obtained using the Redfield
equation,

_GR(D) — Ge ()
gzxact (t) ’

and that obtained using Dyson series perturbation the-
ory, APT(¢). We solve for AR(t) and AT (¢) numeri-
cally, using eq. (B10) for GF¥2<(¢). In fig. 2, we plot the
time-averaged zero-mode absolute errors (|Af(t)|); and
(JAFT(#)]); as a function of M/m, upon fixing the inter-
action strength, A = Mm/2 = constant [70], and averag-
ing over the time interval v2Xt [0,10]. As expected,
the absolute error decreases as the mass scales separate
for the Redfield and perturbation theory solutions due
to a corresponding decrease in I'y g. For M > m, how-
ever, the error in the Redfield solution decreases more
rapidly than in perturbation theory, indicating that the
Redfield solution offers an improvement over perturba-
tion theory in this regime due to the improving validity
of the Markov approximation.

In fig. 3, we compare the relative errors of the two solu-
tions further for a given M > m and for different choices
of interaction strength A. We find that the relative error
is smaller for the Redfield solution and, while both solu-
tions break down for large interaction strength and at late
times as expected, the breakdown of the Redfield solution
is slower than the perturbation theory one. This suggests
that solving the coupled differential eqgs. (54) and (55)
obtained from the Redfield equation provides a pertur-
bative resummation that offers an improvement over the
Dyson series perturbation theory result or, equivalently,
the second-order loop correction. Understanding the set
of diagrams that the Redfield solution resums — for exam-
ple, whether it resums all 1PI diagrams at second-order

AR (#) (69)
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FIG. 3: The relative error in the two-point function calcu-
lated using the Redfield equation and perturbation theory as
a function of time in a A¢x interacting theory, for three rel-
atively large values of A\, kK = m, and M = 3m. Expectedly,
the error is suppressed for smaller values of \.

in A or other diagrams — would be an interesting direction
to pursue in future work.

Lastly, we compare the Redfield and perturbation the-
ory solutions to those obtained in the Markovian limit
and under the RWA in fig. 4. As expected, neither ap-
proximation coincides with the Redfield dynamics, which
capture the exact dynamics on these timescales, in a
meaningful way. As mentioned earlier, we do not expect
the Markovian limit to be valid since the environment
correlation is purely oscillatory and we do not expect
the RWA to be a good approximation for systems with a
continuous spectrum.

VI. \¢x? INTERACTION

We next couple the system and environment fields non-
linearly, specifically setting n = 2 in eq. (2), so that the
interaction is given by A¢x2. Note that we now need to
renormalize the theory since loop corrections to, for ex-
ample, (;3 correlations will contain UV-divergent (environ-
ment) momentum integrals. It turns out that the master
equation approach is compatible with standard methods
of renormalization, and we thus proceed by shifting and
rescaling the fields in eq. (2) with n = 2. Ignoring any
vertex corrections since they do not contribute at O(\?),
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FIG. 4: The two-point function calculated using the Redfield
equation, perturbation theory, the Redfield equation in the
Markovian limit, and the Redfield equation under the RWA as
a function of time in a Ay interacting theory, for A = m?/2,
k = m, and M = 3m, and normalized by the free theory

solution, Gio = (2wy) ™.

we then add the following counterterm Lagrangian den-
sity to the system-environment Lagrangian density in

eq. (2),

1 1
Loy = —§5¢(3¢)2 - §5m¢2 + Yy

1 1
= 50 (0%)7 = Sonx® + Yax, (70)

where 04, 0y, Om, On, Yy, and Y, are the usual coun-
terterms required to cancel any UV divergences. Note
that, in general, we may need to add counterterms in the
initial state as well [52-57], but they are not needed for
the interaction that we consider here.

