
SUBGRAPH STATIONARY HARDWARE-SOFTWARE INFERENCE CO-DESIGN

Payman Behnam * 1 Jianming Tong * 1 Alind Khare 1 Yangyu Chen 1 Yue Pan 1 Pranav Gadikar 1

Abhimanyu Rajeshkumar Bambhaniya 1 Tushar Krishna 1 Alexey Tumanov 1

ABSTRACT
A growing number of applications depend on Machine Learning (ML) functionality and benefits from both higher
quality ML predictions and better timeliness (latency) at the same time. A growing body of research in computer
architecture, ML, and systems software literature focuses on reaching better latency/accuracy tradeoffs for ML
models. Efforts include compression, quantization, pruning, early-exit models, mixed DNN precision, as well as
ML inference accelerator designs that minimize latency and energy, while preserving delivered accuracy. All of
them, however, yield improvements for a single static point in the latency/accuracy tradeoff space. We make a case
for applications that operate in dynamically changing deployment scenarios, where no single static point is optimal.
We draw on a recently proposed weight-shared SuperNet mechanism to enable serving a stream of queries that uses
(activates) different SubNets within this weight-shared construct. This creates an opportunity to exploit the inherent
temporal locality with our proposed SubGraph Stationary (SGS) optimization. We take a hardware-software
co-design approach with a real implementation of SGS in SushiAccel and the implementation of a software
scheduler SushiSched controlling which SubNets to serve and what to cache in real-time. Combined, they are
vertically integrated into SUSHI—an inference serving stack. For the stream of queries SUSHI yields up to 25%
improvement in latency, 0.98% increase in served accuracy. SUSHI can achieve up to 78.7% off-chip energy
savings.

1 INTRODUCTION

The number of applications leveraging Machine Learning
(ML) functionality continues to grow, as ML is successfully
applied beyond image classification (Ovtcharov et al., 2015),
object detection/recognition (Chen et al., 2017a; Ali et al.,
2018), sentiment analysis (Jiang et al., 2020), and next word
prediction (Sundermeyer et al., 2012). These applications
are also increasingly latency sensitive. Their interactive
experience depends on what fraction of prediction tasks
is satisfied within the application-specified latency budget
(typically in the 10-100ms interactive latency range). Ex-
amples of such applications include self-driving cars (Gog
et al., 2022), specifically the on-board software responsible
for multi-modal sensory data processing, street sign detec-
tion (Tabernik & Skočaj, 2019), pedestrian detection (Liu
et al., 2019), vehicle trajectory tracking (Deo & Trivedi,
2018), lane tracking (Datta et al., 2020), and Intensive Care
Unit stability score prediction (Hong et al., 2020). These
applications require the ability to serve trained ML models

*Equal contribution 1Georgia Institute of Technology,
Atlanta, Georgia, USA. Correspondence to: Payman
Behnam, Jianming Tong <payman.behnam@gatech.edu,
jianming.tong@gatech.edu>.

Proceedings of the 6 th MLSys Conference, Miami, FL, USA, 2023.
Copyright 2023 by the author(s).

in a way that maximizes the fraction of queries completed
within the application specified latency budget—defined
as latency Service Level Objective (SLO) attainment. A
unifying characteristic for this class of applications is that
they simultaneously care about the quality (accuracy) and
timeliness (latency) of ML inference served.

There has been a body of work successfully improving
achievable latency/accuracy tradeoffs for specific Deep
Learning models. Examples include multiple forms of quan-
tization (Bai et al., 2018; Zhang et al., 2018; Pouransari
et al., 2020; Fang et al., 2020), mixed DNN precision (Ab-
delaziz et al., 2021), compression (Iandola et al., 2016),
pruning (Liu et al., 2018), latency-aware neural architecture
search (Cai et al., 2018; Eriksson et al., 2021), just to name
a few. However, fundamentally, all of these techniques opti-
mize for a single static point in the latency/accuracy tradeoff
space. Indeed, for a given deployment device, the outcome
is typically a single static model that has a specific (latency,
accuracy) tuple associated with it. We claim this is no longer
sufficient.

We observe that the applications with acute latency-accuracy
sensitivity typically operate in dynamically variable deploy-
ment conditions. These include variable query traffic pat-
terns (e.g., variable number of patients triaged in the ICU
or ER), on-device battery power level (e.g. bed-side com-

SubGraph Stationary HW-SW Co-design for ML inference

pute or battery-powered edge device), and query complexity
(e.g., autonomous vehicle (AV) navigation of sparse subur-
ban vs dense urban terrain). Under such variable deploy-
ment conditions, a choice of any single static model from
the latency/accuracy tradeoff space will be suboptimal. In-
deed, a higher accuracy model may result in dropped queries
during periods of transient overloads. The lower accuracy
model may yield suboptimal prediction quality under low
load—both unnecessarily under-performing. Inherently, the
ideal solution would include dynamically picking a “best-
fit” model from the latency/accuracy tradeoff space. For a
specific latency constraint that varies over time, a just-in-
time choice of the highest accuracy model satisfying this
constraint is preferred. Thus, ability to switch (or navigate)
between points in the latency/accuracy tradeoff space in
real-time is intuitively required for such applications.

We identify one such mechanism that enables this — weight-
shared SuperNets (Cai et al., 2019) (§2.1). This neural net-
work construct consists of multiple convolutional neural
networks (CNNs) sharing common model parameters. It
simultaneously encapsulates “deep and thin” models as well
as “wide and shallow” within the same structure without
weight duplication. These SuperNets can be used to activate
different SubNets without explicitly extracting them into dif-
ferent independently stored models. This is highly efficient
from the systems perspective, as it obviates the need to store
these model variants separately (saving memory cost), and
enables rapidly switching SubNets that are “activated” to
serve different incoming queries.

On the hardware end, the need for real-time inference has
led to a plethora of ML accelerators. A key optimization
technique (e.g., “dataflow” (Chen et al., 2016)) leveraged
by most accelerators involves reusing activations and/or
weights across multiple computations, leading to architec-
tures that can be classified as weight stationary, output sta-
tionary, input stationary, row stationary, and hybrid varia-
tions of these (Chen et al., 2016). These dataflows rely on
neural network layers, specifically 2D convolutions, to be
compute-bound. One challenge of serving SubNets with di-
verse shapes, however, as we identify, is the memory-bound
nature of some of the SubNets (smaller FLOPS/Byte).

To address this challenge, we make a key observation that
the weight-shared SuperNet mechanism inherently results
in queries activating commonly shared SubGraphs within
the same SuperNets structure1. Furthermore, we note a
significant amount of temporal locality in the weights of
the SuperNets re-used across queries. We identify this as
an opportunity for a new kind of data reuse, which we
name SubGraph Stationary (SGS) optimization—
a technique we haven’t seen used or proposed by any exist-

1We define SubGraph as a subgraph consisting of any subset
of weights from the SuperNets connected together into a graph

ing accelerator. We realize the benefits of SGS by imple-
menting hardware caching support for weight reuse at the
granularity of neural network SubGraphs.

In addition to SGS-aware hardware implementation, we co-
design an SGS-aware query scheduler that decides (a) which
SubNets to activate for each query and (b) which SubGraphs
to cache. We propose an algorithmic approach to make these
control decisions based on (a) a query’s specified accuracy
constraint and (b) the current state of the accelerator (which
we abstract). We demonstrate that these control decisions
benefit from hardware state awareness, as baseline state-
unaware caching leaves room for improvement. Finally, we
propose an abstraction that enables the query scheduling pol-
icy to generalize, while remaining accelerator state-aware.
The abstraction is captured by a black-box table (Fig. 4) that
exposes the latency of activating a SubNet i as a function of a
currently cached SubGraph j. We instantiate the concept of
SubGraph Stationary (SGS) cross-query optimization in our
vertically integrated inference serving stack, SUSHI, which
includes (a) SushiAccel—a real FPGA implementation
of hardware support for SGS-aware weight-shared SuperNet
inference, and (b) SushiSched to make real-time control
decisions on a stream of queries executed on SushiAccel,
sequentially deciding for each query SubNet i to activate
and (periodically) SubGraph j to cache on the accelerator.
SushiAccel and SushiSched combined in SUSHI en-
able agile navigation of the latency/accuracy tradeoff space,
reaching better latency/accuracy tradeoffs by leveraging the
key property of “cross query” temporal locality inherent to
weight-shared SuperNets with what we believe to be the first
hardware-software co-design for weight-shared inference.

The key contributions of this paper can be summarized as
follows:

• a concept of SubGraph Stationary (SGS) approach for
hardware acceleration of DNN inference on weight-
shared SuperNets.

• SushiAccel—a real SGS-aware FPGA implemen-
tation, with a simulator and design space exploration
tools.

• SushiSched—a software query scheduler that oper-
ates in SGS-aware fashion, controlling which SubNets
to activate and SubGraphs to cache in real time.

• SUSHI—a hardware-software co-designed inference
serving stack, vertically integrating SushiAccel and
SushiSched.

• SushiAbs—an abstraction that generalizes SGS-
aware query scheduling to arbitrary accelerators, while
retaining implicit accelerator state awareness.

Combined, SUSHI is able to achieve up to 25% query serv-
ing latency improvement with 0.98% accuracy improvement.
SUSHI can also save a significant amount of off-chip energy

SubGraph Stationary HW-SW Co-design for ML inference

SuperNet

 SubNet1 SubNet2
 SubGraph1

(a) SubNets & SubGraphs concepts.

Latency

A
cc

ur
ac

y
Pareto Frontier Model
Selected Single ML Model
SubNets

Query's Acc Requirement
Query's Lat Requirement

(b) Latency-Acc. tradeoff

Figure 1. WS-DNN properties.

(78.7%) in simulation with realistic board configurations.

2 BACKGROUND AND MOTIVATION

We start with a background on weight-shared neural net-
works in §2.1. Then we motivate and expose the opportunity
for hardware support of weight-shared supernet inference
(§2.2). The need for hardware-software co-design follows
from challenges in §2.3. The hardware-software abstraction
in §2.4 is introduced for generality.

2.1 Weight-Shared Deep Neural Networks (WS-DNNs)

Recent advances in deep learning propose weight-shared
deep neural networks (Cai et al., 2019; Sahni et al., 2021;
Yu et al., 2020) that propose SuperNet structures can be
used to enable inference on Deep Neural Networks (DNNs)
across a diverse set of deployment scenarios (both dynamic
and static). Weight-shared DNNs (WS-DNN) induce a rich
trade-off between accuracy and latency (Fig. 1b). The in-
ference in WS-DNN fundamentally changes the traditional
view of optimizing inference latency, which was focused
on a single forward pass query. Instead, WS-DNN’s in-
ference makes it possible to satisfy the latency/accuracy
requirements for a stream of queries with each query po-
tentially requesting a different point in the trade-off space.
This positions WS-DNNs as a salient candidate for a variety
of applications (Halpern et al., 2019; Hsieh et al., 2018;
Reddi et al., 2020) and inference-serving systems (Romero
et al., 2021a) that benefit from navigating latency/accuracy
trade-off. The key property of these networks is that dif-
ferent DNNs (SubNet), which may differ in several elastic
dimensions, including depth and width, partially share their
weights as part of a single large DNN (SuperNet). As a
result, the SuperNet contains all other SubNets within it
(Fig. 1a). These SubNets can be directly used to render pre-
dictions without any further re-training. To get predictions
from a specific SubNet, elastic dimensions are specified in
order to select appropriate weights from the SuperNet for

Figure 2. Arithmetic intensity for different layers of various DNNs.
Lower arithmetic intensity leads to relatively higher memory inten-
sity in MBV3 and ResNet50’s latter layers.

the forward pass.

These elastic dimensions typically include specification of
the depth, the number of filters/channels of each convolu-
tional layer and kernels. The elastic dimensions of the neural
net architecture of the SuperNet are exploited to attain elas-
ticity. A typical SuperNet architecture such as OFAResNet,
OFAMobileNet is organized as a collection of stages. Each
stage consists of repeating blocks, such as a Bottleneck
block in OFAResNets. Each block in turn contains multiple
convolution layers. The depth elastic dimension selects top
k 2 [2; 4] blocks per-stage of the SuperNet. The expand
ratio (another elastic dimension) selects top k kernels of
the convolution layer in each block. As a result, the small-
est SubNet’s weights are shared by all other SubNets and
the weights of the largest SubNet contain all other SubNets
within it. Hence, there’s always some amount of common
weight sharing between SubNets, with cardinality of overlap
ranging from the smallest to the largest SubNet.

2.2 Need for Hardware Support for WS-DNN
inference

The goal of hardware acceleration for ML inference is to
serve a query with minimal latency and maximal accuracy.
This goal becomes even more pronounced for WS-DNN
inference, where each query may be served with different
latency/accuracy requirements (Fig. 1b) (Cai et al., 2019;
Sahni et al., 2021).

Achieving this goal is challenging due to memory-
boundedness of some of the convolutional layers (Kao et al.,
2022; Siu et al., 2018). This is especially true for the more
recent smaller models that have lower arithmetic intensity
(FLOPS/Byte) and when they are deployed on bandwidth-
constrained embedded boards (Wang et al., 2019; Wei et al.,
2019; Chen et al., 2016; Jokic et al., 2020; Siu et al., 2018;
Chen et al., 2022).

We quantify this in Fig. 2, where we observe that a large
fraction of convolution layers running on a canonical edge
accelerator are memory-bound 2. This is problematic, since

2In the same network, relatively lower arithmetic intensity

SubGraph Stationary HW-SW Co-design for ML inference

a significant portion of end-to-end inference latency and en-
ergy consumption comes from memory-bound layers, given
the high latency and energy cost of data movement from
memory to the on-chip resources (Chen et al., 2016; Yuan
et al., 2021). Hence, for the same amount of FLOPS it is
very important to convert memory-bound layers to compute-
bound in order to reduce end-to-end inference latency and
energy consumption.

To do so, we leverage our key insight that WS-DNN in-
ference on a stream of queries exhibits temporal locality.
As different queries use different SubNets, many of them
reuse the same weights shared among those SubNets, by
design. We employ this insight to help convert memory-
bound layers to be more compute-bound. Conceptually, this
can be accomplished by reusing the shared weights used
by previous queries for the next query in a stream, know-
ing that they all activate SubNets within the same shared
SuperNet structure. This creates an opportunity for reuse
across queries, in sharp contrast to techniques commonly
explored and exploited in the computer architecture commu-
nity for a single query for intra-model optimizations, such
as weight-stationary, row-stationary, input-stationary, and
output-stationary (Chen et al., 2017b; 2016; Fleischer et al.,
2018; Venkatesan et al., 2019). We call this novel reuse as
SubGraph Reuse, as common shared weights form a Sub-
Graph (e.g., created as the intersection of computational
graphs of any two served SubNets). Note that in this paper
we distinguish between SubGraphs and SubNets. SubNet
is a subset of a SuperNet that can be used for forward-pass
inference to serve a query, while a SubGraph is a subset of
SubNet. Note that any SubNet is a SubGraph, but not vice
versa.

A natural way to leverage SubGraph Reuse is to have a
dedicated cache in the hardware accelerator. However, it
comes with several challenges that we discuss in §2.3.

2.3 Design Challenges in WS-DNN inference
specialized hardware

The proposed specialized hardware for WS-DNN-inference
exploits the temporal locality and enables SubGraph Reuse.
However, assigning a dedicated on-chip buffer comes with
both software and hardware challenges.

Hardware Challenges: Due to the resource-restricted na-
ture of many deployment devices, the cache size may be too
small to cache entire SubNets. Thus, the hardware must op-
erate at a finer caching granularity of arbitrary SubGraphs
instead. Deciding the size of the dedicated on-chip buffer
is non-trivial. Small buffer size leads to marginalizing the
ability to exploit temporal locality. Larger dedicated on-
chip buffer limits compute area as well as other on-chip

corresponds to higher chances of becoming memory bound.

buffer sizes that are leveraged for weight/row/input/output
stationary optimizations.

Furthermore, the SubGraph Stationary depends on the com-
pute/memory boundness of the convolution workload, which
is further related to the off-chip bandwidth and throughput
of the hardware. Therefore, the variation of the bandwidth
and throughput will also affect the best cache size, which
introduces more factors for consideration in the trade-off
space.

Software Challenges: We argue that the latency of served
SubNets depends on the SubGraph cached in the on-chip
buffer. Fig. 3 provides a toy example to illustrate that: (a)
a deep and thin SubNet gets a lower latency with a cached
SubGraph containing more layers compared to other cached
SubGraphs with fewer layers and wider bottleneck blocks,
and (b) a wide and shallow SubNet achieves lower latency
with a cached SubGraph with wider and fewer layers (match-
ing its shape). This creates two challenges in software: (a)
SubNet selection decision to serve the current query must be
aware of the currently cached SubGraph (state), and (b) the
cached SubGraph itself should be updated based on previ-
ously served SubNets for optimized latency. In other words,
the software needs to make cache-state aware decisions to
select the appropriate SubNet and update the cached state
based on temporally local (e.g., recent) SubNets that were
used to serve recent queries.