In fact, we can set all x-counterterms in eq. (70) to
zero: 0, and dp; can be set to zero since environment
correlation functions are calculated at tree level and Y,
can be set to zero since the interaction is quadratic in
x and does not generate a one-point expectation value.
Additionally, since this interaction is linear in ¢, the di-
vergence of (¢(Z,t)) is at first order and results from
the contraction of the two factors of y in the interaction
Hamiltonian. Therefore, for this interaction and choice
of environment state, we can drop the Yy counterterm as
well and, equivalently, normal order the environment op-
erator in the interaction Hamiltonian. This, in fact, sets
H.g(t) = 0, as discussed after eq. (24), and is also con-
sistent with dropping equal-time bubble diagrams in the
environment as discussed after eq. (44). With these sim-
plifications, the quantized interaction Hamiltonian that



we consider in this section becomes

i = [ @2 %2 (3@ + (Fo@P) + P 3@
300 2@ | ()

We now write the counterterm contribution in terms
of the dimensionless eigenoperators of the system intro-
duced in section II. This leads to a correction in the sys-
tem’s unitary dynamics, such that Sy og(t) in eq. (47)
becomes

Stas(t) = 5z [Tip(t) ~ T o0)]
+ o (60 (B 4 (1) +0,] L (72

which enters the modified system Hamiltonian in eq. (48),
which in turn enters the master equation in eq. (49).

Let us now consider the environment correlation func-
tion for A¢x2. For n = 2, eq. (44) retains one momentum
integral, with the momentum-conserving delta function
restricting one of the environment modes to be the sum
of the other two modes in the interaction, hence

1/ d3p e_i(QerQU;Jrﬁl)tl
(

Ct) =3 | @ay 0,0

3 (73)

|E-+51

We set M = 0 to simplify the integral over p and find,
as usual, that it is UV-divergent. On regulating the inte-
gral by introducing a small imaginary piece to the time
parameter such that ¢; — t; —ie with € € RT, we obtain
the e-dependent environment correlation function,

i
32724 — e

efiktl

Cr(t1) = (74)

Although Ci(t1) does not diverge as ¢ — 0, the regu-
larization scheme simply converts the momentum diver-
gence to an initial time one, which becomes apparent
when computing the t; integral. We can, nevertheless,
infer a couple of important points from egs. (73) and (74),
which we highlight before continuing with our renormal-
ization procedure.

First, we note that the momentum integral in eq. (73)
is a direct result of the nonlinearity of the interaction. In
contrast to the A¢x theory, where a given system mode
only couples to a single environment mode, in the Agpy?
theory, a given system mode couples to all environment
modes. In this sense, the environment can be considered
large, analogous to the famous (Markovian) Caldeira-
Leggett model of quantum Brownian motion [58, 59].
Second, from eq. (74) and fig. 5, we see that Cy(¢1) decays
rapidly away from t; = 0, suppressing memory in the
system density operator and suggesting that the dynam-
ics are Markovian. We, therefore, expect the Markovian
limit of the Redfield equation to capture the late-time
behavior of the system, which is what we find below.
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FIG. 5: The environment correlation as a function of elapsed
time, t1, in a A¢x? interacting theory, computed for € = 1/10
and k£ = m, and normalized to unity at ¢t; = 0.

Let us now return to the renormalization procedure.
Using eq. (74) in eq. (43), we find that the time integral
leads to a Ine divergence that persists in Sk 5(t) and
can be canceled by choosing the counterterms

2

55 =0 AN |
¢ 1672

Om = n(€epy), (75)
where we have introduced the renormalization scale p,.
We show the final coefficients that enter the master equa-
tion for this interaction and with the above choice of
counterterms in appendix D. We note that while the co-
efficients in egs. (D2) and (D5) diverge at the initial time,
since Ci(z) diverges at zero, correlation functions must
remain finite at the initial time. A simple argument for
this is that the perturbation theory solution continuously
matches the initial conditions at the initial time, and the
Redfield solution reduces to the perturbation theory one
at early times. Also, as expected, the coefficients depend
on u,, which is typically chosen in a fixed loop order
calculation such that the result has reduced dependence
on it at the energy scales of interest. We discuss some
subtleties related to choosing p, in the next section and
simply choose a reasonable value for it in the analysis
that follows.