2.4 Hardware-Agnostic Software Scheduling

One final goal is to achieve generalizability for the software
scheduler while retaining accelerator state awareness. The
scheduler policy design could then generalize to any hard-
ware that is able to support WS-DNN inference. Hence,
there is a need to decouple the scheduler from the hard-
ware, i.e., the change in the hardware should not require any
changes in the scheduler policy code. We propose an ab-
straction between the software scheduler and the hardware
accelerator that exposes latencies of serving a set of SubNets
over a set of cached SubGraphs. We show that this gives
the policy sufficient information about the hardware state in
an accelerator-agnostic fashion. We discuss the mechanism
of achieving this while managing the spatial complexity of
such a lookup table in §3. We instantiate this mechanism
in SushiSched, which we can now develop and improve
upon independently on any hardware accelerator.

3 SYSTEM DESIGN & ARCHITECTURE

SUSHI serves a stream of queries with different la-
tency/accuracy requirements. It consists of three ma-
jor components — scheduler (SushiSched), abstraction
(SushiAbs), and accelerator (SushiAccel) as shown
in Fig. 4. SUSHI exploits novel SubGraph Reuse enabled

SubGraph Stationary HW-SW Co-design for ML inference

La
te

nc
y

More Layers More Width

Deep & Thin
SubNet

Cached SubGraph

Shallow & Wide SubNet

Figure 3. Latency of two different SubNets as a function of differ-
ent cached SubGraphs. Different cached SubGraphs are optimal
for different served SubNets with a non-trivial relationship based
on the similarity of NN architecture parameters. SushiSched
captures this similarity with a distance measure in §3.
via the interaction of its three components to serve queries
with higher accuracy subjected to latency constraints or
lower latency subjected to accuracy constraints. We de-
scribe our proposed SushiAbs and SushiSched below.
SushiAccel is described in §4 in detail. The terminology
used in this paper is captured in Fig. 5.

3.1 SUSHI’s System Architecture

We describe the interaction between SUSHI’s components.
Fig. 4 demonstrates a query path in SUSHI. The query
enters the system with a certain latency and accuracy con-
straint. Then, the SushiSched makes a two-part control
decision. First, it selects a appropriate SubNet (i.e., st) that
can serve the current query qt. It makes this subnet selec-
tion with the help of SushiAbs. SushiAbs provides
the scheduler with ability to perform latency estimation
when a specific SubNet is served with a given SubGraph
cached. SushiAbs exposes this state in an accelerator-
agnostic fashion. Second, SushiSched decides the next
cached-SubGraph. The exact algorithm for this control
decision is described in Alg. 3.3. SushiSched control
decision is then enacted by SushiAccel. The selected
SubNet, next cached-SubGraph, and query-data are sent to
the SushiAccel. SushiAccel performs inference of
the query using the selected SubNet. Model weights that are
not already SGS-cached as part of the cached SubGraph are
fetched from off-chip to on-chip buffer space. Finally, the
accelerator returns the results of performing inference on
SubNet to SushiSched and enacts the SubGraph caching
control decision.

3.2 Abstraction

SushiAbs abstracts the ability to perform latency estima-
tion for a given SubNets as a function of a cached SubGraph
in an accelerator-agnostic fashion. It enables SushiSched
to make cachedSubGraph aware control decisions. As these

control decisions are performed on the critical path of the
query, this enabling abstraction must be efficient both w.r.t.
space (R1) and time (R2). Indeed, the set of all possible
cached-SubGraphs is exponentially large for WS-DNNs
(>> 1019) (Cai et al., 2019). Thus, to achieve (R1), the
abstraction limits the set of all possible cached SubGraphs
to a significantly smaller set S , such that |S| << 1019. The
size of SubGraphs in S are selected to be close to the cache
size. Hence, at any point in time, SushiAccel always
caches SubGraphs from S and SushiSched also selects a
SubGraph to cache from S as well. The abstraction achieves
(R2) by using a lookup table data structure with SubNets as
rows and SubGraphs as columns. Hence, it takes the least
amount of time to get latency-estimate of SubNet i for a
given SubGraph j. The size of the lookup table is given by
O(|S|.|X |) ⇡ O(|S|) where X denotes the set of serving
SubNets, since we expect O(|X |) ⇡ O(1).

3.3 SushiSched Design

Result: SubNet to be served and SubGraph to be cached.
Input: SubNet to be served Si, i 2 [1...N], SubGraph to be
cached Gj , j " [1...M], Latency table L[i][j].
Calculate SubNet to be served for every query
qt = (Acct, Latt), t 2 [0...Q] and SubGraph to be cached
every Q iterations;
AvgNet = [0,0,0...0]; CacheState = ?;
while qt do

if policy == STRICT ACCURACY then
idx = argminlatency(L[i][CacheState] 8i 2 [0...N]
s.t. Si.accuracy >= Acct)

else
idx = argmaxaccuracy(L[i][CacheState] 8i 2
[0...N] s.t. Si.latency <= Latt)

end
for every Q queries do

AvgNet.update(Sidx , Q)
CacheState = argminDist(Dist(Gj ,AvgNet) 8j 2
[0...M])

end
end
On the software side, the scheduler receives a stream of
queries, where each query is annotated with an (Accuracy,
Latency) pair, denoted (At, Lt). In this section we will de-
scribe exactly how the scheduler makes its SubNet selection
and SubGraph caching control decisions.

Per-query SubNet (SNt) selection. As shown in Fig.4, the
scheduler decision is guided by two primary considerations:
(i) serve strictly higher accuracy and (ii) serve with strictly
smaller latency, which can be specified by the user. In
case of strictly higher accuracy, the scheduler can choose
from the feasibility set of all SubNets with accuracy � At.
SUSHI serves a SubNet that has minimum latency among
all the SubNets that have accuracy � At. Note that, it may

SubGraph Stationary HW-SW Co-design for ML inference

Latency

Accuracy

SubNets to be Served

LatencyTable Query

SubGraph
Cached

Cache State
Inputs A

cc
ur

ac
y

Latency

80%

DPE

DPE

DPE

DPE

queris

PB-Cache

O
n-

C
hi

p
B

uf
fe

rs

 Change Per queries
Cache State

Output
SubGraph SubGraph

SubGraph

Scheduler

DRAM

SuperNet SubNet 1 SubNet 2

Query 1
<100 ms
Acc>80%

Query N
< 10 ms
Acc>70%

Figure 4. System architecture overview. Given a stream of queries annotated with (Accuracy, Latency) pairs q1, .., qQ and the current
cache state C1, the scheduler chooses the SubNet to be served Si for each i‘th query and next cache state C2 after every Q queries.

Input Activations (iActs) Output Activations (oActs)

Kernel 1 Kernel 2 Kernel 4

Input channel

Number of kernel

Height of kernel

Width of kernel

Height of iActs

Width of iActs

Height of oActs

Width of oActs

Parallelism in the input channel Parallelism in the kernel

Figure 5. SUSHI terminology and variable definitions.
be possible that the served latency might not satisfy the
latency constraint of  Lt. In case of strictly lesser latency,
the scheduler serves a SubNet that has maximum accuracy
among all the SubNets that have latency  Lt. Similarly,
it is possible that the served accuracy might not satisfy the
accuracy constraint of � At. Notice that the accuracy for
a given SubNet is fixed, whereas the latency depends on
the SubGraph cached into the PB. The scheduler employs a
Latency�Table to get the latency values for SubNet given
a cache state.

Across-query SubGraph Caching (St+Q). The scheduler
needs to decide what SubGraph to cache after every Q

queries St+Q. To make this decision, the scheduler needs to
represent the SubGraphs and SubNets, use the information
from the past Q queries, and predicts the next SubGraph
that should be cached into the PB.

Encoding SubGraph NN Architecture. The scheduler
represents both the SubNets and the SubGraphs as a vector
as shown in Fig. 6. The scheduler uses the number of kernels
Ki and the number of channels Ci of every layer i to create
a vector of size 2N for N layered neural network. For
instance, the vectorized representation for a 3-layered neural
network would be [K1, C1,K2, C2,K3, C3].

Amortizing Caching Choices. The scheduler keeps a run-
ning average of the past Q SubNets that were served by the
scheduler as shown in Fig.6 (middle). The running average
serves as a good indicator of the kernels and the channels

that were frequently used in the SubNets that were served
for the past Q queries. If some kernels or channels were
frequently used in the past Q SubNets, the values corre-
sponding to these kernels or channels will be high in the
vectorized representation. Notice that, the running average
can be considered as an approximation of the intersection
operation, but with more information. Doing intersection
purely loses the information for the kernels and the chan-
nels that were frequent but not present in all the SubNets;
however, averaging helps us to preserve this information.

Predicting the Next SubGraph (St+Q). The scheduler
employs the distance from the running average of the past
Q queries to predict the next SubGraph to be cached as
shown in Fig.6. The scheduler caches the SubGraph that
has the minimum distance from the average SubNet. Min-
imum distance ensures that the most frequent kernels and
channels will be cached into the PB. In case fitting all of
them is not possible, minimum distance from average Sub-
Net ensures that we are picking the best fit SubGraph in
terms of frequently occurring channels and kernels in the
SubNets served by the scheduler. The algorithm for per-
forming both the scheduler decisions is described briefly in
Algorithm 3.3. SushiSched receives input from the user
including SubGraphs, SubNets, LatencyTable. AvgNet is
the running average of the served SubNets. The cache state
is set to a random SubGraph initially. The SushiSched
decides the SubNet to be served for a given query when the
accuracy is a hard constraint i.e. serving strictly better accu-
racy. The SushiSched can also decide the SubNet to be
served if the latency is a hard constraint i.e. serving strictly
lesser latency. It updates the running average of the SubNets.
Finally, the SushiSched determines the SubGraph that is
closest to the AvgNet and caches it into the PB.

SubGraph Stationary HW-SW Co-design for ML inference

Channel
Extract

Flatten

SubNet 1 SubNet Q SubNet Representation Average
 SubNet

SubNet

SubGraph i

Return

Average
 SubNet

Figure 6. The scheduler represents each neural network as a vector
using the number of kernels and channels for each layer. The
scheduler maintains a running average of the SubNets that were
served for the past Q queries. For every Q queries, the scheduler
caches the SubGraph that is the closest to the average SubNet.

4 SUSHIACCEL IMPLEMENTATION

4.1 Hardware Design Challenges

As discussed earlier in §2 and §3, to support SubGraph
Stationary, we propose to augment DNN accelerators with
a custom cache called Persistent Buffer. The introduction
of PB leads to a new design space because it competes for a
finite on-chip buffer capacity (that needs to be partitioned
across input activation, weight, and output activation tiles,
and also shared weights).

To guarantee the best performance of hardware design on
such a design space, we have to develop the parameterizable
hardware template with the support of different hardware
configurations.

4.2 Architectural Components

In this part, we introduce components of SushiAccel
(Fig. 7) and how it supports all proposed data reuse in Fig. 8.

4.2.1 Compute Array

Dot Product Engine (DPE). The key building block of
DNN accelerators is the ability to compute dot-products.
For example, the Google TPU systolic array (Jouppi et al.,
2017) computes fixed-size dot products in each column
by keeping weights stationary and forwarding (streaming)
inputs from one column to the other, NVDLA (NVIDIA,
2016) employs dedicated dot product engines (DPEs) of size
64, while flexible accelerators (Kwon et al., 2018; Qin et al.,
2020) have DPEs of configurable sizes (enabled via all-to-
all connectivity between the buffers and PEs). In this work,
we picked fixed-size DPEs of size 9. Larger kernels will be
breakdown into a serial of 3 ⇥ 3 kernels and get flattened
across the multipliers for reduction using the adder tree. As
for small kernels (1 ⇥ 1), C dimension will be flattened
across multipliers to leverage input channel parallelism.

Parallelism. To further increase the throughput, we instanti-
ate a 2D array of DPEs to boost the throughput by leveraging
parallelism and reuse as shown in the Fig. 8. As for the par-
allelism, the number of row indicates the total number of
kernels being processed in parallel in DPE Array, i.e. kernel-

level parallelism (KP). While the number of column stands
for total number of input activation (iAct) channels being
processed in parallel, i.e. channel-level parallelism (CP).
Both iActs and weights take the same interface to save the
wire cost and improve scalability. In the vertical axis, both
weights and iActs pass through DPEs of different rows in the
store-and-forward fashion. During the weights forwarding,
DPE will keep targeted weights stationary. Then, iActs will
be streamed and get processed. In the horizontal axis, we
replicate the same DPE independently to process different
iActs channels and add an extra adder tree to reduce results
from DPEs in the same row.

4.2.2 On-chip Buffers and Supported Data Reuse

We designed a custom on-chip buffer hierarchy to both
reorder data into the format preferred by the DPE array and
support reuse opportunities not leveraged by the DPE array.
The entire on-chip storage is divided into multiple separate
buffers for different types of data as illustrated by different
colors in Fig. 7.

Persistent Buffer (PB). The PB is designed to enable Sub-
Graph Reuse. For example, SushiAccel loads the Sub-
Graph (kernel 1) in Fig. 8d from off-chip memory only once
and stores it inside PB, such that it could be reused when
switching between SubNet 1 and SubNet 2.

Dynamic Buffer (DB). The DB is a typical on-chip storage
to store the distinct weights of the requested SubNet. By
adopting a PB, only non-common weights need to be fetched
from the off-chip to the on-chip storage. For example, in
Fig. 8d, all kernels except the common part (kernel 2 to
kernel N) will be loaded into DB when targeting at SubNet
1, and will be replaced by kernel M to kernel M +N when
switching into SubNet 2. The DB is implemented as a ping-
pong buffer, as indicated by DB1 and DB2 in Fig. 7, to hide
the latency of fetching distinct weights from the off-chip
DRAM.

Streaming Buffer (SB). SB is designed to store entire iActs
and support iAct Reuse - Multiple kernels. (Fig. 8b).

Line Buffer (LB). LB works as a serial to parallel con-
version (Wang et al., 2021) because the line buffer takes
a single pixel from SB and moves it internally. Therefore,
iActs data among different sliding windows will be reused
inside the LB, i.e. LB supports iAct Reuse - Sliding Window
Overlap (Fig. 8a). We extend the original line buffer to
support stride by enabling sliding windows skipping.

Output Buffer (OB). OB provides in-place accumulation
for oActs of different channels such that only the final oActs
will be sent off-chip to save data movement of partial sums.

ZP/Scale Buffer (ZSB) . ZSB serves as the on-chip storage
for zero point and scale for quantized inference.

SubGraph Stationary HW-SW Co-design for ML inference

Streaming Buffer (SB)
iAct Multi-Kernel Reuse

Line Buffer (LB)
iAct Sliding-Window Reuse

Dynamic Buffer (DB1)
Weights Reuse

Persistent Buffer (PB)
SubGraph Reuse

Output Buffer (OB)
final oAct Reuse

DRAM

DRAM

iAct
Weight

X XX X X XX XX

+ + + + +
+ + +

+ +
+

Dynamic Buffer (DB2)
Weights Reuse

DPE DPE

DPE DPE

ZP/Scale Buffer (ZSB)

DPE

DPE

Zero Subtraction (ZS)
iAct/Weights - Zero Point

Scaling
int8 oActs

C

A

B

D1

D2

E

H

F

J
K L

G

E

I

Figure 7. The Overall SushiAccel Architecture (KP = 2, CP = 3)

Sliding Window 1 Sliding Window 2

Y - Reuse

X - Reuse

Sliding Window Row 2

(a) iAct Sliding Window Reuse.

Kernel 1 Kernel 2 Kernel 3

Same iActs Same iActs

(b) iAct Multi-Filter Reuse.

Partial oAct 31
2

3

Partial oAct 2

Partial oAct 1

Final oAct
Output Tile 3

Reuse
Final oAct

(c) oAct Reuse.

w0 w1 w2 w0 w1 w2w0 w1 w2

kernel 1 kernel 2 kernel N
w0 w1 w2 w0 w1 w2 w0 w1 w2

SubNet 1

SubNet 2

SubGraph
Reuse

kernel 1 kernel M kernel M + N

(d) SubGraph Reuse

Figure 8. Data reuse opportunities in serving different SubGraphs leveraged within SushiAccel.

 Multi-Query Critical Path W/O PB
B Query 1 Query 2 Query q

 Multi-Query Critical Path W/ PB
B Query 1 Query 2 Query q

B B

Latency
Reduction

A single Query Critical Path
Conv 1 Conv 2 Conv 3 Conv n

(a) Multi-query timeline.

CA D1
E
H

F
J
K

G

D2

E
H

F
J
K

G
E
H

F
J
K

G

D2

E
H

F
J
K

G

D1 L

Critical Path of a single CONV layer

H
id

di
ng

Tile 2 Tile 3 Tile 4 Tile 51st Tile

(b) Single Conv timeline.