We now compare the Redfield equation-based solution
to the solutions obtained using perturbation theory, in
the Markovian limit, and under the RWA in fig. 6. From
the left panel of fig. 6, we see that the Redfield and per-
turbation theory solutions agree on short timescales. The
Markovian limit and RWA, on the other hand, are both
poor approximations at short timescales, although the so-
lution in the Markovian limit retains more of the phase
information. From the right panel of fig. 6, we see that
the Redfield solution relaxes at late times, whereas the
perturbation theory one continues to oscillate. This qual-
itative difference can be attributed to the Redfield equa-
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FIG. 6: The two-point function calculated using the Redfield equation, perturbation theory, the Redfield equation in the
Markovian limit, and the Redfield equation under the RWA as a function of time in a A¢x? interacting theory, for A = m/2,

k = m, and pu, = 10m, and normalized by the free theory solution, Gi o = (ka)*l.

(Left) The two-point function at early

times. (Right) The two-point function at sufficiently late times showing a relaxation of the Redfield solution as well as in the
Markovian limit. We note that for the numerical Redfield solution, we impose initial conditions at wi(t — to) = 10710 since

some of the coefficients diverge as t — to.

tion representing a resummation of second-order dynam-
ics. We further see that the Markovian limit is a good
approximation at late times, since the solution relaxes
to the same value as that obtained using the Redfield
equation. This supports our expectation that the envi-
ronment in the A¢x? theory is approximately Markovian.
Lastly, we see that the RWA is a poor approximation at
late times as well, as the solution relaxes to the free the-
ory one.

VII. COMMENTS ON THE
RENORMALIZATION SCALE

We next show that the renormalization scale, p,, en-
countered in the previous section, can have a significant
effect on the late-time solution obtained using the master
equation, and certain choices of p, can lead to physically
inconsistent results. For the A¢x? theory, we can write an
analytical expression for the late-time correlation in the
Markovian limit where, as shown in the previous section,
the solution agrees with the Redfield solution,

A2 ln(“”;;'k) _1

_ 16m2w?
’ Tonraz 10 (o) — 1
™ wk me
where v is the Euler-Mascheroni constant. Using the

Markovian limit solutions for £(¢) and &3(¢), we can
further construct the two-point function for the conju-
gate momentum and find that lim o (%, z(t)7, 7. (1)) =
(7, 7 (to)7 4 7 (to)). The uncertainty principle in the late-
time limit, therefore, reduces to

1

tgr& A¢}z(t)Aﬂ'¢,]—c‘(t) = B

GroGM(t — 00) > = . (77)

N[ =

Imposing the inequality in eq. (77) then leads to the fol-
lowing condition on pu, for the theory to be physical,

pr > (wi + k) e (78)

The k-dependence of u, implied by the above equation
is not implausible as we may need to choose p, in such
a way to remove any dependence on it at a given energy
scale k. Nevertheless, the breakdown of uncertainty for
an incorrect choice of p, is not encountered in pertur-
bation theory. In fact, the perturbation theory solution
does not break the uncertainty principle for either \¢x
or A\¢x? and, in particular, for any p, > 0 for the latter.
This suggests that the breakdown of uncertainty here is
not a feature of renormalization in QFT but is rather
inherited from the Redfield equation construction. Inter-
estingly, whereas the pathology of the Redfield descrip-
tion is typically diagnosed via positivity violation of the
dynamical state of the system, here we diagnose this by
demanding physical bounds on the relevant field correla-
tors. While we leave a detailed study of this issue and
potential connections between the unphysical predictions
to future work, we briefly examine the Hamiltonian cor-
rections, or the Sy op(t) coefficients, in the master equa-
tions for both interactions, as any p,-dependence only
appears in these terms.