Figure 9. SushiAccel Dataflow overview.
4.3 SushiAccel Dataflow

4.3.1 Latency Reduction from Inter-Query Dataflow

The inter-query processing timeline of SushiAccel is
shown in Fig. 9a where stage B indicates the movement of
the common SubGraph from off-chip to on-chip PB. The
latency saving of SushiAccel comes from eliminating
the redundant off-chip SubGraph access, as illustrated in
Fig. 9a where SushiAccel reduces common SubGraph
off-chip access (stage B) to only once in the critical path
instead of multiple times in design w/o PB.

4.3.2 Hiding Latency from Intra-layer Dataflow

Within each convolution layer, SushiAccel processes a
convolution layer in the granularity of weight tiles shown in
Fig. 9b. Different stages (i.e., A-L) are defined in Fig. 7 that
represent the movement of specific data. To further hide off-
chip data access latency from critical path, we implement a
double distinct weights buffer (ping-pong dynamic buffers
DB1 and DB2 shown in Fig. 7) to hide the off-chip latency
of fetching distinct weights behind the computation latency.

5 EXPERIMENTAL RESULTS

5.1 System Setup

Workload: We choose weight shared version of ResNet50
and MobV3 as two SuperNets (Cai et al., 2019). To evaluate
SUSHI with full range on the pareto-frontier, we pick a

sequence of 6 and 7 SubNets from ResNet50 and MobV3,
respectively. The sizes of ResNet50 SubNets range from the
[7.58 MB, 27.47 MB] while the sizes of MobV3 SubNets
range from [2.97 MB, 4.74 MB]. Shared weights take up
7.55 MB and 2.90 MB for ResNet50 and MobV3, sepa-
rately 3. SubNets are obtained using the procedure men-
tioned in OFA (Cai et al., 2019).

Metrics: Latency in this section refers to the end-to-end
serving latency of a given model, while accuracy refers to
the top-1 accuracy. Both accuracy and latency are defined
for SubNets only. SubGraphs are only used for the caching
purpose as a subset of SubNets.

Architecture Analytic Model: We have developed an ana-
lytic model which estimates the behavior of SushiAccel
to explore design space by configuring the architecture with
parameters. Our model accurately predicts the latency trend
of SushiAccel using profiled latency of SushiAccel
on both workloads, enabling us to perform an exhaustive
search of all parameter combinations within specified con-
straints. This approach allows for the identification of opti-
mal configurations for improved performance in both simu-
lation and real-world deployment.

Roofline Analysis We also extended a roofline analysis tool
to study the effect of PB on the boundness of SushiAccel
under different workloads.

Deployment Platforms: We implemented the proposed
SushiAccel on two FPGA including ZCU104 (5 W) and
Alveo U50 (75 W). We compare our SushiAccel w/ PB
and w/o PB with Xilinx DPU and CPU (Intel i7 10750H, 45
W).

3Weights, input activations, and zero points are quantized to
int8, and the quantization scale is quantized into int32.

SubGraph Stationary HW-SW Co-design for ML inference

(a) ResNet50. (b) MobV3.
Figure 10. Potential latency reduction with SGS (two bar per Sub-
Graph, left: w/o PB; Right: w PB)

(a) ResNet50. (b) MobV3.
Figure 11. SGS pushes memory-bound to compute-bound layers.

Scheduler Simulator: We have developed SushiSched,
which runs on the CPU and guides the SushiAccel on
how to serve the current query and (a) what SubGraph to
serve and (b) SubNet to be placed in PB.

5.2 SUSHI Impact on Arithmetic Intensity

To understand the benefits of SGS, we perform roofline
analysis as shown in Fig. 10 and Fig. 11, where roofline
represents the normal roofline curve. And SGS-roofline
virtually improves the overall off-chip bandwidth by saving
off-chip data access, leading to an improved roofline curve
shown by SGS roofline. The experiments are performed
with a system with 19.2 GB/s off-chip memory bandwidth
and 1.296 Tflops throughput running at 100 MHz (Reuther
et al., 2022). The latency breakdown results in Fig. 10 shows
that SGS can potentially remove the off-weights access la-
tency from the critical path, such that the individual latency
of serving a stream of queries from pareto-frontiers could
be reduced by [6%, 23.6%] for MobV3 and [5.7%, 7.92%]
for ResNet50.

Such latency reduction essentially comes from the model
boundedness shifting. The SGS pushes models towards
compute-bound, which increases the utilization of the avail-
able compute resources for higher throughput and reduces
latency and energy consumption. The shifting is illustrated
by blue dots being pushed toward the red dots in Fig. 11.

5.3 SushiAccel configuration impact

In this subsection, we explore the impact of three main
factors (i.e., bandwidth, throughput, and PB size) of

Table 1. Bandwidth Requirement of on-chip Buffers
Buffer Minimal Bandwidth Requirement

DB LCM(max off-chip BW , DPE Array demanded on-chip BW)
SB LCM(max off-chip BW , CP ⇥ R ⇥ S⇥ iActs DataWidth)
LB DPE Array demanded on-chip BW
OB KP⇥ oAct DataWidth
PB LCM(max off-chip BW , DPE Array demanded on-chip BW)

Note: BW = bandwidth, LCM(x1, x2): Least Common Multiple of x1 and x2.

5

10

15

20

25

30

Time Save %

(a) ResNet50.

5

10

15

20

Time Save %

(b) MobV3.
Figure 12. Latency reduction (Time Save in legend) improvement
exploration on SushiAccel using Analytic Model.

SushiAccel on the overall end-to-end serving latency.

5.3.1 Bandwidth - Buffers Arrangement

Different types of data require different bandwidths. A uni-
fied buffer for all different data types demands the controller
to handle potentially all-to-all connections between buffers
and all compute units. While the design of the splitting
buffer only needs a direct connection between a buffer and
compute units, which saves the complexity of both the data-
path and the controller. The buffer is a 2D array and its size
equals width⇥ height. The width refers to the bandwidth
a buffer could supply every cycle. The bandwidth demand
of different buffers is shown in Tab. 1, which is determined
by both workloads and hardware specification.

5.3.2 PB Size - Sizes of Buffers

All buffers compete on the same total storage budget so that
a balance of them is preferred to achieve good performance.
The addition of a persistent buffer also introduces a new fac-
tor of common weights reuse, leading to a trade-off between
inter-layer data reuse and intra-layer data reuse.

5.3.3 Throughput - Parallelism of the Compute Array

The parallelism of the 2D DPE Array is also a controllable
knob. Within the same computation engine budget, a change
in parallelism indicates a change in throughput, yielding
different performances on different workloads. For example,
the parallelism of 16 and 32 in K and C dimensions deliver
a peak throughput of 512 data per clock cycle. Therefore,
we use this throughput as the factor to abstract parallelism.

5.3.4 Design Space Exploration

As Fig. 12 shows with larger PB sizes, more on-chip compu-
tation, and less off-chip bandwidth, the latency is improved.
However, for MobV3, due to the smaller size, having depth-

SubGraph Stationary HW-SW Co-design for ML inference

wise conv layers, and less reuse, the amount of improvement
is lesser for MobV3 compared with the ResNet50.

5.4 SushiAccel Evaluation

In this subsection, we evaluate how SushiAccel will im-
pact the latency and energy reduction. We evaluate different
scales of SushiAccel on two real FPGAs with different
budgets running the 3x3 convolution layers of ResNet50.
The SushiAccel on Alveo U50 has off-chip bandwidth
of 14.4 GB/s, PB size of 1.69 MB, and throughput of 0.9216
TFlops running at 100 MHz.

5.4.1 Resources Allocation among Buffers

The resource utilization of SushiAccel w/ PB and
w/o PB under optimal configurations on both Xilinx
ZCU104 and Alveo U50 are shown in Tab. 2 with a break-
down on-chip storage allocation shown in Tab. 3. Both
SushiAccel w/ PB and SushiAccel w/o PB use the
same amount of overall on-chip storage for a fair compari-
son.
5.4.2 Latency Evaluation

The real-board latency and energy consumption results are
shown in Fig. 13a with resources shown in Tab. 2. On
ZCU104, compared with CPU, SushiAccel w/o PB
achieves 1.81X ⇠ 3.04X speedup and SushiAccel w/
PB achieves 1.87X ⇠ 3.17X for different SubNets. While
on Alveo U50, compared with CPU, SushiAccel w/o PB
achieves 1.43X ⇠ 2.54X speedup and SushiAccel w/
PB achieves 1.57X ⇠ 2.61X for different SubNets.