We first consider the Sk o5(t), which can be interpreted
as a Lamb-type shift in the system frequency spectrum,
with negative eigenvalues [58, 59]. For the A¢y interac-
tion and considering the simpler case of the Davies equa-
tion, the eigenvalues can be calculated exactly and are



given by
)\2
S = — 79
k,11 4(,«)ka (Qk — Wk;) 9 ( )
)\2
Sk,22 = (80)

—4kak (Qk + wk) ’

While the second eigenvalue is always negative, the first
one is negative only for ;. > wy, which is consistent with
the requirement of M > m for the Markov approxima-
tion to be valid. Violating this mass hierarchy, therefore,
leads to an unphysical frequency shift and can lead to a
broken uncertainty principle. For the more general case
of the Redfield equation, on the other hand, we find that
one eigenvalue of Sy, s is positive and the other is nega-
tive. For parameter values that preserve the uncertainty
principle, however, we find that the trace of S op is neg-
ative, at least at late times. We also find that the uncer-
tainty principle is preserved when all unitary corrections,
in both Sk og as well as i o3, are ignored.

We next consider the Sy 5(t) coefficients for the Ay >
interaction. For the Davies equation, its eigenvalues are
given by

A2 Ly
Sk G4m2wy, [(wk —k) 67:| ' (81)
A2 Ly
99 = — 1 . 2
Sk.22 6472wy, " [(wk + k) 67:| (82)

Demanding that both eigenvalues are negative gives us
two conditions, with the second one being more restric-
tive and exactly matching the condition obtained from
the uncertainty principle in eq. (78). For the Redfield
equation, on the other hand, we find the same qualitative
behavior as mentioned in the previous paragraph for A¢py.
We note that dropping all unitary corrections in Si oz
and vx,o3 would now also drop all instances of ji,. These
observations suggest that the broken uncertainty princi-
ple originates from the Lamb-type frequency shift terms,
which are known to be problematic in general [60]. Our
procedure to set the counterterm appropriately to rectify
the Lamb shift-induced violation of uncertainty is remi-
niscent of recent results that have shown how, by making
suitable modifications to the system Hamiltonian, fitter
Redfield descriptions can be obtained both in terms of
accuracy of steady state predictions as well as describing
transient dynamics [61].

VIII. DISCUSSION

Our goal in this paper was to use the quantum mas-
ter equation approach to study the dynamics of a system
scalar field ¢ coupled to an environment scalar field y
through a A¢x™ interaction, with n € {1,2}. We were
specifically interested in understanding whether the mas-
ter equation approach provides an improvement upon
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standard Dyson series results and whether the dynam-
ics of ¢, upon tracing out y, are described by a non-
Markovian or Markovian master equation. For this pur-
pose, we first derived the non-Markovian Redfield master
equation for the reduced density operator of ¢ by trac-
ing out the y field at second order in A and under two
standard approximations: the Born approximation that
restricts to weak coupling and the Markov approxima-
tion that assumes a separation of timescales between the
system and environment. We then used the master equa-
tion to set up coupled differential equations in two-point
correlations of the creation and annihilation operators of
(Z)l;(t)7 and discussed how the coupled equations simplify
in various limits including the Markovian limit, RWA,
and standard perturbation theory expansion. The re-
sulting coupled equations can finally be solved to obtain
the equal-time two-point function of qASE(t) in any of these
limits.

As a first explicit example, we considered a A¢y in-
teraction. We argued that the Markovian limit must be
invalid for this interaction since (i) the environment cor-
relation function does not decay in time and (ii) a single
system mode only couples to a single environment mode.
However, we showed that the Markov approximation, and
thus the Redfield master equation construction, remains
valid as long as the y field is much heavier than the ¢
field. We next used the resulting Redfield equation to
solve for the two-point function analytically /numerically
in various limits, and showed that the Markovian limit
indeed fails to capture the late-time behavior. Finally, we
showed that the Redfield equation-based solution offers a
substantial improvement over the standard perturbation
theory-based one, suggesting that the Redfield equation
provides a perturbative resummation for the calculation
of observables.

As a second explicit example, we considered a Agy?
interaction. An immediate consequence of the nonlin-
ear environment was to make the environment correla-
tion function UV-divergent. We found, however, that
the master equation approach admits standard renormal-
ization techniques, such that adding appropriate coun-
terterms in the unitary dynamics allowed us to cancel
all UV-divergences, while introducing a renormalization
scale p, in the master equation. We next argued that the
Markovian limit must be valid for this interaction since
(i) the (regularized) environment correlation function de-
cays rapidly in time and (ii) a single system mode couples
to all environment modes. Choosing an arbitrary value
of pu, = 10m, we then solved the resulting Redfield equa-
tion for the two-point function analytically /numerically
in various limits, and showed that the Markovian limit
indeed captures the late-time behavior of the full Redfield
solution. Finally, we showed that the perturbation theory
solution significantly differs from the Redfield solution at
late times, again suggesting that the Redfield equation
provides a perturbative resummation for the calculation
of observables.