Fig. 13a also shows that the scale-up design on Alveo U50
performs worse than the small-scale design on ZCU104
under small SubNets because of higher off-chip DRAM
competition in data center cluster hosting Alveo U50 than
simple embedded ZCU104. Thus, off-chip data access dom-
inates latency in Alveo U50, resulting in the slow down for
small SubNets.

5.4.3 Energy Evaluation

Energy in data movement has been proved to dominate
the entire power consumption of neural network acceler-
ator (Dally et al., 2020) and thus we estimate the overall
energy through profiling the off-chip DRAM data access for
all different platforms shown in Figure 13b.

We estimate the off-chip energy by profiling the DRAM
data access and compute it as NumberAccess ⇥
EnergyPerAccess. With the proposed SubGraph Reuse,
we could save [14%, 52.6%] off-chip data access energy sav-
ing for ResNet50 and [43.6%, 78.7%] for MobV3 compared
to SushiAccel w/o PB.

(a) Latency comparison (b) Energy comparison
Figure 13. Real board latency and energy reduction for ResNet50.
(left and right bars in (b) are SushiAccel w/o PB and w/ PB)

5.5 Comparing with DPU

We compared SushiAccel against Xilinx DPU using real
layer-wise end-to-end inference latency of min-SubNet on
ZCU104 as shown in Fig. 14. We consider convolution lay-
ers with 3⇥3 kernel sizes. SushiAccel w/o PB achieved
0.5⇠1.95⇥ faster execution time than Xilinx DPU (25.1%
GeoMean speedup). This quantitative comparison lends
credence to the proposal of adding a Persistent Buffer (PB)
to a state-of-the-art ML accelerator design. There are also
seldom cases when SushiAccel performs worse than Xil-
inx DPU, because SushiAccel takes less parallelism in
height (X) and width (Y) dimensions (Fig. 5), leading to
higher latency under workload with higher X and Y values.

5.6 SushiSched Functional Evaluation

In this section, we evaluate the performance of
SushiSched for both ResNet50 and MobV3.

Fig. 15 shows that the SushiSched is able to serve queries
with strictly lesser latency and/or better accuracy where blue
dots represent served queries by employing SushiSched.
In Fig. 15a and Fig. 15c, blue dots are almost always below
the line y = x manifesting that the SushiSched can
serve strictly lesser latency if the latency is a hard constraint
that needs to be satisfied. Similarly, all blue dots above
the line y = x in Fig. 15b and Fig. 15d show that the
SushiSched can serve strictly better accuracy if accuracy
is a hard constraint that needs to be met.

5.7 End-to-End SUSHI Evaluation

In this section, we compare the latency-accuracy tradeoff re-
sults among SUSHI w/o PB, SUSHI w/ PB (state-unaware
caching), and SUSHI. The blue dots in Fig. 16 illustrate
how SUSHI serves random queries4.

For ResNet50 in all cases, SUSHI w/o scheduler consis-
tently outperforms No-SUSHI. For random queries, SUSHI
is also able to decrease the latency by 21% on average given
the same accuracy compared to not having SUSHI.

In the case of MobV3, due to its small size, a relatively larger
fraction of a SubNet fits in PB, resulting in a higher cache-hit

4Due to the overlap, only limited points in the figures are visible

SubGraph Stationary HW-SW Co-design for ML inference

Table 2. Resources comparison of SushiAccel with DPU
SushiAccel

w/o PB
SushiAccel

w/ PB
Xilinx DPU

DPUCZDX8G
SushiAccel

w/o PB
SushiAccel

w/ PB
Device ZCU104 ZCU104 ZCU104 Alveo U50 Alveo U50
LUT 61180 (26.6%) 64307 (27.9%) 41640 (18.1%) 231668 (26.63%) 244969 (28.16%)

Register 107216 (23.3%) 117724 (25.5%) 69180 (15%) 435071 (24.96%) 445602 (25.56%)
BRAM 192.5 (61.7%) 198.5 (63.6%) 0 452.5 (33.67%) 452.5 (33.67%)
URAM 48 (50%) 96 (100%) 60 (62.5%) 48 (7.5%) 96 (15%)

DSP 1507 (87.2%) 1459 (87.2%) 438 (25.35%) 4739 (79.78%) 4740 (79.79%)
PeakOps/cycle 2592 2592 2304 9216 9216

GFlops (100MHz) 259.2 259.2 230.4 921.6 921.6

Figure 14. The latency comparison between SushiAccel w/o PB and Xilinx DPU for ResNet50.

Table 3. Buffer configurations of SushiAccel (ZCU104 Board)
SushiAccel w/o PB SushiAccel w/ PB

BRAM (KB) URAM (KB) BRAM (KB) URAM (KB)
DB-Ping 0 1152 0 576
DB-Pong 0 1152 0 576

SB 8 1152 8 576
LB 54 0 54 0
OB 327 0 327 0
ZSB 8 0 8 0
PB 0 0 0 1728

Overall 397 3456 397 3456

Table 4. Reuse comparison (prior works v.s. SUSHI).
Work iActs Reuse

Fig. 8a & 8b
oAct Reuse
Partial Sum

Weights Reuse
iAct Tiling

SubGraph
Reuse

MAERI (Kwon et al., 2018) 3 7 3 temporal 7
NVDLA (NVIDIA, 2016) 7 3 3 temporal 7
Eyeriss (Chen et al., 2016) 3 7 3 temporal 7
Xilinx DPU (Xilinx, 2022) 3 3 3 temporal 7

SUSHI 3 3 3
spatial 3

temporal 3

ratio (Appendix A.4). SUSHI offers better accuracy-latency
tradeoff than SUSHI w/o scheduler, with the exception of
only a few points. In the case of MobV3, SUSHI is also
able to decrease the latency by 25% on average given the
same accuracy compared to not having SUSHI.

Finally, SUSHI increases the serving accuracy by up to
0.98% for the same latency, which is significant for ML
serving applications.

6 RELATED WORK

Various accelerator designs such as Maeri (Kwon et al.,
2018), Eyeriss (Chen et al., 2018), NVDLA (NVIDIA,
2016), and DPU (Xilinx, 2022) support different types of
reuse Fig. 8. A comparison of them is shown in Tab. 4.
However, all of these works achieve intra-model cross-layer
reuse in contrast to the cross-query reuse we propose with
SushiAccel.

Clipper (Crankshaw et al., 2017) serves single model queries
without exposing a latency/accuracy tradeoff. Inferline

(Crankshaw et al., 2018) serves multiple models but in a
pipeline, there’s no latency/accuracy tradeoff per model.
INFaaS (Romero et al., 2021b) provides a query-time la-
tency/accuracy tradeoff mechanism and policy but suffers
from expensive model switching mechanisms. This also
translates into a policy that minimizes model switching as
a result. The vertically integrated inference serving stack
provided by SUSHI naturally plugs into existing inference
serving frameworks, enabling agile navigation of the la-
tency/accuracy tradeoff at query time.

7 CONCLUSION

SUSHI is a vertically integrated hardware-software infer-
ence serving stack that takes advantage of the temporal
locality induced by serving inference queries on the same
weight-shared supernetwork structure. To the best of our
knowledge, the concept of SubGraph Stationary (SGS) op-
timization across queries is novel. We demonstrate that,
to achieve the best temporal locality benefit, the proposed
hardware implementation SushiAccel must work in tan-
dem with the software scheduler SushiSched to control
what SubNets to serve for each query and how to update
the accelerator state. We further ensure generalizability of
SushiSched by abstracting the effect of hardware state
on the latency (and energy) of served SubNets with a black
box SubGraph latency table. This decouples SushiSched
from any accelerator implementation, while maintaining its
state-awareness implicitly. SUSHI can be naturally inte-
grated in state-of-the-art ML inference serving frameworks
and enables better latency/accuracy tradeoffs for a stream of
queries with latency/accuracy constraints. For a stream of
queries, our results show 0.98% improvement in the served
accuracy, and up to 25% latency reduction.

SubGraph Stationary HW-SW Co-design for ML inference

��� ��� ���� ���� ���� ���� ����
/DWHQF\�FRQVWUDLQW��PV�

�

�

�

��

��

��

��

��
6H
UY
HG
�/
DW
HQ
F\
��P

V�

(a) Latency of ResNet50.

���� ���� ���� ���� ���� ����
$FFXUDF\�FRQVWUDLQW

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

(b) Accuracy of ResNet50.

� � � � � � ��
/DWHQF\�FRQVWUDLQW��PV�

�

�

�

�

�

�

6H
UY
HG
�/
DW
HQ
F\
��P

V�

(c) Latency of MobV3.