We also highlighted a couple of open questions that



we have left to future work. First, while our results sug-
gested that the Redfield solution provides a perturbative
resummation, it is unclear which diagrams it resums — for
example, whether it resums all 1PI diagrams at second-
order in A or other diagrams as well. Second, for the
Apx? interaction, we found that resummed correlations
can break the uncertainty principle at late times for cer-
tain values of p,. We argued that this may be an arti-
fact of an unphysical Lamb-type correction in the master
equation construction but it deserves further investiga-
tion.
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Appendix A: Solving the coupled differential equations in the Markovian limit

In this appendix, we solve for the functions () and £3(t), defined in egs. (51) and (52), in the Markovian limit.
We start with the coupled egs. (56) and (57), that we write again for convenience,

() = — (7= + i2ws) £(t) — 12563 (t) — Yo, (A1)
E3(t) = —v-&(t) + 8Tm [So€™ (1)] + 7+ (A2)

where 7,, S,, 7+, and wg are all time-independent. In terms of the real and imaginary parts of £ = & + i€ and the
time parameter T = t — t(, these can be written as the three equations,

% = —7-&1 + 2wsée + 2Im [So] &3 — Re [yo] (49
% = —7-& — 2ws&1 — 2Re[S,] &3 — Im [7,] (54
% = —7-&3 +8Im[So] &1 — 8Re[So] o + 74 - (A9

We now simplify the above equations by making the change of variables & (T') = n;(T)e~"-T, which gives

Y dusgis — 2Im[So] s = ~ Re o] 17 (A6)
d
2wsm + def +2Re[So]n3 = —Im [,] -1 (A7)
_ % — v-T
8Im [So] m + 8Re [So] m2 + =ype’". (A8)

dT

We next take the Laplace transform to move from the 7" domain to the £ domain, making use of the property

eo{ )} = [T ar et = g (5T ve [T arpme ) e - s (49
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Then the resulting equations can be written in matrix form as

€ —2ws  —2Im[S.]] [m(e) m (0) — Bebel
2ws € 2Re[So] | |m2(e)| = |n2(0) — @ : (A10)
—8Im[S,] 8RelS, Ve
m [S,] e [So] 3 n3(€) 13(0) + 2
and solutions for &;(¢) are then finally given by
&(t) £ —ows  —2Im[S,]] " [m(0) - %
&) | =L, 2wg € 2Re[S,] 12(0) — % g1 (t=to) (A11)
&(t) —8ImI[S,] 8RelS,] € n3(0) + 61:

where Et__lto denotes the inverse Laplace transform to the ¢ — ¢y domain.

Appendix B: Exact solution for the equal-time two-point function in the A¢x theory

In this appendix, we find the exact solution for the A¢x interacting theory. We start with the Heisenberg equations
of motion for the system and environment annihilation operators, &E and bE’

d

et = i) iz [0+ 0] (B1)
%Bg(t) = —iQb(t) - 22\/0% {d];(t) + &ig(t)} : (B2)

and assume a general solution of the form
a (1) = folha, + fi(t)a .+ L(0b. + f O . (B3)
b-(t) = ho(t)b + h’;(t)za + ha(t)a + b3 (t)a!

where operators on the right-hand side are Schrodinger picture operators and the functions f; and h; are Bogoliubov
coefficients that are yet to be determined. Substituting these equations into egs. (B1) and (B2) yields the set of
coupled differential equations