���� ���� ���� ���� ���� ����
$FFXUDF\�FRQVWUDLQW

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

(d) Accuracy of MobV3.
Figure 15. Serve strictly better accuracy and lesser latency for ResNet50 and MobV3 using SUSHI.

��� ��� ��� ��� ���� ���� ���� ����
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(a) ResNet50.

��� ��� ��� ��� ���� ���� ���� ����
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(b) MobV3.
Figure 16. Comparing delivering latency-vs-accuracy of No-
SUSHI and SUSHI w/o scheduler and baselines for ResNet50
and MobV3.

8 ACKNOWLEDGMENT
This material is based upon work partially supported by the
National Science Foundation under Grant Number CCF-
2029004. Additional support was provided by a sponsored
research award by Cisco Research. We would like to further
acknowledge the insightful comments of the review panel
as well as the skillful guidance of our shepherd, Dr. Qijing
Jenny Huang, which greatly contributed to the quality of this
paper. We thank the anonymous reviewers of MLSys, and
the SAIL Research Group members for valuable feedback
and the stimulating intellectual environment they provide.
We also thank Taekyung Heo from Synergy lab for his feed-
back on the initial version of the paper. Disclaimer: Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

Abdelaziz, H., shafiee, a., Shin, J. H., Pedram, A., and
Hassoun, J. Rethinking floating point overheads
for mixed precision dnn accelerators. In Smola,
A., Dimakis, A., and Stoica, I. (eds.), Proceedings
of Machine Learning and Systems, volume 3, pp.
223–239, 2021. URL https://proceedings.
mlsys.org/paper/2021/file/
5f93f983524def3dca464469d2cf9f3e-Paper.
pdf.

Ali, W., Abdelkarim, S., Zidan, M., Zahran, M., and El Sal-
lab, A. Yolo3d: End-to-end real-time 3d oriented object
bounding box detection from lidar point cloud. In Pro-
ceedings of the European Conference on Computer Vision

(ECCV) Workshops, pp. 0–0, 2018.

Bai, Y., Wang, Y. X., and Liberty, E. Proxquant: Quantized
neural networks via proximal operators. In ICLR’19,
arXiv (2018), 2018.

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural
architecture search on target task and hardware. CoRR,
abs/1812.00332, 2018. URL http://arxiv.org/
abs/1812.00332.

Cai, H., Gan, C., and Han, S. Once for all: Train one
network and specialize it for efficient deployment. CoRR,
abs/1908.09791, 2019. URL http://arxiv.org/
abs/1908.09791.

Chen, A., Demmel, J., Dinh, G., Haberle, M., and Holtz,
O. Communication bounds for convolutional neural net-
works. arXiv preprint arXiv:2204.08279, 2022.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.
Rethinking atrous convolution for semantic image seg-
mentation. arXiv preprint arXiv:1706.05587, 2017a.

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks. IEEE Journal of Solid-
State Circuits, 52(1):127–138, 2016.

Chen, Y.-H., Emer, J., and Sze, V. Using Dataflow to Opti-
mize Energy Efficiency of Deep Neural Network Accel-
erators. IEEE Micro, 37(3):12–21, 2017b.

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks
on Mobile Devices. arXiv preprint arXiv:1807.07928,
2018.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonza-
lez, J. E., and Stoica, I. Clipper: A {Low-Latency} online
prediction serving system. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
17), pp. 613–627, 2017.

Crankshaw, D., Sela, G.-E., Zumar, C., Mo, X., Gonzalez,
J. E., Stoica, I., and Tumanov, A. Inferline: Ml prediction
pipeline provisioning and management for tight latency
objectives. arXiv preprint arXiv:1812.01776, 2018.

https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper.pdf
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1908.09791
http://arxiv.org/abs/1908.09791

SubGraph Stationary HW-SW Co-design for ML inference

Dally, W. J., Turakhia, Y., and Han, S. Domain-specific
hardware accelerators. Communications of the ACM, 63:
48 – 57, 2020.

Datta, T., Mishra, S., and Swain, S. Real-time tracking and
lane line detection technique for an autonomous ground
vehicle system. In International Conference on Intelligent
Computing and Smart Communication 2019, pp. 1609–
1625. Springer, 2020.

Deo, N. and Trivedi, M. M. Convolutional social pooling for
vehicle trajectory prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1468–1476, 2018.

Eriksson, D., Chuang, P. I., Daulton, S., Xia, P., Shrivas-
tava, A., Babu, A., Zhao, S., Aly, A., Venkatesh, G.,
and Balandat, M. Latency-aware neural architecture
search with multi-objective bayesian optimization. CoRR,
abs/2106.11890, 2021. URL https://arxiv.org/
abs/2106.11890.

Fang, J., Shafiee, A., Abdel-Aziz, H., Thorsley, D., Geor-
giadis, G., and Hassoun, J. Near-lossless post-training
quantization of deep neural networks via a piecewise lin-
ear approximation. CoRR, abs/2002.00104, 2020. URL
https://arxiv.org/abs/2002.00104.

Fleischer, B., Shukla, S., Ziegler, M., Silberman, J., Oh,
J., Srinivasan, V., Choi, J., Mueller, S., Agrawal, A.,
Babinsky, T., et al. A scalable multi-teraops deep learning
processor core for ai trainina and inference. In 2018 IEEE
Symposium on VLSI Circuits, pp. 35–36. IEEE, 2018.

Gog, I., Kalra, S., Schafhalter, P., Gonzalez, J. E., and Stoica,
I. D3: a dynamic deadline-driven approach for building
autonomous vehicles. In Proceedings of the Seventeenth
European Conference on Computer Systems, pp. 453–471,
2022.

Halpern, M., Boroujerdian, B., Mummert, T., Duesterwald,
E., and Reddi, V. J. One size does not fit all: Quantifying
and exposing the accuracy-latency trade-off in machine
learning cloud service apis via tolerance tiers. In
2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 34–47,
Los Alamitos, CA, USA, mar 2019. IEEE Computer
Society. doi: 10.1109/ISPASS.2019.00012. URL
https://doi.ieeecomputersociety.org/
10.1109/ISPASS.2019.00012.

Hong, S., Xu, Y., Khare, A., Priambada, S., Maher, K.,
Aljiffry, A., Sun, J., and Tumanov, A. HOLMES: Health
OnLine Model Ensemble Serving for Deep Learning
Models in Intensive Care Units. In Proceedings of the
26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 1614–1624, 2020.

Hsieh, K., Ananthanarayanan, G., Bodik, P., Venkatara-
man, S., Bahl, P., Philipose, M., Gibbons, P. B., and
Mutlu, O. Focus: Querying large video datasets with
low latency and low cost. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 18), pp. 269–286, Carlsbad, CA, October
2018. USENIX Association. ISBN 978-1-939133-08-3.
URL https://www.usenix.org/conference/
osdi18/presentation/hsieh.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016. URL http://
arxiv.org/abs/1602.07360.

Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T.
SMART: Robust and efficient fine-tuning for pre-trained
natural language models through principled regularized
optimization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
2177–2190, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.
197. URL https://aclanthology.org/2020.
acl-main.197.

Jokic, P., Emery, S., and Benini, L. Improving memory
utilization in convolutional neural network accelerators.
IEEE Embedded Systems Letters, 13(3):77–80, 2020.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pp. 1–12,
2017.

Kao, S.-C., Subramanian, S., Agrawal, G., Yazdanbakhsh,
A., and Krishna, T. Flat: An optimized dataflow for
mitigating attention bottlenecks, 2022.

Kwon, H., Samajdar, A., and Krishna, T. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via
Reconfigurable Interconnects. In Proceedings of the 23rd
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2018.

Liu, W., Liao, S., Ren, W., Hu, W., and Yu, Y. High-
level semantic feature detection: A new perspective for
pedestrian detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 5187–5196, 2019.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell,
T. Rethinking the value of network pruning. CoRR,
abs/1810.05270, 2018. URL http://arxiv.org/
abs/1810.05270.

https://arxiv.org/abs/2106.11890
https://arxiv.org/abs/2106.11890
https://arxiv.org/abs/2002.00104
https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00012
https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00012
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://www.usenix.org/conference/osdi18/presentation/hsieh
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://aclanthology.org/2020.acl-main.197
https://aclanthology.org/2020.acl-main.197
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270

SubGraph Stationary HW-SW Co-design for ML inference

NVIDIA. NVIDIA Deep Learning Accelerator (NVDLA),
2016. URL http://nvdla.org/primer.html.

Ovtcharov, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss,
K., and Chung, E. S. Accelerating deep convolutional
neural networks using specialized hardware. Microsoft
Research Whitepaper, 2(11):1–4, 2015.