Folt) + ieon fot) + zwﬁ [ha(t) + ha(t)] = 0, (B5)
Fle) = o (0) = 572 ) + ()] = 0, (B6)
o () + Qs (t) + zmﬁ o) + f1(8)] = 0, (B7)
halt) = i90ha(t) = i Lo + (0)] = 0. (B8)

and a second set that can be obtained by making the two exchanges f; = h; and wy, & Q. above. Egs. (B5) to (B8)
can now be solved exactly using the same Laplace transform technique as in appendix A. The equal-time two-point
correlator for the system can then be written in terms of the functions f; as

Giret(t) = [|fo( O+ 1A OF + L0 + 1£0F + S f7 (6) + 5O L0 + L0656 + O f0)],  (BY)
and is given by

1 {1 N A2 () — wp) [2/\2 (3 — wi) + 02 (U — wi)® (e + 3w
2wy, 20, (w2 —w?)? (Qw? — A?) (U — wy)

Q. + wy, wi—Qi wi—wi
+ 0 o ( o cos 2wy (t —tg)] — g [2w_ (t — tg)]

gexact (t)

+2<1+ e k)cos[(w++w_)(t—t0)]+2(1—kak) cos[(w+—w_)(t—t0)]”, (B10)

Wiw— Wy
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where we have defined the frequencies

02 &2 02 _ 2 2
Wi = Pty ey (DR %) (B11)
2 2
We note that the form of the frequencies w above suggests that the perturbative regime for this theory is characterized
by the condition [A\| < |22 —w?| = [M? —m?|. Perturbation theory must, therefore, not be a good approximation

when m and M are comparable, consistent with fig. 2.

Appendix C: Redfield equation coefficients for A\¢x theory

In this appendix, we display the coefficients of the Redfield equation for the \¢x interaction described in section V,

%(0) = 5o Z(?;i —7 [wk — (wk cos [ (t — to)] + i sin [ (£ — to)] )e*m“*fo)} : (C1)
So(t) = _4kak (AS; - (20— (008 [ (t — t0)] + ieon sin [ (¢ — to)] e+, (C2)
O QQ (Qk cos [w (t — to)] sin [ (£ — to)] — wi cos [ (£ — to)] sin [w (t — to)]) , (C3)
0= g 92 (wk cos [ (¢ — to)]sin [ (¢ — to)] — D cos [ (¢ — to)] sin [wy (¢ — to)] ) (C4)

>\
QWka (Q — Wi

ws(t) = wy — 2 (Qk e cos [wy (t — to)] cos [ ( — to)] — w sin [ (£ — to)] sin [wy (£ — to)]) .
(C5)

For this interaction, the Markovian limit is only well-defined before evaluating the time integral, as in eq. (68), so
that the time integral can be written as a sum of Fourier cosine and sine transforms. The resulting coefficients can,
however, also be obtained by dropping the oscillating terms in the expressions above.

Appendix D: Redfield equation coefficients for A\¢y> theory

In this appendix, we display the coefficients of the Redfield equation for the A¢x? interaction described in section VI,

2

%0(t) = o (7Sl = k) t0)] = Sil(we + k) (¢ = 10)])

+ 26422% (Ci [(wr — k) (t — t0)] — Ci [(wr + k) (t — to)] + In B’; . :] ) : (D1)
So(t) = 128?:2% (27 —2Mn [%} G [(w — k) (£ — to)] — Ci[(wr + k) (t — to)]>

+ 212&:2% (Si [(w — k) (t — to)] + Si [(wr + &) (t — to)] ) , (D2)
1500 = g (74 ik~ B) (0~ 1) — Sillen + 1) (0~ )] ) (03)
(1) = 322% (Sil(ewor = k) (¢ = to)] + Si[(wr + k) (t —t0)] ) (D)
ws(t) = wi + 64;;% (27 2 [%} — Ci[(wr — k) (£ — to)] — Ci[(wh + k) (t — t0)] ) . (D5)

where we have used the standard definition for the sine and cosine integrals,

Si(z) = /0 ) dtSiI;(t), Ci(z) = — / h dtcoi(t)7 (D6)




19

and the renomalization scale u, indicates where divergences were removed by choosing the counterterms in eq. (75).

The Markovian limit is straightforward to take as each function has a well-defined limit as t — ¢y — o©.
[