Pouransari, H., Tu, Z., and Tuzel, O. Least squares binary
quantization of neural networks. In CVPRW’20, 2020.

Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S.,
Das, D., Kaul, B., and Krishna, T. Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for
dnn training. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp.
58–70, 2020. doi: 10.1109/HPCA47549.2020.00015.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., et al. Mlperf inference bench-
mark. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–
459. IEEE, 2020.

Reuther, A., Michaleas, P., Jones, M., Gadepally, V.,
Samsi, S., and Kepner, J. Ai and ml accelerator sur-
vey and trends, 2022. URL https://arxiv.org/
abs/2210.04055.

Romero, F., Li, Q., Yadwadkar, N. J., and Kozyrakis,
C. INFaaS: Automated model-less inference serv-
ing. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21), pp. 397–411. USENIX As-
sociation, July 2021a. ISBN 978-1-939133-23-6.
URL https://www.usenix.org/conference/
atc21/presentation/romero.

Romero, F., Li, Q., Yadwadkar, N. J., and Kozyrakis, C.
{INFaaS}: Automated model-less inference serving. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pp. 397–411, 2021b.

Sahni, M., Varshini, S., Khare, A., and Tumanov, A.
CompOFA – compound once-for-all networks for faster
multi-platform deployment. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=IgIk8RRT-Z.

Siu, K., Stuart, D. M., Mahmoud, M., and Moshovos, A.
Memory requirements for convolutional neural network
hardware accelerators. In 2018 IEEE International Sym-
posium on Workload Characterization (IISWC), pp. 111–
121. IEEE, 2018.

Sundermeyer, M., Schlüter, R., and Ney, H. Lstm neural
networks for language modeling. In Thirteenth annual
conference of the international speech communication
association, 2012.

Tabernik, D. and Skočaj, D. Deep learning for large-scale
traffic-sign detection and recognition. IEEE transactions
on intelligent transportation systems, 21(4):1427–1440,
2019.

Venkatesan, R., Shao, Y. S., Wang, M., Clemons, J., Dai,
S., Fojtik, M., Keller, B., Klinefelter, A., Pinckney, N.,
Raina, P., et al. Magnet: A modular accelerator generator
for neural networks. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–
8. IEEE, 2019.

Wang, C., Liu, Y., Zuo, K., Tong, J., Ding, Y., and Ren,
P. ac 2 slam: Fpga accelerated high-accuracy slam with
heapsort and parallel keypoint extractor. In 2021 Inter-
national Conference on Field-Programmable Technology
(ICFPT), pp. 1–9. IEEE, 2021.

Wang, Y. E., Wei, G.-Y., and Brooks, D. Benchmarking tpu,
gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701, 2019.

Wei, X., Liang, Y., and Cong, J. Overcoming data transfer
bottlenecks in fpga-based dnn accelerators via layer con-
scious memory management. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE,
2019.

Xilinx. Xilinx Deep Learning Unit (DPU),
2022. URL https://docs.xilinx.
com/r/en-US/ug1414-vitis-ai/
Deep-Learning-Processor-Unit.

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.-J., Tan,
M., Huang, T., Song, X., Pang, R., and Le, Q. Bignas:
Scaling up neural architecture search with big single-
stage models. In European Conference on Computer
Vision, pp. 702–717. Springer, 2020.

Yuan, G., Behnam, P., Li, Z., Shafiee, A., Lin, S., Ma, X.,
Liu, H., Qian, X., Bojnordi, M. N., Wang, Y., et al. Forms:
Fine-grained polarized reram-based in-situ computation
for mixed-signal dnn accelerator. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Ar-
chitecture (ISCA), pp. 265–278. IEEE, 2021.

Zhang, D., Yang, J., Ye, D., and Hua, G. Lq-nets: Learned
quantization for highly accurate and compact deep neural
networks. In European Conference on Computer Vision
(ECCV), 2018.

http://nvdla.org/primer.html
https://arxiv.org/abs/2210.04055
https://arxiv.org/abs/2210.04055
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://openreview.net/forum?id=IgIk8RRT-Z
https://openreview.net/forum?id=IgIk8RRT-Z
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Deep-Learning-Processor-Unit
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Deep-Learning-Processor-Unit
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Deep-Learning-Processor-Unit

SubGraph Stationary HW-SW Co-design for ML inference

A APPENDIX - ABLATION STUDIES
A.1 Temporal Analysis of Subgraph Caching
In this section, we explore the impact of a number of vec-
torized SubGraphs employed in the running average results
as well as the size of Latency � Table on the accuracy-
latency results. Making cache update decisions after each
query improves both latency and accuracy results (Fig. 17),
but is prohibitively expensive as the new SubGraph must be
fetched from off-chip memory. For ResNet50, increasing
the number of queries to two, the results worsen. Increas-
ing the number of queries to 4 and 8 yields better results.
Eventually, there’s a point when the performance starts to
get worse (e.g., at 10+ queries) as the benefit of temporal
locality will be reduced. So there’s a tradeoff between the
staleness of query history over which the cached SubGraph
is computed and the cost of updating cache frequently. Fol-
lowing the same methodology for MobV3 (18), we observe
that averaging over 10 queries gives us the best tradeoff,
leading to better accuracy-latency results.

A.2 Impact of Latency � Table size

The results in Tab. 5 show the average latency improvement
by increasing the size of Latency � Table compared with
SUSHI w/o scheduler. As the results for ResNet50 show,
increasing the size of the table improves performance, but
is quickly saturated. This is consistent with the important
property of SushiSched table (rapid lookups on the criti-
cal query path). For MobV3, we see almost no improvement
in latency with increased table size, which shows that if the
PB is large enough to hold a large portion of the SubNet
(and, with other on-chip buffers—the whole SubNet), the
small table size can capture most of the required information
by the scheduler. Thus, for smaller models, we keep the
horizontal size of Latency � Table minimal.

A.3 Lookup Latency
We used the lookup table as a fast-search data structure. For
the largest model, (ResNet-50) the latency in microseconds
is shown in table Tab. 6. These results show that the lookup
table time is less than 1

1000 of the inference time and, thus,
doesn’t significantly interfere with the query’s critical path.
A.4 Cache Hit Ratio
SUSHI leverages temporal locality across queries as the
SubNets they induce share some weights that are common
to these SubNets. The benefit of SubGraph Reuse thus
fundamentally is a function of the workload. For instance,
if all queries used the exact same SubNet and we cache the
largest SubGraph of that SubNet, then the probability of
its reuse is 1. To generalize this intuition, SUSHI makes
caching decisions based on the intersection of SubNets used
by the last Q queries. Thus, we define the cache hit ratio as

Table 5. Average latency improvement with respect to the size of
Latency � Table normalized to SUSHI w/o scheduler

10-cols 40-cols 80-cols 100-cols 500-cols
ResNet50 4% 7% 8% 9% 9%
MobV3 1% 1% 1% 1% 1%

Table 6. Look up Time (us)
100-cols 200-cols 500-cols 1000-cols 2000-cols

ResNet50 2 4 6 10 17

the fraction of the cached SubGraph that was “hit” or present
in the SubNet served, because those weights don’t need to be
fetched. For a given query trace, we log (SNt, Gt) series of
tuples where SNt is the SubNet that the scheduler decided
to serve at time t, and Gt is a SubGraph cached in PB at
time t. We find the overlap between SNt and Gt using
k(SNt\Gt)k2

k(SNt)k2
where SNt is already vectorized using C and

K. We average this over t to get the average cache hit
ratio. || · ||2 is used as a proxy to calculate vector overlap.
Thus defined, SUSHI reaches a hit ratio of 66% (78%) for
ResNet50 (MobV3). It is instructive that the cache hit ratio
is higher for smaller models, as the intersection of common
weights used by SubNets over a past window of Q queries
is a larger fraction of the served SubNet.

� � �� �� �� �� ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(a) Single query

� � �� �� �� �� ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(b) Averaging 2 queries

� � �� �� �� �� ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(c) Averaging 4 queries

� � �� �� �� �� ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(d) Averaging 10 queries

Figure 17. Temporal analysis of subgraph caching for ResNet50

� � � � � � ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(a) Single query

� � � � � � ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(b) Averaging 4 queries

� � � � � � ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(c) Averaging 8 queries

� � � � � � ��
6HUYHG�/DWHQF\��PV�

����

����

����

����

����

6H
UY
HG
�$
FF
XU
DF
\

1R�6XVKL
6XVKL�Z�R�6FK
6XVKL

(d) Averaging 15 queries
Figure 18. Temporal analysis of subgraph caching for MobV3

